EP1838966A1 - Vakuum-seitenkanalverdichter - Google Patents

Vakuum-seitenkanalverdichter

Info

Publication number
EP1838966A1
EP1838966A1 EP06701216A EP06701216A EP1838966A1 EP 1838966 A1 EP1838966 A1 EP 1838966A1 EP 06701216 A EP06701216 A EP 06701216A EP 06701216 A EP06701216 A EP 06701216A EP 1838966 A1 EP1838966 A1 EP 1838966A1
Authority
EP
European Patent Office
Prior art keywords
side channel
pump rotor
pump
gap
vacuum side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06701216A
Other languages
English (en)
French (fr)
Inventor
Christian Beyer
Heinrich Engländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP1838966A1 publication Critical patent/EP1838966A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps

Definitions

  • the invention relates to a vacuum side channel compressor with a pump stator and a pump rotor, which enclose a side channel.
  • the object of the invention is to provide a vacuum side channel compressor in which the operational influences on the sealing gap are reduced.
  • the sealing gap at least partially forms a conical ring whose imaginary cone tip lies in the vicinity of the rotor thrust bearing.
  • the rotor of the side channel compressor is usually rotatably supported by two bearings, one of the two bearings axially fixing the rotor. In a flying storage of the pump rotor, this is the closest to the pump rotor bearing.
  • the sealing gap and the opposing sealing gap surfaces of the pump stator and the pump rotor each form a conical ring whose imaginary apex is located in the vicinity of the thrust bearing, the pump rotor expands in its thermally induced expansion in the region of the sealing gap approximately parallel to the conical ring, so that the distance between the sealing gap surfaces of the pump stator and the pump rotor, ie the gap of the sealing gap, remains approximately constant at each pump rotor temperature.
  • the heat-related influences can largely be ignored. In this way, no reserves must be provided for the design of the sealing gap for higher operating temperatures.
  • the gap can therefore be very small, ie the sealing gap can be designed very narrow, this gap remains substantially the same size at all pump rotor temperatures, whereby low Schoströmholde be effected.
  • This overall improves the pumping action of the vacuum side channel compressor.
  • the cone tip is not more than half the support length away from the thrust bearing.
  • the support length is the length between the two bearings holding the pump rotor.
  • the cone tip thus lies in a region about the length of a support length around the thrust bearing.
  • the cone tip is not more than a thrust bearing length away from the thrust bearing.
  • the Kegeispitze is thus in a range of a length of three thrust bearing lengths around the Axiallager- center around. Ideally, the cone tip lies within the thrust bearing itself.
  • At least two side channels are provided which, according to a preferred embodiment, lie in a radial plane.
  • the sealing gaps between the adjacent side channels each form their own conical ring, each with a different cone angle.
  • the conical tips to all cone rings are located in approximately a single point in the vicinity of the thrust bearing.
  • the non-tapered portions of the gap between two side channels are in a radial plane and / or on a cylindrical surface.
  • each outer side channel is greater than that of the adjacent inner side channel.
  • the side channel blower has on this Way an internal compression, which leads to an overall higher total compression of the side channel compressor.
  • the figure shows a vacuum side channel compressor according to the invention with four pump stages.
  • a vacuum side channel compressor 10 which has a pump rotor 12, a pump stator 14, a housing 16, an electric drive motor 18, a shaft 20 and two bearings 22,24 supporting the shaft 20.
  • the pump stator 14 and the pump rotor 12 surround four side channels 31,32,33,34, which lie approximately in a radial plane.
  • the pump rotor 12 is formed for this purpose disc-like.
  • the cross-section of the side channels 31-34 decreases from radially outward to radially inward so that the respective radially outer side channel 31, 32, 33 is larger in cross-section than the respective radially inner adjacent side channel 32, 33, 34.
  • the side channels 31 to 34 are connected in series so that the outside gas drawn through a gas inlet 36 gas passes through the four side channels 31 to 34 from outside to inside, and finally discharged through a gas outlet 38.
  • the pump rotor 12 is cantilevered.
  • the bearing 12 closer to the pump rotor 12 is a radial thrust bearing 22 designed as a roller bearing, while the bearing 24 which is further away from the pump rotor 12 is also a roller bearing, but a pure radial bearing
  • the sealing gap 40,42,44,46 each form a conical ring.
  • the conical rings are each part of an imaginary cone 61,62,63,64, whose common imaginary apex 50 lies within the Axiailagers 22 on the pump rotor axial 70.
  • the sealing ring 40 forming a conical ring of the outer side channel 31 is formed by a correspondingly inclined pump rotor sealing surface 52 and an opposite correspondingly inclined pump stator sealing surface 54.
  • the Spaitput of the sealing gap 40 over a high temperature range is approximately constant and can be designed very small, for example, less than 0.1 mm. This, in turn, the remindström losses between the four side channels 31 to 34 and between the outer side channel 31 and the gas inlet 36 are kept low.
  • the remaining non-conical annular gaps between the pump rotor 12 and the pump stator 14 lie in a radial plane or in a cylindrical surface. These non-conical annular gaps increase as the thermal expansion of the pump rotor 12 increases.
  • the gap between the pump stator 14 and the pump rotor 12 in a cylinder plane must be formed by a pump stator gap surface which is oriented radially inwards, otherwise the respective gap would shrink with increasing pump rotor heating.
  • the radially outwardly oriented gap surfaces of the pump rotor are all located on a conical ring whose imaginary apex lies inside the axial bearing, as described above.

Abstract

Ein Vakuum-Seitenkanalverdichter (10) weist einen Pumpenstator (14) und einen Pumpenrotor (12) auf, die einen Seitenkanal (31,32,33,34) umschliessen. Zur Lagerung des Pumpenrotors (12) ist ein Axiallager (22) vorgesehen. Seitlich des Seitenkanais ist zwischen dem Pumpenstator (14) und dem Pumpenrotor (12) ein Dichtspalt (40) gebildet, der teilweise einen Kegelring bildet, dessen gedachte Kegelspitze (50) in der Nähe des Axiallagers (22) liegt.

Description

Vakuum-Seitenkanalverdichter
Die Erfindung bezieht sich auf einen Vakuum-Seitenkanalverdichter mit einem Pumpenstator und einem Pumpenrotor, die einen Seitenkanal umschließen.
Seitenkanalverdichter gehören zu den Molekularpumpen, die zur Erzielung einer Pumpwirkung im molekularen Bereich mit hohen Drehzahlen drehen müssen. Um die Rückströmverluste von und zu einem Seitenkanal möglichst gering zu halten, sind seitlich der Seitenkanäle sehr enge Dichtspalte zwischen dem Pumpenstator und dem Pumpenrotor erforderlich. Hohe Drehzahlen zur Erzielung einer hohen Kompression einerseits und enge Spalte andererseits sind jedoch konkurrierende Ziele. Neben den durch hohe Drehzahlen erzeugten hohen Fliehkräften wirkt sich vor allem die thermische Ausdehnung des Rotors, bedingt durch Wärmeveriuste des Antriebsmotors, Reibungsverluste der Lagerung sowie Kompressionsarbeit verkleinernd auf den Dichtspalt aus. Ein größerer Dichtspalt verschlechtert jedoch wiederum die Kompression.
Aufgabe der Erfindung ist es, einen Vakuum-Seitenkanalverdichter zu schaffen, bei dem die betriebsbedingten Einflüsse auf den Dichtspalt verringert sind.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst.
Bei dem erfindungsgemäßen Vakuum-Seitenkanalverdichter bildet der Dichtspalt mindestens teilweise einen Kegelring, dessen gedachte Kegelspitze in der Nähe des Rotor-Axiallagers liegt. Der Rotor des Seitenkanalverdichters wird üblicherweise durch zwei Lager drehbar gelagert, wobei eines der beiden Lager den Rotor axial fixiert. Bei einer fliegenden Lagerung des Pumpenrotors ist dies das dem Pumpenrotor nächstliegende Lager. Da der Dichtspalt und die einander gegenüberliegenden Dichtspalt-Flächen des Pumpenstators und des Pumpenrotors jeweils einen Kegelring bilden, dessen gedachte Kegelspitze in der Nähe des Axiallagers liegt, dehnt sich der Pumpenrotor bei seiner thermisch bedingten Ausdehnung im Bereich des Dichtspaltes annähernd parallel zu dem Kegelring aus, so dass der Abstand zwischen den Dichtspalt-Flächen des Pumpenstators und des Pumpenrotors, d. h. das Spaltmaß des Dichtspaltes, bei jeder Pumpenrotor-Temperatur ungefähr konstant bleibt. Bei der Bemessung des Spaltmaßes des Kegelring-Dichtspaltes können die wärmbedingten Einflüsse weitgehend unbeachtet bleiben. Auf diese Weise müssen für höhere betriebsbedingte Temperaturen keine Reserven bei der Bemessung des Dichtspaltes vorgesehen sein. Das Spaltmaß kann also sehr klein, d. h. der Dichtspalt kann sehr eng ausgelegt werden, wobei dieses Spaltmaß im Wesentlichen bei allen Pumpenrotor-Temperaturen gleich eng bleibt, wodurch geringe Rückströmverluste bewirkt werden. Hierdurch verbessert sich insgesamt die Pumpwirkung des Vakuum-Seitenkanalverdichters. Vorzugsweise ist die Kegelspitze nicht mehr als die halbe Stützlänge entfernt von dem Axiallager. Die Stützlänge ist die Länge zwischen den zwei den Pumpenrotor haltenden Lagern. Die Kegelspitze liegt also in einem Bereich von der Länge einer Stützlänge um das Axiallager herum.
Gemäß einer bevorzugten Ausgestaltung ist die Kegelspitze nicht mehr als eine Axiallager-Länge von dem Axiallager entfernt. Die Kegeispitze liegt also in einem Bereich von einer Länge von drei Axiallager-Längen um den Axiallager- Mittelpunkt herum. Idealerweise liegt die Kegelspitze innerhalb des Axiallagers selbst.
Vorzugsweise sind mindestens zwei Seitenkanäle vorgesehen, die gemäß einer bevorzugten Ausgestaltung in einer Radialebene liegen. Auf diese Weise kann eine jedenfalls axial kompakte Konstruktion eines Seitenkanaiverdichters realisiert werden. Die Dichtspalte zwischen den benachbarten Seitenkanälen bilden alle jeweils einen eigenen Kegelring mit jeweils einem anderen Kegelwinkel. Die Kegelspitzen zu allen Kegelringen liegen in annähernd einem einzigen Punkt in der Nähe des Axiallagers.
Vorzugsweise Hegen der bzw. liegen die nicht-kegelförmigen Teile des Spaltes zwischen zwei Seitenkanälen in einer Radialebene und/oder auf einer Zylinderfläche. Hierdurch wird sichergestellt, dass sich der Spalt bei zunehmender Temperatur des Pumpenrotors, d. h. bei zunehmender thermischer Ausdehnung des Pumpenrotors, stets vergrößert, nicht jedoch verkleinert. Hierdurch wiederum wird sichergestellt, dass bei zunehmender Erwärmung des Pumpenrotors die Gefahr des Anlaufens und Festfressens des Pumpenrotors an dem Pumpenstator im Bereich der Spalte zwischen dem Pumpenrotor und dem Pumpenstator gering ist.
Vorzugsweise ist der Querschnitt des jeweils äußeren Seitenkanals größer als der des benachbarten inneren Seitenkanales. Der Seitenkanalverdichter hat auf diese Weise eine innere Verdichtung, die insgesamt zu einer höheren Gesamtkompression des Seitenkanalverdichters führt.
Im Folgenden wird unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel der Erfindung näher erläutert:
Die Figur zeigt einen erfindungsgemäßen Vakuum-Seitenkanalverdichter mit vier Pumpstufen.
In der Figur ist ein Vakuum-Seitenkanalverdichter 10 dargestellt, der einen Pumpenrotor 12, einen Pumpenstator 14, ein Gehäuse 16, einen elektrischen Antriebsmotor 18, eine Welle 20 sowie zwei die Welle 20 lagernde Lager 22,24 aufweist.
Der Pumpenstator 14 und der Pumpenrotor 12 umschließen vier Seitenkanäle 31,32,33,34, die ungefähr in einer Radialebene liegen. Der Pumpenrotor 12 ist hierzu scheibenartig ausgebildet. Der Querschnitt der Seitenkanäle 31-34 verkleinert sich von radial außen nach radial innen, so dass der jeweils radial äußere Seitenkanal 31,32,33 im Querschnitt größer ist als der jeweils radial innere benachbarte Seitenkanal 32,33,34. Die Seitenkanäle 31 bis 34 sind seriell miteinander verbunden, so dass das außenseitig durch einen Gaseinlass 36 angesaugte Gas die vier Seitenkanäle 31 bis 34 von außen nach innen durchläuft, und schließlich durch einen Gasauslass 38 ausgestoßen wird.
Der Pumpenrotor 12 ist fliegend gelagert. Das dem Pumpenrotor 12 nähere Lager 22 ist ein als Wälzlager ausgebildetes Radial-Axiallager 22, während das dem Pumpenrotor 12 fernere Lager 24 ebenfalls ein Wälzlager, jedoch ein reines Radiallager ist
Zwischen dem Pumpenstator 14 und dem Pumpenrotor 12 wird von den einander gegenüberliegenden Flächen 52,54 des Pumpenstators 14 und des Pumpenrotors 12 jeweils ein Dichtspalt 40,42,44,46 gebildet. Die Dichtspalte 40,42,44,46 bilden jeweils einen Kegelring. Die Kegelringe sind jeweils Teil eines gedachten Kegels 61,62,63,64, deren gemeinsame gedachte Kegelspitze 50 innerhalb des Axiailagers 22 auf der Pumpenrotor-Axialen 70 liegt. Der einen Kegelring bildende Dichtspalt 40 des äußeren Seitenkanales 31 wird durch eine entsprechend geneigte Pumpen-Rotor-Dichtfläche 52 und eine gegenüberliegende entsprechend geneigte Pumpenstator-Dichtfläche 54 gebildet.
Da die beiden Dichtflächen 52,54 und der hierdurch gebildete Dichtspalt 40 einen Kegelring bilden, dessen gedachte Kegelspitze 50 innerhalb des einzigen Axiallagers 22 liegt, ändert sich das Spaltmaß des Dichtspaltes 40 bei wärmebedingter Ausdehnung des Pumpenrotors 12 nicht oder allenfalls geringfügig. Hierdurch ist das Spaitmaß des Dichtspaltes 40 über einen hohen Temperaturbereich annähernd konstant und kann sehr klein ausgelegt werden, beispielsweise kleiner als 0,1 mm. Hierdurch wiederum werden die Rückström Verluste zwischen den vier Seitenkanälen 31 bis 34 sowie zwischen dem äußeren Seitenkanal 31 und dem Gaseinlass 36 gering gehalten.
Die übrigen nicht-kegelringförmigen Spalte zwischen dem Pumpenrotor 12 und dem Pumpenstator 14 liegen in einer Radialebene oder in einer Zylinderfläche. Diese nicht-kegelringförmigen Spalte vergrößern sich bei zunehmender thermischer Ausdehnung des Pumpenrotors 12. Der in einer Zylinderebene liegende Spalt zwischen Pumpenstator 14 und Pumpenrotor 12 muss hierzu von einer Pumpenstator-Spaltfläche gebildet werden, die nach radial innen orientiert ist, da sich andernfalls der jeweilige Spalt bei zunehmender Pumpenrotor- Erwärmung verkleinern würde. Die nach radial außen orientierten Spaltflächen des Pumpenrotors liegen alle auf einem Kegelring, dessen gedachte Kegelspitze innerhalb des Axiallagers liegt, wie oben beschrieben.

Claims

Patentansprüche
1. Vakuum-Seitenkanalverdichter (10) mit
einem Pumpenstator (14) und einem Pumpenrotor (12), die zusammen einen Seitenkanal (31,32,33,34) umschließen, und
einem Axiallager (22) zur Lagerung des Pumpenrotors (12), wobei seitlich des Seitenkanals zwischen dem Pumpenstator (14) und dem Pumpenrotor (12) ein Dichtspalt (40) gebildet ist,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Dichtspalt (40) einen Kegelring bildet, dessen gedachte Kegelspitze (50) auf einer Pumpenrotor-Axialen (70) in der Nähe des Axiallagers (22) liegt.
2. Vakuum-Seitenkanalverdichter (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Kegelspitze (50) von dem Axiallager (22) nicht mehr als die halbe Stützlänge entfernt ist.
3. Vakuum-Seitenkanalverdichter (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Kegelspitze (50) nicht mehr als eine Axiallager- Länge von dem Axiallager (22) entfernt ist.
4. Vakuum-Seitenkanalverdichter (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens zwei Seitenkanäle (31,32,33,34) vorgesehen sind. 6. Vakuum-Seitenkanalverdichter (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein nicht-kegelförmiger Teil eines Spaltes zwischen zwei Seitenkanälen (31,32,33,34) in einer Radialebene und/oder auf einer Zylinderfläche liegt.
7. Vakuum-Seitenkanalverdichter (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Querschnitt des jeweils äußeren Seitenkanales (31,32,33) größer als der des benachbarten inneren Seitenkanales (32,33,34) ist.
EP06701216A 2005-01-22 2006-01-03 Vakuum-seitenkanalverdichter Withdrawn EP1838966A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510003091 DE102005003091A1 (de) 2005-01-22 2005-01-22 Vakuum-Seitenkanalverdichter
PCT/EP2006/050018 WO2006077175A1 (de) 2005-01-22 2006-01-03 Vakuum-seitenkanalverdichter

Publications (1)

Publication Number Publication Date
EP1838966A1 true EP1838966A1 (de) 2007-10-03

Family

ID=36130100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06701216A Withdrawn EP1838966A1 (de) 2005-01-22 2006-01-03 Vakuum-seitenkanalverdichter

Country Status (5)

Country Link
US (1) US20080112790A1 (de)
EP (1) EP1838966A1 (de)
JP (1) JP2008528852A (de)
DE (1) DE102005003091A1 (de)
WO (1) WO2006077175A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
US8070419B2 (en) * 2008-12-24 2011-12-06 Agilent Technologies, Inc. Spiral pumping stage and vacuum pump incorporating such pumping stage
DE102017200846A1 (de) * 2017-01-19 2018-07-19 Mahle International Gmbh Fördereinrichtung zum Antreiben eines Gases
DE102017119943A1 (de) * 2017-08-30 2019-02-28 Khs Gmbh Vorrichtung zur Etikettierung von Behältern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189295A (en) * 1986-04-19 1987-10-21 Arthur Pfeiffler Vakuumtechnik Vacuum pump
EP1363027A1 (de) * 1996-05-03 2003-11-19 The BOC Group plc Vakuumpumpe

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104802A (en) * 1963-09-24 Unified system vacuum pump
DE874503C (de) * 1939-12-19 1953-04-23 Siemens Ag Umlaufpumpe fuer Gasfoerderung
US2954157A (en) * 1958-01-27 1960-09-27 Edwin E Eckberg Molecular vacuum pump
US3298314A (en) * 1965-01-29 1967-01-17 John F Kopczynski Fluid moving device
US3697190A (en) * 1970-11-03 1972-10-10 Walter D Haentjens Truncated conical drag pump
JP2917563B2 (ja) * 1991-04-15 1999-07-12 株式会社デンソー 渦流式ポンプ
JP3486000B2 (ja) * 1995-03-31 2004-01-13 日本原子力研究所 ねじ溝真空ポンプ
DE19846188A1 (de) * 1998-10-07 2000-04-13 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit Stator und Rotor
DE19902626C2 (de) * 1999-01-23 2003-02-06 Webasto Thermosysteme Gmbh Seitenkanalgebläse
GB9927493D0 (en) * 1999-11-19 2000-01-19 Boc Group Plc Improved vacuum pumps
DE10004271A1 (de) * 2000-02-01 2001-08-02 Leybold Vakuum Gmbh Reibungsvakuumpumpe
GB0013491D0 (en) * 2000-06-02 2000-07-26 Boc Group Plc Improved vacuum pump
DE10048695A1 (de) * 2000-09-30 2002-04-11 Leybold Vakuum Gmbh Pumpe als Seitenkanalpumpe
GB0114417D0 (en) * 2001-06-13 2001-08-08 Boc Group Plc Lubricating systems for regenerative vacuum pumps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189295A (en) * 1986-04-19 1987-10-21 Arthur Pfeiffler Vakuumtechnik Vacuum pump
EP1363027A1 (de) * 1996-05-03 2003-11-19 The BOC Group plc Vakuumpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006077175A1 *

Also Published As

Publication number Publication date
DE102005003091A1 (de) 2006-07-27
JP2008528852A (ja) 2008-07-31
WO2006077175A1 (de) 2006-07-27
US20080112790A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP2461053B1 (de) Hydrodynamisches Axiallager
DE602005000116T2 (de) Strahltriebwerks-Architektur mit zwei Fans an der Vorderseite
DE4234739C1 (de) Getriebe-Mehrwellenturbokompressor mit Rückführstufen
EP1394365B1 (de) Wellendichtung für Turbolader
EP3387275B1 (de) Folienlager
EP1054196A2 (de) Gleitringdichtungsanordnung
EP1845265B1 (de) Drehkolbenmaschine und Festlageranordnung hierfür
DE60035842T2 (de) Vakuumpumpen
WO2001057402A1 (de) Reibungsvakuumpumpe
DE102004027707A1 (de) Kompressor einer Strömungsmaschine und Kompressorrad hierfür
EP1838966A1 (de) Vakuum-seitenkanalverdichter
DE60313493T2 (de) Vakuumpumpe
DE3722164A1 (de) Turbomolekularpumpe
DE60319585T2 (de) Vakuumpumpe
EP3309359B1 (de) Laufschaufelbaugruppe für ein triebwerk
EP2772652B1 (de) Zwischenwand zur Abdichtung des Rückraums eines Radialverdichters
DE3303247A1 (de) Fluegelzellenverdichter
EP1321680A2 (de) Stömungsmaschinen-Aggregat
DE10358953A1 (de) Lagerung des Rotors einer Gasturbine
DE4334339A1 (de) Abgas-Turbolader
DE3344271A1 (de) Rotationskompressorgehaeuse
EP3088746B1 (de) Vakuumpumpe
DE10149366A1 (de) Axial fördernde Reibungsvakuumpumpe
DE102019214279A1 (de) Seitenkanalverdichter für ein Brennstoffzellensystem zur Förderung und/oder Verdichtung eines gasförmigen Mediums
EP3623634B1 (de) Vakuumpumpe umfassend eine holweckpumpstufe und zwei seitenkanalpumpstufen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20090128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100615