EP2771743B1 - Oscillateur de mouvement horloger - Google Patents

Oscillateur de mouvement horloger Download PDF

Info

Publication number
EP2771743B1
EP2771743B1 EP12783915.7A EP12783915A EP2771743B1 EP 2771743 B1 EP2771743 B1 EP 2771743B1 EP 12783915 A EP12783915 A EP 12783915A EP 2771743 B1 EP2771743 B1 EP 2771743B1
Authority
EP
European Patent Office
Prior art keywords
shaft
oscillator
balance
diameter
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12783915.7A
Other languages
German (de)
English (en)
Other versions
EP2771743A1 (fr
Inventor
Jean-Louis Bertrand
Benoît Boulenguiez
Thomas CIMPRICH
Stéphane MOREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Priority to EP12783915.7A priority Critical patent/EP2771743B1/fr
Publication of EP2771743A1 publication Critical patent/EP2771743A1/fr
Application granted granted Critical
Publication of EP2771743B1 publication Critical patent/EP2771743B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • G04B17/325Component parts or constructional details, e.g. collet, stud, virole or piton for fastening the hairspring in a fixed position, e.g. using a block

Definitions

  • the invention relates to an oscillator of a watch movement.
  • the invention also relates to a watch movement and a timepiece comprising such an oscillator.
  • the running precision of mechanical watches depends on the stability of the frequency of the oscillator which is made up of a balance wheel and a hairspring. However, this frequency is disrupted if the watch is exposed to a magnetic field, so that a difference in rate before and after magnetization of the movement is noted. This difference in path can be negative or positive. Whatever its sign, this difference is called “residual effect” or “residual step” and is measurable according to the NIHS 90-10 standard. This standard aims to certify wristwatches exhibiting good chronometric behavior following exposure to a magnetic field of 4.8 kA/m (60 G). However, the wearer of the watch may encounter magnetic fields of much higher intensity in their daily life , of the order of 32 kA/m (400G). It is therefore appropriate to minimize this effect for fields of such intensities.
  • balance springs are made from Fe-Ni alloys (Nivarox ® alloy for example) whose elastic moduli depend on the state of magnetization.
  • Recent developments have made it possible to develop self-compensating hairsprings made of paramagnetic materials (Nb-Zr-O alloy, Parachrom ® for example) or diamagnetic (silicon covered with a layer of Si O 2 for example) which make it possible to reduce very clearly the residual effect for a magnetic field greater than 4.8 kA/m, as shown in figure 1 .
  • a residual effect remains, particularly for a field magnetic with an intensity significantly greater than 4.8 kA/m, for example 32 kA/m.
  • a balance wheel assembled within an oscillator is as represented by standard NIHS 34-01.
  • FIG 3 illustrates such an assembled pendulum structure.
  • the hub of the balance wheel is directly attached to the balance shaft, for example by riveting. Its location as well as its seat are ensured by a support surface which is defined by the diameter of a collar present on the axis, and which is also called the seat diameter of the balance wheel according to the terminology of standard NIHS 34 -01.
  • a plate generally machined from CuBe2, on which a pin is placed, is driven onto a portion of an axis whose diameter is significantly less than that of the seat of the balance wheel, independently of the balance wheel hub on the other side of the balance wheel. collar.
  • the ferrule intended to hold the hairspring, is for its part driven from the other side of the collar onto a portion of the axis whose diameter is also significantly smaller than that of the seat of the balance wheel as is illustrated in figure 2 .
  • Such a balance structure has established itself as a reference given its robustness and the resulting simplicity of assembly.
  • Such an assembled balance structure concerns in particular any oscillator equipped with a paramagnetic or diamagnetic hairspring.
  • the patent CH700032 discloses an oscillator equipped with at least two hairsprings, for example made of silicon, which are mounted on a balance shaft as described above.
  • This oscillator due to the properties of the material chosen for the hairspring, makes it possible to reduce the residual effect for a magnetic field of around 4.8 kA/m, but does not make it possible to minimize it for a magnetic field significantly greater than 4.8 kA/m, for example 32 kA/m.
  • the aim of the invention is to provide an oscillator remedying the drawbacks mentioned above and improving the oscillators known from the prior art.
  • the invention proposes an oscillator which minimizes, or even eliminates , the residual effect, negative or positive, for magnetic fields that the wearer of the watch is likely to encounter in his daily life, in particular higher magnetic fields, or even significantly greater than 4.8 kA/m, for example 32 kA/m.
  • Oscillators according to the invention are defined by claims 1 to 2.
  • a watch movement according to the invention is defined by claim 3.
  • a timepiece according to the invention is defined by claim 4.
  • the geometry of the balance axis has a surprising influence on the residual effect. More particularly, following various studies carried out by the applicant, it was noted that the minimization, or even the elimination, of the portion of larger diameter, called the seat of the balance according to the terminology of standard NIHS 34-01, or also called usually "collar", makes it possible to minimize the residual effect in the same way as a balance shaft made of a paramagnetic material such as CuBe2, as shown in the table in the Figure 12 .
  • associating a paramagnetic or diamagnetic hairspring with an assembled balance wheel provided with a flanged balance shaft does not produce the same effects as associating a paramagnetic or diamagnetic hairspring with an assembled balance wheel.
  • provided with a balance axis according to the invention More particularly, the fact of associating a paramagnetic or diamagnetic hairspring with an assembled balance provided with a balance axis according to the invention makes it possible, for a magnetic field of 32 kA/m (400G), to considerably minimize the residual rate , or even to cancel it, the parasitic torque disturbing the return torque of the hairspring then being due to the presence of the magnetic components which surround the oscillator.
  • the oscillator of the first embodiment allows, for a magnetic field of 32 kA/m (400G), to reduce the residual rate very significantly, by approximately a factor of 17, compared to a balance wheel. assembled which has a flange axis and which is combined with a Nivarox ® type hairspring.
  • a magnetic field of 32 kA/m 400G
  • the residual rate very significantly, by approximately a factor of 17, compared to a balance wheel. assembled which has a flange axis and which is combined with a Nivarox ® type hairspring.
  • the invention relates to an oscillator comprising a hairspring made of paramagnetic or diamagnetic material and a balance assembled within this oscillator comprising a steel shaft whose maximum diameter is minimized on which are mounted a balance, a plate and the ferrule of said hairspring.
  • the ferrule can be attached to the hairspring.
  • the hairspring In this case it is preferably made of a copper alloy such as brass or CuBe2, or of a steel stainless.
  • the ferrule may be manufactured with the hairspring, for example when the hairspring is made of silicon.
  • the ferrule is in this case also made of silicon.
  • the shaft is made of steel so as to satisfy the mechanical constraints to which the oscillator is subjected.
  • the plate and the balance are, for their part, machined from a paramagnetic or diamagnetic material, for example a copper alloy such as CuBe2 or brass, silicon or even nickel-phosphorus.
  • a paramagnetic or diamagnetic material for example a copper alloy such as CuBe2 or brass, silicon or even nickel-phosphorus.
  • the maximum diameter Dmax of the shaft, the minimum diameter D1 of the shaft on which one of the elements of the oscillator is mounted and the maximum diameter D2 of the shaft on which one of the elements of the oscillator is mounted The oscillator is limited as defined below.
  • the minimization of the residual effect can be further increased by producing the components which are located near the oscillator according to the invention, for example the components of the escapement such as the anchor or the wheel. anchor, in paramagnetic or diamagnetic materials .
  • the smallest diameter D1 of the portion of the shaft on which an element of the oscillator is mounted (chosen from the group: ferrule, plate, balance) has a value equal to Dmax which corresponds to the most large diameter of the shaft.
  • the largest diameter D2 of the portion of the shaft on which an element of the oscillator is mounted also has a value which corresponds to that of the largest diameter Dmax of the shaft.
  • the largest diameter D2 of the portion of the axis on which an element of the oscillator is mounted also corresponds to the diameter Dmax but differs from the largest small diameter D1 of the portion of the shaft on which an element of the oscillator is mounted.
  • Dmax D2>D1.
  • the largest diameter D2 of the portion of the axis on which an element of the oscillator ur is mounted differs from the largest diameter of the axis Dmax but can be greater than or equal to the smallest diameter D1 of the portion of the shaft on which an element of the oscillator is mounted.
  • the oscillator 10 comprises a balance spring 11 made of paramagnetic or diamagnetic material and an assembled balance 12 comprising a shaft 13 on which a balance 14, a plate 15 and the ferrule 16 of said balance spring are mounted.
  • the balance 14 is integral with the shaft 13 via the plate 15.
  • the latter is attached, for example by driving, onto a portion 135 and sleeves the shaft 13 over a height H.
  • the diameter of this portion 135 is equal to the maximum diameter Dmax.
  • the balance wheel 14 is, for its part, attached to the plate 14, for example by riveting, on a seat surface 131 made on the plate.
  • the ferrule is, for its part, directly mounted on the shaft.
  • the ferrule is mounted on a portion 136 of the shaft whose diameter is equal to the maximum diameter Dmax of the shaft.
  • the smallest diameter D1 of the portion of the shaft on which an element is mounted corresponds to the value Dmax which is equal to the most large diameter of the shaft.
  • the largest diameter D2 of the portion of the shaft on which an element is mounted also has a value which coincides with that of the largest large diameter of the shaft.
  • this value is of the order of 0.5 mm.
  • the average residual rate of a movement equipped with an oscillator equipped with an assembled balance wheel, provided with a collared balance axis, which is associated with a paramagnetic hairspring, for a magnetic field of 32 kA/ m is of the order of 15 s/d (curve 3 of the graph), i.e. a reduction of approximately a factor of 2 compared to that of a movement equipped with the same assembled balance wheel which is associated with a Nivarox ® hairspring.
  • this factor is likely to increase by minimizing the number of magnetic components surrounding the cillator bone within the movement considered.
  • a second variant of the first oscillator embodiment is described below with reference to the Figure 6 .
  • the elements identical or having the same function as the elements of the first variant have a “2” in the tens digit in place of the “1” and have the same units digit.
  • the parts or portions of these elements also present a “2” in the hundreds digit in place of the “1” of the equivalent parts or portions of the elements of the first variant and present the same tens digit.
  • this value is of the order of 0.3 mm.
  • This second variant differs from the first variant in that the plate 25 covers the shaft over practically its entire length and/or in that the ferrule 26 is fixed to the shaft via the plate. In other words, the ferrule 26 is fixed, for example by driving, on the plate 25.
  • the average residual rate for a magnetic field of 32 kA/m, is 2 s/d, i.e. a reduction of a factor of 8 compared to that of a movement equipped with a design known to the state of the art as illustrated in figure 2 And 3 and equipped with a paramagnetic hairspring.
  • the balance is secured to the shaft via the plate.
  • the collar of the shaft is thus eliminated and the plate - balance wheel assembly can be directly attached to the shaft, for example by driving.
  • the balance wheel is directly attached to a portion of the shaft whose diameter is equal to those of the portions on which the plate and the ferrule are attached.
  • the balance can be attached to the shaft independently of the plate.
  • the elements identical or having the same function as the elements of the first variant of the first embodiment present a "3" in the first digit (tens or hundreds) in place of the "1" and present the same second digit (units or tens).
  • the balance 34 is fixed on a portion 334 independently of the plate 35 which is attached to a portion 335. To do this, the hub of the balance 34 has a sufficient total height H, in particular equal or substantially equal to the height of the portion 334, so as to guarantee adequate seating and holding torque of the balance wheel.
  • the ferrule is, for its part, fixed on a portion 336, for example by driving.
  • the measurements show that the average residual rate of a movement equipped with an oscillator produced according to this third variant, for a magnetic field of 32kA/m, is equivalent to that of a movement equipped with an oscillator produced according to the one or the other of the first two variants, namely approximately 2 w/d.
  • the second embodiment differs from the first embodiment in that the value of the largest diameter of the shaft Dmax does not coincide with that of the minimum diameter D1 of the shaft on which one of the elements chosen from the ferrule, plate, balance group .
  • Dmax D2>D1.
  • a variant of the second oscillator embodiment is described below with reference to the figure 8 .
  • the elements identical or having the same function as the elements of the first variant of the first embodiment present a "4" in the first digit (tens or hundreds) in place of the "1" and present the same second digit (ones or tens).
  • the ferrule 46 is attached to the shaft 43 at a portion 436, for example by driving.
  • the plate 45 is, for example, driven into abutment on a portion 435.
  • the diameter of this portion is equal to the minimum diameter D1 of the axis on which an element is mounted .
  • the balance 44 is, for its part, directly mounted on the shaft 43 at the level of a portion 434, for example by driving, independently of the location of the plate 45.
  • the hub of the balance 44 has a sufficient total height H, in particular equal or substantially equal to the height of the portion 434, so as to guarantee adequate seating and maintaining torque of the balance wheel.
  • the diameter of this portion 434 is equal to the maximum diameter D2 of the axis on which an element is mounted . It also corresponds to the diameter Dmax.
  • D1 is of the order of 0.4 mm
  • D2 and therefore Dmax are of the order of 0.8 mm.
  • Dmax is less than approximately 2.5 times the diameter D1.
  • the third embodiment differs from the second embodiment in that the value of the largest diameter of the shaft Dmax does not coincide with that of the maximum diameter D2 of the shaft on which one of the elements chosen from the ferrule, plate, balance group.
  • Dmax >D2 ⁇ D1.
  • a first variant of the third method of producing an oscillator according to the invention is described below with reference to the Figure 9 .
  • the elements identical to or having the same function as the elements of the first variant of the first embodiment have a “5” in the first digit (tens or hundreds) in place of the “1” and have the same second digit (ones or tens).
  • the ferrule 56 is directly mounted on the shaft 53 at a portion 536, for example by driving.
  • the plate 55 is also directly mounted on the shaft 53. It is, for example, driven into abutment on the shaft 53 at the level of a portion 535. The diameter of this portion is equal to the minimum diameter D1 of the axis on which an element is mounted .
  • the balance wheel is attached to the shaft at a portion 534, for example by driving.
  • the hub of the balance 54 has a sufficient total height H, in particular equal or substantially equal to the height of the portion 534, so as to guarantee adequate seating and a holding torque of the balance.
  • the diameter of this portion 534 is equal to the maximum diameter D2 of the axis on which an element is mounted.
  • a shaft portion 533 has a diameter Dmax greater than the diameters D1 and D2.
  • this portion has shoulders against which the balance and/or the ferrule are likely to come to bear when they are fixed on the shaft. In this way, the position of the balance wheel and that of the ferrule can be precisely defined.
  • D1 is of the order of 0.3 mm
  • D2 is of the order of 0.8 mm
  • Dmax is of the order of 1 mm.
  • Dmax is less than approximately 3.5 times the diameter D1
  • Dmax is less than approximately 1.3 times the diameter D2.
  • Dmax is then greater than more than 4.5 times the diameter D1, and Dmax is then greater than 1.6 times the diameter D2.
  • FIG. 14 shows the residual rate of the first variant of the third embodiment of the oscillator in comparison with that of a known oscillator which includes a flange balance axis and which is equipped with a Nivarox ® type hairspring.
  • the average residual rate, for a magnetic field of 32kA/m is of the order of 1 s/d, i.e. a very significant reduction of a factor of 35 compared to that of a movement equipped with aforementioned oscillator .
  • a second variant of the third embodiment of oscillator according to the invention is described below with reference to the Figure 10 .
  • the elements identical to or having the same function as the elements of the first variant of the first embodiment have a “6” in the first digit (tens or hundreds) in place of the “1” and have the same second digit (ones or tens).
  • This second variant differs from the first variant in that the balance 64 is secured to the shaft 63 via the plate 65. The latter is attached, for example by driving, onto a portion 635 and sleeves the shaft 63 on a height H1.
  • the diameter of this portion 635 is equal to the minimum diameter D1 of the shaft on which an oscillator element is mounted.
  • the balance wheel is mounted abutting on the plate, for example by driving.
  • the hub of the balance 64 has a sufficient total height H2, in particular equal or substantially equal to the height of the portion 654 of the plate 65, so as to guarantee adequate seating and a holding torque of the balance.
  • the ferrule is, for its part, fixed on a portion 636 of the shaft 63, for example by driving.
  • the diameter of this portion 635 is equal to the maximum diameter D2 of the shaft on which an element of the oscillator is mounted.
  • a shaft portion 633 has a diameter Dmax greater than the diameters D1 and D2.
  • this portion has shoulders against which the plate and/or the ferrule are likely to come to bear when they are fixed on the shaft. In this way, the position of the balance wheel and that of the ferrule can be precisely defined.
  • D1 is of the order of 0.4 mm
  • D2 is of the order of 0.5 mm
  • Dmax is of the order of 0.7 mm.
  • Dmax is less than approximately 2 times the diameter D1
  • Dmax is less than approximately 1.6 times the diameter D2. In this way, the larger diameter Dmax of the shaft is also greatly minimized.
  • a third variant of the third embodiment differs from the first two variants in that the value of the maximum diameter D2 of the shaft on which an element of the oscillator is mounted is equal to that of the minimum diameter D1 on which an element is mounted of the oscillator.
  • This variant is described below with reference to the Figure 11 .
  • Elements identical or having the same function as the elements of the first variant of the first embodiment have a “7” in the first digit (tens or hundreds) instead of the “1” and have the same second digit (units or tens).
  • the balance 74 is integral with the shaft 73 via the plate 75. The latter is attached, for example by driving, onto a portion 735 and sleeves the shaft 73 on a height H1.
  • the diameter of this portion 735 is equal to the minimum diameter D1 of the shaft on which an element of the oscillator is mounted.
  • the diameter of this portion 735 also corresponds to the maximum diameter D2 of the shaft on which an oscillator element is mounted.
  • the balance wheel is mounted abutting on the plate, for example by driving.
  • the hub of the balance 74 has a sufficient total height H2, in particular equal or substantially equal to the height of the portion 754 of the plate 75, so as to guarantee adequate seating and a holding torque of the balance.
  • the ferrule is, for its part, fixed on a portion 736 of the shaft 73, for example by driving.
  • a shaft portion 733 has a diameter Dmax greater than the diameters D1 and D2.
  • this portion has shoulders against which the plate and/or the ferrule are likely to come to bear when they are fixed on the shaft. In this way, the position of the balance wheel and that of the ferrule can be precisely defined.
  • D1 and D2 are of the order of 0.4 mm
  • Dmax is of the order of 0.7 mm.
  • Dmax is less than approximately twice the diameter D1
  • Dmax is less than approximately twice the diameter D2. In this way, the larger diameter Dmax of the shaft is also greatly minimized.
  • Dmax is preferably the diameter of a seat in contact with which an element, or even two elements (platter, balance wheel, ferrule), can be pushed out on the axis.
  • a first element for example the balance wheel
  • a second element itself mounted directly on the shaft at the level of a first portion of the shaft having a first diameter
  • the oscillator according to the invention provided with a paramagnetic spiral (Nb-Zr-O alloy, Parachrom ® for example) or diamagnetic (in particular made of silicon covered with a layer of SiO2) has the specificity of being equipped with a balance shaft made from free-cutting steel whose geometry has been modified so as to minimize the residual effect.
  • the plate and the balance are, for their part, machined from a paramagnetic or diamagnetic material, for example a copper alloy such as CuBe2 or brass, silicon or even nickel-phosphorus.
  • the plate, according to the embodiment considered, is preferably adapted so as to allow the assembly of the balance wheel.
  • a first element secured to a second element we mean that the first element is fixed to the second element.
  • the term “assembled balance wheel” means an assembly comprising or consisting of a balance shaft, a balance wheel, a plate and a ferrule, the balance wheel, the plate and the ferrule being mounted on the balance shaft .
  • the graphics of figures 1 , 13 And 14 are carried out to scale, so that values, in particular residual walking values, can be deduced by measurement on the graph.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Magnetic Treatment Devices (AREA)
  • Springs (AREA)
  • Testing Of Balance (AREA)

Description

  • L'invention concerne un oscillateur d'un mouvement horloger. L'invention concerne aussi un mouvement horloger et une pièce d'horlogerie comprenant un tel oscillateur.
  • La précision de marche des montres mécaniques dépend de la stabilité de la fréquence de l'oscillateur qui est constitué d'un balancier et d'un spiral. Toutefois, cette fréquence est perturbée si la montre est exposée à un champ magnétique, si bien qu'une différence de marche avant et après magnétisation du mouvement est constatée. Cette différence de marche peut être négative ou positive. Quelle que soit son signe, cette différence est appelée « effet résiduel » ou « marche résiduelle » et est mesurable selon la norme NIHS 90-10. Cette norme vise à certifier des montres-bracelets présentant un bon comportement chronométrique suite à une exposition à un champ magnétique de 4.8 kA/m (60 G). Toutefois, le porteur de la montre peut être amené à rencontrer dans son quotidien des champs magnétiques d'intensités bien supérieures, de l'ordre de 32 kA/m (400G). Il convient donc de minimiser cet effet pour des champs de telles intensités.
  • La très grande majorité des spiraux sont fabriqués à partir d'alliages Fe-Ni (alliage Nivarox® par exemple) dont les modules élastiques dépendent de l'état de magnétisation. De récents développements ont permis de mettre au point des spiraux auto-compensateurs en matériaux paramagnétiques (alliage Nb-Zr-O, Parachrom® par exemple) ou diamagnétiques (silicium recouvert d'une couche de SiO2 par exemple) qui permettent de réduire très nettement l'effet résiduel pour un champ magnétique supérieur à 4.8 kA/m, comme représenté à la figure 1. Toutefois, un effet résiduel demeure, notamment pour un champ magnétique d'une intensité sensiblement supérieure à 4.8 kA/m, par exemple 32 kA/m.
  • De manière générale, la structure d'un balancier assemblé au sein d'un oscillateur est telle que représentée par la norme NIHS 34-01. La figure 3 illustre une telle structure de balancier assemblé. Le moyeu du balancier est directement rapporté sur l'axe de balancier, par exemple par rivetage. Sa localisation ainsi que son assise sont assurées par une surface d'appui qui est définie par le diamètre d'une collerette présente sur l'axe, et qui est également appelé diamètre d'assise du balancier selon la terminologie de la norme NIHS 34-01. Un plateau, généralement usiné en CuBe2, sur lequel est disposé une cheville, est chassé sur une portion d'axe dont le diamètre est sensiblement inférieur à celui de l'assise du balancier, indépendamment du moyeu du balancier de l'autre côté de la collerette. La virole, destinée au maintien du spiral, est quant-à elle chassée de l'autre côté de la collerette sur une portion d'axe dont le diamètre est également sensiblement inférieur à celui de l'assise du balancier comme cela est illustré en figure 2. Une telle structure de balancier s'est imposée comme une référence étant donné sa robustesse et la simplicité d'assemblage qui en découle. Une telle structure de balancier assemblé concerne notamment tout oscillateur doté d'un spiral paramagnétique ou diamagnétique. A titre d'exemple, le brevet CH700032 divulgue un oscillateur doté d'au moins deux spiraux, par exemple fabriqués en silicium, qui sont montés sur un axe de balancier tel que décrit précédemment. Cet oscillateur, par les propriétés du matériau choisi pour le spiral, permet de réduire l'effet résiduel pour un champ magnétique de l'ordre de 4.8 kA/m, mais ne permet pas de le minimiser pour un champ magnétique sensiblement supérieur à 4.8 kA/m, par exemple 32 kA/m.
  • Les documents FR2268291A1 , CH700260A2 et EP2104007A1 divulguent différentes structures d'oscillateurs connus de l'art antérieur.
  • Le but de l'invention est de fournir un oscillateur remédiant aux inconvénients évoqués précédemment et améliorant les oscillateurs connus de l'art antérieur. En particulier, l'invention propose un oscillateur qui minimise, voire annule, l'effet résiduel, négatif ou positif, pour des champs magnétiques que le porteur de la montre est susceptible de rencontrer dans son quotidien, notamment des champs magnétiques supérieurs, voire sensiblement supérieurs à 4.8 kA/m, par exemple 32 kA/m.
  • Des oscillateurs selon l'invention sont définis par les revendications 1 à 2.
  • Un mouvement horloger selon l'invention est défini par la revendication 3.
  • Une pièce d'horlogerie selon l'invention est définie par la revendication 4.
  • Les dessins annexés représentent, à titre d'exemples, deux modes de réalisation d'un oscillateur selon l'invention.
    • La figure 1 est un graphique montrant la marche résiduelle M de différents mouvements selon le champ magnétique B auquel ces mouvements sont soumis. La courbe 1 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur ayant un spiral magnétique (Nivarox®). La courbe 2 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur ayant un spiral paramagnétique (Parachrom®). Enfin, la courbe 3 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur ayant un spiral diamagnétique (Silicium recouvert d'une couche de SiO2).
    • La figure 2 est une vue d'un oscillateur connu de l'art antérieur.
    • La figure 3 est vue de détail d'une structure de balancier assemblé de l'oscillateur de la figure 2.
    • Les figures 4 et 5 sont des vues d'une première variante d'un premier mode de réalisation d'un oscillateur ne faisant pas partie de l'invention, mais utile à sa compréhension.
    • La figure 6 représente une deuxième variante d'un premier mode de réalisation d'un oscillateur ne faisant pas partie de l'invention, mais utile à sa compréhension.
    • La figure 7 représente une troisième variante d'un premier mode de réalisation d'un oscillateur ne faisant pas partie de l'invention, mais utile à sa compréhension.
    • La figure 8 est une vue d'une variante d'un deuxième mode de réalisation d'un oscillateur selon l'invention.
    • La figure 9 est une vue d'une première variante d'un troisième mode de réalisation d'un oscillateur selon l'invention.
    • La figure 10 est une vue d'une deuxième variante d'un troisième mode de réalisation d'un oscillateur selon l'invention.
    • La figure 11 est une vue d'une troisième variante d'un troisième mode de réalisation d'un oscillateur selon l'invention.
    • La figure 12 est un tableau montrant la marche résiduelle d'un mouvement soumis à un champ magnétique donné en fonction de la matière d'un arbre de balancier d'un oscillateur connu de l'état de l'art comme représenté aux figures 2 et 3. Il montre également les marches résiduelles d'oscillateurs réalisés selon le premier mode de réalisation et le deuxième mode de l'invention.
    • La figure 13 est un graphique montrant, à titre de comparaison, la marche résiduelle M de quatre mouvements en fonction du champ magnétique B auxquels ils ont été soumis, un premier mouvement comprenant un oscillateur réalisé selon la première variante du premier mode de réalisation et trois mouvements comprenant un oscillateur réalisé selon l'art antérieur. La courbe 1 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur muni d'un balancier assemblé, pourvu d'un axe de balancier à collerette, qui est associé à un spiral Nivarox®. La courbe 2 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur muni d'un balancier assemblé, pourvu d'un axe de balancier dénué de collerette, qui est associé à un spiral Nivarox®. La courbe 3 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur muni d'un balancier assemblé, pourvu d'un axe de balancier à collerette, qui est associé à un spiral paramagnétique. Enfin, la courbe 4 illustre la marche résiduelle M d'un mouvement doté d'un oscillateur réalisé selon la première variante du premier mode de réalisation.
    • La figure 14 est un graphique montrant, à titre de comparaison, la marche résiduelle M de deux mouvements en fonction du champ magnétique B auxquels ils ont été soumis, un premier mouvement comprenant un oscillateur réalisé selon la première variante du troisième mode de réalisation de l'invention (courbe 1 du graphique) et le deuxième mouvement comprenant un oscillateur réalisé selon l'art antérieur et doté d'un spiral de type Nivarox® (courbe 2 du graphique).
  • La demanderesse a remarqué que la géométrie de l'axe de balancier a une influence surprenante sur l'effet résiduel. Plus particulièrement, suite à différentes études menées par la demanderesse, il a été remarqué que la minimisation, voire la suppression, de la portion de plus grand diamètre, appelée assise du balancier selon la terminologie de la norme NIHS 34-01, ou encore appelée usuellement « collerette », permet de minimiser l'effet résiduel de la même façon qu'un axe de balancier réalisé en un matériau paramagnétique tel que le CuBe2, comme montré dans le tableau de la figure 12. On remarque alors qu'associer un spiral paramagnétique ou diamagnétique à un balancier assemblé muni d'un axe de balancier à collerette selon l'état de l'art ne produit pas les mêmes effets qu'associer un spiral paramagnétique ou diamagnétique à un balancier assemblé muni d'un axe de balancier selon l'invention. Plus particulièrement, le fait d'associer un spiral paramagnétique ou diamagnétique à un balancier assemblé muni d'un axe de balancier selon l'invention permet, pour un champ magnétique de 32 kA/m (400G), de minimiser considérablement la marche résiduelle, voire de l'annuler, le couple parasite perturbant le couple de rappel du spiral étant alors dû à la présence des composants magnétiques qui environnent l'oscillateur.
  • En se rapportant au graphique de la figure 13, on constate qu'adjoindre un spiral paramagnétique à un balancier assemblé muni d'un axe de balancier à collerette permet, pour un champ magnétique B de 32 kA/m (400G), de réduire la marche résiduelle M d'environ un facteur 2 par rapport à un même balancier assemblé qui est associé à un spiral de type Nivarox®. On remarque de manière surprenante qu'associer un spiral paramagnétique à un balancier assemblé muni d'un axe de balancier dénué de collerette, comme cela est proposé au sein de la première variante du premier mode de réalisation, permet, pour un champ magnétique de 32 kA/m (400G), de réduire la marche résiduelle d'environ un facteur 12 par rapport à un même balancier assemblé qui est combiné à un spiral de type Nivarox®. On remarque également que l'oscillateur du premier mode de réalisation, permet, pour un champ magnétique de 32 kA/m (400G), de réduire la marche résiduelle de manière très significative, d'environ un facteur 17, par rapport à un balancier assemblé qui comporte un axe à collerette et qui est combiné à un spiral de type Nivarox®. Notamment, comme représenté à la figure 13, pour des champs magnétiques compris entre 15 et 32 kA/m, il a été remarqué qu'il se produit, vis-à-vis du phénomène magnétique, un effet synergique entre le spiral paramagnétique ou diamagnétique et la géométrie de l'axe. En effet, l'effet combiné du changement de matière du spiral et de la modification de la géométrie de l'axe va au-delà de la somme des effets individuels du changement de matière du spiral et de la modification de la géométrie de l'axe les effets.
  • En se rapportant au graphique de la figure 14, on remarque de manière surprenante qu'associer un spiral diamagnétique à un balancier assemblé muni d'un axe de balancier dont le diamètre maximal est minimisé, comme cela est proposé au sein de la première variante du troisième mode de réalisation de l'invention, permet, pour un champ magnétique B de 32 kA/m (400G), de réduire la marche résiduelle M de manière très significative, d'environ un facteur 35, par rapport à un balancier assemblé qui comporte un axe à collerette et qui est combiné à un spiral de type Nivarox®.
  • Ainsi, l'invention porte sur un oscillateur comprenant un spiral en matériau paramagnétique ou diamagnétique et un balancier assemblé au sein de cet oscillateur comprenant un arbre en acier dont le diamètre maximal est minimisé sur lequel sont montés un balancier, un plateau et la virole dudit spiral. Dans un premier cas de figure, la virole peut être rapportée au spiral. Elle est dans ce cas préférentiellement réalisée en un alliage cuivreux tel que le laiton ou le CuBe2, ou alors en un acier inoxydable. Dans un deuxième cas de figure, la virole peut être venue de fabrication avec le spiral, par exemple lorsque le spiral est réalisé en silicium. La virole est dans ce cas également réalisée en silicium. L'arbre est fabriqué en acier de manière à satisfaire aux contraintes mécaniques auquel est soumis l'oscillateur. Le plateau et le balancier sont, quant-à-eux, usinés en un matériau paramagnétique ou diamagnétique, par exemple un alliage cuivreux tel que le CuBe2 ou le laiton, le silicium ou encore le nickel-phosphore. Le diamètre maximal Dmax de l'arbre, le diamètre minimal D1 de l'arbre sur lequel est monté l'un des éléments de l'oscillateur et le diamètre maximal D2 de l'arbre sur lequel est monté l'un des éléments de l'oscillateur sont limités comme défini plus bas. Ainsi, l'effet résiduel est grandement minimisé car le couple parasite perturbant le couple de rappel du spiral est alors principalement dû à la présence des composants magnétiques environnant l'oscillateur. Bien entendu, la minimisation de l'effet résiduel peut être encore accrue en réalisant les composants qui sont situés à proximité de l'oscillateur selon l'invention, par exemple les composants de l'échappement tels que l'ancre ou la roue d'ancre, en matériaux paramagnétiques ou diamagnétiques.
  • Selon un premier mode de réalisation, le plus petit diamètre D1 de la portion de l'arbre sur laquelle est monté un élément de l'oscillateur (choisi parmi le groupe : virole, plateau, balancier) présente une valeur valant Dmax qui correspond au plus grand diamètre de l'arbre. Par ailleurs, le plus grand diamètre D2 de la portion de l'arbre sur laquelle est monté un élément de l'oscillateur présente également une valeur qui correspond à celle du plus grand diamètre Dmax de l'arbre. Ainsi, dans ce premier mode de réalisation, Dmax=D1=D2.
  • Selon un deuxième mode de réalisation de l'invention, le plus grand diamètre D2 de la portion de l'axe sur laquelle est monté un élément de l'oscillateur correspond également au diamètre Dmax mais diffère du plus petit diamètre D1 de la portion de l'arbre sur laquelle est monté un élément de l'oscillateur. Ainsi, dans ce deuxième mode de réalisation, Dmax=D2>D1.
  • Selon un troisième mode de réalisation, le plus grand diamètre D2 de la portion de l'axe sur laquelle est monté un élément de l'oscillateur diffère du plus grand diamètre de l'axe Dmax mais peut être supérieur ou égal au plus petit diamètre D1 de la portion de l'arbre sur laquelle est monté un élément de l'oscillateur. Ainsi dans ce troisième mode de réalisation, Dmax>D2≥D1
  • Une première variante du premier mode de réalisation d'oscillateur est décrite ci-après en référence aux figures 4 et 5. L'oscillateur 10 comprend un spiral 11 en matériau paramagnétique ou diamagnétique et un balancier assemblé 12 comprenant un arbre 13 sur lequel sont montés un balancier 14, un plateau 15 et la virole 16 dudit spiral. Dans cette première variante, le balancier 14 est solidaire de l'arbre 13 par l'intermédiaire du plateau 15. Ce dernier est rapporté, par exemple par chassage, sur une portion 135 et chemise l'arbre 13 sur une hauteur H. Le diamètre de cette portion 135 est égal au diamètre maximal Dmax. Le balancier 14 est, quant-à-lui, rapporté sur le plateau 14, par exemple par rivetage, sur une surface d'assise 131 réalisée sur le plateau. La virole est, quant-à-elle, directement montée sur l'arbre. Elle peut y être fixée, par exemple, par chassage. La virole est montée sur une portion 136 de l'arbre dont le diamètre est égal au diamètre maximal Dmax de l'arbre. Dans cette première variante du premier mode de réalisation, le plus petit diamètre D1 de la portion de l'arbre sur laquelle est monté un élément (choisi parmi le groupe : virole, plateau, balancier) correspond à la valeur Dmax qui est égale au plus grand diamètre de l'arbre. Par ailleurs, le plus grand diamètre D2 de la portion de l'arbre sur laquelle est monté un élément présente également une valeur qui coïncide avec celle du plus grand diamètre de l'arbre. Ainsi, dans cette première variante du premier mode de réalisation, Dmax=D1=D2. Dans cette première variante du premier mode de réalisation (illustrée par les figures 4 et 5), cette valeur est de l'ordre de 0.5 mm.
  • Des mesures ont été effectuées pour des champs magnétiques à différents niveaux d'intensité de façon à mettre en comparaison la marche résiduelle de la première variante du premier mode de réalisation de l'oscillateur et celles d'oscillateurs connus de l'art antérieur. On constate, comme représenté à la figure 13, que la marche résiduelle moyenne d'un mouvement doté de la première variante du premier mode de réalisation de l'oscillateur, pour un champ magnétique de 32 kA/m, est de l'ordre de 2 s/j (courbe 4 du graphique), soit une diminution d'environ un facteur 12 en regard de celle d'un mouvement doté d'un oscillateur connu muni d'un spiral Nivarox® et d'un axe de balancier dénué de collerette (courbe 2 du graphique). On constate également que la marche résiduelle moyenne d'un mouvement doté d'un oscillateur muni d'un balancier assemblé, pourvu d'un axe de balancier à collerette, qui est associé à un spiral paramagnétique, pour un champ magnétique de 32 kA/m, est de l'ordre de 15 s/j (courbe 3 du graphique), soit une diminution d'environ un facteur 2 en regard de celle d'un mouvement doté du même balancier assemblé qui est associé à un spiral Nivarox®. Ainsi, on constate que combiner un spiral paramagnétique à un balancier assemblé doté d'un axe dénué de collerette produit un effet inattendu sur la marche résiduelle d'un mouvement, à savoir, sa nette minimisation, voire son annulation, pour un champ magnétique de 32kA/m (400G).
  • En outre, ce facteur est susceptible de s'accroître en minimisant le nombre de composants magnétiques environnant l'oscillateur au sein du mouvement considéré.
  • Une deuxième variante du premier mode de réalisation d'oscillateur est décrite ci-après en référence à la figure 6. Dans cette deuxième variante, les éléments identiques ou ayant la même fonction que les éléments de la première variante présentent un « 2 » au chiffre des dizaines à la place du « 1 » et présentent le même chiffre des unités. Les parties ou portions de ces éléments présentent également un « 2 » au chiffre des centaines à la place du « 1 » des parties ou portions équivalentes des éléments de la première variante et présentent le même chiffre des dizaines. Tout comme dans la première variante du premier mode de réalisation, Dmax=D1=D2. Dans cette deuxième variante du premier mode de réalisation (illustrée par la figure 6), cette valeur est de l'ordre de 0.3 mm. Cette deuxième variante diffère de la première variante en ce que le plateau 25 chemise l'arbre sur pratiquement toute sa longueur et/ou en ce que la virole 26 est fixée à l'arbre par l'intermédiaire du plateau. Autrement dit, la virole 26 est fixée, par exemple par chassage, sur le plateau 25.
  • Les mesures montrent que cette modification a très peu d'incidence sur la minimisation de l'effet résiduel. Quelle que soit la variante considérée, la marche résiduelle moyenne, pour un champ magnétique de 32 kA/m, est de 2 s/j, soit une diminution d'un facteur 8 en regard de celle d'un mouvement doté d'une conception connue de l'état de l'art comme illustrée aux figures 2 et 3 et muni d'un spiral paramagnétique.
  • Selon les deux premières variantes du premier mode de réalisation, le balancier est solidaire de l'arbre par l'intermédiaire du plateau. Par rapport à la structure habituelle connue de l'art antérieur, la collerette de l'arbre est ainsi supprimée et l'ensemble plateau - balancier peut être directement rapporté sur l'arbre, par exemple par chassage. Alternativement, selon une troisième variante du premier mode de réalisation, le balancier est directement rapporté sur une portion de l'arbre dont le diamètre est égal à ceux des portions sur lesquelles sont rapportés le plateau ainsi que la virole. Ainsi, le balancier peut être rapporté sur l'arbre indépendamment du plateau.
  • Dans cette troisième variante du premier mode de réalisation illustrée par la figure 7, les éléments identiques ou ayant la même fonction que les éléments de la première variante du premier mode de réalisation présentent un « 3 » au premier chiffre (dizaines ou centaines) à la place du « 1 » et présentent le même deuxième chiffre (unités ou dizaines). Le balancier 34 est fixé sur une portion 334 indépendamment du plateau 35 qui est rapporté sur une portion 335. Pour ce faire, le moyeu du balancier 34 présente une hauteur totale H suffisante, notamment égale ou sensiblement égale à la hauteur de la portion 334, de façon à garantir une assise et un couple de maintien du balancier adéquat. La virole est, quant-à-elle, fixée sur une portion 336, par exemple par chassage. Le diamètre de chacune des portions 334, 335, 336 est égal au diamètre maximal Dmax de l'arbre. Ainsi, tout comme dans les deux premières variantes, Dmax=D1=D2. Dans cette troisième variante du premier mode de réalisation (illustrée par la figure 7), cette valeur est de l'ordre de 0.4 mm. Les mesures montrent que la marche résiduelle moyenne d'un mouvement équipé d'un oscillateur réalisé selon cette troisième variante, pour un champ magnétique de 32kA/m, est équivalente à celle d'un mouvement doté d'un oscillateur réalisé selon l'une ou l'autre des deux premières variantes, à savoir environ 2 s/j.
  • Le deuxième mode de réalisation diffère du premier mode de réalisation en ce que la valeur du plus grand diamètre de l'arbre Dmax ne coïncide pas avec celle du diamètre minimal D1 de l'arbre sur lequel est monté l'un des éléments choisi parmi le groupe virole, plateau, balancier. En d'autres termes, Dmax=D2>D1. Une variante du deuxième mode de réalisation d'oscillateur est décrite ci-après en référence à la figure 8.
  • Dans ce deuxième mode de réalisation, les éléments identiques ou ayant la même fonction que les éléments de la première variante du premier mode de réalisation présentent un « 4 » au premier chiffre (dizaines ou centaines) à la place du « 1 » et présentent le même deuxième chiffre (unités ou dizaines). Dans ce mode de réalisation, la virole 46 est rapportée sur l'arbre 43 au niveau d'une portion 436, par exemple par chassage. Le plateau 45 est, par exemple, chassé en butée sur une portion 435. Le diamètre de cette portion est égal au diamètre minimal D1 de l'axe sur lequel est monté un élément. Le balancier 44 est, quant-à-lui, directement monté sur l'arbre 43 au niveau d'une portion 434, par exemple par chassage, indépendamment de la localisation du plateau 45. Pour ce faire, le moyeu du balancier 44 présente une hauteur totale H suffisante, notamment égale ou sensiblement égale à la hauteur de la portion 434, de façon à garantir une assise et un couple de maintien du balancier adéquat. Le diamètre de cette portion 434 est égal au diamètre maximal D2 de l'axe sur lequel est monté un élément. Il correspond également au diamètre Dmax. Dans ce mode de réalisation, illustré par la figure 8 , D1 est de l'ordre de 0.4 mm, D2 et donc Dmax sont de l'ordre de 0.8 mm. Ainsi, Dmax est inférieur à environ 2.5 fois le diamètre D1.
  • Des mesures ont été effectuées pour un champ magnétique de 32 kA/m de façon à mettre en comparaison la marche résiduelle de cette variante du deuxième mode de réalisation de l'oscillateur et celle d'un oscillateur connu de l'art antérieur comme illustré aux figures 2 et 3, tous deux étant munis d'un spiral paramagnétique. Le tableau de la figure 12 montre que la marche résiduelle moyenne, pour un champ magnétique de cette intensité, est de l'ordre de 2 s/j, soit une diminution d'environ un facteur 8 en regard de celle d'un mouvement doté d'un oscillateur connu et doté d'un spiral paramagnétique ou diamagnétique.
  • Le troisième mode de réalisation diffère du deuxième mode de réalisation en ce que la valeur du plus grand diamètre de l'arbre Dmax ne coïncide pas avec celle du diamètre maximal D2 de l'arbre sur lequel est monté l'un des éléments choisi parmi le groupe virole, plateau, balancier. Ainsi, Dmax>D2≥D1.
  • Une première variante du troisième mode de réalisation d'oscillateur selon l'invention est décrite ci-après en référence à la figure 9. Dans cette première variante du troisième mode de réalisation, les éléments identiques ou ayant la même fonction que les éléments de la première variante du premier mode de réalisation présentent un « 5 » au premier chiffre (dizaines ou centaines) à la place du « 1 » et présentent le même deuxième chiffre (unités ou dizaines). La virole 56 est directement montée sur l'arbre 53 au niveau d'une portion 536, par exemple par chassage. Le plateau 55 est également directement monté sur l'arbre 53. Il est, par exemple, chassé en butée sur l'arbre 53 au niveau d'une portion 535. Le diamètre de cette portion est égal au diamètre minimal D1 de l'axe sur lequel est monté un élément. Le balancier est rapporté sur l'arbre au niveau d'une portion 534, par exemple par chassage. Pour ce faire, le moyeu du balancier 54 présente une hauteur totale H suffisante, notamment égale ou sensiblement égale à la hauteur de la portion 534, de façon à garantir une assise et un couple de maintien du balancier adéquat. Le diamètre de cette portion 534 est égal au diamètre maximal D2 de l'axe sur lequel est monté un élément. Dans cette première variante du troisième mode de réalisation, une portion d'arbre 533 présente un diamètre Dmax supérieur aux diamètres D1 et D2. Ainsi, cette portion présente des épaulements contre lesquels le balancier et/ou la virole sont susceptibles de venir en appui lorsqu'ils sont fixés sur l'arbre. De cette façon, la position du balancier et celle de la virole peuvent être précisément définies.
  • Dans cette première variante du troisième mode de réalisation, illustrée par la figure 9, D1 est de l'ordre de 0.3 mm, D2 est de l'ordre de 0.8 mm, et Dmax est de l'ordre de 1 mm. Ainsi, Dmax est inférieur à environ 3.5 fois le diamètre D1, et Dmax est inférieur à environ 1.3 fois le diamètre D2. Au sein d'une conception connue de l'état de l'art telle que représentée aux figures 2 et 3 au sein de laquelle Dmax>D2>D1, D1 est de l'ordre de 0.3 mm, D2 est de l'ordre de 0.8, et Dmax est de l'ordre de 1.4 mm. Dmax est alors supérieur à plus de 4.5 fois le diamètre D1, et Dmax alors est supérieur à plus de 1.6 fois le diamètre D2. On constate donc que le plus grand diamètre de l'arbre Dmax est grandement minimisé en regard du plus grand diamètre Dmax d'un arbre équipant un oscillateur connu de l'état de l'art. Ainsi, l'effet résiduel est minimisé car le couple parasite perturbant le couple de rappel du spiral est alors principalement dû à la présence des composants magnétiques environnant l'oscillateur. La figure 14 montre la marche résiduelle de la première variante du troisième mode de réalisation de l'oscillateur en comparaison de celle d'un oscillateur connu qui comprend un axe de balancier à collerette et qui est doté d'un spiral de type Nivarox®. On constate que la marche résiduelle moyenne, pour un champ magnétique de 32kA/m est de l'ordre de 1 s/j, soit une diminution très significative d'un facteur 35 en regard de celle d'un mouvement doté de l'oscillateur précité.
  • Une deuxième variante du troisième mode de réalisation d'oscillateur selon l'invention est décrite ci-après en référence à la figure 10. Dans cette deuxième variante du troisième mode de réalisation, les éléments identiques ou ayant la même fonction que les éléments de la première variante du premier mode de réalisation présentent un « 6 » au premier chiffre (dizaines ou centaines) à la place du « 1 » et présentent le même deuxième chiffre (unités ou dizaines). Tout comme dans la première variante du troisième mode de réalisation, Dmax>D2>D1. Cette deuxième variante diffère de la première variante en ce que le balancier 64 est solidaire de l'arbre 63 par l'intermédiaire du plateau 65. Ce dernier est rapporté, par exemple par chassage, sur une portion 635 et chemise l'arbre 63 sur une hauteur H1. Le diamètre de cette portion 635 est égal au diamètre minimal D1 de l'arbre sur lequel est monté un élément de l'oscillateur. Le balancier est monté en butée sur le plateau, par exemple par chassage. Pour ce faire, le moyeu du balancier 64 présente une hauteur totale H2 suffisante, notamment égale ou sensiblement égale à la hauteur de la portion 654 du plateau 65, de façon à garantir une assise et un couple de maintien du balancier adéquat. La virole est, quant-à-elle, fixée sur une portion 636 de l'arbre 63, par exemple par chassage. Le diamètre de cette portion 635 est égal au diamètre maximal D2 de l'arbre sur lequel est monté un élément de l'oscillateur. Dans cette deuxième variante du troisième mode de réalisation, une portion d'arbre 633 présente un diamètre Dmax supérieur aux diamètres D1 et D2. Ainsi, cette portion présente des épaulements contre lesquels le plateau et/ou la virole sont susceptibles de venir en appui lorsqu'ils sont fixés sur l'arbre. De cette façon, la position du balancier et celle de la virole peuvent être précisément définies. Dans cette deuxième variante du troisième mode de réalisation illustrée par la figure 10, D1 est de l'ordre de 0.4 mm, D2 est de l'ordre de 0.5 mm, et Dmax est de l'ordre de 0.7 mm. Ainsi, Dmax est inférieur à environ 2 fois le diamètre D1, et Dmax est inférieur à environ 1.6 fois le diamètre D2. De cette façon, le plus grand diamètre Dmax de l'arbre est également grandement minimisé.
  • Une troisième variante du troisième mode de réalisation diffère des deux premières variantes en ce que la valeur du diamètre maximal D2 de l'arbre sur lequel est monté un élément de l'oscillateur est égale à celle du diamètre minimal D1 sur lequel est monté un élément de l'oscillateur. Cette variante est décrite ci-après en référence à la figure 11. Les éléments identiques ou ayant la même fonction que les éléments de la première variante du premier mode de réalisation présentent un « 7 » au premier chiffre (dizaines ou centaines) à la place du « 1 » et présentent le même deuxième chiffre (unités ou dizaines). Tout comme dans la deuxième variante du troisième mode de réalisation, le balancier 74 est solidaire de l'arbre 73 par l'intermédiaire du plateau 75. Ce dernier est rapporté, par exemple par chassage, sur une portion 735 et chemise l'arbre 73 sur une hauteur H1. Le diamètre de cette portion 735 est égal au diamètre minimal D1 de l'arbre sur lequel est monté un élément de l'oscillateur. Le diamètre de cette portion 735 correspond également au diamètre maximal D2 de l'arbre sur lequel est monté un élément de l'oscillateur. Le balancier est monté en butée sur le plateau, par exemple par chassage. Pour ce faire, le moyeu du balancier 74 présente une hauteur totale H2 suffisante, notamment égale ou sensiblement égale à la hauteur de la portion 754 du plateau 75, de façon à garantir une assise et un couple de maintien du balancier adéquat. La virole est, quant-à-elle, fixée sur une portion 736 de l'arbre 73, par exemple par chassage. Le diamètre de cette portion 736 correspond au diamètre maximal D2 de l'arbre sur lequel est monté un élément de l'oscillateur, et correspond également au diamètre minimal D1 de l'arbre sur lequel est monté un élément de l'oscillateur. Ainsi, D1=D2. Dans cette troisième variante, une portion d'arbre 733 présente un diamètre Dmax supérieur aux diamètres D1 et D2. Ainsi, cette portion présente des épaulements contre lesquels le plateau et/ou la virole sont susceptibles de venir en appui lorsqu'ils sont fixés sur l'arbre. De cette façon, la position du balancier et celle de la virole peuvent être précisément définies. Dans cette troisième variante, illustrée par la figure 11, D1 et D2 sont de l'ordre de 0.4 mm, et Dmax est de l'ordre de 0.7 mm. Ainsi, Dmax est inférieur à environ 2 fois le diamètre D1, et Dmax est inférieur à environ 2 fois le diamètre D2. De cette façon, le plus grand diamètre Dmax de l'arbre est également grandement minimisé.
  • Dans le troisième mode de réalisation, Dmax est de préférence le diamètre d'une assise au contact de laquelle on peut chasser un élément, voire deux éléments (plateau, balancier, virole), sur l'axe.
  • Quel que soit le mode de réalisation, lorsqu'un premier élément, par exemple le balancier, n'est pas monté directement sur l'arbre mais est monté sur un deuxième élément, lui-même monté directement sur l'arbre au niveau d'une première portion de l'arbre présentant un premier diamètre, on considère que le diamètre de l'arbre sur lequel est monté le premier élément est le premier diamètre.
  • L'oscillateur selon l'invention muni d'un spiral paramagnétique (alliage Nb-Zr-O, Parachrom® par exemple) ou diamagnétique (notamment en silicium recouvert d'une couche de SiO2) présente la spécificité d'être doté d'un arbre de balancier fabriqué en acier de décolletage dont la géométrie a été modifiée de façon à minimiser l'effet résiduel. Le plateau et le balancier sont, quant-à-eux, usinés en un matériau paramagnétique ou diamagnétique, par exemple un alliage cuivreux tel que le CuBe2 ou le laiton, le silicium ou encore le nickel-phosphore. Le plateau, selon le mode de réalisation considéré, est de préférence adapté de sorte à permettre l'assemblage du balancier.
  • Dans ce document, par « un premier élément solidaire d'un deuxième élément », on entend que le premier élément est fixé au deuxième élément.
  • Dans ce document, par « balancier assemblé », on entend un ensemble comprenant ou constitué d'un axe de balancier, un balancier, un plateau et une virole, le balancier, le plateau et la virole étant montés sur l'axe de balancier.
  • Dans ce document, « axe » et « arbre » désignent le même élément.
  • Dans ce document, les rapports des valeurs des marches résiduelles sont donnés en valeur absolue.
  • Les graphiques des figures 1 , 13 et 14 sont réalisés à l'échelle, si bien que des valeurs, notamment des valeurs de marche résiduelle, peuvent en être déduites par mesure sur le graphique.

Claims (4)

  1. Oscillateur (10 ; 20 ; 30 ; 40; 50 ; 60 ; 70) comprenant un spiral (11 ; 21 ; 31 ; 41 ; 51 ; 61 ; 71) en matériau paramagnétique ou diamagnétique et un balancier assemblé (12 ; 22 ; 32 ; 42 ; 52 ; 62 ; 72) comprenant un arbre (13 ; 23 ; 33 ; 43 ; 53 ; 63 ; 73) en acier sur lequel sont montés les éléments suivants : un balancier (14 ; 24 ; 34 ; 44 ; 54 ; 64 ; 74), un plateau (15 ; 25 ; 35 ; 45 ; 55 ; 65 ; 75) et une virole (16 ; 26 ; 36 ; 46 ; 56 ; 66 ; 76) solidaire dudit spiral (11 ; 21 ; 31 ; 41 ; 51 ; 61 ; 71), caractérisé en ce que :
    - le diamètre maximal (Dmax) de l'arbre est de l'ordre de 0.8 mm et le diamètre maximal (D2) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le balancier est de l'ordre de 0.8 mm et le diamètre minimal (D1) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le plateau est de l'ordre de 0.4 mm, ou
    - le diamètre maximal (Dmax) de l'arbre est de l'ordre de 1 mm et le diamètre maximal (D2) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le balancier est de l'ordre de 0.8 mm et le diamètre minimal (D1) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le plateau est de l'ordre de 0.3 mm, ou
    - le diamètre maximal (Dmax) de l'arbre est de l'ordre de 0.7 mm et le diamètre maximal (D2) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté la virole est de l'ordre de 0.5 mm et le diamètre minimal (D1) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le plateau est de l'ordre de 0.4 mm, ou
    - le diamètre maximal (Dmax) de l'arbre est de l'ordre de 0.7 mm et le diamètre maximal (D2) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté la virole est de l'ordre de 0.4 mm et le diamètre minimal (D1) de l'arbre sur lequel est monté l'un des éléments et sur lequel est monté le plateau est de l'ordre de 0.4 mm.
  2. Oscillateur selon la revendication précédente, caractérisé en ce que l'arbre de balancier est réalisé en acier de décolletage.
  3. Mouvement horloger comprenant un oscillateur (10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70) selon l'une des revendications précédentes.
  4. Pièce d'horlogerie comprenant un mouvement horloger selon la revendication précédente ou un oscillateur (10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70) selon l'une des revendications 1 à 2.
EP12783915.7A 2011-10-24 2012-10-23 Oscillateur de mouvement horloger Active EP2771743B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12783915.7A EP2771743B1 (fr) 2011-10-24 2012-10-23 Oscillateur de mouvement horloger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11405342 2011-10-24
PCT/EP2012/070936 WO2013064390A1 (fr) 2011-10-24 2012-10-23 Oscillateur de mouvement horloger
EP12783915.7A EP2771743B1 (fr) 2011-10-24 2012-10-23 Oscillateur de mouvement horloger

Publications (2)

Publication Number Publication Date
EP2771743A1 EP2771743A1 (fr) 2014-09-03
EP2771743B1 true EP2771743B1 (fr) 2024-05-08

Family

ID=48144458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12783915.7A Active EP2771743B1 (fr) 2011-10-24 2012-10-23 Oscillateur de mouvement horloger

Country Status (6)

Country Link
US (1) US9740170B2 (fr)
EP (1) EP2771743B1 (fr)
JP (1) JP6231986B2 (fr)
CN (1) CN103890666B (fr)
CH (1) CH705655B1 (fr)
WO (1) WO2013064390A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784601B1 (fr) * 2013-03-26 2017-09-13 Montres Breguet SA Arbre de mobile pivotant d'horlogerie
JP6120322B2 (ja) * 2013-07-25 2017-04-26 セイコーインスツル株式会社 振り座、脱進機、時計用ムーブメントおよび時計
EP3584640B1 (fr) * 2016-06-13 2023-01-11 Rolex Sa Oscillateur horloger
EP3742236A1 (fr) 2019-05-23 2020-11-25 Rolex Sa Dispositif horloger comprenant un premier composant fixé sur un deuxième composant par déformation plastique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104007A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Spiral monobloc en matériau à base de silicium et son procédé de fabrication
CH700260A2 (fr) * 2009-01-16 2010-07-30 Cartier Creation Studio Sa Balancier spiral sans élément de réglage.
EP2317407A1 (fr) * 2009-10-29 2011-05-04 Nivarox-FAR S.A. Système de fixation d'une pièce sans chassage ni collage

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH327357A (fr) * 1955-04-13 1958-01-31 Leon Joriot Camille Mécanisme d'horlogerie
US3002138A (en) * 1958-06-24 1961-09-26 Gen Time Corp Electrically powered oscillatory balance
CH421828A (fr) * 1963-12-18 1967-04-15 Axhor S A Procédé de fixation sur son axe des organes d'un dispositif oscillant de mouvement d'horlogerie
US3335561A (en) * 1964-05-18 1967-08-15 Seiko Instr & Electronics Contactless battery timepiece
FR1427115A (fr) * 1964-12-14 1966-02-04 Axhor S A Ensemble oscillant pour mouvement d'horlogerie
CH479105A (fr) * 1967-01-17 1969-11-14 Balanciers Reunies Sa Balancier amortisseur de chocs pour pièce d'horlogerie
CH535989A (de) * 1968-08-19 1972-11-30 Straumann Inst Ag Zeithaltendes Element
US3601975A (en) * 1969-04-23 1971-08-31 Timex Corp Horological movement utilizing a radioactivity detector and source
CH547519A (fr) * 1971-10-08 1974-03-29
CH534074A4 (fr) * 1974-04-18 1975-12-15
CH621669GA3 (en) 1977-12-23 1981-02-27 Method of manufacturing a pivoted clockwork balance and clockwork balance obtained according to this method
DE69710445T2 (de) 1997-06-20 2002-10-10 Rolex Montres Selbstkompensierende Spiralfeder für mechanische Uhrwerkunruhspiralfederoszillator und Verfahren zu deren Herstellung
DE69911913T2 (de) 1999-03-26 2004-09-09 Rolex Sa Selbstkompensierende Spiralfeder für Uhrwerkspiralfederunruh und Verfahren zur Behandlung derselben
US6755566B2 (en) * 2001-02-15 2004-06-29 Konrad Damasko Clockwork
CH696881A5 (fr) 2005-06-28 2008-01-15 Eta Sa Mft Horlogere Suisse Pièce de micro-mécanique en silicium renforcé et son procédé de fabrication.
CH700032B1 (fr) 2006-01-19 2010-06-15 Alain Laesser Mouvement d'horlogerie avec organe régulateur à ressort spiral.
CN101589347A (zh) 2006-12-21 2009-11-25 康普利计时股份有限公司 用于钟表的机械振荡器
SE531889C2 (sv) 2007-01-26 2009-09-01 Sandvik Intellectual Property Blyfritt automatstål och användning därav
DE202010014253U1 (de) * 2010-10-13 2011-02-17 Damasko, Petra Schwingsystem für mechanische Uhrwerke
EP2653938A1 (fr) 2012-04-19 2013-10-23 ETA SA Manufacture Horlogère Suisse Balancier d'horlogerie
EP2757423B1 (fr) 2013-01-17 2018-07-11 Omega SA Pièce pour mouvement d'horlogerie

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104007A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Spiral monobloc en matériau à base de silicium et son procédé de fabrication
CH700260A2 (fr) * 2009-01-16 2010-07-30 Cartier Creation Studio Sa Balancier spiral sans élément de réglage.
EP2317407A1 (fr) * 2009-10-29 2011-05-04 Nivarox-FAR S.A. Système de fixation d'une pièce sans chassage ni collage

Also Published As

Publication number Publication date
CN103890666B (zh) 2017-10-13
US20140247704A1 (en) 2014-09-04
EP2771743A1 (fr) 2014-09-03
WO2013064390A1 (fr) 2013-05-10
CN103890666A (zh) 2014-06-25
CH705655A2 (fr) 2013-04-30
JP2014531026A (ja) 2014-11-20
JP6231986B2 (ja) 2017-11-15
US9740170B2 (en) 2017-08-22
CH705655B1 (fr) 2016-12-15

Similar Documents

Publication Publication Date Title
EP2102717B1 (fr) Oscillateur mecanique pour une piece d'horlogerie
EP2771743B1 (fr) Oscillateur de mouvement horloger
EP2690507B1 (fr) Spiral d'horlogerie
CH701783A1 (fr) Ressort spiral.
EP2917787B1 (fr) Mouvement d'horlogerie a balancier-spiral
EP2781967B1 (fr) Spiral d'horlogerie
EP3382472A1 (fr) Palier de guidage d'un pivot de balancier de pièce d'horlogerie
EP2206022B1 (fr) Palier amortisseur de chocs pour piece d'horlogerie
EP2781965B1 (fr) Cassette de mécanisme d'horlogerie
EP1513029B1 (fr) Virole d'horlogerie
CH712502A2 (fr) Dispositif antichoc pour un mouvement horloger.
EP2607969B1 (fr) Mouvement horloger à faible sensibilité magnétique
EP3379342B1 (fr) Dispositif comportant un ressort de réglage rapide coopérant avec un mobile d'une pièce d'horlogerie
CH702202B1 (fr) Echappement à ancre.
CH705471B1 (fr) Mouvement d'horlogerie à balancier-spiral.
EP2977833A1 (fr) Positionnement précis de pont d'horlogerie
CH709903A2 (fr) Ensemble démontable d'horlogerie.
EP4123394A1 (fr) Bague de liaison mécanique de deux composants horlogers
WO2024074517A1 (fr) Axe horloger
WO2013156348A1 (fr) Balancier d'horlogerie
EP3916489A1 (fr) Ressort d'amortisseur, corps de palier et palier pour piece d'horlogerie
CH706424B1 (fr) Procédé de solidarisation de deux pièces en silicium cristallin.
CH708272B1 (fr) Ressort spiral de mouvement de montre.
CH706763A2 (fr) Ensemble horloger comportant un spiral d'horlogerie.
CH705916A2 (fr) Mouvement horloger à faible sensibilité magnétique.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOULENGUIEZ, BENOIT

Inventor name: BERTRAND, JEAN-LOUIS

Inventor name: CIMPRICH, THOMAS

Inventor name: MOREAU, STEPHANE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012080777

Country of ref document: DE