EP0976914B1 - Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur - Google Patents

Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur Download PDF

Info

Publication number
EP0976914B1
EP0976914B1 EP19980810728 EP98810728A EP0976914B1 EP 0976914 B1 EP0976914 B1 EP 0976914B1 EP 19980810728 EP19980810728 EP 19980810728 EP 98810728 A EP98810728 A EP 98810728A EP 0976914 B1 EP0976914 B1 EP 0976914B1
Authority
EP
European Patent Office
Prior art keywords
steam
steam turbine
pressure
heat reservoir
appliance according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980810728
Other languages
German (de)
English (en)
Other versions
EP0976914A1 (fr
Inventor
Erhard Dr. Liebig
Jean-Pierre Rickli
Werner Schmidhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP19980810728 priority Critical patent/EP0976914B1/fr
Priority to DE59807318T priority patent/DE59807318D1/de
Publication of EP0976914A1 publication Critical patent/EP0976914A1/fr
Application granted granted Critical
Publication of EP0976914B1 publication Critical patent/EP0976914B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a device for the rapid provision of Power reserves in combined gas and steam turbine systems.
  • the competitiveness of individual electricity providers in the field of electrical Energy supply, especially in those characterized by growing competition Markets depends not least on how fast the electricity generating Plants are able to supply electrical power to the Generate consumption networks.
  • the electricity provider is often preferred given that within a few seconds to cover the energy requirement required electrical power, especially at times of high power consumption, can provide. It also plays for assessment the quality of electricity generating systems as well as the frequency stability of the generated electrical power play an important role. Occur frequency fluctuations in the electrical power generated by power plants, which typically These deviate from the usual mains frequency of 50 or 60 Hz for the fact that the power plant in terms of control technology or performance Limits have reached and the energy demand in the network of a major change subject.
  • Primary Response means the provision of additional performance reserves within 10 seconds for a period of about 20 seconds.
  • “Secondary Response” means that power reserves within 30 seconds must be made available for a further 30 minutes.
  • “Five Minute Reserve” means that power reserves within 5 minutes be available for at least four hours.
  • the throttling of the steam turbine inlet valves causes not only the throttling effect at the beginning of the expansion a shortening of the expansion (enthalpy gradient) on End of expansion and thus a loss of performance.
  • the Full opening of the intake valves extends the gradient in the steam turbine and thus also generates additional power.
  • any Tapping or extraction within the water-steam cycle closed become. All those places are listed under taps or withdrawals understood the steam turbine from which steam is removed in a targeted manner. In the event of tapping the pressure of the extracted steam is not regulated, but rather depends on the current steam turbine load. In contrast this is called removal when the steam is removed at a controlled pressure will, i.e. a special regulatory body is provided.
  • the measures outlined above to increase performance are used in pure steam turbine power plants.
  • pure Steam turbine power plants are combined gas and steam power plants on the steam turbine side usually operated in the so-called fixed-pressure sliding pressure mode.
  • a constant steam pressure is set by the inlet valves on the steam turbine be driven in a controlled manner.
  • the steam turbine inlet valves fully open so that the pressure as a result of the steam turbine and steam generator behavior according to the operating conditions driven can slide.
  • Heat recovery steam generators therefore have in particular not only one pressure level for larger systems.
  • each Pressure stage consists of the evaporator and according to the circuit or Application from associated economizer and superheater.
  • each Heat recovery steam generator is designed as rotary drum evaporators. In modern Plants are also increasingly being used in forced-flow steam generators. see also DE 195 44 225 A1.
  • Document EP-A-0 439 754 shows one Combination system with a steam spoke to start up the steam turbine of the plant serves.
  • the invention has for its object a device and a method for the rapid provision of power reserves for combined gas and Steam turbine systems with the lowest possible losses and largely unchanged indicate high efficiency.
  • the power reserves should from the steam turbine part of the combi system within a very short time can be put.
  • a gas and steam turbine system with a water-steam circuit to drive the steam turbine via at least one inlet valve connected to this, at least in addition to the heat recovery steam generator a heat accumulator, which is coupled to the heat recovery steam generator and from the saturated water or steam required for the waste heat steam generator rapid provision of power reserves can be fed.
  • waste heat steam generators and water-steam circuits from combined Gas steam turbine systems are from the book by R. Kehlhofer, "Combined-Cycle Gas & Steam Turbine Power Plants", The Fairmont Press, Inc.
  • the waste heat steam generator has at least one evaporator system, usually designed as a rotary drum evaporator with associated economizer and superheater. In the case of multi-pressure systems, there are numerous Economizer circuits possible. The presence of superheaters depends on the water-steam cycle and the parameters.
  • the amount of steam production within the heat recovery steam generator depends not least, under dynamic conditions, also of the capacity the drum and the pressure conditions prevailing in it.
  • the invention is based on the idea of an optimal for the performance data of a combined heat and power plant designed waste heat steam generator connect additional heat storage.
  • the additional heat accumulator according to the invention which serves as a "silent reserve" is advantageously designed as a pressure vessel in which saturated water conditions to rule.
  • the charging of such an additional saturated water reservoir can preferably during the normal operation of a combination system by targeted Feeding of excess saturated water present in the steam generator or steam or by extraction or tapping steam from the steam turbine respectively.
  • a combined cycle power plant in accordance with the invention to operate the so-called fixed pressure mode by at least one inlet valve the steam turbine for setting a fixed working pressure independently is regulated by the power of the steam turbine.
  • the heat store is advantageous coupled to the high pressure system of the heat recovery steam generator.
  • saturated water becomes from the heat storage conveyed into the heat recovery steam generator preferably by means of a pump, whereby the supply via the economizer for this pressure level is reduced can be.
  • the evaporator systems downstream in the flue gas path additional waste heat is available in this way, especially by increasing it the supply of these downstream systems the total steam generation increases significantly.
  • the combined cycle power plants can, for example, for predictable load peaks a limited period of time by reducing steam turbine power accordingly the expected subsequent potential leap in performance, by increased throttling of the steam turbine and by setting one Flood level in the steam generator drums and the other heat storage units purposefully into a state for driving larger positive Performance gradients are maintained.
  • the possible enthalpy gradient of the steam turbine not fully exploited, so that a power reserve through fast Opening the intake valves is available.
  • the size of the power reserve to be applied depends on the distance of the currently driven power with throttled Inlet valve to power level with the inlet valve fully open from. If an increase in performance according to "primary or secondary response" is required, the system is switched to sliding pressure mode, i.e. the steam turbine inlet valves are fully opened. So the entire enthaloie gradient can be done immediately the steam turbine become effective. There is an increase in performance the steam turbine.
  • the associated with the opening of the intake valves Pressure reduction enables this in the steam generator drum and additionally in the additional heat accumulator coupled to this pressure level to evaporate the saturated water. This steam becomes the steam turbine fed and enables a further short-term increase in performance.
  • a heat accumulator is suitable for fixed-pressure operation of the combination system
  • So-called constant pressure accumulator which is preferably used as a pressure vessel via inlet and outlet Drain lines is connected to the steam generator drum.
  • a pump inside The drain line conveys saturated water from the constant pressure reservoir if necessary e.g. into the steam generator drum.
  • a gradient store is suitable as a heat store, in contrast to the constant pressure accumulator in different ways the different pressure levels of the heat recovery steam generator or Steam turbine can be connected.
  • the area of the heat recovery steam generator is reduced to the essentials in FIG. 1 20 with rotary drum evaporator and steam turbine 6 of the steam cycle a combined gas and steam turbine system.
  • feed water passes through an economizer 2 in the steam generator drum 3 of the circulation steam generator, in the feed water is stored under saturated water conditions and to an evaporator 4 is coupled. It comes out of the drum via a superheater 5 3 escaping steam through the steam line 11 and the inlet valve 12 into the Steam turbine 6.
  • a drum 3 as a constant pressure accumulator trained heat storage 7 coupled.
  • the constant pressure accumulator 7 is exceeded when a certain water level within the drum 3 by water drainage automatically filled due to the geodetic height difference or with saturated water charged.
  • the pump 8 delivers saturated water from Constant pressure accumulator 7 preferably in the steam generator drum 3.
  • Constant pressure accumulator 7 preferably in the steam generator drum 3.
  • Die Pump 8 also serves to empty the cold water content after a Start or saturated water for the purpose of decommissioning.
  • the combined cycle power plant designed according to the invention can be operated in this way by means of an inlet valve 12 of the steam turbine 6 in fixed pressure mode.
  • saturated water is conveyed from the heat store 7 via the drum 3 into the steam generator 20, as a result of which the supply via the economizer 2 can be reduced.
  • the evaporator systems downstream in the flue gas path are thus additional Waste heat available.
  • the steam generation of these systems increases.
  • Requirement for this Operating mode is a heat recovery steam generator consisting of a two-pressure system, i.e. two evaporator systems connected in series on the flue gas side.
  • the heat accumulator 7 ' directly between the economizer stage 2 and the evaporator 4 are switched.
  • This alternative coupling variant is shown in dashed lines in Fig. 1.
  • the charging line 13 ' is connected to the Exit of the economizer 2 connected and via a drain line in which the Pump 8 'is provided, coupled to the inlet of the evaporator 4.
  • the pump 8' conveys saturated water from Constant pressure accumulator 7 'for the entry of the evaporator 4, its steam generation rate depending on the delivery rate of the pump 8 'can be increased.
  • the gradient store 10 shown in FIG. 2 can be used for the loading or filling process via alternative feed lines with saturated steam (I) or superheated steam (II) and Saturated water (III) can be filled from various parts of the system.
  • a supply line I with a corresponding for loading the gradient store 10 with steam Valve provided, via which a part of the superheater 5 can be supplied Steam for feeding into the gradient store 10 is branched off.
  • a line II the steam line 11 through which Live steam is supplied to the steam turbine 6 with the gradient reservoir 10 a valve connects. In this way, superheated steam goes directly into the gradient store 10.
  • a connecting line III provides the exit of the economizer 2 with the gradient store 10 via a corresponding valve connects, for filling the gradient store 10 with saturated water.
  • the loading process of the gradient store 10 is preferably under full load conditions to carry out, i.e. that entering the gradient store 10 Hot water or the incoming steam is subject to the highest possible pressure level.
  • Fig. 2 is for unloading a connecting line between the gradient store 10 and the entry of the Superheater 5 and the steam turbine provided.
  • the gradient store 10 can also be connected to the steam space of the separator 9 are connected, but this is not directly entered in Fig. 2.
  • FIG. 3a shows on the basis of the first exemplary embodiment of a rotary drum steam generator consisting of constant pressure accumulator 7 and gradient accumulator 10.
  • the constant pressure accumulator 7 is unchanged according to the exemplary embodiment Fig. 1 connected to the drum 3.
  • the following supply lines are provided:
  • a feed line Z1 connects the gradient reservoir 10 to the steam line 11, via the live steam can be fed into the gradient store 10.
  • Another Supply line Z2 connects the gradient store 10 to the drum 3 in such a way that 3 saturated steam are introduced into the gradient reservoir 10 from the drum can.
  • Another supply line Z3 connects the gradient reservoir 10 to the saturated water area the drum 3 so that saturated water is introduced into the gradient reservoir can be. All supply lines contain control valves through which the filling process can run regulated.
  • the embodiments shown in Figs. 1 and 3a of a waste heat steam generator correspond to the so-called drum circulation steam generator principle.
  • FIG. 3b a so-called forced-through steam generator arrangement is shown in FIG. 3b shown, in which, as in Fig. 2, the gradient store 10 is arranged accordingly.
  • the arrangement according to FIG. 3b a constant pressure accumulator 7 in front, which can be loaded with a supply line with Vetil to regulate the loading process. The saturated water required for loading is removed at a suitable point between the economizer and evaporator.
  • the constant pressure accumulator 7 is for unloading via a discharge line with the Evaporator 4 connected to the evaporator inlet, being within the discharge line a pump 8 is provided.
  • the gradient store is unloaded via the pressure drop inside the water-steam circuit by opening at least one steam turbine inlet valve 12, which causes the feed water under saturated water conditions immediately evaporated within the gradient store and the steam turbine is additionally fed.
  • the capacity reserves required to increase performance can of course be used also by appropriate dimensioning, for example the Steam generator drum can be achieved. Of course it is possible that Power reserves also at the different pressure levels of the heat recovery steam generator to distribute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (14)

  1. Dispositif pour fournir rapidement une réserve de puissance dans des centrales combinées à turbines à gaz et à vapeur, comprenant un générateur de vapeur (20), qui est connecté, pour l'entraínement de la turbine à vapeur (6), par le biais d'au moins une soupape d'admission (12), à celle-ci et auquel est accouplé en outre au moins un accumulateur de chaleur (7, 10), à partir duquel, au besoin, de l'eau saturée peut être alimentée en outre par le biais d'une pompe dans le générateur de vapeur (20).
  2. Dispositif selon la revendication 1, caractérisé en ce que l'accumulateur de chaleur (7) est un accumulateur à pression égale.
  3. Dispositif pour fournir rapidement une réserve de puissance dans des centrales combinées à turbines à gaz et à vapeur, comprenant un générateur de vapeur (20), qui est connecté, pour l'entraínement de la turbine à vapeur (6), par le biais d'au moins une soupape d'admission (12), à celle-ci et auquel est accouplé en outre au moins un accumulateur de chaleur (7, 10), lequel subit, lors de l'ouverture de la soupape d'admission (12), une chute de pression, ce qui entraíne la formation de vapeur qui peut être alimentée dans le générateur de vapeur (20).
  4. Dispositif selon la revendication 3, caractérisé en ce que l'accumulateur de chaleur est un accumulateur à gradient de pression (10).
  5. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'accumulateur de chaleur (7) est un accumulateur à pression égale ou à gradient de pression (10).
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'unité d'accumulateur de chaleur (7) est connectée au générateur de vapeur (3).
  7. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'unité d'accumulateur de chaleur (7) est connectée à la turbine à vapeur (6).
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la soupape de régulation (12) est la soupape d'admission pour la vapeur guidée vers la turbine à vapeur (6) dans le conduit d'amenée.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que des conditions d'eau saturée règnent dans le tambour du générateur de vapeur (3).
  10. Procédé pour faire fonctionner une centrale combinée à turbines à gaz et à vapeur pour fournir rapidement une réserve de puissance en utilisant un dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que pour la chute de pression ciblée dans le circuit de vapeur d'eau, de la vapeur supplémentaire provenant de l'unité d'accumulateur de chaleur (7, 10) est entraínée dans le circuit de vapeur d'eau, laquelle est acheminée à la turbine à vapeur (6) lorsque les soupapes de régulation (12) sont complètement ouvertes.
  11. Procédé selon la revendication 10, caractérisé en ce que la centrale combinée à turbines à gaz et à vapeur est utilisée pour augmenter la puissance en mode à pression égale.
  12. Procédé selon la revendication 10 ou 11, caractérisé en ce que l'unité d'accumulateur de chaleur (10) est chargée avec de la vapeur ou de l'eau saturée en excès lors d'un fonctionnement normal.
  13. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que la chute de pression s'obtient par une ouverture rapide de la soupape d'admission (12).
  14. Utilisation du dispositif selon l'une quelconque des revendications 1 à 9 pour la stabilisation de fréquence du courant électrique produit par la centrale combinée à turbines à gaz et à vapeur.
EP19980810728 1998-07-29 1998-07-29 Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur Expired - Lifetime EP0976914B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19980810728 EP0976914B1 (fr) 1998-07-29 1998-07-29 Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur
DE59807318T DE59807318D1 (de) 1998-07-29 1998-07-29 Vorrichtung sowie Verfahren zur schnellen Bereitstellung von Leistungsreserven bei kombinierten Gas- und Dampfturbinenanlagen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19980810728 EP0976914B1 (fr) 1998-07-29 1998-07-29 Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur

Publications (2)

Publication Number Publication Date
EP0976914A1 EP0976914A1 (fr) 2000-02-02
EP0976914B1 true EP0976914B1 (fr) 2003-02-26

Family

ID=8236218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980810728 Expired - Lifetime EP0976914B1 (fr) 1998-07-29 1998-07-29 Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur

Country Status (2)

Country Link
EP (1) EP0976914B1 (fr)
DE (1) DE59807318D1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174591A1 (fr) * 2000-07-21 2002-01-23 Siemens Aktiengesellschaft Procédé de régulation primaire avec des centrales combinées avec turbines à gaz et à vapeur
AR029828A1 (es) * 2001-07-13 2003-07-16 Petrobras En S A Metodo para la regulacion primaria de frecuencia en turbinas de vapor de ciclo combinado
FR2839549B1 (fr) * 2002-05-07 2004-06-25 Technicatome Systeme de stockage thermique d'une grande quantite d'energie et son utilisation dans une tres courte duree sur un navire
WO2006097495A2 (fr) * 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Procede et dispositif de production d'une puissance de regulation au moyen d'un systeme combine de turbine a gaz et de turbine a vapeur
US7274111B2 (en) * 2005-12-09 2007-09-25 General Electric Company Methods and apparatus for electric power grid frequency stabilization
EP2256406B1 (fr) * 2008-06-20 2018-07-18 Dr. W. Kolb AG Procédé pour utiliser la chaleur dissipée d'und réaction chimique
MX2011009826A (es) 2009-03-26 2012-01-25 Solar Storage Company Sistema de almacenamiento de presion intermedia para almacenamiento termico.
EP2592241A1 (fr) * 2011-11-14 2013-05-15 Siemens Aktiengesellschaft Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence
DE102012213976A1 (de) * 2012-08-07 2014-02-13 Siemens Aktiengesellschaft Externer Dampfspeicher zur Beteiligung einer Dampfturbine an Netzdienstleistungen und Leistungsrampen
US9982569B2 (en) 2013-09-24 2018-05-29 Siemens Aktiengesellschaft Method for operating a steam turbine plant
DE102014202277A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Energiespeicher zur Zwischenspeicherung elektrischer Energie
DE102016212634A1 (de) * 2016-07-12 2018-01-18 Siemens Aktiengesellschaft Verfahren zur Sekundärfrequenzregelung einer fossil befeuerten Kraftwerksanlage
DE102017207006A1 (de) * 2017-04-26 2018-10-31 Siemens Aktiengesellschaft Temperaturfühler, Dampfkraftwerk und Verwendung eines Temperaturfühlers
CN113736954B (zh) * 2021-09-01 2023-01-24 邯郸钢铁集团有限责任公司 一种炼钢蓄热器供汽及提高蒸汽过热度的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1288614B (de) * 1960-06-04 1969-02-06 Waagner Biro Ag Verfahren und Vorrichtung zum Abbau von Dampfspitzen aus Prozessabfallwaermeverwertern mit variabler Dampferzeugung
JPS585415A (ja) * 1981-06-30 1983-01-12 Toshiba Corp コンバインドサイクル発電プラントの蒸気圧力制御装置
DE59009440D1 (de) * 1990-01-31 1995-08-31 Asea Brown Boveri Verfahren zum Anfahren einer Kombianlage.
DE19544225A1 (de) 1995-11-28 1997-06-05 Asea Brown Boveri Reinigung des Wasser-Dampfkreislaufs in einem Zwangsdurchlauferzeuger

Also Published As

Publication number Publication date
EP0976914A1 (fr) 2000-02-02
DE59807318D1 (de) 2003-04-03

Similar Documents

Publication Publication Date Title
EP0976914B1 (fr) Installation et procédé pour fournir rapidement une réserve de puissance dans des centrales combinées avec turbines à gaz et à vapeur
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE102008029941B4 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
EP2603672B1 (fr) Générateur de vapeur à récupération de chaleur
EP3025031B1 (fr) Procédé de fonctionnement d'une centrale à turbine à vapeur
DE2632777C2 (de) Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
DE3782314T2 (de) Sperrdamppfsystem fuer eine dampfturbine.
WO2018010878A1 (fr) Installation de production d'électricité à préchauffage optimisé de l'eau d'alimentation pour turbogénérateurs montés à une faible hauteur
DE2311066A1 (de) Dampferzeuger fuer ungefeuerte kraftanlage
DE102009060089A1 (de) Solarthermisches Kraftwerk und Verfahren zum Betrieb eines solarthermischen Kraftwerks
WO2010097203A2 (fr) Procédé pour faire fonctionner une centrale
DE2907068C2 (de) Dampfkraftanlage für Grundlastbetrieb mit Einrichtung zur Deckung von Lastspitzen
DE2620887A1 (de) Einrichtung zur regelung eines kernkraftwerkes
EP2616643B1 (fr) Procédé de régulation d'une augmentation de puissance à court terme d'une turbine à vapeur
DE102011078193A1 (de) Zusätzliche Regelanzapfung für einen Vorwärmer zur Verbesserung der Anlagendynamik und Frequenzregelung bei einem Dampfkraftwerk
EP3469190B1 (fr) Centrale électrique à réservoir thermique
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
DE102013225543B3 (de) Dampfspeicherung mit Latentwärmespeicher und Dampf-Thermokompressor
DE102010009130A1 (de) Dampfkraftwerk umfassend eine Tuning-Turbine
EP3511534A1 (fr) Centrale thermique et procédé de fonctionnement d'une centrale thermique
EP1437484B1 (fr) Procédé de régulation primaire pour un réseau électrique
DE19944920B4 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
DE102012102115A1 (de) Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks
EP3728800B1 (fr) Centrale électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000603

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807318

Country of ref document: DE

Date of ref document: 20030403

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050714

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050725

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060729