EP3301267A1 - Procédé de fonctionnement d'un turbo-générateur et le dispositif - Google Patents

Procédé de fonctionnement d'un turbo-générateur et le dispositif Download PDF

Info

Publication number
EP3301267A1
EP3301267A1 EP16191429.6A EP16191429A EP3301267A1 EP 3301267 A1 EP3301267 A1 EP 3301267A1 EP 16191429 A EP16191429 A EP 16191429A EP 3301267 A1 EP3301267 A1 EP 3301267A1
Authority
EP
European Patent Office
Prior art keywords
frequency
turbine
valve
live steam
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16191429.6A
Other languages
German (de)
English (en)
Inventor
Mirko Dänner
Axel Hamann
Christoph Schindler
Michael Winkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP16191429.6A priority Critical patent/EP3301267A1/fr
Priority to PCT/EP2017/071741 priority patent/WO2018059864A1/fr
Priority to CN201780060628.2A priority patent/CN109790761B/zh
Priority to JP2019517020A priority patent/JP6704517B2/ja
Publication of EP3301267A1 publication Critical patent/EP3301267A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/04Arrangement of sensing elements responsive to load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator

Definitions

  • the invention relates to a method for operating a turbo set.
  • a turbine set is understood to mean an assembly which has at least one turbine, such as a turbine. a steam turbine, and a generator, such as e.g. a rotary or alternator, wherein the turbine drives the generator and this generates electrical rotary or alternating current, which is fed into a network, such as a supply network.
  • a turbine such as a turbine. a steam turbine
  • a generator such as e.g. a rotary or alternator
  • the turbine may have an overload valve that increases the ability of the turbine to absorb moisture.
  • the performance of the turbine can be increased with unchanged pressure.
  • the efficiency of the turbine decreases when the overload valve is open.
  • the overload valve should open only in special, selected operating cases. Such operating cases are a drop in frequency or a high electricity price.
  • the overload valve is opened with a fixed allocation to the opening of a live steam valve.
  • the overload valve and the main steam valve are rigidly positively coupled.
  • this rigid positive coupling of the overload valve and the main steam valve entails efficiency losses if the overload valve would not have to be opened.
  • an indicative binary signal is generated
  • another indicative binary signal is generated, and the two signals are combined with an AND gate to generate a drive signal to open the overload valve , So it is ensured with simple means that the overload valve is opened only when the main steam valve is fully open and there is a drop in frequency.
  • At least one power setpoint is compared with a power actual value to determine a control deviation and the overload valve is opened in dependence on the specific control deviation.
  • the control deviation can be fed to a PI controller.
  • a particularly fast and deviation-free adjustment of the power of the turbine in the case of a frequency drop can be achieved.
  • it can be provided to compare the mains frequency with the frequency setpoint and to determine a further value for determining the control deviation.
  • the further value may be, for example, a measure of the power required to stabilize the grid frequency.
  • the scheme can be further improved.
  • the control deviation can be fed to a PI controller.
  • the mains frequency is compared to the frequency setpoint to lock for the presence of a frequency drop.
  • the mains frequency is the frequency of the rotary or alternating current of the network. So even a simple way a frequency drop can be detected.
  • a value is indicatively determined for a frequency drop and is closed to a frequency drop, if the value is greater than a limit value. This ensures that there is no erroneous conclusion about a drop in frequency and that the overload valve is not opened unnecessarily, which would otherwise lead to losses of efficiency.
  • a live steam sensor signal is compared with a threshold value and closed to the open state when the main steam sensor signal is greater than the threshold value. This ensures that it is not incorrectly closed on an open steam main valve and the overload valve is not opened unnecessarily, which would otherwise lead to loss of efficiency.
  • the invention includes a computer program product and an apparatus for carrying out such a method.
  • Fig. 1 shows a turbo set 1.
  • a turbo set 1 is understood to mean a combination of rotating machines which serve to generate electricity.
  • a turbo set 1 usually consists of a turbine 2, such as a steam or a gas turbine, and a generator 3, which is driven by the turbine 2.
  • the turbine 2 is designed as a steam turbine.
  • the turbo set 1 in the present embodiment may also be referred to as a steam turbine set.
  • the turbine 2 has a high-pressure stage 4, a medium-pressure stage 5 and a low-pressure stage 6.
  • a live steam valve 7 and an overload valve 8 are shown.
  • the main steam valve 7 may be a throttle valve, with which a steam supply to the turbine 3 and thus the speed of the turbine can be influenced.
  • steam flows in succession through the high-pressure stage 4, the intermediate-pressure stage 5 and the low-pressure stage 6 of the turbine 3.
  • the turbine 3 drives then the generator 2, the electrical rotary or alternating current with a grid frequency NF supplies.
  • the overload valve 8 is arranged parallel to the main steam valve 7, but allows in the present embodiment, a feed of steam in a central region of the high-pressure stage 4.
  • open overload valve 8 input stages of the high-pressure stage 4 are bridged and the remaining stages of the high-pressure stage 4 with a applied higher steam pressure in order to achieve an increase in performance of the turbine 3.
  • present embodiment may also be provided that when the open overload valve 8 steam at the high-pressure stage 4 of the turbine 3 can be passed directly to the medium-pressure stage 5 in order to achieve an increase in performance if necessary.
  • Fig. 2 shows a device 9 for controlling the turbine 3 of the turbine set. 2
  • the device 9 has in the present embodiment, an AND gate 10, a characteristic element 11, a first PI controller 12, a second PI controller 13, a first comparator 14, a second comparator 15 and a subtractor 16 and a changeover switch 17th on.
  • the characteristic element 11 is designed to read in a value for the network frequency NF and to compare it with a frequency reference value.
  • the characteristic element 11 determines a value WE.
  • the value WE is representative of a difference of the two frequency values and, in the present embodiment, is a power offset, which is a value for the power required to stabilize the line frequency.
  • the first comparator 14 compares the value WE with a limit value GW.
  • the limit value GW has a size of zero percent in the present exemplary embodiment. If there is a deviation between the network frequency NF and the frequency setpoint that is greater than zero percent, in the present exemplary embodiment, a frequency drop FA is concluded.
  • the frequency drop FA in the present embodiment is a binary signal which is logically one when there is a frequency drop FA. Otherwise the signal is logic zero.
  • the frequency drop FA is supplied to the AND gate 10 as one of two input quantities.
  • a power actual value LI and a power setpoint LS of the turbine 3 are fed to the subtracter 16 and a control deviation RA is determined.
  • the control deviation RA is supplied to the first PI controller 12 as an input variable, which provides a first valve control signal VS for actuating the live steam valve 7.
  • the opening degree OG of the main steam valve 7 is detected.
  • the opening degree OG is supplied to the second comparator 15 as a first input.
  • a threshold value SW is supplied to the second comparator 15.
  • the threshold SW has a size of 99 percent in the present embodiment.
  • the open state ZU is supplied to the AND gate 10 as a second input.
  • the AND gate 10 supplies a drive signal AS in the form of a binary signal logic one, which drives the changeover switch 17.
  • the control deviation RA On the drive towards the changeover switch 17 switches the control deviation RA on the second PI controller 13.
  • the control deviation RA is supplied as an input variable, which provides a second valve control signal VS 'for driving the overload valve 8.
  • the second PI controller 13 is acted on by a predetermined reference value RW, which is selected so as to ensure that the second PI controller 13 does not generate the overload valve 8 opening signal .
  • the reference value RW has a magnitude corresponding to a frequency excursion of 5 percent, i. a line frequency NF that is 5 percent greater than the frequency reference.
  • control deviation RA determined from the actual power value LI and the power setpoint LS and the value WE is supplied to the first PI controller 12 and then the second valve control signal VS 'is supplied to the main steam valve 7.
  • the opening degree OG is detected and determined by means of the second comparator 15 of the open state ZU and the AND gate 10 is supplied.
  • the AND gate 10 supplies the drive signal AS, whereupon the control deviation RA is switched to the first PI controller 12, which then supplies the first valve control signal VS to the overload valve 8.
  • the overload valve 8 is kept closed. In other words, the overload valve 8 is only opened when at the same time a frequency drop FA and the main steam valve 7 are fully open.
  • the efficiency can be increased in nominal operation and with the overload valve 8, the power of the turbine can be dynamically increased in the case of frequency drops.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
EP16191429.6A 2016-09-29 2016-09-29 Procédé de fonctionnement d'un turbo-générateur et le dispositif Withdrawn EP3301267A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16191429.6A EP3301267A1 (fr) 2016-09-29 2016-09-29 Procédé de fonctionnement d'un turbo-générateur et le dispositif
PCT/EP2017/071741 WO2018059864A1 (fr) 2016-09-29 2017-08-30 Procédé pour faire fonctionner un turbogénérateur
CN201780060628.2A CN109790761B (zh) 2016-09-29 2017-08-30 用于运行涡轮机组的方法
JP2019517020A JP6704517B2 (ja) 2016-09-29 2017-08-30 タービン発電機を動作させる方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16191429.6A EP3301267A1 (fr) 2016-09-29 2016-09-29 Procédé de fonctionnement d'un turbo-générateur et le dispositif

Publications (1)

Publication Number Publication Date
EP3301267A1 true EP3301267A1 (fr) 2018-04-04

Family

ID=57209176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16191429.6A Withdrawn EP3301267A1 (fr) 2016-09-29 2016-09-29 Procédé de fonctionnement d'un turbo-générateur et le dispositif

Country Status (4)

Country Link
EP (1) EP3301267A1 (fr)
JP (1) JP6704517B2 (fr)
CN (1) CN109790761B (fr)
WO (1) WO2018059864A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572628A1 (fr) * 2018-05-23 2019-11-27 Siemens Aktiengesellschaft Dispositif de turbine à vapeur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045441A1 (fr) * 2007-10-04 2009-04-08 Siemens Aktiengesellschaft Tronçon de générateur-turbine à gaz-turbocompresseur et procédé destiné au fonctionnement de celui-ci
WO2012056291A2 (fr) * 2010-10-28 2012-05-03 Ormat Technologies Inc. Système de diagnostic et procédé pour vanne de turbine essentielle
EP2667027A1 (fr) * 2012-05-24 2013-11-27 Alstom Technology Ltd Installation solaire à cycle de Rankine à vapeur et procédé de fonctionnement de ladite installation
EP2873804A1 (fr) * 2013-11-05 2015-05-20 Mitsubishi Hitachi Power Systems, Ltd. Équipement de turbine à vapeur
EP2960443A1 (fr) * 2013-02-19 2015-12-30 Kabushiki Kaisha Toshiba Dispositif de commande de soupape pour turbine à vapeur et son procédé de commande de soupape
EP3045675A1 (fr) * 2015-01-15 2016-07-20 Siemens Aktiengesellschaft Système et procédé de réglage d'une soupape d'admission de turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970003U (ja) * 1982-11-01 1984-05-12 三菱重工業株式会社 蒸気タ−ビン
JPS61152908A (ja) * 1984-12-26 1986-07-11 Kawasaki Steel Corp 圧力気体による電力回収装置
EP0903469B1 (fr) * 1997-09-22 2002-10-30 Alstom Procédé de régulation de la puissance d'un groupe à turbine et dispositif pour la réalisation du procédé
JP2000248904A (ja) * 1999-02-26 2000-09-12 Ishikawajima Harima Heavy Ind Co Ltd 火力発電プラントの出力制御方法
CH701506A1 (de) * 2009-07-30 2011-01-31 Alstom Technology Ltd Verfahren zum frühzeitigen Erkennen und vorausschauenden Beherrschen von verbraucherseitigen Lastabwürfen in einem elektrischen Netz sowie Vorrichtung zur Durchführung des Verfahrens.
EP2592241A1 (fr) * 2011-11-14 2013-05-15 Siemens Aktiengesellschaft Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence
JP5823302B2 (ja) * 2012-01-17 2015-11-25 株式会社東芝 蒸気タービン制御装置
DE102012204218A1 (de) * 2012-03-16 2013-09-19 Siemens Aktiengesellschaft Leistungsregelung und/oder Frequenzregelung bei einem solarthermischen Dampfkraftwerk
JP6064548B2 (ja) * 2012-11-28 2017-01-25 株式会社Ihi 廃熱発電装置
JP6212281B2 (ja) * 2013-05-22 2017-10-11 株式会社日立製作所 タービン制御装置およびタービン制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045441A1 (fr) * 2007-10-04 2009-04-08 Siemens Aktiengesellschaft Tronçon de générateur-turbine à gaz-turbocompresseur et procédé destiné au fonctionnement de celui-ci
WO2012056291A2 (fr) * 2010-10-28 2012-05-03 Ormat Technologies Inc. Système de diagnostic et procédé pour vanne de turbine essentielle
EP2667027A1 (fr) * 2012-05-24 2013-11-27 Alstom Technology Ltd Installation solaire à cycle de Rankine à vapeur et procédé de fonctionnement de ladite installation
EP2960443A1 (fr) * 2013-02-19 2015-12-30 Kabushiki Kaisha Toshiba Dispositif de commande de soupape pour turbine à vapeur et son procédé de commande de soupape
EP2873804A1 (fr) * 2013-11-05 2015-05-20 Mitsubishi Hitachi Power Systems, Ltd. Équipement de turbine à vapeur
EP3045675A1 (fr) * 2015-01-15 2016-07-20 Siemens Aktiengesellschaft Système et procédé de réglage d'une soupape d'admission de turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572628A1 (fr) * 2018-05-23 2019-11-27 Siemens Aktiengesellschaft Dispositif de turbine à vapeur

Also Published As

Publication number Publication date
CN109790761B (zh) 2020-05-19
JP6704517B2 (ja) 2020-06-03
CN109790761A (zh) 2019-05-21
WO2018059864A1 (fr) 2018-04-05
JP2019529789A (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
EP1493921B1 (fr) Procede d'exploitation d'une installation d'energie eolienne
DE102014005198B4 (de) Motorsteuerung mit Stromausfallfeststellung
EP0132487B1 (fr) Procédé de régulation d'au moins deux turbo-compresseurs branchés en parallèle
DE102014219335B4 (de) Verfahren und vorrichtung zur unterdrückung von überschwingen für leistungswandler
WO2003017460A1 (fr) Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique
CH702608A2 (de) Verfahren und System zum Steuern eines Hochfahrvorgangs einer Gasturbine.
DE10234091A1 (de) Verfahren zur Überwachung von wenigstens zwei elektromagnetischen Ventilen einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
WO2017084863A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
DE102005048330A1 (de) Ansteuersystem für eine elektrische Maschine
DE69829057T2 (de) Vorrichtung zur Regelung der Öffnung und Schliessung eines elektrisches Schaltgerätes und verwandtes Verfahren
DE10041607B4 (de) Elektrisches Arbeitsgerät sowie Verfahren zu dessen Betreiben
EP3301267A1 (fr) Procédé de fonctionnement d'un turbo-générateur et le dispositif
WO2017084857A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
DE102017105237A1 (de) Steuergerät und Steuerverfahren einer AC-Drehmaschine
EP3739707A1 (fr) Dispositif de protection contre les surintensités destiné à la protection d'un consommateur disposé dans un réseau de courant continue
EP3407453B1 (fr) Stabilisation d'un réseau de courant électrique
DE202014005481U1 (de) Vakuumpumpvorrichtung mit mindestens einem Pumpenmodul
DE102018222562A1 (de) Verfahren zum Erkennen eines Fehlerzustands einer elektrischen Maschine
DE102015220005B4 (de) Verfahren und Schaltungsanordnung zum Ansteuern eines Halbleiterschalters, Wechselrichter
DE102009002464A1 (de) Verfahren um Betrieb einer Steuerschaltung, insbesondere zur Anwendung in einem Kraftfahrzeug
EP0586369B1 (fr) Procede de circuit pour la transmission de courant continu
WO2019158422A1 (fr) Convertisseur protégé contre les court-circuits et pourvu d'une commande de courant continu
DE10040246A1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines Verbrauchers
EP3890177B1 (fr) Dispositif de commande pour un convertisseur indirect et un convertisseur indirect
DE102016121143A1 (de) Motorantriebsvorrichtung mit einer Funktion zur Bestimmung einer Anomalie der Hauptstromversorgungsspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181005