EP2806164A1 - Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor - Google Patents

Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor Download PDF

Info

Publication number
EP2806164A1
EP2806164A1 EP13168729.5A EP13168729A EP2806164A1 EP 2806164 A1 EP2806164 A1 EP 2806164A1 EP 13168729 A EP13168729 A EP 13168729A EP 2806164 A1 EP2806164 A1 EP 2806164A1
Authority
EP
European Patent Office
Prior art keywords
spiral
counter
displacement
scroll compressor
compressor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13168729.5A
Other languages
English (en)
French (fr)
Other versions
EP2806164B1 (de
Inventor
Frank Obrist
Oliver Obrist
Christian SCHMÄLZLE
Christian Busch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obrist Engineering GmbH
Original Assignee
Obrist Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obrist Engineering GmbH filed Critical Obrist Engineering GmbH
Priority to EP13168729.5A priority Critical patent/EP2806164B1/de
Priority to US14/282,509 priority patent/US9512840B2/en
Priority to CN201410216902.9A priority patent/CN104179682B/zh
Priority to JP2014104948A priority patent/JP6425417B2/ja
Publication of EP2806164A1 publication Critical patent/EP2806164A1/de
Application granted granted Critical
Publication of EP2806164B1 publication Critical patent/EP2806164B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps

Definitions

  • the invention relates to a scroll compressor for a CO 2 vehicle air conditioning system, and a CO 2 vehicle air conditioning system with such a scroll compressor.
  • Non-combustible refrigerants are used for the air conditioning of motor vehicles in order to avoid the risk of explosion inside the vehicle in the event of an accident.
  • the refrigerants used so far are either already banned or at least classified as problematic because of their high global warming potential.
  • CO 2 non-combustible refrigerant
  • CO 2 air conditioners operate with high operating pressures, which make special demands on the strength and tightness of the system components. The advantage associated with the high operating pressure is that the higher density of CO 2 requires a smaller volume flow to provide a relatively high refrigeration capacity.
  • a scroll compressor for a CO 2 vehicle air conditioner with the features of the preamble of claim 1 is made JP 2006/144635 A known.
  • Such scroll compressors have variable speed electric drives to control the cooling capacity of the compressor.
  • US 6,273,692 B1 a scroll compressor with a mechanical drive, which is connectable by an electromagnetic clutch to the compressor unit.
  • US 2002/0081224 A1 discloses a variable low-pressure scroll compressor which can be switched on and off by a radial movement of one of the two scroll spirals. In this case, the eccentricity between the two scroll spirals is released, which thus get out of engagement in the radial direction.
  • the invention has for its object to provide a scroll compressor for a CO 2 vehicle air conditioner, which is simple and improved in view of the tightness.
  • the invention is also based on the object of specifying a CO 2 vehicle air conditioning system with such a scroll compressor.
  • the object is achieved by a scroll compressor for a CO 2 vehicle air conditioner with the features of claim 1.
  • the object is achieved by the subject matter of claim 11.
  • the invention is suitable for variable speed or digitally controlled scroll compressors.
  • the invention has the advantage that tilting moments which act on the displacement spiral are reduced, thereby achieving a uniform contact pressure of the displacement spiral.
  • the uniform pressure leads to the fact that at each contact point between the two spirals substantially the same tightness prevails.
  • the invention provides that the eccentric bearing is arranged in the displacement between the positive displacement spiral and the counter-spiral and has a bearing bush, which is integrally formed with the positive displacement spiral and whose bottom is aligned with the end face of the turns of the positive displacement spiral.
  • the eccentric bearing is recessed in the VerdrDeutscherspirale in the direction of the pressure chamber, wherein the eccentric bearing is at least partially equal to the turns of the counter-spiral.
  • the eccentric bearing so at least partially immersed in the counter-spiral. That in the known low-pressure scroll compressors used for final compression innermost volume between the displacement spiral and the counter-spiral is at least partially used to accommodate the eccentric bearing. As a result, lever lengths and tilting moments are effectively reduced, because the immersion depth of the eccentric bearing is particularly large.
  • the invention also has the advantage that the suction side is securely separated from the high pressure side, because the bearing bush is formed integrally with the positive displacement spiral. Thus, no seals between the eccentric and the positive spiral are required.
  • the bushing participates in the compression, because this one hand is in the displacement and on the other hand, the bottom of which is aligned with the end face of the turns of the positive displacement spiral.
  • the bearing bush in the circumferential direction cooperates with the turns of the counter-spiral and in the axial direction with a sealing surface of the counter-spiral.
  • any tilting moments are further reduced when the displacement spiral has a central recess in which at least partially a counterweight is received, which is connected to the eccentric bearing.
  • the surface of the eccentric bearing is smaller than the central area within the innermost turn of the counter-spiral such that at least one gas ejection opening formed in the region of the central area is accessible for fluid communication with the pressure chamber. This avoids that the gas ejection opening is covered by the recessed eccentric bearing.
  • a further improvement of the tightness is achieved when the turns of the positive displacement spiral and the counter-spiral each have lubricating bevels.
  • Lubricants can accumulate in the lubricating surfaces, which improves the sliding properties and reduces local resistance forces, so that there is a uniform contact pressure and thus a good seal between the two spirals. If the lubricating bevels are formed at both outer edges of each of the turns of the positive displacement spiral and the counter-spiral, good lubrication in both directions takes place in the reciprocal movement of the positive displacement spiral.
  • the lubricating chamfers and / or a radius are formed in the corners between the turns and a sealing surface of the displacement spiral.
  • the lubricating chamfers and / or a radius may be formed in the corners between the turns and a sealing surface of the counter-spiral.
  • the gullies or radii in the corners preferably cooperate with the gullies on both outer edges of each of the turns of the positive displacement spiral and the counter-spiral. As a result, the sealing effect in the region of the respective gas chamber or gas pocket is improved, which is formed by the radial contact between the displacement spiral and the counter-spiral.
  • the tightness can be improved if a closed to the suction side receiving space for the eccentric bearing fluidly connected to the pressure chamber and a rear wall of the positive displacement spiral can be acted upon by a contact pressure.
  • the distance between the center of the counter-spiral and the center of the displacement spiral maximally 1.5 mm, in particular at most 1.2 mm, in particular at most 1.0 mm, in particular maximally 0.8 mm, in particular maximally 0.6 mm, in particular maximally 0.4 mm, in particular not more than 0.2 mm.
  • the lower limit can be 0.1 mm.
  • the counter-spiral has a winding angle of 660 ° to 720 °, in particular from 680 ° to 700 °, whereby a sufficient compression of the refrigerant is achieved.
  • the volume of the pressure chamber by a factor of 5-7, in particular by a factor of 6, greater than the suction volume per revolution of the displacement spiral, whereby gas pulsations are effectively reduced.
  • the scroll compressor described in detail below is designed for use in a CO 2 vehicle air conditioning system which typically includes a gas cooler, an internal heat exchanger, a throttle, an evaporator, and a compressor. Such systems are designed for maximum pressures over 100 bar.
  • the compressor is a scroll compressor, also referred to as a scroll compressor.
  • the scroll compressor has a mechanical drive 10 in the form of a pulley.
  • the pulley may be connected in use to an electric motor or an internal combustion engine.
  • the scroll compressor further includes a housing 30 having a housing cover 31 which closes the high pressure side of the compressor and is bolted to the housing 30.
  • a housing intermediate wall 32 is arranged, which limits a suction chamber 33.
  • a passage opening is formed, through which a drive shaft 11 extends.
  • the outside of the Housing 30 arranged shaft end is rotatably connected to a driver 35 which engages in the rotatably mounted on the housing 30 pulley, so that a torque can be transmitted to the drive shaft 11 of the pulley.
  • the drive shaft 11 is rotatably mounted on the one hand in the housing bottom 34 and on the other hand in the housing intermediate wall 32.
  • the sealing of the drive shaft 11 against the housing bottom 34 is effected by a first shaft seal 36 and against the housing intermediate wall 32 by a second shaft seal 37.
  • the drive shaft 11 transmits the torque to a compressor unit, which is constructed as follows.
  • the compressor unit comprises a movable displacement spiral 13 and a counter-spiral 14.
  • the displacement spiral 13 and the counter-spiral 14 engage each other.
  • the counter-spiral 14 is fixed in the circumferential direction and in the radial direction.
  • the coupled with the drive shaft 11 movable displacement spiral 13 describes a circular path, so that in a conventional manner by this movement several gas pockets or gas chambers are generated, which migrate radially between the displacement spiral 13 and the counter-spiral 14.
  • refrigerant vapor is sucked into the open outer gas chamber and compressed with the further spiral movement and the concomitant reduction of the gas chamber.
  • the refrigerant vapor is increasingly compressed linearly from radially outward to radially inward direction and expelled in the center of the counter-spiral 14 into a pressure chamber 15.
  • an eccentric bearing 12 is provided, which is connected to the drive shaft by an eccentric pin 38 (s. FIG. 2 ).
  • the eccentric bearing 12 and the displacement spiral 13 are arranged eccentrically with respect to the counter-spiral 14.
  • the gas chambers are separated from each other pressure-tight by conditioning the VerdrDeutscherspirale 13 on the counter-spiral 14.
  • the radial contact pressure between the displacement spiral 13 and the counter-spiral 14 is adjusted by the eccentricity.
  • the eccentricity results from the distance x between the center of the counter-spiral and the center of the displacement spiral (s. FIG. 6 ).
  • the distance x may preferably be in a range from 0.1 mm to 1.5 mm, in particular from 0.1 mm to 1.0 mm, in particular from 0.1 mm to 0.8 mm, in particular from 0.1 mm to 0.6 mm, in particular from 0.1 mm to 0.4 mm, in particular from 0.1 mm to 0.2 mm.
  • a rotational movement of the displacement spiral is avoided by a plurality of guide pins 39, which, as in FIG. 2 shown, are mounted in the intermediate wall 32.
  • the guide pins 39 engage in corresponding guide bores 40 which are formed in the displacement spiral 13.
  • a counterweight 28 is connected, preferably in one piece, to the eccentric bearing 12 to compensate for the imbalance caused by the orbital motion of the displacer coil 13.
  • the eccentric bearing 12 is recessed in the positive displacement spiral 13 in the direction of the pressure chamber 15.
  • the eccentric bearing 12 is thus at least partially equal to the turns of the counter-spiral 14.
  • the eccentric bearing 12 is disposed in the displacement between the displacement spiral 13 and the counter-spiral 14.
  • the eccentric bearing 12 has a pin 58 which is rotatably arranged in a bearing bush 26.
  • the bearing bush 26 is designed in one piece or in one piece with the displacement spiral 13.
  • the bushing 26 and the pin 58 may be made of the same material, for example. From bronze.
  • the bearing bush 26 and thus also the pin 58 are arranged at the same height as the turns of the two spirals 13, 14 and thus dive into the counter-spiral 14.
  • the outer wall of the bearing bush 26 forms part of the winding of the displacement spiral 13 and cooperates with the counter-spiral 14 for compressing the gas.
  • the axial sealing takes place through the bottom 58 of the bearing bush 26, which is aligned with the end face of the turns.
  • the end face and the bottom 58 are aligned parallel to the sealing surface 59 of the counter-spiral 14 and seal against them in the axial direction (s. Fig. 4 ).
  • the structure of the eccentric bearing 12 is in cross section in FIG. 6 shown.
  • the winding of the displacement spiral 13 widens towards the center.
  • the widened inner part of the displacement spiral 13 receives the pin 58 and integrally forms the bearing bush 26 in which the pin 58 rotatably seated.
  • the surface of the eccentric bearing 12 is smaller than the central surface 55 within the innermost turn of the counter-spiral 14.
  • the surface of the eccentric bearing 12 corresponds to the surface of the bottom 54 of the bearing bush 26. This ensures that formed in the region of the central surface 55 gas ejection port (not shown) for the fluid connection with the pressure chamber 15 is accessible.
  • lubricating lands 56 are formed complementary to the lubrication lands 56 at the outer edges of the turns.
  • the complementary lubricating bevels 56 may have the same angle. It is also possible that the lubricating bevels 56 in the corners have a shallower angle than the lubricating bevels 56 at the outer edges.
  • the corners may have radii 57 which are so large that they accommodate the associated lubricating bevels 56 at the outer edges (see FIG. Fig. 9 ).
  • FIGS. 1 . 2 shown scroll compressor is clutchless.
  • the scroll compressor is switched on and off (digital circuit).
  • the counter-spiral 14 in the axial direction ie in a direction parallel to the drive shaft 11 is alternately movable.
  • the displacement spiral 13 is fixed in the axial direction.
  • the counter-spiral 14 can be lifted from the displacement spiral 13 in the axial direction, as in the FIGS. 1 to 3 shown.
  • a pressure equalizing gap 41 is created between the displacement spiral 13 and the counter-spiral 14, which connects the gas chambers, which are separated from each other in the radial direction, between the displacement spiral 13 and the counter-spiral 14.
  • the sliding surface 42 is machined and seals against the counter-spiral 14.
  • the rear wall 21 of the counter-spiral 14 forms the bottom of the pressure chamber 15.
  • the counter-spiral 14 therefore closes directly with the pressure chamber 15.
  • the rear wall 21 also has a flange 22, in particular an annular flange 22, which rests against the sliding surface 42 of the pressure chamber 15.
  • the flange 22 serves as an axial guide of the counter-spiral 14 in the pressure chamber 15.
  • On the outer circumference of the flange 22, a groove with a sealing means, for example a sealing ring 43 is formed.
  • the pressure chamber 15 is bounded by a peripheral wall 44 which forms a stop 45 and limits the axial movement of the counter-spiral 14.
  • the pressure chamber 15 is provided in the housing cover 31. As a result, the assembly of the axially movable counter-spiral 14 is simplified. In addition, it has a rotationally symmetrical cross section.
  • axial force For the alternating movement of the counter-spiral 14 between the open position ( FIG. 3 ) and the closed position ( FIG. 4 ) opposite axial forces are required.
  • the spring 16 may be formed, for example, as a plate spring.
  • the spring 16 is in the closed position according to FIG. 4 biased and urges the counter-spiral 14 and the displacement spiral 13 apart.
  • the spring 16 is disposed opposite to the pressure chamber 15.
  • a central recess 46 is provided in the counter-spiral 14, in which the spring 16 is arranged.
  • the spring 16 is supported on the displacement spiral 13.
  • the bearing bush 26 of the eccentric bearing 12 is recessed in the VerdrDeutscherspirale 13.
  • the bearing bush 26 dips into the counter-spiral 14 and protrudes into the counter-spiral 14.
  • the bottom of the bearing bush 26, on which the spring 16 is supported is at the same height as the inner edges of the turns of the displacer spiral 13. This is well in FIG. 3 to recognize (open position). In the closed position according to FIG. 4 Therefore, the bottom of the bearing bush 26 abuts against the counter-spiral 14 and seals the innermost gas chamber between the displacement spiral 13 and the counter-spiral 14.
  • a piston 17, in particular an annular piston 17 is provided which is coaxial with the longitudinal axis of the counter-coil 14 slidably.
  • annular piston 17 a plurality of arranged on the circumference of the counter-spiral 14 cylindrical piston can be provided.
  • the annular piston 17 engages the rear wall 21 of the counter-spiral 14 and acts on it with a closing force which operates against the spring force of the spring 16.
  • the piston 17 engages, as in the FIGS. 1 to 4 to recognize, in addition to the pressure chamber 15 to the counter-coil 14 at.
  • the piston 17 is thus arranged outside the pressure chamber 15 or generally eccentrically.
  • a simple outlet opening may be formed in the counter-spiral 14 (not shown).
  • the annular piston 17 has a pressure ring 47, which is connected to a bottom 48 of the piston.
  • the piston head 48 is axially displaceable and pressure-tight in an axial guide 18.
  • the axial guide 18 is formed as an annular chamber.
  • the annular chamber with a Supply terminal 20c connected.
  • the supply port 20c is connected to a 2/3-way valve, which in turn is connected to a high pressure port 20a and a suction pressure port 20b, so that the annular chamber can be acted upon alternately with high pressure or suction pressure.
  • the counter-spiral 14 can be alternately moved back and forth between the open position or the closed position.
  • the annular piston 17 operates substantially only against the spring force of the spring 16, because the pressure prevailing in the pressure chamber 15 and acting on the counter-spiral 14 pressure is at least partially compensated by the pressure acting between the counter-spiral 14 and the displacement spiral 13 during compression.
  • only relatively small strokes are required to adjust the pressure equalizing gap 41. For example, stroke ranges of about 0.3 to 0.7 mm, in particular a stroke of about 0.5 mm.
  • the power control takes place in the scroll compressor by switching on or off the compressor power, specifically by changing the frequency of the cyclic or alternating movement of the counter-spiral 14th
  • the compressed gas collected in the pressure chamber 15 flows through an outlet 49 from the pressure chamber 15 into an oil separator 29, which in the present case is designed as a cyclone separator.
  • the compressed gas flows through the oil separator 29 and a check valve 19 in the circuit of the air conditioner.
  • the check valve 19, which prevents the compressed gas from flowing back into the scroll compressor which is switched off, is designed, for example, for pressure differences of 0.5 to 1 bar.
  • a receiving space 24 also referred to as a backpressure space ( FIG. 1 ), in which a part of the counterweight 28 and the eccentric bearing 12 are arranged, fluidly connected to the high pressure side.
  • the receiving space 24 is bounded by the rear wall 25 of the compressor spiral 13 and the housing intermediate wall 32.
  • the receiving space 24 is fluid-tightly separated from the suction space 33 by the second shaft seal 37 described above.
  • a sealing and sliding ring 52 is disposed between the displacement spiral 13 and the housing intermediate wall 32 and seals the receiving space 24 against the high pressure side.
  • the sealing and sliding ring 52 is seated in an annular groove in the housing intermediate wall 32. Between the housing intermediate wall 32 and the displacement spiral 13, a gap is formed (not shown).
  • the displacement spiral 13 is therefore not supported in the axial direction directly on the housing intermediate wall 32 but on the sealing and sliding ring 52 and slides on this.
  • the sealing and sliding ring 52 protrudes from the annular groove and seals the gap.
  • the gap can be about 0.2 mm to 0.5 mm wide.
  • a line 50 connects the oil separator 29 with the receiving space 24. This extends through the housing cover 31, the counter-spiral 14 and the intermediate wall 32. Between the oil separator 29 and the receiving space 24, specifically between the counter-spiral 14 and the Housing cover 31, a pressure reducer 53 is arranged, which ensures that between the high pressure side and the receiving space 24, a pressure difference of about 10% -20% prevails. This ensures that in the closed position of the axial contact pressure between the displacement spiral 13 and the counter-spiral 14 and thus the axial tightness is increased.
  • the pressure chamber 15 is encapsulated (s. FIG. 4 ).
  • the pressure chamber 15 is free of installation.
  • the pressure chamber may have an inner shell 51, in particular made of stainless steel or stainless steel.
  • the inner shell 51 has a lower thermal conductivity than aluminum.
  • the thermal insulation of the oil separator 29 reduces the heating of the refrigerant vapor on the suction side.
  • the thermal insulation is carried out by an encapsulation, for example by an inner shell made of stainless steel or stainless steel, which surrounds the cyclone separator.
  • the pressure reducer 53 is isolated by encapsulation with an inner shell of stainless steel or stainless steel.

Abstract

Scrollkompressor für eine CO2-Fahrzeugklimaanlage mit einer beweglichen Verdrängerspirale (13), die mit einem Exzenterlager (12) drehbar verbunden ist und in eine Gegenspirale (14) derart eingreift, dass zwischen den Windungen der Verdrängerspirale (13) und der Gegenspirale (14) radial nach innen wandernde Kammern gebildet werden, um das Kältemittel zu verdichten und in eine Druckkammer (15) auszustoßen, wobei die Verdrängerspirale (13) auf der Saugseite und die Gegenspirale (14) auf der Hochdruckseite angeordnet sind. Das Exzenterlager (12) ist im Verdrängerraum zwischen der Verdrängerspirale (13) und der Gegenspirale (14) angeordnet und weist eine Lagerbuchse (26) auf, die einstückig mit der Verdrängerspirale (13) ausgebildet ist und deren Boden (54) mit der Stirnseite der Windungen der Verdrängerspirale (13) fluchtet.

Description

  • Die Erfindung betrifft einen Scrollkompressor für eine CO2-Fahrzeugklimaanlage, sowie eine CO2-Fahrzeugklimaanlage mit einem solchen Scrollkompressor.
  • Zur Klimatisierung von Kraftfahrzeugen kommen nichtbrennbare Kältemittel zum Einsatz, um bei einem Unfall die Explosionsgefahr im Fahrzeuginnenraum zu vermeiden. Die bisher verwendeten Kältemittel sind allerdings wegen ihres hohen Treibhauspotentials entweder bereits verboten oder werden zumindest als problematisch eingestuft. Als umweltverträgliches, nichtbrennbares Kältemittel kommt CO2 (R744) in Frage, das die bisherigen Kältemittel bereits teilweise ersetzt. CO2-Klimaanlagen arbeiten allerdings mit hohen Betriebsdrücken, die besondere Anforderungen an die Festigkeit und Dichtigkeit der Anlagekomponenten stellen. Der mit dem hohen Betriebsdruck verbundene Vorteil besteht darin, dass durch die höhere Dichte von CO2 ein geringerer Volumenstrom notwendig ist, um eine relativ hohe Kälteleistung zu erbringen.
  • Ein Scrollkompressor für eine CO2-Fahrzeugklimaanlage mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus JP 2006/144635 A bekannt. Im Allgemeinen weisen derartige Scrollkompressoren drehzahlgeregelte elektrische Antriebe auf, um die Kälteleistung des Kompressors zu steuern. Im Zusammenhang mit Fahrzeugklimaanlagen, die mit herkömmlichen Niederdruckkältemittel arbeiten, sind auch einfach aufgebaute Scrollkompressoren bekannt, bei denen eine Leistungsregelung durch Ab- oder Zuschalten des Kompressors erfolgt.
  • So offenbart US 6,273,692 B1 einen Scrollkompressor mit einem mechanischen Antrieb, der durch eine elektromagnetische Kupplung mit der Verdichtereinheit verbindbar ist. US 2002/0081224 A1 offenbart einen variablen Niederdruck-Scrollkompressor, der durch eine Radialbewegung einer der beiden Scrollspiralen zu- bzw. abschaltbar ist. Dabei wird die Exzentrizität zwischen den beiden Scrollspiralen aufgehoben, die so in radialer Richtung außer Eingriff gelangen.
  • Bei den bekannten Scrollkompressoren ist die Dichtigkeit zwischen Verdränger-und Gegenspirale problematisch, was sich auf die Leistung auswirkt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Scrollkompressor für eine CO2-Fahrzeugklimaanlage anzugeben, der einfach aufgebaut ist und mit Blick auf die Dichtigkeit verbessert ist. Der Erfindung liegt ferner die Aufgabe zugrunde, eine CO2-Fahrzeugklimaanlage mit einem solchen Scrollkompressor anzugeben.
  • Erfindungsgemäß wird die Aufgabe durch einen Scrollkompressor für eine CO2-Fahrzeugklimaanlage mit den Merkmalen des Anspruchs 1 gelöst. Hinsichtlich der CO2-Fahrzeugklimaanlage wird die Aufgabe durch den Gegenstand des Anspruchs 11 gelöst. Die Erfindung ist für drehzahlgeregelte oder digital geregelte Scrollkompressoren geeignet.
  • Die Erfindung hat den Vorteil, dass Kippmomente, die auf die Verdrängerspirale wirken, reduziert werden und dadurch ein gleichmäßiger Anpressdruck der Verdrängerspirale erreicht wird. Der gleichmäßige Anpressdruck führt dazu, dass an jeder Berührungsstelle zwischen den beiden Spiralen im Wesentlichen die gleiche Dichtigkeit herrscht.
  • Dazu ist erfindungsgemäß vorgesehen, dass das Exzenterlager im Verdrängerraum zwischen der Verdrängerspirale und der Gegenspirale angeordnet ist und eine Lagerbuchse aufweist, die einstückig mit der Verdrängerspirale ausgebildet ist und deren Boden mit der Stirnseite der Windungen der Verdrängerspirale fluchtet.
  • Das Exzenterlager ist in der Verdrängerspirale in Richtung der Druckkammer vertieft angeordnet, wobei sich das Exzenterlager zumindest teilweise auf Höhe der Windungen der Gegenspirale befindet. Das Exzenterlager taucht also zumindest teilweise in die Gegenspirale ein. Das bei den bekannten Niederdruck-Scrollkompressoren zur Endverdichtung genutzte innerste Volumen zwischen der Verdrängerspirale und der Gegenspirale wird zumindest teilweise zur Aufnahme des Exzenterlagers genutzt. Dadurch werden Hebellängen und Kippmomente effektiv verringert, weil die Eintauchtiefe des Exzenterlagers besonders groß ist.
  • Die Erfindung hat außerdem den Vorteil dass die Saugseite sicher von der Hochdruckseite getrennt ist, weil die Lagerbuchse einstückig mit der Verdrängerspirale ausgebildet ist. Damit sind keine Dichtungen zwischen dem Exzenterlager und der Verdrängerspirale erforderlich. Die Lagerbuchse nimmt an der Verdichtung teil, weil sich diese einerseits im Verdrängerraum befindet und andererseits deren Boden mit der Stirnseite der Windungen der Verdrängerspirale fluchtet. Dadurch wirkt die Lagerbuchse in Umfangsrichtung mit den Windungen der Gegenspirale und in axialer Richtung mit einer Dichtfläche der Gegenspirale zusammen.
  • Bevorzugte Ausführungen sind in den Unteransprüchen angegeben.
  • Etwaige Kippmomente werden weiter verringert, wenn die Verdrängerspirale eine mittige Ausnehmung aufweist, in der zumindest teilweise ein Gegengewicht aufgenommen ist, das mit dem Exzenterlager verbunden ist.
  • Vorzugsweise ist die Fläche des Exzenterlagers kleiner als die mittige Fläche innerhalb der innersten Windung der Gegenspirale und zwar derart, dass wenigstens eine im Bereich der mittigen Fläche ausgebildete Gasausstoßöffnung für die Fluidverbindung mit der Druckkammer zugänglich ist. Dadurch wird vermieden, dass die Gasausstoßöffnung von dem vertieft angeordneten Exzenterlager überdeckt wird.
  • Eine weitere Verbesserung der Dichtigkeit wird erreicht, wenn die Windungen der Verdrängerspirale und der Gegenspirale jeweils Schmierfasen aufweisen. In den Schmierfasen kann sich Schmiermittel sammeln, das die Gleiteigenschaften verbessert und lokale Widerstandskräfte verringert, so dass ein gleichmäßiger Anpressdruck und damit eine gute Dichtigkeit zwischen den beiden Spiralen herrscht. Wenn die Schmierfasen an beiden Außenkanten jeweils der Windungen der Verdrängerspirale und der Gegenspirale ausgebildet sind, erfolgt eine gute Schmierung in beiden Richtungen bei der reziproken Bewegung der Verdrängerspirale.
  • Vorzugsweise sind die Schmierfasen und/oder ein Radius in den Ecken zwischen den Windungen und einer Dichtfläche der Verdrängerspirale ausgebildet. Zusätzlich können die Schmierfasen und/oder ein Radius in den Ecken zwischen den Windungen und einer Dichtfläche der Gegenspirale ausgebildet sein. Die Schmierfasen oder Radien in den Ecken wirken vorzugsweise mit den Schmierfasen an beiden Außenkanten jeweils der Windungen der Verdrängerspirale und der Gegenspirale zusammen. Dadurch wird die Dichtwirkung im Bereich der jeweiligen Gaskammer bzw. Gastasche verbessert, die durch die radiale Anlage zwischen der Verdrängerspirale und der Gegenspirale gebildet wird.
  • Die Dichtigkeit kann dadurch verbessert werden, wenn ein zur Saugseite abgeschlossener Aufnahmeraum für das Exzenterlager mit der Druckkammer fluidverbunden und eine Rückwand der Verdrängerspirale mit einem Anpressdruck beaufschlagbar ist.
  • Es hat sich gezeigt, dass eine relativ geringe Exzentrizität für eine ausreichende Verdichtung des Kältemittels genügt. Dazu kann der Abstand zwischen dem Mittelpunkt der Gegenspirale und dem Mittelpunkt der Verdrängerspirale maximal 1,5 mm, insbesondere maximal 1,2 mm, insbesondere maximal 1,0 mm, insbesondere maximal 0,8 mm, insbesondere maximal 0,6 mm, insbesondere maximal 0,4 mm, insbesondere maximal 0,2 mm betragen. Die Untergrenze kann 0,1 mm betragen. Vorzugsweise weist die Gegenspirale einen Windungswinkel von 660° bis 720°, insbesondere von 680° bis 700° auf, wodurch eine ausreichende Verdichtung des Kältemittels erzielt wird. Vorzugsweise ist das Volumen der Druckkammer um den Faktor 5-7, insbesondere um den Faktor 6, größer als das Saugvolumen pro Umdrehung der Verdrängerspirale, wodurch Gaspulsationen wirksam verringert werden.
  • Die Erfindung wird mit weiteren Einzelheiten unter Bezug auf die beigefügten schematischen Zeichnungen anhand von Ausführungsbeispielen näher erläutert.
  • In diesen zeigen
  • Figur 1
    einen Längsschnitt eines Scrollkompressors nach einem erfindungsgemäßen Ausführungsbeispiel;
    Figur 2
    einen weiteren Längsschnitt des Scrollkompressors gemäß Figur 1, der den Aufbau des Exzenterlagers verdeutlicht;
    Figur 3
    eine Detailansicht des Scrollkompressors gemäß Figur 1 im Bereich des Gehäusedeckels;
    Figur 4
    eine Detailansicht wie in Figur 3, wobei sich der Kompressor in der Schließstellung befindet;
    Figur 5
    einen Längsschnitt eines Kompressors nach einem weiteren erfindungsgemäßen Ausführungsbeispiel mit einem elektrischen Antrieb mit konstanter bzw. fester Drehzahl;
    Figur 6
    einen Querschnitt eines Kompressors nach Figur 1;
    Figur 7
    eine Detailansicht der Schmierfasen;
    Figur 8
    eine Detailansicht der Schmierfasen gemäß Figur 7, an einer anderen Windungsstelle ; und
    Figur 9
    eine Detailansicht der Ecken, die mit Radien ausgebildet sind;
  • Der nachfolgend im Detail beschriebene Scrollkompressor ist für den Einsatz in einer CO2-Fahrzeugklimaanlage konzipiert, die typischerweise einen Gaskühler, einen inneren Wärmetauscher, eine Drossel, einen Verdampfer und einen Verdichter umfasst. Solche Anlage sind für Maximaldrücke über 100 bar ausgelegt. Der Verdichter ist ein Scrollkompressor, der auch als Spiralverdichter bezeichnet wird. Wie in den Figuren 1 und 2 dargestellt, weist der Scrollkompressor einen mechanischen Antrieb 10 in der Form einer Riemenscheibe auf. Die Riemenscheibe kann im Gebrauch mit einem Elektromotor oder einem Verbrennungsmotor verbunden werden.
  • Der Scrollkompressor umfasst ferner ein Gehäuse 30 mit einem Gehäusedeckel 31, der die Hochdruckseite des Kompressors verschließt und mit dem Gehäuse 30 verschraubt ist. Im Gehäuse 30 ist eine Gehäusezwischenwand 32 angeordnet, die einen Saugraum 33 begrenzt. Im Gehäuseboden 34 ist eine Durchtrittsöffnung ausgebildet, durch die sich eine Antriebswelle 11 erstreckt. Das außerhalb des Gehäuses 30 angeordnete Wellenende ist drehfest mit einem Mitnehmer 35 verbunden, der in die am Gehäuse 30 drehbar gelagerte Riemenscheibe eingreift, so dass von der Riemenscheibe ein Drehmoment auf die Antriebswelle 11 übertragen werden kann. Die Antriebswelle 11 ist einerseits im Gehäuseboden 34 und andererseits in der Gehäusezwischenwand 32 drehbar gelagert. Die Abdichtung der Antriebswelle 11 gegen den Gehäuseboden 34 erfolgt durch eine erste Wellendichtung 36 und gegen die Gehäusezwischenwand 32 durch eine zweite Wellendichtung 37.
  • Die Antriebswelle 11 überträgt das Drehmoment auf eine Verdichtereinheit, die wie folgt aufgebaut ist.
  • Die Verdichtereinheit umfasst eine bewegliche Verdrängerspirale 13 und eine Gegenspirale 14. Die Verdrängerspirale 13 und die Gegenspirale 14 greifen ineinander ein. Die Gegenspirale 14 steht in Umfangsrichtung und in radialer Richtung fest. Die mit der Antriebswelle 11 gekoppelte bewegliche Verdrängerspirale 13 beschreibt eine kreisförmige Bahn, so dass in an sich bekannter Weise durch diese Bewegung mehrere Gastaschen oder Gaskammern erzeugt werden, die zwischen der Verdrängerspirale 13 und der Gegenspirale 14 radial nach innen wandern. Durch diese orbitierende Bewegung wird in die geöffnete äußere Gaskammer Kältemitteldampf angesaugt und mit der weiteren Spiralbewegung und der damit einhergehenden Verkleinerung der Gaskammer verdichtet. Der Kältemitteldampf wird von radial außen nach radial innen linear zunehmend verdichtet und im Zentrum der Gegenspirale 14 in eine Druckkammer 15 ausgestoßen.
  • Für die orbitierende Bewegung der Verdrängerspirale 13 ist ein Exzenterlager 12 vorgesehen, das mit der Antriebswelle durch einen Exzenterstift 38 verbunden ist (s. Figur 2). Das Exzenterlager 12 und die Verdrängerspirale 13 sind exzentrisch bezogen auf die Gegenspirale 14 angeordnet. Die Gaskammern sind durch Anlage der Verdrängerspirale 13 an der Gegenspirale 14 voneinander druckdicht getrennt. Der radiale Anpressdruck zwischen der Verdrängerspirale 13 und der Gegenspirale 14 wird durch die Exzentrizität eingestellt.
  • Die Exzentrizität ergibt sich aus dem Abstand x zwischen dem Mittelpunkt der Gegenspirale und dem Mittelpunkt der Verdrängerspirale (s. Figur 6). Der Abstand x kann vorzugsweise in einem Bereich von 0,1 mm bis 1,5 mm, insbesondere von 0,1 mm bis 1,0 mm, insbesondere von 0,1 mm bis 0,8 mm, insbesondere von 0,1 mm bis 0,6 mm, insbesondere von 0,1 mm bis 0,4 mm, insbesondere von 0,1 mm bis 0,2 mm liegen.
  • Eine Rotationsbewegung der Verdrängerspirale wird durch mehrere Führungsstifte 39 vermieden, die, wie in Figur 2 dargestellt, in der Zwischenwand 32 befestigt sind. Die Führungsstifte 39 greifen in korrespondierende Führungsbohrungen 40 ein, die in der Verdrängerspirale 13 ausgebildet sind. Ein Gegengewicht 28 ist, vorzugsweise einstückig, mit dem Exzenterlager 12 verbunden, um die durch die orbitierende Bewegung der Verdrängerspirale 13 entstehende Unwucht zu kompensieren.
  • Wie in den Figuren 1 bis 5 gut zu sehen, ist das Exzenterlager 12 in der Verdrängerspirale 13 in Richtung der Druckkammer 15 vertieft angeordnet. Das Exzenterlager 12 befindet sich somit zumindest teilweise auf Höhe der Windungen der Gegenspirale 14. Dadurch ist das Exzenterlager 12 im Verdrängerraum zwischen der Verdrängerspirale 13 und der Gegenspirale 14 angeordnet.
  • Das Exzenterlager 12 weist einen Zapfen 58 auf, der in einer Lagerbuchse 26 drehbar angeordnet ist. Die Lagerbuchse 26 ist einteilig bzw. einstückig mit der Verdrängerspirale 13 ausgeführt. Die Lagerbuchse 26 und der Zapfen 58 können aus dem selben Material bestehen, bspw. aus Bronze.
  • Die Lagerbuchse 26 und damit auch der Zapfen 58 sind auf derselben Höhe wie die Windungen der beiden Spiralen 13, 14 angeordnet und tauchen damit in die Gegenspirale 14 ein. Damit bildet die Außenwand der Lagerbuchse 26 Teil der Windung der Verdrängerspirale 13 und wirkt mit der Gegenspirale 14 zum Verdichten des Gases zusammen. Die axiale Abdichtung erfolgt durch den Boden 58 der Lagerbuchse 26, der mit der Stirnfläche der Windungen fluchtet. Die Stirnfläche und der Boden 58 sind parallel zur Dichtfläche 59 der Gegenspirale 14 ausgerichtet und dichten gegen diese in axialer Richtung ab (s. Fig. 4).
  • Der Aufbau des Exzenterlagers 12 ist im Querschnitt in Figur 6 gezeigt. Die Windung der Verdrängerspirale 13 verbreitert sich zum Zentrum hin. Der verbreiterte Innenteil der Verdrängerspirale 13 nimmt den Zapfen 58 auf und bildet einstückig die Lagerbuchse 26, in der der Zapfen 58 drehbar sitzt.
  • Die Fläche des Exzenterlagers 12 ist kleiner als die mittige Fläche 55 innerhalb der innersten Windung der Gegenspirale 14. Die Fläche des Exzenterlagers 12 entpricht der Fläche des Bodens 54 der Lagerbuchse 26. Dadurch wird erreicht, dass eine im Bereich der mittigen Fläche 55 ausgebildete Gasausstoßöffnung (nicht dargestellt) für die Fluidverbindung mit der Druckkammer 15 zugänglich ist.
  • In den Figuren 7 und 8 sind verschiedene Schmierfasen 56 gezeigt, die an den Außenkanten der Windungen ausgebildet sind. Die Außenkanten begrenzen auf beiden Seiten die jeweilige Stirnfläche der Windungen der Verdrängerspirale 13 und der Gegenspirale 14. Die Stirnfläche dichtet mit der Dichtfläche 59 der jeweiligen Spirale 13, 14 ab.
  • Gegenüber den Außenkanten, d.h. am Fuß der jeweiligen Windung, sind Ecken zwischen der Dichtfläche 59 und der jeweiligen Windung ausgebildet. Diese weisen Schmierfasen 56 sind komplementär zu den Schmierfasen 56 an den Außenkanten der Windungen ausgebildet. Dabei können die komplementären Schmierfasen 56 den selben Winkel aufweisen. Es ist auch möglich, dass die Schmierfasen 56 in den Ecken einen flacheren Winkel als die Schmierfasen 56 an den Außenkanten aufweisen.
  • Anstelle der Schmierfasen 56 können die Ecken Radien 57 aufweisen, die so groß ausgebidlet sind, dass diese die zughörigen Schmierfasen 56 an den Außenkanten aufnehmen (s. Fig. 9).
  • Der in Figuren 1, 2 dargestellte Scrollkompressor ist kupplungslos. Um trotzdem die Leistung des Kompressors verändern zu können, ist der Scrollkompressor zu-und abschaltbar (Digitalschaltung). Dazu ist vorgesehen, dass die Gegenspirale 14 in axialer Richtung, d. h. in einer Richtung parallel zur Antriebswelle 11 alternierend beweglich ist. Die Verdrängerspirale 13 steht in axialer Richtung fest. Damit kann die Gegenspirale 14 von der Verdrängerspirale 13 in axialer Richtung abgehoben werden, wie in den Figuren 1 bis 3 dargestellt. In dieser Offenstellung entsteht ein Druckausgleichsspalt 41 zwischen der Verdrängerspirale 13 und der Gegenspirale 14, der die in radialer Richtung voneinander getrennten Gaskammern zwischen der Verdrängerspirale 13 und der Gegenspirale 14 verbindet. Dies ist gut in Figur 3 zu sehen. Durch diesen Druckausgleichsspalt 41 strömt verdichtetes Gas aus den weiter innen angeordneten Kammern radial nach außen, wodurch ein Druckausgleich stattfindet. Die Leistung des Scrollkompressors wird dadurch auf 0 oder zumindest nahezu auf 0 gesenkt.
  • Die für die axiale Beweglichkeit der Gegenspirale 14 erforderliche Axialführung wird durch die Druckkammer 15 erfüllt, die außerdem Gaspulsationen dämpft. Die Druckkammer 15 hat daher eine Doppelfunktion:
    • Sie ist der Gegenspirale in Strömungsrichtung nachgeordnet und steht mit dieser in Fluidverbindung durch den nicht dargestellten Auslass der Gegenspirale 14. Der Auslass ist nicht exakt im Mittelpunkt der Gegenspirale 14 angeordnet, sondern befindet sich außermittig im Bereich der innersten Kammer zwischen der Verdrängerspirale 13 und der Gegenspirale 14. Dadurch wird erreicht, dass der Auslass von der Lagerbuchse 26 des Exzenterlagers 12 nicht abgedeckt wird und der endverdichtete Dampf in die Druckkammer 15 ausgestoßen werden kann.
  • Für die Axialführung der Gegenspirale 14 bildet die Druckkammer 15 am axialen Ende, das der Gegenspirale 14 zugewandt ist, eine innere Gleitfläche 42. Die Gleitfläche 42 ist bearbeitet und dichtet gegen die Gegenspirale 14 ab. Die Rückwand 21 der Gegenspirale 14 bildet den Boden der Druckkammer 15. Die Gegenspirale 14 schließt also direkt mit der Druckkammer 15 ab. Die Rückwand 21 weist ferner einen Flansch 22, insbesondere einen Ringflansch 22 auf, der an der Gleitfläche 42 der Druckkammer 15 anliegt. Der Flansch 22 dient als Axialführung der Gegenspirale 14 in der Druckkammer 15. Auf dem Außenumfang des Flansches 22 ist eine Nut mit einem Dichtmittel, beispielsweise einem Dichtring 43 ausgebildet. Die Druckkammer 15 wird durch eine Umfangswandung 44 begrenzt, die einen Anschlag 45 bildet und die axiale Bewegung der Gegenspirale 14 begrenzt.
  • Die Druckkammer 15 ist im Gehäusedeckel 31 vorgesehen. Dadurch wird die Montage der axialbeweglichen Gegenspirale 14 vereinfacht. Außerdem weist sie einen rotationssymmetrischen Querschnitt auf.
  • Für die alternierende Bewegung der Gegenspirale 14 zwischen der Offenstellung (Figur 3) und der Schließstellung (Figur 4) sind entgegengesetzte Axialkräfte erforderlich. Die Axialkraft, die die Gegenspirale 14 in die Offenstellung (Figur 3) bewegt und somit die Gegenspirale 14 von der Verdrängerspirale 13 löst (axiale Lösekraft), wird durch eine Feder 16 erzeugt, die zwischen der Verdrängerspirale 13 und der Gegenspirale 14 angeordnet ist. Die Feder 16 kann beispielsweise als Tellerfeder ausgebildet sein. Die Feder 16 ist in der Schließstellung gemäß Figur 4 vorgespannt und drängt die Gegenspirale 14 und die Verdrängerspirale 13 auseinander.
  • Wie in Figuren 3, 4 gut zu erkennen, ist die Feder 16 gegenüber der Druckkammer 15 angeordnet. Dazu ist in der Gegenspirale 14 eine zentrale Ausnehmung 46 vorgesehen, in der die Feder 16 angeordnet ist. Die Feder 16 stützt sich auf der Verdrängerspirale 13 ab. Dazu ist vorgesehen, dass die Lagerbuchse 26 des Exzenterlagers 12 in der Verdrängerspirale 13 vertieft angeordnet ist. Die Lagerbuchse 26 taucht dabei in die Gegenspirale 14 ein und ragt in die Gegenspirale 14 hinein. Der Boden der Lagerbuchse 26, auf dem sich die Feder 16 abstützt, befindet sich auf derselben Höhe, wie die Innenkanten der Windungen der Verdrängerspirale 13. Dies ist gut in Figur 3 zu erkennen (Offenstellung). In der Schließstellung gemäß Figur 4 liegt deshalb der Boden der Lagerbuchse 26 an der Gegenspirale 14 an und dichtet die innerste Gaskammer zwischen der Verdrängerspirale 13 und der Gegenspirale 14 ab.
  • Um die Gegenspirale 14 aus der in Figur 3 dargestellten Offenstellung in die in Figur 4 gezeigte Schließstellung zu überführen, ist ein Kolben 17, insbesondere ein Ringkolben 17 vorgesehen, der koaxial zur Längsachse der Gegenspirale 14 verschiebbar ist. Anstelle des Ringkolbens 17 können auch mehrere auf dem Umfang der Gegenspirale 14 angeordnete zylindrische Kolben vorgesehen sein. Der Ringkolben 17 greift an der Rückwand 21 der Gegenspirale 14 an und beaufschlagt diese mit einer Schließkraft, die gegen die Federkraft der Feder 16 arbeitet.
  • Der Kolben 17 greift, wie in den Figuren 1 bis 4 zu erkennen, neben der Druckkammer 15 an der Gegenspirale 14 an. Der Kolben 17 ist somit außerhalb der Druckkammer 15 bzw. allgemein außermittig angeordnet. Für die Fluidverbindung zwischen der Gegenspirale 14 und der Druckkammer 15 kann deshalb eine einfache Auslassöffnung in der Gegenspirale 14 ausgebildet sein (nicht dargestellt).
  • Der Ringkolben 17 weist einen Anpressring 47 auf, der mit einem Boden 48 des Kolbens verbunden ist. Der Kolbenboden 48 ist in einer Axialführung 18 axial verschieblich und druckdicht gelagert. Die Axialführung 18 ist als Ringkammer ausgebildet. Für die Betätigung des Ringkolbens 17 ist die Ringkammer mit einem Versorgungsanschluss 20c verbunden. Wie in Figur 1 dargestellt, ist der Versorgungsanschluss 20c mit einem 2/3-Wegeventil verbunden, das wiederum mit einem Hochdruckanschluss 20a und einem Saugdruckanschluss 20b verbunden ist, so dass die Ringkammer alternierend mit Hochdruck oder Saugdruck beaufschlagbar ist. Dadurch kann die Gegenspirale 14 alternierend zwischen der Offenstellung oder der Schließstellung hin und her bewegt werden. Dabei arbeitet der Ringkolben 17 im Wesentlichen nur gegen die Federkraft der Feder 16, weil der in der Druckkammer 15 herrschende und auf die Gegenspirale 14 wirkende Druck zumindest teilweise durch den zwischen der Gegenspirale 14 und der Verdrängerspirale 13 wirkenden Druck bei der Verdichtung kompensiert wird. Außerdem sind nur relativ kleine Hubwege erforderlich, um den Druckausgleichsspalt 41 einzustellen. Beispielsweise reichen Hubwege von ca. 0,3 bis 0,7 mm, insbesondere ein Hubweg von ca. 0,5 mm aus.
  • Die Leistungsregelung erfolgt bei dem Scrollkompressor durch Ein- bzw. Ausschaltung der Verdichterleistung, konkret durch die Änderung der Frequenz der zyklischen bzw. alternierenden Bewegung der Gegenspirale 14.
  • Das in der Druckkammer 15 gesammelte verdichtete Gas strömt durch einen Auslass 49 aus der Druckkammer 15 in einen Ölabscheider 29, der vorliegend als Zyklonabscheider ausgebildet ist. Das verdichtete Gas strömt durch den Ölabscheider 29 und ein Rückschlagventil 19 in den Kreislauf der Klimaanlage. Das Rückschlagventil 19, das ein Zurückströmen des verdichteten Gases in den ausgeschalteten Scrollkompressor verhindert, ist beispielsweise auf Druckdifferenzen von 0,5 bis 1 bar ausgelegt.
  • Die Abdichtung der Verdrängerspirale 13 gegen die Gegenspirale 14 in axialer Richtung wird dadurch unterstützt, dass eine Rückwand 25 der Verdrängerspirale mit Hochdruck beaufschlagt wird. Dazu ist ein Aufnahmeraum 24, auch als Backpressure-Raum bezeichnet (Figur 1), in dem ein Teil des Gegengewichts 28 und das Exzenterlager 12 angeordnet sind, mit der Hochdruckseite fluidverbunden. Der Aufnahmeraum 24 wird durch die Rückwand 25 der Verdichterspirale 13 und die Gehäusezwischenwand 32 begrenzt.
  • Der Aufnahmeraum 24 ist durch die eingangs beschriebene zweite Wellendichtung 37 vom Saugraum 33 fluiddicht getrennt. Ein Dicht- und Gleitring 52 ist zwischen der Verdrängerspirale 13 und der Gehäusezwischenwand 32 angeordnet und dichtet den Aufnahmeraum 24 gegen die Hochdruckseite ab. Der Dicht- und Gleitring 52 sitzt in einer Ringnut in der Gehäusezwischenwand 32. Zwischen der Gehäusezwischenwand 32 und der Verdrängerspirale 13 ist ein Spalt ausgebildet (nicht dargestellt). Die Verdrängerspirale 13 stützt sich deshalb in axialer Richtung nicht direkt auf der Gehäusezwischenwand 32 sondern auf dem Dicht- und Gleitring 52 ab und gleitet auf diesem. Der Dicht- und Gleitring 52 steht dazu aus der Ringnut vor und dichtet den Spalt ab. Der Spalt kann ca. 0,2 mm bis 0,5 mm breit sein.
  • Für den Anschluss an die Hochdruckseite verbindet eine Leitung 50 den Ölabscheider 29 mit dem Aufnahmeraum 24. Diese erstreckt sich durch den Gehäusedeckel 31, die Gegenspirale 14 und die Zwischenwand 32. Zwischen dem Ölabscheider 29 und dem Aufnahmeraum 24, konkret zwischen der Gegenspirale 14 und dem Gehäusedeckel 31, ist ein Druckminderer 53 angeordnet, der dafür sorgt, dass zwischen der Hochdruckseite und dem Aufnahmeraum 24 eine Druckdifferenz von ca. 10%-20% herrscht. Dadurch wird erreicht, dass in der Schließstellung der axiale Anpressdruck zwischen der Verdrängerspirale 13 und der Gegenspirale 14 und damit die axiale Dichtigkeit erhöht wird.
  • In thermischer Hinsicht ist der in Figur 1 dargestellte Scrollkompressor dahingehend optimiert, dass eine unerwünschte Aufheizung des Kältemitteldampfes auf der Saugseite vermindert wird. Dazu ist die Druckkammer 15 gekapselt (s. Figur 4). Im Übrigen ist die Druckkammer 15 einbautenfrei. Beispielsweise kann die Druckkammer eine Innenhülle 51, insbesondere aus Edelstahl oder nichtrostendem Stahl aufweisen. Die Innenhülle 51 hat einen niedrigere Wärmeleitfähigkeit als Aluminium. Zusätzlich verringert die thermische Isolierung des Ölabscheiders 29 die Aufheizung des Kältemitteldampfes auf der Saugseite. Auch hier erfolgt die thermische Isolierung durch eine Kapselung, beispielsweise durch eine Innenhülle aus Edelstahl oder nichtrostendem Stahl, die den Zyklonabscheider umgibt. Ferner ist der Druckminderer 53 durch eine Kapselung mit einer Innenhülle aus Edelstahl oder nichtrostendem Stahl isoliert.
  • Damit ist es möglich, den Gehäusedeckel 31 beispielsweise aus Aluminium zu fertigen, ohne dass eine übermäßige Wärmeübertragung von der Hochdruckseite auf die Saugseite zu befürchten ist.
  • Der einzige Unterschied zwischen dem Scrollkompressor gemäß Figur 5 und dem Scrollkompressor gemäß Figur 1 besteht darin, dass anstelle des mechanischen Antriebes ein elektrischer Antrieb mit konstanter, d.h. zeitlich unveränderlicher Drehzahl verwendet wird. Im Übrigen wird auf die Ausführungen im Zusammenhang mit dem mechanisch angetriebenen Scrollkompressor verwiesen.
  • Bezugszeichenliste
  • 10
    Antrieb
    11
    Antriebswelle
    12
    Exzenterlage
    13
    Verdrängerspirale
    14
    Gegenspirale
    15
    Druckkammer
    16
    Feder
    17
    Kolben / Ringkolben
    18
    Kolbenführung
    19
    Rückschlagventil
    20a
    Hochdruckanschluss
    20b
    Saugdruckanschluss
    20c
    Versorgungsanschluss
    21
    Rückwand Gegenspirale
    22
    Flansch
    23
    Innenwand
    24
    Aufnahmeraum
    25
    Rückwand Verdrängerspirale
    26
    Lagerbuchse
    27
    Ausnehmung
    28
    Gegengewicht
    29
    Ölabscheider
    30
    Gewicht
    31
    Gehäusedeckel
    32
    Gehäusezwischenwand
    33
    Saugraum
    34
    Gehäuseboden
    35
    Mitnehmer
    36
    erste Wellendichtung
    37
    zweite Wellendichtung
    38
    Exzenterstift
    39
    Führungsstifte
    40
    Führungsbohrungen
    41
    Druckausgleichsspalt
    42
    Gleitfläche
    43
    Dichtring
    44
    Wandung
    45
    Anschlag
    46
    zentrale Ausnehmung
    47
    Anpressring
    48
    Kolbenboden
    49
    Auslass
    50
    Leitung
    51
    Innenhülle
    52
    Gleit- und Dichtring
    53
    Druckminderer

Claims (11)

  1. Scrollkompressor für eine CO2-Fahrzeugklimaanlage mit einer beweglichen Verdrängerspirale (13), die mit einem Exzenterlager (12) drehbar verbunden ist und in eine Gegenspirale (14) derart eingreift, dass zwischen den Windungen der Verdrängerspirale (13) und der Gegenspirale (14) radial nach innen wandernde Kammern gebildet werden, um das Kältemittel zu verdichten und in eine Druckkammer (15) auszustoßen, wobei die Verdrängerspirale (13) auf der Saugseite und die Gegenspirale (14) auf der Hochdruckseite angeordnet sind,
    dadurch gekennzeichnet, dass
    das Exzenterlager (12) im Verdrängerraum zwischen der Verdrängerspirale (13) und der Gegenspirale (14) angeordnet ist und eine Lagerbuchse (26) aufweist, die einstückig mit der Verdrängerspirale (13) ausgebildet ist und deren Boden (54) mit der Stirnseite der Windungen der Verdrängerspirale (13) fluchtet.
  2. Scrollkompressor nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Verdrängerspirale (13) eine mittige Ausnehmung (27) aufweist, in der zumindest teilweise ein Gegengewicht (28) aufgenommen ist, das mit dem Exzenterlager (12) verbunden ist.
  3. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Fläche des Exzenterlagers (12) kleiner als die mittige Fläche (55) innerhalb der innersten Windung der Gegenspirale (14) ist derart, dass wenigstens eine im Bereich der mittigen Fläche (55) ausgebildete Gasausstoßöffnung für die Fluidverbindung mit der Druckkammer (15) zugänglich ist.
  4. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Windungen der Verdrängerspirale (13) und der Gegenspirale (14) jeweils Schmierfasen (56) aufweisen, die an beiden Außenkanten jeweils der Windungen der Verdrängerspirale (13) und der Gegenspirale (14) ausgebildet sind.
  5. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    weitere Schmierfasen (56) und/oder ein Radius (57) in den Ecken zwischen den Windungen und einer Dichtfläche (59) der Verdrängerspirale (13) ausgebildet sind.
  6. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    weitere Schmierfasen (56) und/oder ein Radius (57) in den Ecken zwischen den Windungen und einer Dichtfläche (59) der Gegenspirale (14) ausgebildet sind.
  7. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ein zur Saugseite abgeschlossener Aufnahmeraum (24) für das Exzenterlager (12) mit der Druckkammer (15) fluidverbunden ist und eine Rückwand (25) der Verdrängerspirale (13) mit einem Anpressdruck beaufschlagbar ist.
  8. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Abstand zwischen dem Mittelpunkt der Gegenspirale (14) und dem Mittelpunkt der Verdrängerspirale (13) maximal 1,5 mm, insbesondere maximal 1,2 mm, insbesondere maximal 1,0 mm, insbesondere maximal 0,8 mm, insbesondere maximal 0,6 mm, insbesondere maximal 0,4 mm, insbesondere maximal 0,2 mm beträgt.
  9. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,dass
    die Gegenspirale (14) einen Windungswinkel von 660° bis 720°, insbesondere von 680° bis 700° aufweist.
  10. Scrollkompressor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Volumen der Druckkammer (15) um den Faktor 5-7, insbesondere um den Faktor 6, größer als das Saugvolumen pro Umdrehung der Verdrängerspirale (13) ist und/oder die Druckkammer (15) thermisch isoliert ist.
  11. Fahrzeugklimaanlage, die CO2 als Kältemittel enthält, mit einem Scrollkompressor nach Anspruch 1.
EP13168729.5A 2013-05-22 2013-05-22 Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor Active EP2806164B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13168729.5A EP2806164B1 (de) 2013-05-22 2013-05-22 Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor
US14/282,509 US9512840B2 (en) 2013-05-22 2014-05-20 Scroll-type compressor and CO2 vehicle air conditioning system having a scroll-type compressor
CN201410216902.9A CN104179682B (zh) 2013-05-22 2014-05-21 涡旋式压缩机以及具有涡旋式压缩机的co2车辆空调系统
JP2014104948A JP6425417B2 (ja) 2013-05-22 2014-05-21 スクロール型圧縮機およびスクロール型圧縮機を有するco2車両空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13168729.5A EP2806164B1 (de) 2013-05-22 2013-05-22 Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor

Publications (2)

Publication Number Publication Date
EP2806164A1 true EP2806164A1 (de) 2014-11-26
EP2806164B1 EP2806164B1 (de) 2015-09-09

Family

ID=48569935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13168729.5A Active EP2806164B1 (de) 2013-05-22 2013-05-22 Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor

Country Status (4)

Country Link
US (1) US9512840B2 (de)
EP (1) EP2806164B1 (de)
JP (1) JP6425417B2 (de)
CN (1) CN104179682B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015120151A1 (de) 2015-11-20 2017-05-24 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
DE102017105175B3 (de) 2017-03-10 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Verdrängerspirale, Fahrzeugklimaanlage und Fahrzeug
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
DE102018217911A1 (de) * 2018-10-19 2020-04-23 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Verdichtermodul sowie elektromotorischer Kältemittelverdichter
WO2020217066A1 (en) * 2019-04-26 2020-10-29 Edwards Limited Scroll pump crank sleeve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350966B2 (en) 2015-08-11 2019-07-16 Ford Global Technologies, Llc Dynamically controlled vehicle cooling and heating system operable in multi-compression cycles
DE102016105302B4 (de) * 2016-03-22 2018-06-14 Hanon Systems Steuerstromregelventil, insbesondere für Spiralverdichter in Fahrzeugklimaanlagen oder Wärmepumpen
WO2021040360A1 (en) * 2019-08-27 2021-03-04 Samsung Electronics Co., Ltd. Scroll compressor
DE102020110097A1 (de) * 2020-04-09 2021-10-14 OET GmbH Verdrängermaschine, Verfahren, Fahrzeugklimaanlage und Fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791384A (ja) * 1993-09-24 1995-04-04 Hitachi Ltd スクロール圧縮機
US6273692B1 (en) 1999-06-29 2001-08-14 Sanden Corporation Scroll-type compressor
US20020081224A1 (en) 2000-12-22 2002-06-27 Motohiko Ueda Scroll-type compressor
US20030194340A1 (en) * 2002-04-11 2003-10-16 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
JP2006144635A (ja) 2004-11-18 2006-06-08 Denso Corp スクロール型圧縮機
US20090098001A1 (en) * 2007-10-15 2009-04-16 Scroll Laboratories, Inc. Sealing tabs on orbiting scroll

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1482910A (fr) 1966-03-23 1967-06-02 Pompe volumétrique
US3817664A (en) 1972-12-11 1974-06-18 J Bennett Rotary fluid pump or motor with intermeshed spiral walls
US3874827A (en) 1973-10-23 1975-04-01 Niels O Young Positive displacement scroll apparatus with axially radially compliant scroll member
JPS581278B2 (ja) 1980-04-05 1983-01-10 サンデン株式会社 スクロ−ル型圧縮機
US4610610A (en) 1984-08-16 1986-09-09 Sundstrand Corporation Unloading of scroll compressors
JPS6263189A (ja) 1985-09-17 1987-03-19 Nippon Soken Inc スクロ−ル型圧縮機
US4927339A (en) 1988-10-14 1990-05-22 American Standard Inc. Rotating scroll apparatus with axially biased scroll members
JPH05187371A (ja) * 1992-01-13 1993-07-27 Hitachi Ltd スクロール圧縮機とスクロールラップ加工用エンドミル
US5199280A (en) 1991-11-25 1993-04-06 American Standard Inc. Co-rotational scroll compressor supercharger device
US6213731B1 (en) 1999-09-21 2001-04-10 Copeland Corporation Compressor pulse width modulation
JP2002161875A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd スクロールポンプ
JP2003227476A (ja) * 2002-02-05 2003-08-15 Matsushita Electric Ind Co Ltd 空気供給装置
TWI221502B (en) * 2002-04-11 2004-10-01 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
US7265080B2 (en) * 2002-06-12 2007-09-04 Nsk Ltd. Rolling bearing, rolling bearing for fuel cell, compressor for fuel cell system and fuel cell system
JP2005023817A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd スクロール圧縮機およびスクロールラップの加工方法
AU2007221683B2 (en) * 2006-03-03 2010-08-26 Daikin Industries, Ltd. Compressor and manufacturing method thereof
JP2008121490A (ja) * 2006-11-10 2008-05-29 Daikin Ind Ltd 回転式圧縮機
DE102008013784B4 (de) * 2007-03-15 2017-03-23 Denso Corporation Kompressor
JP2012026310A (ja) * 2010-07-21 2012-02-09 Panasonic Corp インバータ一体型電動圧縮機
KR101484728B1 (ko) * 2011-04-22 2015-01-20 가부시끼가이샤 히다치 세이사꾸쇼 스크롤 압축기
JP2012237251A (ja) * 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd スクロール型流体機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791384A (ja) * 1993-09-24 1995-04-04 Hitachi Ltd スクロール圧縮機
US6273692B1 (en) 1999-06-29 2001-08-14 Sanden Corporation Scroll-type compressor
US20020081224A1 (en) 2000-12-22 2002-06-27 Motohiko Ueda Scroll-type compressor
US20030194340A1 (en) * 2002-04-11 2003-10-16 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
JP2006144635A (ja) 2004-11-18 2006-06-08 Denso Corp スクロール型圧縮機
US20090098001A1 (en) * 2007-10-15 2009-04-16 Scroll Laboratories, Inc. Sealing tabs on orbiting scroll

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015120151A1 (de) 2015-11-20 2017-05-24 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
WO2017085256A1 (de) 2015-11-20 2017-05-26 OET GmbH Verdrängermaschine nach dem spiralprinzip, verfahren zum betreiben einer verdrängermaschine, fahrzeugklimaanlage und fahrzeug
US11448218B2 (en) 2015-11-20 2022-09-20 OET GmbH Displacement machine according to the spiral principle, method to regulate pressure in the counter-pressure chamber by using a pressure difference and characteristic curve
DE102017105175B3 (de) 2017-03-10 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Verdrängerspirale, Fahrzeugklimaanlage und Fahrzeug
WO2018162713A1 (de) 2017-03-10 2018-09-13 OET GmbH Verdrängermaschine nach dem spiralprinzip, verfahren zum betreiben einer verdrängermaschine, verdrängerspirale, fahrzeugklimaanlage und fahrzeug
US10801496B2 (en) 2017-03-10 2020-10-13 OET GmbH Positive-displacement machine according to the spiral principle, method for operating a positive-displacement machine, positive-displacement spiral, vehicle air-conditioning system and vehicle
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
EP3404264A1 (de) * 2017-05-19 2018-11-21 OET GmbH Spiralverdichter und sein betriebsverfahren
US11131306B2 (en) 2017-05-19 2021-09-28 OET GmbH Displacement machine including only one displacement spiral passage and gas connection line in communication with a counter pressure chamber
DE102018217911A1 (de) * 2018-10-19 2020-04-23 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Verdichtermodul sowie elektromotorischer Kältemittelverdichter
WO2020217066A1 (en) * 2019-04-26 2020-10-29 Edwards Limited Scroll pump crank sleeve

Also Published As

Publication number Publication date
US20140348681A1 (en) 2014-11-27
US9512840B2 (en) 2016-12-06
JP6425417B2 (ja) 2018-11-21
CN104179682B (zh) 2018-03-02
JP2014228002A (ja) 2014-12-08
EP2806164B1 (de) 2015-09-09
CN104179682A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
EP2806164B1 (de) Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor
EP2806165B1 (de) Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor
EP3545195B1 (de) Verdrängermaschine nach dem spiralprinzip, verfahren zum betreiben einer verdrängermaschine, verdrängerspirale, fahrzeugklimaanlage und fahrzeug
DE60116684T2 (de) Linearkompressor
WO2018197458A1 (de) Verdichter
DE60309247T2 (de) Spiralverdichter
DE102016122028A1 (de) Taumelscheibenkompressor mit variabler Fördermenge
DE19633533C2 (de) Taumelscheibenkompressor
DE19650108A1 (de) Taumelscheiben-Kompressor
DE102004040476B4 (de) Kapazitäts-Steuerventil
DE60215467T2 (de) Kolbenschmiersystem für einen hubkolbenverdichter mit einem linearmotor
EP1297256B1 (de) Sicherheitseinrichtung für klimakompressor
DE102016203587A1 (de) Taumelscheibenverdichter mit veränderlicher Verdrängung
DE112011104568B4 (de) Kompressor mit einem Regelventil einer Öffnung in einer Ansaugpassage
DE102017102645B4 (de) Kältemittel-Scrollverdichter für die Verwendung innerhalb einer Wärmepumpe
DE102008008860B4 (de) Verdichter
DE102016219311A1 (de) Fluidverdichter
DE102016217358A1 (de) Scrollverdichter
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
DE102020210453B4 (de) Scrollverdichter eines elektrischen Kältemittelantriebs
DE3401064A1 (de) Stroemungsmittelpumpe
EP1662141B1 (de) Axialkolbenverdichter
EP3580455B1 (de) Ölfreie vakuumpumpe mit prismatischem kolben und dementsprechender kompressor
EP2795204B1 (de) Verdichter
DE102012100720A1 (de) Ölleitsystem für einen Verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 18/02 20060101AFI20150209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 748361

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001118

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001118

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130522

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 748361

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200528

Year of fee payment: 8

Ref country code: TR

Payment date: 20200511

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 8

Ref country code: IT

Payment date: 20200522

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 11