EP2772650B1 - Vakuumpumpe - Google Patents
Vakuumpumpe Download PDFInfo
- Publication number
- EP2772650B1 EP2772650B1 EP14153982.5A EP14153982A EP2772650B1 EP 2772650 B1 EP2772650 B1 EP 2772650B1 EP 14153982 A EP14153982 A EP 14153982A EP 2772650 B1 EP2772650 B1 EP 2772650B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- vacuum pump
- cooling gas
- gas
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000112 cooling gas Substances 0.000 claims description 111
- 239000007789 gas Substances 0.000 claims description 36
- 238000005086 pumping Methods 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 6
- 230000006735 deficit Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
Definitions
- the invention relates to a vacuum pump, in particular a turbomolecular pump, an arrangement with a vacuum pump, in particular with a turbomolecular pump, and a method for operating a vacuum pump, in particular a turbomolecular pump.
- Vacuum pumps are used in various technical processes, for example in semiconductor production, to remove a gas to be pumped, which is also referred to as pumping gas, from a volume to be evacuated and to generate a vacuum necessary for the respective technical process. Particular importance is given to turbomolecular pumps, which are operated at high speeds and are able to produce a vacuum with high purity.
- Known cooling devices such as, for example, water cooling or air cooling, whose cooling effect is based on the circulation of warm pump components or heat sinks attached thereto with air, are relatively expensive and have a limited effectiveness.
- areas of the pump which heat up particularly strong and are arranged for example in the lower part of the pump locally targeted to cool such that set anywhere desired temperature conditions.
- excessive heating also occurs in the vacuum pumps cooled in this way, which deteriorates the pumping and performance characteristics of the vacuum pump and decreases the life thereof.
- the object of the invention is therefore to provide a vacuum pump, an arrangement with a vacuum pump and a method for operating a vacuum pump, which can be achieved with reduced effort an improved pump performance and service life of the vacuum pump and with which in particular an effective and sufficient cooling in all Areas of the vacuum pump is provided so that the vacuum pump is effectively protected everywhere from overheating during operation.
- a vacuum pump having a pump inlet, a pump outlet and a pump chamber arranged therebetween for a gas to be pumped, which has a cooling gas inlet for a cooling gas for cooling the vacuum pump and a hollow region which is gas-conductively connected to the cooling gas inlet and arranged outside of the pump chamber.
- the vacuum pump in particular turbomolecular pump, comprises a pump inlet, a pump outlet and a pump space arranged between the pump inlet and the pump outlet for a gas to be pumped.
- the vacuum pump further comprises at least one cooling gas inlet for a cooling gas for cooling the vacuum pump and one or more gas-conductively connected to the cooling gas inlet and arranged outside the pump chamber hollow areas for the cooling gas, wherein the or each hollow area is limited by at least one component of the vacuum pump.
- cooling gas is admitted directly into the hollow regions arranged in the interior of the vacuum pump via the cooling gas inlet, so that the vacuum pump and the components to be cooled, which delimit the hollow region, are locally cooled directly in the region of the heat generation. Because the hollow areas provided for cooling are separated from the pump chamber of the vacuum pump, impairment of the pumping action by the cooling gas is avoided, as is impairment of the cooling effect by the gas to be pumped, so that efficient cooling is ensured in efficient pumping operation.
- the vacuum pump can be realized with very little effort, since only one additional inlet for the cooling gas and one hollow area or several hollow areas for the cooling gas are to be provided.
- the cooling gas e.g. the atmospheric air can be used, which is present at the cooling gas inlet, so that no special cooling gas must be provided.
- At least one hollow region and in particular each hollow region is gas-conductively connected to the pump outlet.
- the cooling gas present at the cooling gas inlet can then be sucked into the cooling gas inlet by the suction of a backing pump connected to the pump outlet and sucked through the hollow region or the hollow regions.
- a backing pump is particularly useful in vacuum pumps operating in the high purity vacuum environment, such as turbomolecular pumps
- the rule used anyway can serve to suck the conveyed into a fore-vacuum or Vorvakuumraum the vacuum pump gas and thereby compressing from a prevailing in the Vorvakuum Society prevacuum pressure to a higher pressure, in particular to atmospheric pressure.
- the fore-vacuum region preferably forms the downstream end of the pump chamber.
- the maximum backing pressure maintained by the backing pump may be adjusted to operate the vacuum pump upstream pump stages which compress against the backing pressure in the region of their optimum pumping performance and to achieve minimum ultimate pressures at the pump inlet.
- the cooling gas can be sucked by the suction of the backing pump through the cooling gas inlet and conveyed through the hollow areas, so that a defined cooling gas flow and a forced cooling of the vacuum pump can be achieved without an additional Conveyor for the cooling gas is necessary.
- the hollow region or each hollow region can open into a region arranged upstream of the pump outlet, in particular a pre-vacuum region, of the pump chamber.
- the cooling gas flow entering through the cooling gas inlet can be regulated, for example by adjustability of the Flow cross section of the cooling gas inlet.
- the desired flow cross-section can be determinable or adjustable, for example, via a capillary of the vacuum pump or the like.
- the cooling gas flow can then be adjusted in particular even in the case of a gas-conducting connection between the hollow regions and the pump outlet so that the cooling gas flow causes no disturbing impairment of the pumping action.
- a cooling gas outlet is provided for the cooling gas, with which at least one hollow region and in particular each hollow region is gas-conductively connected.
- the gas cooling can then be realized substantially independently of the pumping process taking place in the pump chamber, and the hollow regions can be completely separated from the pump chamber within the vacuum pump.
- the cooling gas can be introduced into the vacuum pump via the cooling gas inlet, through which one or more hollow regions are conveyed and discharged from the vacuum pump at the cooling gas outlet.
- a separate cooling gas outlet has the advantage that it is possible to choose between various provisions for conveying the cooling gas through the hollow region.
- a compressor may be connected to the cooling gas inlet, which compresses the cooling gas, for example atmospheric air, and delivers it under pressure into the cooling gas inlet.
- the cooling gas outlet can also be connected to a backing pump, so that the delivery of the cooling gas is accomplished by the suction of the backing pump.
- a gas line can be connected to the cooling gas outlet, which opens into a backing tube connecting the pump outlet of the vacuum pump with the backing pump, so that at the inlet of the backing pump, the total gas flow of pumping gas flow and cooling gas flow is introduced.
- the gas line can The cooling gas outlet of the vacuum pump also connect directly to the backing pump and open, for example, directly into a pump chamber of the backing pump.
- At least one hollow region and in particular each hollow region is separated from the pump chamber in a substantially gas-tight manner.
- the refrigerant gas delivered to the pump may be e.g. be discharged through adegasauslass as described above.
- the gas-tight separation also includes an embodiment in which the hollow areas and the pump space are connected to one another outside the vacuum pump and thus only indirectly to one another by gas conduction, e.g. via a fore-vacuum hose of a backing pump which promotes the pumping gas and the cooling gas.
- At least one hollow region and in particular each hollow region downstream of all provided for pumping the gas present in the pump space provided pumping stages of the vacuum pump with the pump chamber or with the pump outlet gas-conducting is preferably separated gas-tight from the regions of the pump chamber arranged upstream thereof, ie, the hollow region is connected to the pump chamber or the pump outlet in a gas-conducting manner exclusively downstream of all pump stages, for example in the region of a fore-vacuum region.
- pumping stages are e.g. one or more molecular and especially turbomolecular pumping stages provided.
- turbomolecular pumping stages e.g. one or more Holweck pumping stages, Siegbahn pumping stages, Gaede pumping stages or side channel pumping stages can be provided, in particular downstream of the one or more turbomolecular pumping stages.
- At least one hollow region and in particular each hollow region is formed as a channel.
- this embodiment has the advantage that the cooling effect achieved can be locally targeted and precisely adjusted by a corresponding channel guide anywhere in the vacuum pump.
- At least one channel, and in particular each channel may have an elongate shape over at least part of its length, and more particularly over at least approximately its entire length, and e.g. be formed substantially tubular or leksschlitz- or longitudinally gap-shaped.
- a plurality of channels may be provided for the cooling gas, which may be connected to the cooling gas inlet or gas-conducting together.
- a plurality of channels may be gas-conductively connected in series or parallel to one another in the flow direction.
- An embodiment with several mutually branched channels is possible.
- at least one channel or several channels taken together have a length which is at least half and preferably at least one-fold, two-fold or three-fold Flow diameter of a suction inlet flange forming the pump inlet corresponds to the vacuum pump.
- At least one channel and in particular each channel is substantially annular, in particular annular, or annular segment-shaped, in particular annular segment-shaped, around an axis of rotation of the vacuum pump.
- the vacuum pump may, in principle, be designed at least approximately rotationally symmetrically with respect to the axis of rotation, in order, for Rotate the rotating components of the pump stages.
- a sufficient and uniform cooling effect can be achieved by an annular channel in the entire vacuum pump.
- at least one channel or a plurality of channels together may cover at least 50%, preferably at least 75% and particularly preferably at least approximately the entire angular range defined relative to the axis of rotation of the vacuum pump.
- the respective channel may have a radial distance from the axis of rotation over part of its length or at least approximately its entire length and may be e.g. be arranged in the distance range which extends from half to the entire outer diameter of the backing pump.
- the respective channel may for example have the shape of an annular gap, a ring slot, a ring tube or a segment of a corresponding ring shape.
- At least two channels can be provided for the cooling gas, which in particular extend in different directions around the axis of rotation of the vacuum pump.
- the channels can be connected at one of their ends in each case directly to the gas inlet gas-conducting with the cooling gas inlet and / or connected to each other at the other end gas-conducting be or open into a common area of the vacuum pump.
- a plurality of channels spaced apart in the axial direction, ie in the direction of rotation axes, may also be provided.
- a channel may have a closed cross-section perpendicular to its longitudinal extent.
- At least one channel and in particular each channel forms at least over a part of its length and in particular over at least approximately its entire length a flow cross-sectional area for the cooling gas which is at most as large as the flow cross-sectional area of the pump outlet and in particular smaller than the flow cross-sectional area of the pump outlet ,
- the fore-vacuum pressure is then increased by the cooling possibly at most slightly and also is achieved anywhere in the vacuum pump to the respective requirements sufficient cooling.
- At least one hollow region and in particular each hollow region at least partially has a closed cross-section, which in particular is completely bounded by at least one static component of the vacuum pump.
- the hollow region or the hollow regions may be formed as a channel which, as described above, at least apart from possible branches to other channels or to other hollow regions and at least over a part of its Length and in particular over at least approximately its entire length may have a closed cross-section.
- the closed cross-section of one or each hollow region, in particular channel is completely delimited by at least two static components of the vacuum pump, at least in a section of the hollow region or at least in a longitudinal section of the channel.
- the hollow region or channel is thus surrounded by at least two components, which partially limit the cross section of the hollow region in each case.
- the hollow region may be formed, at least partially, by a groove-shaped recess or recess of a component which is covered by the other component for forming the hollow region.
- the hollow region or channel can also be formed by a gap or slot, in particular annular gap or annular slot, between the components.
- the two components can abut each other directly on the edge of the hollow region in a gas-tight manner and / or in each case against a common sealing element.
- a structurally particularly advantageous embodiment is that in a lower part of the vacuum pump, which is at least partially disposed in a lower region of the pump and forms, for example, a part of a housing of the vacuum pump or an enclosure for a rotary bearing and / or a drive of the pump, a groove is formed whose groove walls partially define the hollow region.
- Another, preferably flat-shaped component can close the groove opening and thereby complete the transformation of the hollow region such that the hollow region has a closed cross-section. The groove can thereby jump in the axial direction in the lower part.
- the flat-shaped component may, for example, in an existing axially-receding and in particular be defined through opening of the lower part through which the groove is accessible and in the example, a rotary bearing and / or a drive of the pump can be used.
- the groove preferably has a substantially annular or annular segment-shaped course and the further component can accordingly be formed by a ring-shaped or annular-segment-shaped and preferably flat-shaped ring or partial ring.
- the closed cross-section may also be completely delimited by at least one section of the hollow region or longitudinal section of the channel and, in particular, everywhere completely by exactly one static component of the vacuum pump.
- the hollow region or channel can be formed by a continuous recess in the solid material of the respective component.
- At least one hollow region and in particular each hollow region is at least partially disposed in a region of the vacuum pump, which is spaced in the rotational axis direction from the pumping stages of the vacuum pump and which is also referred to as the lower region.
- the lower region can be arranged, for example, a rotary bearing for a rotor shaft and / or a drive of the vacuum pump.
- a hollow region or each hollow region can be arranged, for example, in a lower part or at least partially bounded by it.
- a hollow region can also be delimited at least partially by a baffle plate or a flat-shaped component of the vacuum pump which is arranged in particular in the lower region.
- the conversion of one or each hollow region may be at least partially and in particular completely formed by a heat-conducting and in particular metallic material.
- the cooling gas can be used in the simplest case, the atmospheric air, which is present at the cooling gas inlet, preferably at atmospheric pressure and / or room temperature. In either case, a cooling gas is introduced into the cooling gas inlet, which is cooler than the desired maximum temperature of the pump. Upstream of the cooling gas inlet, the cooling gas may be passed through an air cooling system disposed outside the vacuum pump or on the outside of the vacuum pump or through flow channels disposed outside the vacuum pump.
- an inlet and an outlet of the vacuum pump in the present description, one is always more accessible from outside the vacuum pump and the outside of the vacuum pump is gas-conducting with the interior of the vacuum pump, which e.g. is limited by a housing of the vacuum pump to understand connecting inlet or outlet.
- the cooling gas inlet accordingly connects the exterior of the vacuum pump with the interior of the vacuum pump in which the hollow area or the hollow areas are arranged.
- An inlet or outlet may include a flange surrounding a respective inlet or outlet port, but may also be formed by a simple inlet or outlet port.
- the vacuum pump can comprise a plurality of hollow areas.
- a “hollow region” or “channel” or “hollow regions” or “channels” in the present description the respective description is always equally applicable to at least one hollow region or channel, which may also be the only one Hollow region or channel is to refer to several hollow areas or channels and in particular to all hollow areas or channels.
- the vacuum pump may also have a plurality of cooling gas inlets, each gas-conducting connected to at least one hollow portion.
- Another object of the invention is a vacuum arrangement with a vacuum pump according to the present invention, wherein at the cooling gas inlet of the vacuum pump, a cooling gas for cooling the vacuum pump is provided and at the pump inlet of the vacuum pump is connected to a separate pump from the cooling gas inlet with a gas to be pumped. While the recipient preferably forms a closed, substantially gas-tight volume connected to the pump inlet, the cooling gas provided at the cooling gas inlet may be, for example, atmospheric air, in which case the cooling gas inlet may simply be exposed to the normal atmosphere.
- a backing pump can be connected, which removes the gas pumped by the vacuum pump and optionally additionally the cooling gas.
- the invention further relates to a method for operating a vacuum pump according to the present invention or a vacuum arrangement according to the invention with a vacuum pump according to the present description, wherein at the cooling gas inlet of the vacuum pump, a cooling gas for cooling the vacuum pump, in particular atmospheric air, is provided and wherein at the pump inlet the vacuum pump is provided a gas to be pumped separated from the cooling gas.
- the gas to be pumped can be provided in a closed recipient, while as the cooling gas In particular, the normal atmospheric air can be used, wherein the cooling gas inlet of this atmospheric air can be exposed.
- the suction of a backing pump is used to convey both the cooling gas and the pumping gas.
- the vacuum pump shown includes a pump inlet 10 surrounded by an inlet flange 12, a pump outlet 14 surrounded by an outlet flange 16, and a pumping space 18 therebetween through which the gas to be pumped is conveyed during operation of the pump is called the scooping room.
- An upper housing part 20 and a lower part 22 form a housing of the vacuum pump.
- the vacuum pump comprises a rotor shaft 26, which is rotatably mounted in the vacuum pump about a rotation axis 28 by a magnetic bearing 30 and a ball bearing 32, which is supplied with lubricant by a lubricating device 34.
- An electric drive 36 serves to rotate the rotor shaft 26.
- the magnetic bearing 30 and the pumping stages described below are received in the housing top 20.
- the lower part 22 forms an enclosure for the ball bearing 32 and for the lubricating device 34, which are located in the lower portion 24 of the vacuum pump, and for the drive 36.
- the lower part 22 is formed by a base portion 60 and a functional portion 62 and includes a continuous
- Opening 72 and a groove 76 these components with respect to 4 to 6 are explained in more detail.
- the vacuum pump comprises a plurality of rotor disks 38 arranged on the rotor shaft 26 and extending in the radial direction and provided with radial blades.
- Stator disks 40 are also provided, which likewise extend in the radial direction, are provided with radial blades and which are arranged and in the housing the vacuum pump are set to face the rotor disks 38 at a small axial distance.
- a rotor disk 38 in each case forms a turbomolecular pumping stage of the vacuum pump with an opposing stator disk 40.
- Holweck pump stages of the vacuum pump Downstream of the turbomolecular pumping stages follow three nested Holweck pump stages of the vacuum pump, which are formed by a plurality of cylinder jacket-shaped concentric to the rotation axis 28 arranged Holweckstatoren 42 and also cylinder jacket-shaped and concentric with the axis of rotation 28, connected to the rotor shaft 26 Holweckrotorhülsen 44.
- a pump-shaped radial surface of a Holweck stator 42 forming several helical grooves is in each case opposite a smooth radial surface of a Holweck rotor sleeve 44 at a small radial distance, so that a thin gap is formed between the surfaces.
- the opposing surfaces together form each a Holweck pumping stage, wherein in the operation of the vacuum pump, the gas molecules are driven in the helical grooves and thus conveyed in the axial direction.
- a fore-vacuum region 46 of the vacuum pump is formed, in which the gas delivered by the pumping stages is collected, which is subsequently discharged via the pump outlet 14 which is connected to the fore-vacuum region 46 in a gas-conducting manner.
- the vacuum pump further comprises a cooling gas inlet 48, which is formed in the lower part 22 and connects a channel 50 formed in the interior of the lower part 22 for the cooling gas gas-conducting with the pump exterior and the atmospheric air present there.
- the cooling gas inlet 48 extends in the radial direction into the vacuum pump and opens into the cooling gas channel 50, which has a substantially circular cross-section, extends substantially semicircular around the rotation axis 28 and opens into the pump outlet 14.
- atmospheric air can be conveyed through the cooling gas inlet 48 into the vacuum pump and through the channel 50 to the pump outlet 14 by the suction of the backing pump 48 and exhausted there by the roughing pump.
- the atmospheric air cools the regions of the lower part 22 delimiting the channel 50, which prevents excessive heating in the operation of the vacuum pump.
- cooling gas channels 50 and / or a plurality of cooling gas inlets 48 may be provided, which may each be gas-conductively connected to the pump outlet 14.
- Fig. 2 shows a lower portion 24 of a vacuum pump according to another embodiment in cross section, which substantially the in Fig. 1 corresponds shown vacuum pump.
- the pump components may be included in the lower part 22 such as a as in Fig. 1 shown pivot bearing or a lubricating device are in Fig. 2 not shown and the lower part 22 is instead shown continuously.
- the pump shown has two cooling gas passages 50, 52 respectively connected in a gas-conducting manner to the cooling gas inlet 48, which extend from the cooling gas inlet 48 in opposite directions substantially in a semicircular shape around the axis of rotation 28 and open into the pump outlet 14. As a result, an effective cooling is achieved over the entire angular range around the rotation axis 28.
- the gas-conducting connection between the fore-vacuum region of the vacuum pump and the pump outlet 14 is in Fig. 2 represented by the dashed circle 56.
- Fig. 3 shows the lower portion 24 of a vacuum pump according to another embodiment of the invention in axial section with a lower part 22, as shown in Fig. 2 is shown throughout.
- the vacuum pump has a plurality of cooling gas channels 50, 54, each gas-conducting with a in Fig. 3 Not shown cooling gas inlet are connected.
- the vacuum pump comprises on the one hand channels 50, which are completely bounded by the solid material of the lower part 22.
- the vacuum pump comprises channels 54, which are surrounded on the one hand by the groove walls of grooves which are provided on the radial outer sides of the lower part 22, and on the other by outer plates 58 which are gas-tightly connected to the lower part 22 and the channels 54 in Limit the radial direction to the outside.
- the outer plates 58 define, together with the lower part 22, an approximately triangular cross-section of the individual channels 54.
- Fig. 4 shows a lower part 22 of a vacuum pump according to another embodiment of the invention in side view.
- the lower part 22 comprises an approximately cylindrical about the axis 28 extending around base portion 60 which forms the lower portion 24 of the vacuum pump in the use of the lower part 22 in a vacuum pump.
- the lower part 24 also comprises a relative to the base portion 60 in the axial direction nozzle-like projecting and to the axis 28 substantially rotationally symmetrical functional portion 62, which cooperates in the manner described below with the components directly involved in the pumping function of the vacuum pump.
- the functional portion 62 includes a radially protruding collar portion 64 having a plurality of helical grooves 66 extending around the axis 28.
- the portion 64 forms with the inner surface of a hollow rotor sleeve 44 rotating about the axis 28 (see FIG Fig. 1 ) a gap with a small radial gap width.
- the section 64 and the Holweckrotorhülse 44 work together in the manner of Holweckpumpgrin together and form a dynamic seal, which seals the pump chamber with respect to the adjacent cavities of the pump.
- the base portion 60 includes a pump outlet 14 and a gas outlet gas-tightly separated from the pump outlet 14 68.
- FIGS. 5 and 6 show that in Fig. 4 shown lower part 22 in a along the line AA or BB of Fig. 4 cut illustration.
- the lower part 22 comprises a cooling gas inlet 48 and a groove 70 designed to delimit a cooling gas channel 50, which projects in the axial direction and runs in a circle about the axis 28 to the cooling gas outlet 68, the groove 70 having an angular range of approximately 220 ° covers.
- the groove 70 is accessible via an opening 72 of the lower part 22 from the outside.
- FIGS. 7 and 8 show a circular ring 74 with a flat cross-section, which can be fixed in the opening 72, that the ring 74, the groove 70 closes and forms a closed cross section for the cooling gas channel 50 with the groove walls.
- the lower part 22 also includes a groove 76 (FIG. Fig. 5 ) to limit the Vorvakuum Suites 46 and a gas-conducting connected pump outlet 14.
- the cooling gas channel 50 extends in this embodiment in the axial direction below the pump outlet 14 and is completely gas-tightly separated from the fore-vacuum region 48 and the pump chamber 18.
- compressed air can be provided at the cooling gas inlet 48.
- the cooling gas outlet 68 may be connected outside the vacuum pump and thus downstream of the pump outlet 14 to a backing pump, which may also be connected to the pump outlet 14.
- the opening 72 extends in the axial direction through the base portion 60 and the functional portion 62 of the lower part 22, wherein in the region of the functional portion 62, a drive 36 (see Fig. 1 ) and in the region of the base portion 60, a pivot bearing 32 of the pump in the opening 72 can be fixed, so that the lower part 22 forms an enclosure for these components.
- the lower end of the opening 72 is closable with a lid, not shown.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
- Die Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe, eine Anordnung mit einer Vakuumpumpe, insbesondere mit einer Turbomolekularpumpe, und ein Verfahren zum Betreiben einer Vakuumpumpe, insbesondere einer Turbomolekularpumpe.
- Vakuumpumpen werden in verschiedenen technischen Verfahren wie zum Beispiel bei der Halbleiterherstellung eingesetzt, um ein zu pumpendes Gas, welches auch als Pumpgas bezeichnet wird, aus einem zu evakuierenden Volumen abzufördern und ein für das jeweilige technische Verfahren notwendiges Vakuum zu erzeugen. Besondere Bedeutung kommt dabei Turbomolekularpumpen zu, die mit hohen Drehzahlen betrieben werden und in der Lage sind, ein Vakuum mit hoher Reinheit zu erzeugen.
- Bei dem Betrieb der bekannten Vakuumpumpen tritt eine erhebliche Erwärmung der Vakuumpumpen auf, welche die Pumpeigenschaften und das Leistungsverhalten der Vakuumpumpe verschlechtert, die Wartungsanfälligkeit der Vakuumpumpe erhöht und deren Betriebslebensdauer reduziert. Es ist bekannt, eine Vakuumpumpe mit einer Kühleinrichtung auszustatten, um eine übermäßige Erwärmung der Vakuumpumpe zu vermeiden.
- Bekannte Kühleinrichtungen wie zum Beispiel Wasserkühlungen oder Luftkühlungen, deren Kühlwirkung auf dem Umströmen warmer Pumpenkomponenten oder daran angebrachter Kühlkörper mit Luft basiert, sind relativ aufwändig und weisen eine begrenzte Wirksamkeit auf. Insbesondere ist es mit den bekannten Kühleinrichtungen nur schwer möglich, Bereiche der Pumpe, die sich besonders stark erwärmen und zum Beispiel im unteren Bereich der Pumpe angeordnet sind, lokal gezielt derart zu kühlen, dass sich überall gewünschte Temperaturverhältnisse einstellen. Somit tritt auch bei den auf diese Weise gekühlten Vakuumpumpen eine übermäßige Erwärmung auf, welche die Pump- und Leistungseigenschaften der Vakuumpumpe verschlechtert und deren Lebensdauer herabsetzt. Aufgabe der Erfindung ist es daher, eine Vakuumpumpe, eine Anordnung mit einer Vakuumpumpe und ein Verfahren zum Betreiben einer Vakuumpumpe anzugeben, mit denen sich mit verringertem Aufwand eine verbesserte Pumpleistung und Betriebslebensdauer der Vakuumpumpe erreichen lässt und mit denen insbesondere eine wirksame und ausreichende Kühlung in allen Bereichen der Vakuumpumpe geschaffen wird, so dass die Vakuumpumpe überall wirksam vor einer übermäßigen Erwärmung während des Betriebs geschützt ist.
- In der
JP 2002 039092 A - Die
US 6 019 581 A undWO89/06319 - Die Aufgabe wird durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1 gelöst.
- Die Vakuumpumpe, insbesondere Turbomolekularpumpe, umfasst einen Pumpeneinlass, einen Pumpenauslass und einen zwischen dem Pumpeneinlass und dem Pumpenauslass angeordneten Pumpenraum für ein zu pumpendes Gas. Die Vakuumpumpe umfasst ferner zumindest einen Kühlgaseinlass für ein Kühlgas zur Kühlung der Vakuumpumpe und einen oder mehrere mit dem Kühlgaseinlass gasleitend verbundene und außerhalb des Pumpenraums angeordnete Hohlbereiche für das Kühlgas, wobei der oder jeder Hohlbereich durch wenigstens eine Komponente der Vakuumpumpe begrenzt ist.
- Über den Kühlgaseinlass wird bei dem Betrieb der Vakuumpumpe Kühlgas unmittelbar in die im Inneren der Vakuumpumpe angeordneten Hohlbereiche eingelassen, so dass die Vakuumpumpe und die zu kühlenden Komponenten, die den Hohlbereich begrenzen, unmittelbar im Bereich der größen Wärmeerzeugung lokal gezielt gekühlt werden. Dadurch, dass die für die Kühlung vorgesehenen Hohlbereiche von dem Pumpenraum der Vakuumpumpe getrennt sind, wird eine Beeinträchtigung der Pumpwirkung durch das Kühlgas ebenso vermieden wie eine Beeinträchtigung der Kühlwirkung durch das zu pumpende Gas, so dass eine effiziente Kühlung bei effizientem Pumpbetrieb gewährleistet ist.
- Die Vakuumpumpe lässt sich mit sehr geringem Aufwand realisieren, da lediglich ein zusätzlicher Einlass für das Kühlgas und ein Hohlbereich oder mehrere Hohlbereiche für das Kühlgas vorzusehen sind. Als Kühlgas kann z.B. die Atmosphärenluft nutzbar sein, die an dem Kühlgaseinlass ansteht, so dass kein besonderes Kühlgas vorgesehen werden muss.
- Vorteilhafte Ausführungsformen sind in den Unteransprüchen, der Beschreibung und den Figuren beschrieben.
- Gemäß einer vorteilhaften Ausführungsform ist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich gasleitend mit dem Pumpenauslass verbunden. Das an dem Kühlgaseinlass anstehende Kühlgas kann dann durch den Sog einer an dem Pumpenauslass angeschlossenen Vorvakuumpumpe in den Kühlgaseinlass eingesaugt und durch den Hohlbereich bzw. die Hohlbereiche hindurch gesaugt werden.
- Eine Vorvakuumpumpe wird insbesondere bei Vakuumpumpen, die im hochreinen Vakuumbereich arbeiten, wie z.B. Turbomolekularpumpen, in der Regel ohnehin verwendet und kann dazu dienen, das in einen Vorvakuumbereich bzw. Vorvakuumraum der Vakuumpumpe geförderte Gas abzusaugen und dabei von einem in dem Vorvakuumbereich vorherrschenden Vorvakuumdruck auf einen höheren Druck, insbesondere auf Atmosphärendruck, zu verdichten. Der Vorvakuumbereich bildet dabei vorzugsweise den stromabwärtigen Abschluss des Pumpenraums. Der durch die Vorvakuumpumpe aufrecht erhaltene maximale Vorvakuumdruck kann so angepasst sein, dass die vorgelagerten Pumpstufen der Vakuumpumpe, die gegen den Vorvakuumdruck verdichten, im Bereich ihres optimalen Pumpverhaltens betrieben werden und dass an dem Pumpeneinlass minimale Enddrücke erzielt werden.
- Bei Vorliegen einer gasleitenden Verbindung zwischen den ein oder mehreren Hohlbereichen und dem Pumpenauslass kann das Kühlgas durch den Sog der Vorvakuumpumpe durch den Kühlgaseinlass angesaugt und durch die Hohlbereiche gefördert werden, so dass ein definierter Kühlgasstrom und eine Zwangskühlung der Vakuumpumpe erreicht werden, ohne dass eine zusätzliche Fördereinrichtung für das Kühlgas notwendig ist. Der Hohlbereich oder jeder Hohlbereich kann dabei in einen stromaufwärts des Pumpenauslasses angeordneten Bereich, insbesondere einen Vorvakuumbereich, des Pumpenraums münden.
- Angesichts der Saugleistungen von verfügbaren Vorvakuumpumpen wird trotz der Belastung der Vorvakuumpumpe mit dem Kühlgasstrom zusätzlich zu dem Pumpgasstrom eine gute Kühlwirkung erreicht, ohne dass der Vorvakuumdruck in der Vakuumpumpe und damit die Pumpleistung der Vakuumpumpe wesentlich beeinträchtigt werden.
- Prinzipiell ist es bevorzugt, dass der durch den Kühlgaseinlass eintretende Kühlgasstrom regulierbar ist, zum Beispiel durch eine Einstellbarkeit des Strömungsquerschnitts des Kühlgaseinlasses. Der gewünschte Strömungsquerschnitt kann z.B. über eine Kapillare der Vakuumpumpe oder Ähnliches bestimmbar bzw. einstellbar sein. Der Kühlgasstrom lässt sich dann insbesondere auch im Falle einer gasleitenden Verbindung zwischen den Hohlbereichen und dem Pumpenauslass so einstellen, dass der Kühlgasstrom keine störende Beeinträchtigung der Pumpwirkung hervorruft.
- Gemäß einer Ausführungsform ist ein Kühlgasauslass für das Kühlgas vorgesehen, mit dem zumindest ein Hohlbereich und insbesondere jeder Hohlbereich gasleitend verbunden ist. Die Gaskühlung kann dann im Wesentlichen unabhängig von dem in dem Pumpenraum stattfindenden Pumpvorgang realisiert sein und die Hohlbereiche können innerhalb der Vakuumpumpe vollständig von dem Pumpenraum getrennt sein. Das Kühlgas kann über den Kühlgaseinlass in die Vakuumpumpe eingelassen, durch die ein oder mehreren Hohlbereiche gefördert und an dem Kühlgasauslass aus der Vakuumpumpe ausgelassen werden.
- Ein separater Kühlgasauslass hat den Vorteil, dass zwischen verschiedenen Vorkehrungen zur Förderung des Kühlgases durch den Hohlbereich ausgewählt werden kann. Zum Beispiel kann zur Erzeugung des Kühlgasstromes ein Kompressor an den Kühlgaseinlass angeschlossen werden, der das Kühlgas, zum Beispiel Atmosphärenluft, komprimiert und unter Druck in den Kühlgaseinlass fördert. Der Kühlgasauslass kann andererseits auch mit einer Vorvakuumpumpe verbunden werden, so dass die Förderung des Kühlgases durch den Sog der Vorvakuumpumpe bewerkstelligt wird. Dazu kann an dem Kühlgasauslass eine Gasleitung angeschlossen werden, die in einen Vorvakuumschlauch mündet, der den Pumpenauslass der Vakuumpumpe mit der Vorvakuumpumpe verbindet, so dass an dem Einlass der Vorvakuumpumpe der Gesamtgasstrom aus Pumpgasstrom und Kühlgasstrom eingeleitet wird. Die Gasleitung kann den Kühlgasauslass der Vakuumpumpe auch direkt mit der Vorvakuumpumpe verbinden und zum Beispiel direkt in einen Pumpenraum der Vorvakuumpumpe münden.
- Bevorzugt ist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich von dem Pumpenraum im Wesentlichen gasdicht getrennt. Dadurch können eine Erhöhung des in dem Pumpenraum vorhandenen Gasdrucks infolge des Kühlgasstromes und eine damit einhergehende Verschlechterung der Pumpleistung weitestgehend vermieden werden. Das in die Pumpe geförderte Kühlgas kann dabei z.B. durch einen wie vorstehend beschriebenen Kühlgasauslass abgefördert werden. Die gasdichte Trennung umfasst auch eine Ausgestaltung, bei der die Hohlbereiche und der Pumpenraum außerhalb der Vakuumpumpe und somit nur mittelbar gasleitend miteinander verbunden sind, z.B. über einen Vorvakuumschlauch einer das Pumpgas und das Kühlgas fördernden Vorvakuumpumpe.
- Gemäß einer weiteren vorteilhaften Ausführungsform ist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich stromabwärts sämtlicher zum Pumpen des in dem Pumpenraum vorhandenen Gases vorgesehenen Pumpstufen der Vakuumpumpe mit dem Pumpenraum oder mit dem Pumpenauslass gasleitend verbunden. Von den stromaufwärts davon angeordneten Bereichen des Pumpenraums ist der zumindest eine bzw. jeder Hohlbereich vorzugsweise gasdicht getrennt, d.h. der Hohlbereich ist ausschließlich stromabwärts sämtlicher Pumpstufen, z.B. im Bereich eines Vorvakuumbereichs, mit dem Pumpenraum oder dem Pumpenauslass gasleitend verbunden. Dadurch kann eine Beeinträchtigung der Pumpleistung durch das Kühlgas weitestgehend vermieden werden, da das in den stromabwärtigen Bereich des Pumpenraums bzw. in den Pumpenauslass gelangende Kühlgas z.B. direkt von einer an den Pumpenauslass angeschlossenen Vorvakuumpumpe abgefördert werden kann, ohne dass sich der Vorvakuumdruck wesentlich erhöht.
- Als Pumpstufen sind z.B. eine oder mehrere molekulare und insbesondere turbomolekulare Pumpstufen vorgesehen. Alternativ oder zusätzlich zu einer oder mehreren turbomolekularen Pumpstufen können, insbesondere stromabwärts der einen oder mehreren turbomolekularen Pumpstufen, eine oder mehrere Holweck-Pumpstufen, Siegbahn-Pumpstufen, Gaede-Pumpstufen oder Seitenkanalpumpstufen vorgesehen sein.
- Gemäß einer Ausführungsform ist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich als Kanal ausgebildet. Gegenüber einem ausgedehnten Hohlbereich hat diese Ausgestaltung den Vorteil, dass die erreichte Kühlwirkung durch eine entsprechende Kanalführung überall in der Vakuumpumpe örtlich gezielt und genau eingestellt werden kann. Zumindest ein Kanal und insbesondere jeder Kanal kann wenigstens über einen Teil seiner Länge und insbesondere über zumindest annähernd seine gesamte Länge eine längliche Form aufweisen und z.B. im Wesentlichen röhren- oder längsschlitz- bzw. längsspaltförmig ausgebildet sein.
- Prinzipiell können mehrere Kanäle für das Kühlgas vorgesehen sein, welche mit dem Kühlgaseinlass oder miteinander gasleitend verbunden sein können. Dabei können mehrere Kanäle in Strömungsrichtung gasleitend in Serie oder parallel zueinander miteinander verbunden sein. Auch eine Ausgestaltung mit mehreren miteinander verästelten Kanälen ist möglich. Um überall in der Pumpe eine ausreichende Kühlwirkung zu erzielen, ist vorzugsweise vorgesehen, dass zumindest ein Kanal oder mehrere Kanäle zusammen genommen eine Länge aufweisen, die wenigstens dem halben und vorzugsweise wenigstens dem einfachen, zweifachen oder dreifachen Strömungsdurchmesser eines den Pumpeneinlass bildenden Ansaugflansches der Vakuumpumpe entspricht.
- Bevorzugt verläuft zumindest ein Kanal und insbesondere jeder Kanal im Wesentlichen ringförmig, insbesondere kreisringförmig, oder ringsegmentförmig, insbesondere kreisringsegmentförmig, um eine Rotationsachse der Vakuumpumpe herum. Die Vakuumpumpe kann prinzipiell zumindest näherungsweise rotationssymmetrisch zu der Rotationsachse ausgebildet sein, um die z.B. die rotierenden Komponenten der Pumpstufen rotieren. In diesem Fall lässt sich durch einen ringförmigen Kanal in der gesamten Vakuumpumpe eine ausreichende und gleichmäßige Kühlwirkung erreichen. Dazu können zumindest ein Kanal oder mehrere Kanäle zusammen wenigstens 50 %, bevorzugt wenigstens 75 % und besonders bevorzugt zumindest näherungsweise den gesamten relativ zu der Rotationsachse der Vakuumpumpe definierten Winkelbereich abdecken.
- Der jeweilige Kanal kann über einen Teil seiner Länge oder zumindest annähernd seine gesamte Länge einen radialen Abstand von der Rotationsachse aufweisen und kann z.B. in dem Abstandsbereich angeordnet sein, welcher von dem halben zu dem ganzen Außendurchmesser der Vorvakuumpumpe reicht. Der jeweilige Kanal kann beispielsweise die Form eines Ringspalts, eines Ringschlitzes, einer Ringröhre oder eines Segments einer entsprechenden Ringform aufweisen.
- Um überall eine ausreichende Kühlung der Vakuumpumpe zu erreichen, können zumindest zwei Kanäle für das Kühlgas vorgesehen sein, welche insbesondere in unterschiedlichen Richtungen um die Rotationsachse der Vakuumpumpe herum verlaufen. Die Kanäle können dabei an einem ihrer Enden jeweils direkt gasleitend mit dem Kühlgaseinlass verbunden sein und/oder an ihrem anderen Ende jeweils gasleitend miteinander verbunden sein oder in einen gemeinsamen Bereich der Vakuumpumpe münden. Prinzipiell können auch mehrere in axialer Richtung, d.h. in Rotationsachsenrichtung, beabstandete Kanäle vorgesehen sein.
- Prinzipiell kann ein Kanal zumindest abgesehen von etwaigen Abzweigungen zu weiteren Kanälen oder zu weiteren Hohlbereichen und zumindest über einen Teil seiner Länge und insbesondere über zumindest annähernd seine gesamte Länge einen geschlossenen Querschnitt senkrecht zu seiner Längserstreckung aufweisen.
- Gemäß einer Ausführungsform bildet zumindest ein Kanal und insbesondere jeder Kanal wenigstens über einen Teil seiner Länge und insbesondere über zumindest annähernd seine gesamte Länge eine Strömungsquerschnittsfläche für das Kühlgas, welche maximal so groß ist wie die Strömungsquerschnittsfläche des Pumpenauslasses und insbesondere kleiner ist als die Strömungsquerschnittsfläche des Pumpenauslasses. Der Vorvakuumdruck wird dann durch die Kühlung ggf. allenfalls geringfügig erhöht und zudem wird überall in der Vakuumpumpe eine den jeweiligen Anforderungen genügende Kühlung erreicht.
- Vorzugsweise weist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich zumindest bereichsweise einen geschlossenen Querschnitt auf, welcher insbesondere vollständig von zumindest einer statischen Komponente der Vakuumpumpe begrenzt ist. Dadurch lässt sich eine wirksame Abdichtung des Hohlbereichs von dem Pumpenraum und eine effiziente Kühlung der statischen Pumpenkomponenten und somit der Vakuumpumpe insgesamt erreichen. Der Hohlbereich oder die Hohlbereiche können als Kanal ausgebildet sein, welcher wie vorstehend beschrieben zumindest abgesehen von etwaigen Abzweigungen zu weiteren Kanälen oder zu weiteren Hohlbereichen und zumindest über einen Teil seiner Länge und insbesondere über zumindest annähernd seine gesamte Länge einen geschlossenen Querschnitt aufweisen kann.
- Bei einer besonders einfach zu realisierenden Ausführungsform ist der geschlossene Querschnitt eines oder jedes Hohlbereichs, insbesondere Kanals, zumindest in einem Abschnitt des Hohlbereichs oder zumindest in einem Längsabschnitt des Kanals und insbesondere überall vollständig von wenigstens zwei statischen Komponenten der Vakuumpumpe begrenzt. Der Hohlbereich bzw. Kanal ist also von mindestens zwei Komponenten umwandet, die den Querschnitt des Hohlbereichs jeweils teilweise begrenzen. Der Hohlbereich kann zumindest teilweise durch eine nutförmige Aussparung oder Aussackung einer Komponente gebildet sein, welche von der anderen Komponente zur Bildung des Hohlbereichs abgedeckt wird. Der Hohlbereich bzw. Kanal kann auch durch einen Spalt oder Schlitz, insbesondere Ringspalt oder Ringschlitz, zwischen den Komponenten gebildet sein. Zur Abdichtung des Hohlbereichs können die beiden Komponenten am Rand des Hohlbereichs direkt gasdichtend aneinander und/oder jeweils an einem gemeinsamen Dichtelement anliegen.
- Eine baulich besonders günstige Ausgestaltung besteht darin, dass in einem Unterteil der Vakuumpumpe, welches zumindest teilweise in einem unteren Bereich der Pumpe angeordnet ist und z.B. einen Teil eines Gehäuses der Vakuumpumpe bzw. eine Einhausung für ein Drehlager und/oder einen Antrieb der Pumpe bildet, eine Nut ausgebildet ist, deren Nutwände den Hohlbereich teilweise begrenzen. Eine weitere, bevorzugt flachförmige Komponente kann die Nutöffnung verschließen und dadurch die Umwandung des Hohlbereichs so vervollständigen, dass der Hohlbereich einen geschlossenen Querschnitt aufweist. Die Nut kann dabei in axialer Richtung in das Unterteil einspringen. Die flachförmige Komponente kann z.B. in einer vorhandenen axial einspringenden und insbesondere durchgehenden Öffnung des Unterteils festgelegt sein, über die die Nut zugänglich ist und in die z.B. ein Drehlager und/oder ein Antrieb der Pumpe eingesetzt sein können. Die Nut weist dabei vorzugsweise einen im Wesentlichen kreisringförmigen oder kreisringsegmentförmigen Verlauf auf und die weitere Komponente kann dementsprechend durch einen ebenfalls kreisring- oder kreisringsegmentförmigen und bevorzugt flachförmigen Ring oder Teilring gebildet sein.
- Prinzipiell kann der geschlossene Querschnitt auch zumindest in einem Abschnitt des Hohlbereichs bzw. Längsabschnitt des Kanals und insbesondere überall vollständig von genau einer statischen Komponente der Vakuumpumpe begrenzt sein. Der Hohlbereich bzw. Kanal kann dabei durch eine durchgehende Aussparung in dem Vollmaterial der jeweiligen Komponente gebildet sein.
- Vorzugsweise ist zumindest ein Hohlbereich und insbesondere jeder Hohlbereich zumindest teilweise in einem Bereich der Vakuumpumpe angeordnet, welcher in Rotationsachsenrichtung von den Pumpstufen der Vakuumpumpe beabstandet ist und welcher auch als unterer Bereich bezeichnet wird. In dem unteren Bereich kann z.B. ein Drehlager für eine Rotorwelle und/oder ein Antrieb der Vakuumpumpe angeordnet sein. Ein Hohlbereich oder jeder Hohlbereich kann z.B. in einem Unterteil angeordnet bzw. zumindest teilweise davon begrenzt sein. Ein Hohlbereich kann auch zumindest teilweise durch ein insbesondere in dem unteren Bereich angeordnetes Leitblech oder eine flachförmige Komponente der Vakuumpumpe begrenzt sein. Um einen guten Wärmetransport zu gewährleiten, kann die Umwandung eines oder jedes Hohlbereichs zumindest teilweise und insbesondere vollständig durch ein wärmeleitendes und insbesondere metallisches Material gebildet sein.
- Als Kühlgas kann im einfachsten Fall die Atmosphärenluft verwendet werden, welche an dem Kühlgaseinlass, vorzugsweise bei Atmosphärendruck und/oder Raumtemperatur, ansteht. In jedem Fall wird ein Kühlgas in den Kühlgaseinlass eingeleitet, welches kühler ist als die gewünschte maximale Temperatur der Pumpe. Stromaufwärts des Kühlgaseinlasses kann das Kühlgas durch eine außerhalb der Vakuumpumpe oder am Äußeren der Vakuumpumpe angeordnete Luftkühlung oder durch außerhalb der Vakuumpumpe angeordnete Strömungskanäle geleitet werden.
- Unter einem Einlass und einem Auslass der Vakuumpumpe ist in der vorliegenden Beschreibung stets ein von außerhalb der Vakuumpumpe zugänglicher und das Äußere der Vakuumpumpe gasleitend mit dem Inneren der Vakuumpumpe, welches z.B. von einem Gehäuse der Vakuumpumpe begrenzt ist, verbindender Einlass bzw. Auslass zu verstehen. Der Kühlgaseinlass verbindet dementsprechend das Äußere der Vakuumpumpe mit dem Inneren der Vakuumpumpe, in dem der Hohlbereich oder die Hohlbereiche angeordnet sind. Ein Einlass bzw. Auslass kann einen eine jeweilige Einlass- bzw. Auslassöffnung umgebenden Flansch umfassen, kann aber auch durch eine einfache Einlass- bzw. Auslassöffnung gebildet sein.
- Prinzipiell kann die Vakuumpumpe mehrere Hohlbereiche umfassen. Wenn in der vorliegenden Beschreibung auf einen "Hohlbereich" oder "Kanal" oder "Hohlbereiche" oder "Kanäle" Bezug genommen wird, ist die jeweilige Beschreibung sofern nicht anders angegeben stets gleichermaßen auf zumindest einen Hohlbereich bzw. Kanal, worunter ggf. auch der einzige Hohlbereich bzw. Kanal zu verstehen ist, auf mehrere Hohlbereiche bzw. Kanäle und insbesondere auf alle Hohlbereiche bzw. Kanäle zu beziehen. Die Vakuumpumpe kann auch mehrere Kühlgaseinlässe aufweisen, die jeweils gasleitend mit wenigstens einem Hohlbereich verbunden sind.
- Weiterer Gegenstand der Erfindung ist eine Vakuumanordnung mit einer erfindungsgemäßen Vakuumpumpe gemäß der vorliegenden Beschreibung, wobei an dem Kühlgaseinlass der Vakuumpumpe ein Kühlgas zur Kühlung der Vakuumpumpe bereitgestellt ist und an dem Pumpeneinlass der Vakuumpumpe ein von dem Kühlgaseinlass getrennter Rezipient mit einem zu pumpenden Gas angeschlossen ist. Während der Rezipient vorzugsweise ein geschlossenes, im Wesentlichen gasdichtes Volumen bildet, das an den Pumpeneinlass angeschlossen ist, kann das an dem Kühlgaseinlass zur Verfügung gestellte Kühlgas beispielsweise Atmosphärenluft sein, in welchem Fall der Kühlgaseinlass einfach der normalen Atmosphäre ausgesetzt sein kann. An dem Pumpenauslass kann eine Vorvakuumpumpe angeschlossen sein, welche das von der Vakuumpumpe gepumpte Gas und gegebenenfalls zusätzlich das Kühlgas abfördert. Die vorstehend in Bezug auf die Vakuumpumpe und deren Verwendung in einer Vakuumanordnung, insbesondere mit einer Vorvakuumpumpe, beschriebenen Ausführungsformen stellen entsprechend vorteilhafte Ausführungsformen der erfindungsgemäßen Vakuumanordnung dar.
- Die Erfindung betrifft ferner ein Verfahren zum Betreiben einer erfindungsgemäßen Vakuumpumpe gemäß der vorliegenden Beschreibung oder einer erfindungsgemäßen Vakuumanordnung mit einer Vakuumpumpe gemäß der vorliegenden Beschreibung, wobei an dem Kühlgaseinlass der Vakuumpumpe ein Kühlgas zur Kühlung der Vakuumpumpe, insbesondere Atmosphärenluft, bereitgestellt wird und wobei an dem Pumpeneinlass der Vakuumpumpe ein von dem Kühlgas getrenntes zu pumpendes Gas bereitgestellt wird. Das zu pumpende Gas kann dabei in einem geschlossenen Rezipienten bereitgestellt werden, während als Kühlgas insbesondere die normale Atmosphärenluft verwendet werden kann, wobei der Kühlgaseinlass dieser Atmosphärenluft ausgesetzt werden kann. Die vorstehend in Bezug auf die Vakuumpumpe und die Vakuumanordnung sowie deren Verwendung beschriebenen vorteilhaften Ausführungsformen stellen entsprechend vorteilhafte Ausführungsformen des erfindungsgemäßen Verfahrens dar. Bevorzugt wird der Sog einer Vorvakuumpumpe verwendet, um sowohl das Kühlgas als auch das Pumpgas zu fördern.
- Nachfolgend ist die vorliegende Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:
- Fig. 1
- eine Vakuumpumpe gemäß einer Ausführungsform der Erfindung im Axialschnitt,
- Fig. 2
- einen unteren Bereich einer Vakuumpumpe gemäß einer weiteren Ausführungsform der Erfindung in schematischer Darstellung im Querschnitt,
- Fig. 3
- einen unteren Bereich einer Vakuumpumpe gemäß einer weiteren Ausführungsform der Erfindung in schematischer Darstellung im Axialschnitt,
- Fig. 4
- ein Unterteil einer Vakuumpumpe gemäß einer weiteren Ausführungsform der Erfindung in Seitenansicht,
- Fig. 5
- das in
Fig. 4 gezeigte Unterteil in einer entlang der Linie A-A vonFig.4 geschnittenen Darstellung, - Fig. 6
- das in
Fig. 4 und5 gezeigte Unterteil in einer entlang der Linie B-B vonFig. 4 geschnittenen Darstellung, - Fig. 7
- einen in das in
Fig. 4 bis 6 gezeigte Unterteil zur Bildung eines Kühlgaskanals einsetzbaren Ring, und - Fig. 8
- den in
Fig. 7 gezeigten Ring in einer entlang der Linie A-A vonFig. 7 geschnittenen Darstellung. - Die in
Fig. 1 gezeigte Vakuumpumpe umfasst einen Pumpeneinlass 10, der von einem Einlassflansch 12 umgeben ist, einen Pumpenauslass 14, der von einem Auslassflansch 16 umgeben ist, und einen dazwischen angeordneten Pumpenraum 18, durch den das zu pumpende Gas bei dem Betrieb der Pumpe hindurchgefördert wird und der auch als Schöpfraum bezeichnet wird. Ein Gehäuseoberteil 20 und ein Unterteil 22 bilden ein Gehäuse der Vakuumpumpe. - Die Vakuumpumpe umfasst eine Rotorwelle 26, die durch ein Magnetlager 30 und ein Kugellager 32, welches von einer Schmiereinrichtung 34 mit Schmiermittel versorgt wird, um eine Rotationsachse 28 drehbar in der Vakuumpumpe gelagert ist. Ein elektrischer Antrieb 36 dient zum drehenden Antreiben der Rotorwelle 26.
- Das Magnetlager 30 und die nachstehend beschriebenen Pumpstufen sind in dem Gehäuseoberteil 20 aufgenommen. Das Unterteil 22 bildet eine Einhausung für das Kugellager 32 und für die Schmiereinrichtung 34, welche sich im unteren Bereich 24 der Vakuumpumpe befinden, und für den Antrieb 36. Das Unterteil 22 ist durch einen Basisabschnitt 60 und einen Funktionsabschnitt 62 gebildet und umfasst eine durchgehende
- Öffnung 72 und eine Nut 76, wobei diese Bestandteile nachstehend in Bezug auf
Fig. 4 bis 6 näher erläutert sind. - Die Vakuumpumpe umfasst mehrere an der Rotorwelle 26 angeordnete, sich in radialer Richtung erstreckende und mit radialen Schaufeln versehene Rotorscheiben 38. Ferner sind Statorscheiben 40 vorgesehen, die sich ebenfalls in radialer Richtung erstrecken, mit radialen Schaufeln versehen sind und die so angeordnet und in dem Gehäuse der Vakuumpumpe festgelegt sind, dass sie den Rotorscheiben 38 in einem geringen axialen Abstand gegenüberliegen. Eine Rotorscheibe 38 bildet dabei mit einer gegenüberliegenden Statorscheibe 40 jeweils eine turbomolekulare Pumpstufe der Vakuumpumpe.
- Stromabwärts der turbomolekularen Pumpstufen folgen drei ineinander geschachtelte Holweck-Pumpstufen der Vakuumpumpe, welche durch mehrere zylindermantelförmige und konzentrisch zu der Rotationsachse 28 angeordnete Holweckstatoren 42 und ebenfalls zylindermantelförmig ausgebildete und konzentrisch zu der Rotationsachse 28 angeordnete, mit der Rotorwelle 26 verbundene Holweckrotorhülsen 44 gebildet sind. Eine mehrere schraubenlinienförmige Nuten ausbildende pumpaktive radiale Oberfläche eines Holweckstators 42 steht dabei jeweils einer glatten radialen Oberfläche einer Holweckrotorhülse 44 in einem geringen radialen Abstand gegenüber, so dass zwischen den Oberflächen ein dünner Spalt ausgebildet ist. Die einander gegenüberliegenden Oberflächen bilden zusammen jeweils eine Holweck-Pumpstufe, wobei bei dem Betreib der Vakuumpumpe die Gasmoleküle in den schraubenlinienförmigen Nuten angetrieben und somit in axialer Richtung gefördert werden.
- Stromabwärts der drei in Strömungsrichtung in Serie geschalteten Holweck-Pumpstufen ist ein Vorvakuumbereich 46 der Vakuumpumpe ausgebildet, in dem das durch die Pumpstufen geförderte Gas gesammelt wird, das anschließend über den mit dem Vorvakuumbereich 46 gasleitend verbundenen Pumpenauslass 14 ausgelassen wird.
- Die Vakuumpumpe umfasst außerdem einen Kühlgaseinlass 48, welcher in dem Unterteil 22 ausgebildet ist und einen im Inneren des Unterteils 22 ausgebildeten Kanal 50 für das Kühlgas gasleitend mit dem Pumpenäußeren und der dort vorhandenen Atmosphärenluft verbindet.
- Der Kühlgaseinlass 48 erstreckt sich in radialer Richtung in die Vakuumpumpe hinein und mündet in den Kühlgaskanal 50, welcher einen im Wesentlichen kreisrunden Querschnitt aufweist, im Wesentlichen halbkreisringförmig um die Rotationsachse 28 herum verläuft und in den Pumpenauslass 14 mündet.
- Wenn an den Pumpenauslass 14 eine Vorvakuumpumpe angeschlossen ist, kann durch den Sog der Vorvakuumpumpe Atmosphärenluft durch den Kühlgaseinlass 48 in die Vakuumpumpe und durch den Kanal 50 hindurch zu dem Pumpenauslass 14 befördert und dort von der Vorvakuumpumpe abgesaugt werden. Dabei kühlt die Atmosphärenluft die den Kanal 50 begrenzenden Bereiche des Unterteils 22, wodurch eine übermäßige Erwärmung bei dem Betrieb der Vakuumpumpe verhindert wird.
- Prinzipiell können auch mehr Kühlgaskanäle 50 und/oder mehrere Kühlgaseinlässe 48 vorgesehen sein, die jeweils gasleitend mit dem Pumpenauslass 14 verbunden sein können.
-
Fig. 2 zeigt einen unteren Bereich 24 einer Vakuumpumpe gemäß einer weiteren Ausführungsform im Querschnitt, welche im Wesentlichen der inFig. 1 gezeigten Vakuumpumpe entspricht. Die Pumpenkomponenten, die in dem Unterteil 22 aufgenommen sein können wie z.B. ein wie inFig. 1 gezeigtes Drehlager oder eine Schmiereinrichtung sind inFig. 2 nicht dargestellt und das Unterteil 22 ist stattdessen durchgehend dargestellt. - Die in
Fig. 2 gezeigte Pumpe weist zwei mit dem Kühlgaseinlass 48 jeweils gasleitend verbundene Kühlgaskanäle 50, 52 auf, die ausgehend vom dem Kühlgaseinlass 48 in entgegengesetzten Richtungen im Wesentlichen halbkreisringförmig um die Rotationsachse 28 herum verlaufen und in den Pumpenauslass 14 münden. Dadurch wird über den gesamten Winkelbereich um die Rotationsachse 28 herum eine wirkungsvolle Kühlung erreicht. Die gasleitende Verbindung zwischen dem Vorvakuumbereich der Vakuumpumpe und dem Pumpenauslass 14 ist inFig. 2 durch den gestrichelten Kreis 56 dargestellt. -
Fig. 3 zeigt den unteren Bereich 24 einer Vakuumpumpe gemäß einer weiteren Ausführungsform der Erfindung im Axialschnitt mit einem Unterteil 22, das wie inFig. 2 durchgehend dargestellt ist. Die Vakuumpumpe weist mehrere Kühlgaskanäle 50, 54 auf, die jeweils gasleitend mit einem inFig. 3 nicht dargestellten Kühlgaseinlass verbunden sind. - Die Vakuumpumpe umfasst zum einen Kanäle 50, die vollständig durch das Vollmaterial des Unterteils 22 begrenzt sind. Zum anderen umfasst die Vakuumpumpe Kanäle 54, die zum einen durch die Nutwände von Nuten umwandet sind, die an den radialen Außenseiten des Unterteils 22 vorgesehen sind, und zum anderen durch Außenbleche 58, die mit dem Unterteil 22 gasdichtend verbunden sind und die Kanäle 54 in radialer Richtung nach außen hin begrenzen. Die Außenbleche 58 begrenzen zusammen mit dem Unterteil 22 einen näherungsweise dreieckförmigen Querschnitt der einzelnen Kanäle 54.
-
Fig. 4 zeigt ein Unterteil 22 einer Vakuumpumpe gemäß einer weiteren Ausführungsform der Erfindung in Seitenansicht. Das Unterteil 22 umfasst einen näherungsweise zylinderförmig um die Achse 28 herum verlaufenden Basisabschnitt 60, der bei dem Einsatz des Unterteils 22 in einer Vakuumpumpe den unteren Bereich 24 der Vakuumpumpe bildet. Das Unterteil 24 umfasst außerdem einen gegenüber dem Basisabschnitt 60 in axialer Richtung stutzenförmig hervorstehenden und zu der Achse 28 im Wesentlichen rotationssymmetrischen Funktionsabschnitt 62, welcher in der nachstehend beschriebenen Weise mit den an der Pumpfunktion unmittelbar beteiligten Komponenten der Vakuumpumpe zusammenwirkt. - Der Funktionsabschnitt 62 umfasst einen in radialer Richtung kragenförmig hervorstehenden Abschnitt 64 mit mehreren schraubenlinienförmig um die Achse 28 herum verlaufenden Nuten 66. Bei dem Einsatz in der Vakuumpumpe bildet der Abschnitt 64 mit der Innenfläche einer um die Achse 28 herum rotierenden Holweckrotorhülse 44 (siehe
Fig. 1 ) einen Spalt mit einer geringen radialen Spaltweite. Der Abschnitt 64 und die Holweckrotorhülse 44 arbeiten dabei nach der Art einer Holweckpumpstufe zusammen und bilden eine dynamische Dichtung, welche den Pumpenraum gegenüber den benachbarten Hohlräumen der Pumpe abdichtet. - Der Basisabschnitt 60 umfasst einen Pumpenauslass 14 sowie einen von dem Pumpenauslass 14 gasdicht getrennten Kühlgasauslass 68.
-
Fig. 5 und 6 zeigen das inFig. 4 gezeigte Unterteil 22 in einer entlang der Linie A-A bzw. B-B vonFig. 4 geschnittenen Darstellung. Das Unterteil 22 umfasst einen Kühlgaseinlass 48 und eine zur Begrenzung eines Kühlgaskanals 50 ausgebildete Nut 70, die in axialer Richtung einspringt und kreislinienförmig um die Achse 28 herum zu dem Kühlgasauslass 68 verläuft, wobei die Nut 70 einen Winkelbereich von näherungsweise 220° abdeckt. Wie inFig. 6 gezeigt ist die Nut 70 über eine Öffnung 72 des Unterteils 22 von außen zugänglich. -
Fig. 7 und 8 zeigen einen kreisförmigen Ring 74 mit einem flachen Querschnitt, der so in der Öffnung 72 festlegbar ist, dass der Ring 74 die Nut 70 verschließt und mit den Nutwänden einen geschlossenen Querschnitt für den Kühlgaskanal 50 bildet. - Das Unterteil 22 umfasst außerdem eine Nut 76 (
Fig. 5 ) zur Begrenzung des Vorvakuumbereichs 46 und einen damit gasleitend verbundenen Pumpenauslass 14. Wie anhand vonFig. 5 und 6 ersichtlich, verläuft der Kühlgaskanal 50 bei dieser Ausführungsform in axialer Richtung unterhalb des Pumpenauslasses 14 und ist vollständig gasdicht von dem Vorvakuumbereich 48 und dem Pumpenraum 18 insgesamt getrennt. Zur Erzeugung einer Kühlgasströmung in dem Kühlgaskanal 50 kann z.B. an dem Kühlgaseinlass 48 Druckluft bereitgestellt werden. Alternativ kann der Kühlgasauslass 68 außerhalb der Vakuumpumpe und somit stromabwärts des Pumpenauslasses 14 an eine Vorvakuumpumpe angeschlossen werden, welche auch mit dem Pumpenauslass 14 verbunden sein kann. - Die Öffnung 72 erstreckt sich in axialer Richtung durch den Basisabschnitt 60 und den Funktionsabschnitt 62 des Unterteils 22 hindurch, wobei im Bereich des Funktionsabschnitts 62 ein Antrieb 36 (siehe
Fig. 1 ) und im Bereich des Basisabschnitts 60 ein Drehlager 32 der Pumpe in der Öffnung 72 festlegbar ist, so dass das Unterteil 22 eine Einhausung für diese Komponenten bildet. Das untere Ende der Öffnung 72 ist mit einem nicht dargestellten Deckel verschließbar. -
- 10
- Pumpeneinlass
- 12
- Einlassflansch
- 14
- Pumpenauslass
- 16
- Auslassflansch
- 18
- Pumpenraum
- 20
- Gehäuseoberteil
- 22
- Unterteil
- 24
- unterer Bereich
- 26
- Rotorwelle
- 28
- Rotationsachse
- 30
- Magnetlager
- 32
- Kugellager
- 34
- Schmiereinrichtung
- 36
- Antrieb
- 38
- Rotorscheibe
- 40
- Statorscheibe
- 42
- Holweckstator
- 44
- Holweckrotorhülse
- 46
- Vorvakuumbereich
- 48
- Kühlgaseinlass
- 50, 52, 54
- Hohlbereich, Kanal
- 56
- Kreis
- 58
- Außenblech
- 60
- Basisabschnitt
- 62
- Funktionsabschnitt
- 64
- Kragenabschnitt
- 66
- Nut
- 68
- Kühlgasauslass
- 70
- Nut
- 72
- Öffnung
- 74
- Ring
- 76
- Nut
Claims (10)
- Vakuumpumpe, insbesondere Turbomolekularpumpe, mit einem Pumpeneinlass (10), einem Pumpenauslass (14) und einem zwischen dem Pumpeneinlass (10) und dem Pumpenauslass (14) angeordneten Pumpenraum (18) für ein zu pumpendes Gas,
sowie mit zumindest einem Kühlgaseinlass (48) für ein Kühlgas zur Kühlung der Vakuumpumpe und mit zumindest zwei mit dem Kühlgaseinlass (48) gasleitend verbundenen und außerhalb des Pumpenraums (18) angeordneten Hohlbereichen (50, 52, 54) für das Kühlgas dadurch gekennzeichnet, dass die Hohlbereiche (50, 52, 54) in einem wärmeleitenden Unterteil (22) der Vakuumpumpe angeordnet sind,
wobei die Hohlbereiche (50, 52, 54) jeweils als Kanal ausgebildet sind, wobei zumindest zwei Kanäle (50, 52, 54) vorgesehen sind, welche in unterschiedlichen Richtungen um eine Rotationsachse (28) der Vakuumpumpe herum verlaufen. - Vakuumpumpe nach Anspruch 1,
dadurch gekennzeichnet, dass
die Hohlbereiche (50, 52, 54) gasleitend mit dem Pumpenauslass (14) verbunden sind und insbesondere in den Pumpenauslass (14) oder in einen stromaufwärts des Pumpenauslasses (14) angeordneten Bereich, insbesondere einen Vorvakuumbereich (46), des Pumpenraums (18) münden. - Vakuumpumpe nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
ein Kühlgasauslass (68) für das Kühlgas vorgesehen ist, mit dem die Hohlbereiche (50, 52, 54) gasleitend verbunden sind. - Vakuumpumpe nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die Hohlbereiche (50, 52, 54) von dem Pumpenraum (18) im Wesentlichen gasdicht getrennt sind oder stromabwärts sämtlicher zum Pumpen des in dem Pumpenraum (18) vorhandenen Gases vorgesehenen Pumpstufen (38, 40, 42, 44) der Vakuumpumpe mit dem Pumpenraum (18) oder mit dem Pumpenauslass (14) gasleitend verbunden sind. - Vakuumpumpe nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die Kanäle (50, 52, 54) im Wesentlichen ringförmig oder ringsegmentförmig um eine Rotationsachse (28) der Vakuumpumpe herum verlaufen. - Vakuumpumpe nach Anspruch 5,
dadurch gekennzeichnet, dass die Kanäle (50, 52, 54) wenigstens über einen Teil ihrer Länge und insbesondere über zumindest annähernd ihre gesamte Länge eine Strömungsquerschnittsfläche für das Kühlgas bilden, welche maximal so groß ist wie die Strömungsquerschnittsfläche des Pumpenauslasses (14) und insbesondere kleiner ist als die Strömungsquerschnittsfläche des Pumpenauslasses (14). - Vakuumpumpe nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die Hohlbereiche (50, 52, 54) jeweils zumindest bereichsweise und insbesondere überall einen geschlossenen Querschnitt aufweisen, welcher vollständig von zumindest einer statischen Komponente (22, 58, 74) der Vakuumpumpe begrenzt ist. - Vakuumpumpe nach Anspruch 7,
dadurch gekennzeichnet, dass
der geschlossene Querschnitt zumindest in einem Abschnitt der Hohlbereiche (50, 52, 54) und insbesondere überall vollständig von wenigstens zwei statischen Komponenten (22, 58, 74) der Vakuumpumpe begrenzt ist. - Vakuumanordnung mit einer Vakuumpumpe nach einem der vorstehenden Ansprüche, wobei an dem Kühlgaseinlass (48) der Vakuumpumpe ein Kühlgas zur Kühlung der Vakuumpumpe bereitgestellt ist und an dem Pumpeneinlass (10) der Vakuumpumpe ein von dem Kühlgaseinlass (48) getrennter Rezipient mit einem zu pumpenden Gas angeschlossen ist.
- Verfahren zum Betreiben einer Vakuumpumpe nach einem der Ansprüche 1 bis 8 oder einer Vakuumanordnung mit einer Vakuumpumpe nach Anspruch 9, wobei an dem Kühlgaseinlass (48) der Vakuumpumpe ein Kühlgas zur Kühlung der Vakuumpumpe, insbesondere Atmosphärenluft, bereitgestellt wird und wobei an dem Pumpeneinlass (10) der Vakuumpumpe ein von dem Kühlgas getrenntes zu pumpendes Gas bereitgestellt wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013203421.0A DE102013203421A1 (de) | 2013-02-28 | 2013-02-28 | Vakuumpumpe |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2772650A2 EP2772650A2 (de) | 2014-09-03 |
EP2772650A3 EP2772650A3 (de) | 2015-12-16 |
EP2772650B1 true EP2772650B1 (de) | 2017-04-05 |
Family
ID=50031259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14153982.5A Active EP2772650B1 (de) | 2013-02-28 | 2014-02-05 | Vakuumpumpe |
Country Status (5)
Country | Link |
---|---|
US (1) | US9964121B2 (de) |
EP (1) | EP2772650B1 (de) |
JP (1) | JP5859041B2 (de) |
CN (1) | CN104019041B (de) |
DE (1) | DE102013203421A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6386737B2 (ja) * | 2014-02-04 | 2018-09-05 | エドワーズ株式会社 | 真空ポンプ |
JP6390478B2 (ja) * | 2015-03-18 | 2018-09-19 | 株式会社島津製作所 | 真空ポンプ |
JP6666696B2 (ja) * | 2015-11-16 | 2020-03-18 | エドワーズ株式会社 | 真空ポンプ |
GB2569648A (en) * | 2017-12-22 | 2019-06-26 | Edwards Ltd | Magnetic shield for a vacuum pump |
GB2600476B (en) * | 2020-11-02 | 2023-02-08 | Edwards Korea Ltd | Thermal management system |
JP2022134773A (ja) * | 2021-03-04 | 2022-09-15 | エドワーズ株式会社 | 真空ポンプ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0196352A1 (de) * | 1985-04-04 | 1986-10-08 | Leybold Aktiengesellschaft | Turbomolekular-Vakuumpumpe mit einem Rotor und mindestens einem Wälzlager |
JPH02502743A (ja) * | 1987-12-25 | 1990-08-30 | ショロホフ ヴァレリイ ボリソヴィチ | 分子真空ポンプ |
DE4438812A1 (de) * | 1994-10-31 | 1996-05-02 | Leybold Ag | Reibungsvakuumpumpe mit Kühlung |
DE19508566A1 (de) * | 1995-03-10 | 1996-09-12 | Balzers Pfeiffer Gmbh | Molekularvakuumpumpe mit Kühlgaseinrichtung und Verfahren zu deren Betrieb |
US6019581A (en) * | 1995-08-08 | 2000-02-01 | Leybold Aktiengesellschaft | Friction vacuum pump with cooling arrangement |
JP2002039092A (ja) * | 2000-07-25 | 2002-02-06 | Shimadzu Corp | ターボ形ドライポンプ |
JP3396726B2 (ja) | 2000-07-26 | 2003-04-14 | アリオス株式会社 | 電離真空計 |
DE10048695A1 (de) * | 2000-09-30 | 2002-04-11 | Leybold Vakuum Gmbh | Pumpe als Seitenkanalpumpe |
DE10305038A1 (de) * | 2003-02-07 | 2004-08-19 | Pfeiffer Vacuum Gmbh | Vakuumpumpanordnung |
JP2005069163A (ja) | 2003-08-27 | 2005-03-17 | Taiko Kikai Industries Co Ltd | 空冷式ドライ真空ポンプ |
FR2859250B1 (fr) | 2003-08-29 | 2005-11-11 | Cit Alcatel | Pompe a vide |
JP2005083271A (ja) * | 2003-09-09 | 2005-03-31 | Boc Edwards Kk | 真空ポンプ |
DE102006043327A1 (de) * | 2006-09-15 | 2008-03-27 | Oerlikon Leybold Vacuum Gmbh | Vakuumpumpe |
JP2009203906A (ja) * | 2008-02-28 | 2009-09-10 | Ebara Corp | ターボ真空ポンプ |
-
2013
- 2013-02-28 DE DE102013203421.0A patent/DE102013203421A1/de not_active Withdrawn
-
2014
- 2014-02-05 EP EP14153982.5A patent/EP2772650B1/de active Active
- 2014-02-19 CN CN201410056755.3A patent/CN104019041B/zh active Active
- 2014-02-25 JP JP2014033888A patent/JP5859041B2/ja active Active
- 2014-02-27 US US14/191,658 patent/US9964121B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2772650A2 (de) | 2014-09-03 |
JP5859041B2 (ja) | 2016-02-10 |
CN104019041B (zh) | 2017-09-12 |
US9964121B2 (en) | 2018-05-08 |
EP2772650A3 (de) | 2015-12-16 |
US20140241853A1 (en) | 2014-08-28 |
DE102013203421A1 (de) | 2014-08-28 |
CN104019041A (zh) | 2014-09-03 |
JP2014169697A (ja) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772650B1 (de) | Vakuumpumpe | |
EP3347598B1 (de) | Turbo-lüfter mit kühlkörper | |
EP0159464B1 (de) | Molekularvakuumpumpe | |
EP2691655A1 (de) | Diagonalventilator | |
EP3657021B1 (de) | Vakuumpumpe | |
EP0855517A2 (de) | Vakuumpumpe | |
EP2751429B1 (de) | Turbokompressor und verwendung | |
EP1706645B1 (de) | Mehrstufige reibungsvakuumpumpe | |
DE60319585T2 (de) | Vakuumpumpe | |
EP3088743B1 (de) | Seitenkanal-vakuumpumpstufe mit einem unterbrecher, der auf der saugseite abgeschrägt ist | |
DE102008036623A1 (de) | Verwendung eines Wälzlagers zur Lagerung rotierender Bauteile in Vakuumeinirchtungen sowie Vakuumeinrichtung | |
EP3693610B1 (de) | Molekularvakuumpumpe | |
EP3026303A1 (de) | Vakuumpumpe, vakuumzubehör und dichtung zu dessen abdichtung | |
EP2990656B1 (de) | Vakuumpumpe | |
DE102014215560B4 (de) | Gasverdichter, insbesondere für ein Brennstoffzellensystem eines Fahrzeugs | |
EP1838966A1 (de) | Vakuum-seitenkanalverdichter | |
DE102015113821B4 (de) | Vakuumpumpe | |
DE3032967A1 (de) | Molekularpumpe, insbesondere turbomolekularpumpe, und damit ausgeruestetes pumpsystem | |
WO2003031823A1 (de) | Axial fördernde reibungsvakuumpumpe | |
DE102018108827B3 (de) | Verfahren zur Steuerung von zumindest einem Radialgebläse in einer Kälteanlage sowie Radialgebläse | |
EP3267040B1 (de) | Turbomolekularpumpe | |
EP3396171B1 (de) | Vakuumgerät mit wellendichtung | |
EP1101944A2 (de) | Turbomolekularpumpe | |
EP4443007A1 (de) | Turbomolekularpumpe | |
DE19814485A1 (de) | Mehrstufiges Turbogebläse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140205 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/58 20060101ALI20151110BHEP Ipc: F04D 19/04 20060101AFI20151110BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20160606 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161021 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 882109 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014003272 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170805 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014003272 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
26N | No opposition filed |
Effective date: 20180108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180205 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 882109 Country of ref document: AT Kind code of ref document: T Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170405 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240129 Year of fee payment: 11 Ref country code: GB Payment date: 20240219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240228 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240426 Year of fee payment: 11 |