EP2798164A2 - Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence - Google Patents

Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence

Info

Publication number
EP2798164A2
EP2798164A2 EP12780192.6A EP12780192A EP2798164A2 EP 2798164 A2 EP2798164 A2 EP 2798164A2 EP 12780192 A EP12780192 A EP 12780192A EP 2798164 A2 EP2798164 A2 EP 2798164A2
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
steam turbine
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12780192.6A
Other languages
German (de)
English (en)
Inventor
Andreas Pickard
Erich Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14004089.0A priority Critical patent/EP2907980A1/fr
Priority to EP12780192.6A priority patent/EP2798164A2/fr
Publication of EP2798164A2 publication Critical patent/EP2798164A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the invention relates to the frequency support operation of a gas and steam turbine plant.
  • this also includes the ability to release additional power in the event of high power consumption (so-called peak load operation).
  • peak load operation In the future, it is expected that power plants operating at their nominal point will also participate in peak load coverage and frequency support.
  • Today's solutions rely on the use of power reserves within the components or are based on technologies that can provide only a very low power reserve.
  • the gas turbine can be overfired for both frequency support and peak load coverage, the compressor vanes can be opened beyond the base load position, or water can be injected into the intake air duct.
  • Requirements relating only to peak load coverage can be met by steam injection into the gas turbine combustion chamber, by cooling the gas turbine intake air, for example with evaporative coolers or chillers, or by the waste heat steam generator (AHDE) with additional firing equipped to raise the steam turbine power.
  • AHDE waste heat steam generator
  • the live steam or the steam from the reheat can be accumulated and the turbine control valves are then opened quickly.
  • EP 1 164 254 B1 describes a gas and steam turbine plant with steam diversions for peak load coverage, ie for additional power at full load.
  • the object of the invention is to provide a method for the frequency-supporting operation of a gas and steam turbine plant, which provides an improved power reserve.
  • the invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a Abhitzedampferzeu- ger, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid From a steady state operation, the absorption capacity of the steam turbine can be increased and the pressure in the heat recovery steam generator lowered to utilize storage reserves in the waste steam generator for increased steam generation, and heat energy is supplied to the waste heat steam generator so quickly that a performance curve of the gas and steam turbine plant in Consequence of increasing the absorption capacity of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to a previously existing stationary operation.
  • the invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves.
  • Pressure drop in the heat recovery steam generator is additionally generated steam and a sufficiently large and fast supply of heat energy should the usual dent in the performance curve prevent. This method can provide control power at partial and full load.
  • the flexibility and efficiency of the power plant can be significantly increased, since at high power demand additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and makes the operation of the plant more economical (peak load capacity).
  • the primary frequency support or the peak load operation it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation.
  • the load range of the power plant can be extended, since even the low load operation can be set more flexible.
  • the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.
  • the heat energy is supplied via an additional firing.
  • this must be dimensioned accordingly.
  • FIG. 1 shows a simplified circuit diagram of a gas and steam turbine plant with high and medium pressure overload discharge and control wheels in the steam turbine and an additional firing in the heat recovery steam generator
  • FIG. 3 Steam turbine power curve with overload introduction into the medium-pressure turbine for various live steam pressure to inlet pressure conditions.
  • FIG. 1 shows a gas and steam turbine plant 1, which comprises a gas turbine 2 and a steam turbine 3.
  • a gas turbine 2 and a steam turbine 3.
  • a rotor of the gas turbine, a rotor of a generator 5 and a rotor of the steam turbine 3 are coupled together, wherein the rotor of the steam turbine. 3 and the rotor of the generator 4 are rotationally separable from each other and coupled via a coupling 6.
  • the runners of the generator 5 and of the gas turbine 2 are rigidly connected via the shaft 4. prevented.
  • a flue gas outlet of the gas turbine 2 is connected via an exhaust pipe 7 with a heat recovery steam generator 8, which is provided for generating the operating steam of the steam turbine 3 from waste heat of the gas turbine.
  • superheated steam is supplied through a steam discharge line 24 of a high pressure stage 25 of the steam turbine 3 and there relaxed under the power of work.
  • the shaft 4 and thus the generator 5 is moved to generate electrical energy.
  • the partially relaxed in the high-pressure stage 25 hot steam is then fed to the high-pressure reheater 15, where it is reheated and fed via a derivative 26 a medium-pressure stage 27 of the steam turbine 3 and there relaxed under the power of mechanical work.
  • the there partially relaxed steam is via an overflow 28 of a low pressure stage 29th fed to the steam turbine 3 and further relaxed there with the release of mechanical energy.
  • the expanded steam is condensed in the condenser 30 of the steam turbine 3, and the resulting condensate is a condensate pump 31 directly to a low pressure stage 32 of the heat recovery steam generator 8 or via a feed 33 - and provided by the corresponding pressure - a medium-pressure stage 34 or a high-pressure stage 35th of the heat recovery steam generator 8, where the condensate evaporates.
  • the steam is supplied via the corresponding outlets 24, 26, 36 of the heat recovery steam generator 8 back to the steam turbine 3 for relaxation and performance mechanical work.
  • shut-off valves 37 and 38 are arranged. From the high-pressure stage 25 of the steam turbine 3 leading steam discharge line 24 branches off a bypass channel 39 with a shut-off valve 40 for bypassing the Hoch horrstu- 25 fe. Similarly, a bypass channel 41 branches off with a shut-off valve 42 for bypassing the intermediate-pressure stage 27.
  • a first control wheel 43 is attached to the rotor of the steam turbine 3.
  • a second control wheel 44 is attached to the rotor of the steam turbine 3.
  • a control wheel comprises valves controlled via valves, which can be acted upon by segments of a turbine. Depending on how many of the valves are opened, a more or less large amount of additional steam flows through the nozzles into the turbine.
  • Figure 1 shows an additional firing 45 at the entrance of the heat recovery steam generator 8, in which the gas turbine exhaust gas, which still contains much oxygen, fuel is added and the mixture is burned.
  • the live steam over the temperature of the gas turbine exhaust gas can be overheated or for generating process steam when the steam generation is to be decoupled from the power generation of the gas turbine 2.
  • supplemental firing 45 may be of interest to increase the output of electrical power during peak demand periods.
  • the inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an overload valve 40, 42 and a turbine bypass 39, 41 and connected to the power of the steam turbine 3 rises rapidly (seconds range).
  • the overload introduction can be utilized both at the high-pressure turbine 25 for raising the live steam mass flow and at the medium-pressure turbine 27 for increasing the intermediate superheat steam mass flow and before each further turbine stage (for example low-pressure turbine 29).
  • the intake capacity of the steam turbine can be increased via a control wheel 43, 44 on the high-pressure turbine 25 and / or the medium-pressure turbine 27 by opening associated valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner une installation (1) comprenant une turbine à gaz (2), une turbine à vapeur (3) et un générateur de vapeur à récupération de chaleur (8), dans lequel la vapeur destinée à la turbine à vapeur (3) peut être produite par échange de chaleur avec le gaz perdu provenant de la turbine à gaz (2). Pour stabiliser la fréquence dans le réseau électrique à partir d'une exploitation stationnaire, la capacité de débit de la turbine à vapeur (3) est augmentée et la pression dans le générateur de vapeur à récupération de chaleur (8) est abaissée, afin d'utiliser pour augmenter la génération de vapeur les réserves accumulées dans le générateur de vapeur à récupération de chaleur (8), et le générateur de vapeur à récupération de chaleur (8) est alimenté en énergie thermique avec une rapidité telle que la courbe de puissance de l'installation (1) à turbine à gaz et turbine à vapeur après l'augmentation de la capacité de débit de la turbine à vapeur (3) et la baisse de pression dans le générateur de vapeur à récupération de chaleur (8) est supérieure ou égale à la puissance immédiatement précédente de l'exploitation stationnaire.
EP12780192.6A 2011-11-14 2012-10-30 Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence Withdrawn EP2798164A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14004089.0A EP2907980A1 (fr) 2011-11-14 2012-10-30 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour le support de fréquence
EP12780192.6A EP2798164A2 (fr) 2011-11-14 2012-10-30 Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11188956.4A EP2592241A1 (fr) 2011-11-14 2011-11-14 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence
PCT/EP2012/071478 WO2013072183A2 (fr) 2011-11-14 2012-10-30 Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence
EP12780192.6A EP2798164A2 (fr) 2011-11-14 2012-10-30 Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP14004089.0A Division EP2907980A1 (fr) 2011-11-14 2012-10-30 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour le support de fréquence

Publications (1)

Publication Number Publication Date
EP2798164A2 true EP2798164A2 (fr) 2014-11-05

Family

ID=47115955

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11188956.4A Withdrawn EP2592241A1 (fr) 2011-11-14 2011-11-14 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence
EP12780192.6A Withdrawn EP2798164A2 (fr) 2011-11-14 2012-10-30 Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence
EP14004089.0A Withdrawn EP2907980A1 (fr) 2011-11-14 2012-10-30 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour le support de fréquence

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11188956.4A Withdrawn EP2592241A1 (fr) 2011-11-14 2011-11-14 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14004089.0A Withdrawn EP2907980A1 (fr) 2011-11-14 2012-10-30 Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour le support de fréquence

Country Status (7)

Country Link
US (1) US20140345278A1 (fr)
EP (3) EP2592241A1 (fr)
KR (1) KR20140088145A (fr)
CN (1) CN104246151B (fr)
IN (1) IN2014KN00869A (fr)
RU (1) RU2014124127A (fr)
WO (1) WO2013072183A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (fr) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Procédé destiné au soutien d'une fréquence du réseau
US9243519B2 (en) * 2012-09-06 2016-01-26 General Electric Company Systems and methods for accelerating droop response to frequency variation of an electrical grid in a combined cycle power plant
EP2918797A1 (fr) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'une centrale à vapeur
EP2918796A1 (fr) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Centrale à vapeur dotée d'un générateur de vapeur comprenant une armature de maintien de pression à tambour
JP2017044131A (ja) * 2015-08-26 2017-03-02 株式会社東芝 蒸気タービン設備
EP3301267A1 (fr) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Procédé de fonctionnement d'un turbo-générateur et le dispositif
BR112020024454A8 (pt) 2018-06-22 2023-04-25 Siemens Ag Método para operar uma usina de energia
CN111507011B (zh) * 2020-04-26 2020-11-17 国电南京电力试验研究有限公司 供热抽汽对汽轮机滑压运行影响量的修正方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077420A1 (fr) * 2001-03-27 2002-10-03 Alstom (Switzerland) Ltd Procede d'augmentation immediate, rapide et temporaire de la puissance d'une centrale mixte

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031404A (en) * 1974-08-08 1977-06-21 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated
ZA835029B (en) * 1982-09-27 1984-03-28 English Electric Co Ltd Power-generation plant and method
US4578944A (en) * 1984-10-25 1986-04-01 Westinghouse Electric Corp. Heat recovery steam generator outlet temperature control system for a combined cycle power plant
EP0976914B1 (fr) * 1998-07-29 2003-02-26 ALSTOM (Switzerland) Ltd Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur
US6442924B1 (en) 2000-06-13 2002-09-03 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
DE10042317A1 (de) * 2000-08-29 2002-03-14 Alstom Power Nv Dampfturbine und Verfahren zur Einleitung von Beipassdampf
AR029828A1 (es) * 2001-07-13 2003-07-16 Petrobras En S A Metodo para la regulacion primaria de frecuencia en turbinas de vapor de ciclo combinado
WO2006097495A2 (fr) * 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Procede et dispositif de production d'une puissance de regulation au moyen d'un systeme combine de turbine a gaz et de turbine a vapeur
US7608938B2 (en) * 2006-10-12 2009-10-27 General Electric Company Methods and apparatus for electric power grid frequency stabilization
EP2098691B1 (fr) * 2008-03-06 2013-07-17 Ansaldo Energia S.P.A. Procédé de contrôle d'une installation à cycle combiné, et installation à cycle combiné
AR066539A1 (es) * 2008-05-12 2009-08-26 Petrobras En S A Metodo para la regulacion primaria de frecuencia, a traves de control conjunto en turbinas de ciclo combinado.
EP2136035A1 (fr) * 2008-06-16 2009-12-23 Siemens Aktiengesellschaft Fonctionnement d'une installation à turbines à gaz et à vapeur par convertisseur de fréquence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077420A1 (fr) * 2001-03-27 2002-10-03 Alstom (Switzerland) Ltd Procede d'augmentation immediate, rapide et temporaire de la puissance d'une centrale mixte

Also Published As

Publication number Publication date
WO2013072183A2 (fr) 2013-05-23
EP2592241A1 (fr) 2013-05-15
KR20140088145A (ko) 2014-07-09
WO2013072183A3 (fr) 2014-10-02
CN104246151B (zh) 2016-07-13
EP2907980A1 (fr) 2015-08-19
US20140345278A1 (en) 2014-11-27
RU2014124127A (ru) 2015-12-27
CN104246151A (zh) 2014-12-24
IN2014KN00869A (fr) 2015-10-02

Similar Documents

Publication Publication Date Title
WO2013072183A2 (fr) Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence
EP1432889B1 (fr) Procede et dispositif permettant de demarrer des centrales thermiques a gaz exemptes d'emissions
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP2480762B1 (fr) Centrale thermique comprenant vanne de régulation de surcharge
EP2067940B2 (fr) Procédé de fonctionnement d'ne centrale à cycle combiné, et centrale à cycle combiné pour la mise en oeuvre dudit procédé
EP1866521B1 (fr) Procédé pour démarrer une installation à turbines à gaz et à vapeur
CH700310A1 (de) Verfahren zur CO2 Abscheidung aus einem Kombikraftwerk und Kombikraftwerk mit einer Gasturbine mit Strömungsteilung und Rezirkulation.
DE1476903B2 (de) Gas-dampfturbinenanlage
EP2447506A2 (fr) Système destiné à la production d'énergie mécanique et/ou électrique
DE102010037861A1 (de) Gasturbine mit Zwischenüberhitzung
EP2199547A1 (fr) Générateur de vapeur pour récupérer la chaleur et procédé de fonctionnement amélioré d'un générateur de vapeur pour récupérer la chaleur
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
CH702740B1 (de) System und Verfahren zum Hochfahren eines Wärmerückgewinnungsdampfgenerators.
EP1105624B1 (fr) Installation de turbine a gaz et a vapeur
DE19506787A1 (de) Verfahren zum Betrieb einer Dampfturbine
EP1801363A1 (fr) Centrale électrique
EP1896697B1 (fr) Procédé pour le démarrage d'une installation à turbine à gaz et à vapeur
EP1904731B1 (fr) Installation combinée de turbines à gaz et à vapeur et son procédé de fonctionnement
EP2556218B1 (fr) Procédé de raccordement rapide d'un générateur de vapeur
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP2829691A1 (fr) Procédé destiné au fonctionnement d'une centrale à gaz à cycle combiné
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
DE10124492B4 (de) Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen
EP1404947B1 (fr) Procede pour faire fonctionner une installation motrice a vapeur et installation motrice a vapeur pour mettre en oeuvre ce procede
DE10307606A1 (de) Krafterzeugungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140505

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170418

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170829