EP2767601A1 - Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung - Google Patents

Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP2767601A1
EP2767601A1 EP13155225.9A EP13155225A EP2767601A1 EP 2767601 A1 EP2767601 A1 EP 2767601A1 EP 13155225 A EP13155225 A EP 13155225A EP 2767601 A1 EP2767601 A1 EP 2767601A1
Authority
EP
European Patent Office
Prior art keywords
cold
annealing
content
steel
flat steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13155225.9A
Other languages
English (en)
French (fr)
Other versions
EP2767601B1 (de
Inventor
Evgeny BALICHEV
Harald Hofmann
Jose Jimenez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13155225.9A priority Critical patent/EP2767601B1/de
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to CN201480021223.4A priority patent/CN105121673A/zh
Priority to JP2015557422A priority patent/JP6383368B2/ja
Priority to PCT/EP2014/052810 priority patent/WO2014125016A1/de
Priority to CN201910355506.7A priority patent/CN110295317A/zh
Priority to BR112015019413A priority patent/BR112015019413A2/pt
Priority to KR1020157024979A priority patent/KR102193066B1/ko
Priority to US14/767,741 priority patent/US10513762B2/en
Publication of EP2767601A1 publication Critical patent/EP2767601A1/de
Application granted granted Critical
Publication of EP2767601B1 publication Critical patent/EP2767601B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the invention relates to a cold-rolled steel flat product for thermoforming applications, which has a reduced weight as a result of a density reduction with optimized mechanical properties and an optimized deformability. Likewise, the invention relates to a method for producing such a flat steel product.
  • Al-containing deep-drawing steels may contain a maximum of 6.5% by weight of A1 (cf. U. Brüx "Thermoformable iron-aluminum lightweight steels", construction April 4, 2002 ).
  • the object of the invention was to provide a flat steel product which, with a significant reduction in weight, has optimized deformation suitability and likewise optimized mechanical properties.
  • this object is achieved with regard to the cold-rolled flat steel product by providing a product having the features specified in claim 1.
  • a cold-rolled flat steel product according to the invention for deep-drawing applications consists of a steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.008-0.1%, Al: 6.5-12%, Nb: 0.1-0, 2%, Ti: 0.15-0.5%, P: up to 0.1%, S: up to 0.03%, N: up to 0.1%, and optionally one or more elements from the group " Mn, Si, rare earth metals, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N "with the proviso contains, Mn: up to 1%, rare earth metals: up to 0.2%, Si : up to 2%, Zr: up to 1%, V: up to 1%, W: up to 1%, Mo: up to 1%, Cr: up to 3%, Co: up to 1%, Ni: up to 2%, B: up to 0 , 1%, Cu: up to 3%, Ca: up to 0.015%.
  • the cold-rolled steel strip according to the invention is distinguished by r values of at least 1.3, with flat steel products according to the invention regularly achieving r values of greater than 1.3.
  • the high r-value stands for a good deep drawability of the cold-rolled steel flat product according to the invention, since with increasing r-value the tendency to thinning during deep-drawing is reduced and consequently stronger deep-drawing degrees are made possible. Otherwise there would be a risk of component failure at the thinned area.
  • a cold-rolled flat steel product according to the invention not only has high r values, but also reaches an elongation A50 of more than 18% on a regular basis. Steel flat products produced under optimum processing conditions have elongations A50 of 25% or more.
  • the ⁇ -carbide content of a flat steel product according to the invention is from 0% by volume (completely ⁇ -carbide-free state) to at most 0.1% by volume. Due to the minimized ⁇ -carbide content, the processability of the flat steel product according to the invention is reliably ensured.
  • a composite steel flat product according to the invention is further distinguished by the fact that the grains are globulitically pronounced in their microstructure.
  • the ratio of the grain length in the rolling direction to the grain width in the transverse direction of the band is generally less than 1.5, in particular less than 1.2. That is, the length of the grains is at most 50%, in particular at most 20%, greater than their width.
  • the steel according to the invention may contain a large number of further alloying elements in order to set certain properties.
  • the relevant elements are summarized in the group "Mn, Si, rare earth metal, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N".
  • Each of these optionally added alloying elements may be present in the steel according to the invention or completely absent, the respective element is also considered “not present” when it is present in the flat steel product according to the invention in an amount in which it is ineffective and therefore the production unavoidable impurities attributable to.
  • Aluminum is present in the steel of the present invention at levels of 6.5-12 wt%, with Al contents greater than 6.8 wt% being advantageous in view of the desired density reduction.
  • Typical Al contents of flat steel products according to the invention are in the range from 6.5 to 10% by weight, in particular from 6.8 to 9% by weight.
  • the presence of high Al contents reduces the density of the steel and significantly improves its corrosion and oxidation resistance.
  • A1 increases the tensile strength in these contents. Excessive contents of A1, however, can lead to a deterioration of the forming behavior, which is expressed in a decrease in the r value.
  • the Al content is limited to a maximum of 12 wt .-%.
  • An optimally balanced ratio of reduced density and processability arises when 6.5 to 10% by weight of Al, in particular at least 6.8% by weight of Al, are present in the steel according to the invention.
  • the C content is limited to at most 0.1% by weight in steel according to the invention, with C contents of 0.015-0.05% by weight, in particular 0.008-0.05% by weight, being particularly favorable.
  • C contents above 0.1 wt.% Can cause the formation of undesirable brittle kappa carbides ("K carbides”) at the grain boundaries and consequent reduction in hot and cold workability.
  • ⁇ -carbides Fe-Al-C compounds
  • ⁇ -carbides are formed in the Processing of generic steels early during hot processing at high temperatures on the grain boundaries and cause embrittlement of the material.
  • carbide-forming alloying elements in accordance with the invention, the lowest possible free C content is set, thus largely preventing the formation of ⁇ carbides.
  • 0.15-0.5% by weight of Ti and 0.1-0.2% by weight of Nb are present in the first place for this purpose.
  • the effect of titanium can then be used particularly reliably if the Ti content is 0.15-0.3% by weight.
  • niobium when Nb is present in amounts of 0.1-0.15% by weight in the steel according to the invention.
  • the respective contents of Ti and Nb must be adjusted in such a way that they fulfill the condition prescribed according to the invention for the ratio of these contents.
  • Ti and Nb contents which fulfill these requirements cause the formation of finely dispersed Ti and Nb carbides in the steel according to the invention, which promote the formation of a fine structure which supports the deformability of the flat steel product.
  • V, Zr and W are also effective carbide formers and In amounts of up to 1% by weight each can supplement the effect of the Nb and Ti required contents provided according to the invention.
  • the effect of V, Zr and W can be used particularly purposefully if their content is limited to in each case up to 0.5% by weight, in particular 0.3% by weight.
  • Mn By adding Mn in amounts of up to 1% by weight, in particular up to 0.5% by weight, the hot workability and weldability of the steel according to the invention can be improved.
  • Mn aids in deoxidation during melting and contributes to increasing the strength of the steel.
  • Mo can be present in amounts of up to 1% by weight in the steel according to the invention. Mo also forms carbides and contributes to increasing the tensile strength, creep resistance and fatigue strength of a flat steel product of the present invention.
  • the carbides formed by Mo with C are particularly fine and thus improve the fineness of the structure of the flat steel product according to the invention. High levels of Mo, however, degrade the hot and cold workability. In order to avoid this particularly reliably, the optionally present Mo content of a steel according to the invention can be limited to 0.5% by weight.
  • the S content to a maximum of 0.03 wt .-%, preferably at most 0.01 wt .-%, and the P content to a maximum 0.1 wt .-%, preferably at most 0.05 wt .-%, limited.
  • the N content of the flat steel product according to the invention is limited to at most 0.1% by weight, in particular at most 0.02% by weight, preferably at most 0.001% by weight, in order to avoid the formation of relatively large amounts of Al nitrides. These would degrade the mechanical properties.
  • the presence of rare earth metals in amounts of up to 0.2% by weight contributes to improved resistance to oxidation and increased strength of a flat steel product of the present invention.
  • contents of rare earth metals are desulfurizing and deoxidizing.
  • the oxides formed by the respective rare earth metals also have a fine grain and promote positive texture selection for improved technological properties.
  • Particularly suitable rare earth metals are Ce and La.
  • the positive influences of rare earth metals in the steel according to the invention can be used particularly purposefully if the contents of rare earth metals are in the range of up to 0.05% by weight.
  • the carbides formed by the presence of one or more of the elements Ti, Nb, V, Zr, W, Mo contribute to increasing the strength of the steel of the present invention.
  • Si in amounts of up to 2 wt .-%, in particular up to 0.5 wt .-%, supported in the melting also the deoxidation and increases the strength and corrosion resistance of the steel according to the invention. Too high levels are due to the presence of Si however, reduces the ductility of the steel and its weldability.
  • Typical Si contents of steels according to the invention are in the range of 0.1-0.5% by weight, in particular 0.1-0.2% by weight.
  • the Co content of the steel according to the invention is limited to max. 1 wt .-%, in particular max. 0.5% by weight, preferably max. 0.3% by weight, limited.
  • Ni improves the corrosion resistance and reduces the proportion of primary ferrite in the structure of the steel according to the invention.
  • Ni can be used in the steel according to the invention at levels of up to 0.5% by weight in a particularly practical manner.
  • the addition of B can also lead to the formation of a fine, the deformability of the steel according to the invention favoring structure. Too high levels of B, however, the cold workability and the Impair oxidation resistance. Therefore, the B content of the steel according to the invention is limited to 0.1% by weight, in particular up to 0.01% by weight, preferably 0.005% by weight.
  • Cu in amounts of up to 3% by weight improves corrosion resistance in the steel of the present invention, but at higher levels may also deteriorate hot workability and weldability. If present, therefore, the Cu content in a practical embodiment of the invention to at most 1 wt .-%, in particular 0.5 wt .-%, limited.
  • a waiting time of at least about 15 minutes should elapse between the last addition of alloy and the casting, in order to ensure thorough mixing of the molten steel.
  • Typical effluent temperatures are in the range of about 1590 ° C.
  • the hot strip is cold rolled to a degree of cold rolling of at least 65%, or a cold rolling degree of at least 65% is also achieved in the two- and multi-stage cold rolling after the intermediate annealing.
  • the two-stage cold rolling can be carried out in such a way that the degree of cold rolling in the first stage is at least 40% and the last stage at least 65%, in particular more than 70%, for example at least 80%.
  • the molten steels E1 and E2 have been cast into precursors in the form of blocks.
  • the blocks were then heated through a preheating of two hours in each case to a preheat temperature VWT and vorgeblockt to slabs.
  • the reheated slabs are hot rolled at a hot rolling end temperature WET to a hot strip and the resulting hot strip was wound at a reel temperature HT each to form a coil.
  • a cast strip was produced as a precursor via a two-roll strip caster, which was then also hot-rolled into a hot strip with a hot rolling end temperature WET.
  • the processing to the hot strip was carried out in a continuous process sequence without interruption following the strip casting, so that the precursor already had a temperature lying in the range of inventively predetermined preheating temperatures when entering the hot rolling device and the preheating could be omitted.
  • the hot strip produced from the steel E3 has been coiled after hot rolling at a reel temperature HT to form a coil.
  • the so annealed hot strips were cold rolled in one or two stages with cold rolling degrees KWG1 (cold rolling degree of the first cold rolling stage) and KWG2 (cold rolling degree of the respective second cold rolling stage) each to a cold rolled steel strip. If two-stage cold rolling has been used, an intermediate annealing at an intermediate annealing temperature ZGT is in each case between the cold rolling stages Have been carried out. After cold rolling, the cold-rolled steel flat products have undergone a final annealing at an annealing temperature SGT. The intermediate annealing and the final annealing have each been completed in continuous operation.
  • the respective preheat temperature VWT, hot rolling end temperature WET, coiler temperature HT, annealing temperature GT, the respective cold rolling degree KWG1, KWG2, and the respective intermediate annealing temperature ZGT and final annealing temperature SGT, are given in Table 2.
  • the cold-rolled steel strips produced from the steels E1 and E2 produced according to the invention in accordance with the invention have yield strengths which are regularly greater than 300 MPa, in particular greater than 320 MPa and thereby reach values of 380 MPa and more, and tensile strengths which are regularly greater 460 MPa, in particular greater than 480 MPa, while achieving values of 530 MPa and more, and having elongation values A50 of at least 18%, which regularly exceed 21%, in particular greater than 25%, and always have r values of 1 , 3 or greater.
  • Cold-rolled steel strips not assembled according to the invention do not achieve such r-values even if these steel strips have been produced taking into account production parameters that are closely related to the parameters set in the production of the cold-rolled steel flat products according to the invention. Also according to the invention composite, but not according to the invention processed flat steel products do not reach the properties of steel flat products produced according to the invention or can not even be cold-rolled.
  • the steel strips produced according to the invention have, despite their high Al contents, a superior deep-drawing capability, without the need for expensive alloying or process-engineering measures.
  • a flat steel product with optimum deformation properties (r ⁇ 2, n ⁇ 0.2, A50 ⁇ 30%) is achieved by a combination of alloy according to the invention, high degree of cold deformation and low hot rolling temperature (about 850 ° C).
  • the cold-rolled steel strips produced from the steels according to the invention in accordance with the invention contain, in addition to a Fe (Al) mixed-crystal matrix, locally occurring hardening precursor phase.
  • a Fe (Al) mixed-crystal matrix in standard hot rolling parameters, rolling is carried out in the full-ferrite phase region and hot strip with typical three-layer structure is obtained, which in turn is characterized by recrystallized globulitic margins and the only recovered core area with stem crystals is marked.
  • the hot strip annealing performed according to the invention reduces the dislocation density in the recovered area and facilitates subsequent cold rolling processing. Without the hot strip annealing, the alpha fiber texture component is strong but weak with hot strip annealing.
  • a low maximum cold rolling degree of up to 50% results in weak gamma fiber texture components
  • one-stage cold rolling with a high cold rolling degree of at least 65%, especially at least 80%, or two-stage cold rolling with correspondingly high deformation in the last rolling stage results in one strong gamma fiber component.
  • These dependencies are more pronounced at lower hot rolling end temperatures, which are in the range of 830-960 ° C, especially 840-880 ° C.
  • the deformation behavior of the resulting cold-rolled steel flat product is significantly influenced by the texture.
  • High r and n values as well as a high elongation at break A50 are particularly noticeable when the gamma fast texture component dominates over the alpha fiber texture component.
  • the inventively predetermined hot strip annealing and the inventively provided parameters of cold rolling ensure that this goal is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft ein kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen aus einem Stahl, der neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,008 - 0,1 %, Al: 6, 5 - 12 %, Nb: 0,1 - 0,2 %, Ti: 0, 15 - 0,5 %, P: < 0,1 %, S: < 0,03 %, N: < 0,1 % sowie optional eines oder mehrere Elemente aus der Gruppe "Mn, Si, REM, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N" mit der Maßgabe enthält, Mn: < 1 %, REM: < 0,2 %, Si: < 2 %, Zr: < 1 %, V: < 1 %, W: < 1 %, Mo: < 1 %, Cr: < 3 %, Co: < 1 %, Ni: < 2 %, B: < 0,1 %, Cu: < 3 %, Ca: < 0,015 %. Dabei gilt für das Verhältnis 2,5 ‰¥ %Ti/%Nb ‰¥ 1,5, %Ti = Ti-Gehalt und %Nb = Nb-Gehalt. Zur Herstellung eines solchen Stahlflachprodukts wird ein entsprechend zusammengesetzter Stahl zu einem Vorprodukt vergossen, das dann bei einer Warmwalzendtemperatur von 820 - 1000 °C zu Warmband warmgewalzt wird. Dieses wird anschließend bei einer Haspeltemperatur von bis zu 750 °C gehaspelt, nach dem Haspeln bei einer Glühtemperatur von >650 - 1200 C° über 1 - 50 h geglüht, anschließend in ein oder mehr Stufen mit einem Gesamt-Kaltwalzgrad von ‰¥65 % zum kaltgewalzten Stahlflachprodukt kaltgewalzt und schließlich bei 650 - 850 °C schlussgeglüht.

Description

  • Die Erfindung betrifft ein kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen, das ein in Folge einer Dichtereduzierung vermindertes Gewicht bei optimierten mechanischen Eigenschaften und einer optimierten Verformbarkeit besitzt. Ebenso betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Stahlflachprodukts.
  • Wenn hier von Stahlflachprodukten die Rede ist, so sind damit durch Walzprozesse gewonnene Stahlbänder, Stahlbleche und daraus gewonnene Platinen, Zuschnitte und desgleichen bezeichnet.
  • Sofern hier im Zusammenhang mit einer Legierungsvorschrift Angaben zum Gehalt eines Legierungselements gemacht werden, beziehen sich diese auf das Gewicht, sofern nicht ausdrücklich etwas anderes angegeben ist.
  • Insbesondere bei im Bereich des Fahrzeugbaus eingesetzten Stahlflachprodukten sind neben dem Verhältnis von Festigkeit zu Umformbarkeit physikalische Eigenschaften wie Steifigkeit und Dichte im Hinblick auf die allgemein angestrebte Gewichtseinsparung und Verbesserung der Eigenfrequenzen des jeweiligen Fahrzeugs von besonderer Bedeutung. Eine deutliche Minimierung der Dichte und damit einhergehend des Gewichts kann bei Stählen durch Zulegieren größerer Gehalte an leichtem A1 erreicht werden. Bei hinreichend hohen Al-Gehalten tritt zudem Vorordnungsphase (K-Zustand) oder Ordnungsphase Fe3Al (D03) auf, die teilchenhärtend, festigkeitssteigernd und duktilitätsmindernd wirken.
  • Den anwendungsbezogenen Vorteilen von ferritischen Fe-Al-Stählen mit hohen Al-Gehalten der hier in Rede stehenden Art stehen Schwierigkeiten bei der Erzeugung und Verarbeitung gegenüber. So zeigen praktische Erfahrungen, dass ein nicht rekristallisierter Bandkernbereich am aus solchen Stählen erzeugten Warmband reduziert werden muss, da andernfalls Schwierigkeiten beim Besäumen und beim Kaltwalzen des Warmbands auftreten können. Darüber hinaus müssen im Stand der Technik aufwändige Prozesse durchlaufen werden, um anisotrope Kaltbandeigenschaften aufgrund einer ungeeigneten Kaltbandtextur zu vermeiden. Solche Anisotropien sind durch niedrige r- und n-Werte gekennzeichnet und bringen eine niedrige Bruchdehnung mit sich. Daraus resultiert ein problematisches Umform- und Bearbeitungsverhalten von aus Fe-Al-Stählen mit hohen Al-Gehalten erzeugten kaltgewalzten Stahlflachprodukten.
  • Die voranstehend zusammengefassten Probleme nehmen mit ansteigendem Al-Gehalt zu und begrenzen daher die bisher erreichbare Dichtereduktion. So gilt in der Praxis, dass Al-haltige tiefziehfähige Stähle maximal 6,5 Gew.-% A1 enthalten dürfen (s. U. Brüx "Tiefziehfähige Eisen-Aluminium-Leichtbaustähle", Konstruktion April 4, 2002).
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Stahlflachprodukt zu schaffen, das bei einer deutlichen Gewichtsreduzierung optimierte Verformungseignung und ebenso optimierte mechanische Eigenschaften aufweist.
  • Darüber hinaus sollte ein Verfahren zur Herstellung eines solchen Stahlflachprodukts angegeben werden.
  • Erfindungsgemäß wird diese Aufgabe im Hinblick auf das kaltgewalzte Stahlflachprodukt dadurch gelöst, dass ein Produkt mit den in Anspruch 1 angegebenen Merkmalen bereitgestellt wird.
  • Die erfindungsgemäße Lösung der oben genannten Aufgabe in Bezug auf das Verfahren besteht darin, dass bei der Herstellung von erfindungsgemäßen Stahlflachprodukten die in Anspruch 10 angegebenen Arbeitsschritte absolviert werden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Ein erfindungsgemäßes kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen besteht aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,008 - 0,1 %, Al: 6,5 - 12 %, Nb: 0,1 - 0,2 %, Ti: 0,15 - 0,5 %, P: bis zu 0,1 %, S: bis zu 0,03 %, N: bis zu 0,1 % sowie optional eines oder mehrere Elemente aus der Gruppe "Mn, Si, Seltenerdmetalle, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N" mit der Maßgabe enthält, Mn: bis zu 1 %, Seltenerdmetalle: bis zu 0,2 %, Si: bis zu 2 %, Zr: bis zu 1 %, V: bis zu 1 %, W: bis zu 1 %, Mo: bis zu 1 %, Cr: bis zu 3 %, Co: bis zu 1 %, Ni: bis zu 2 %, B: bis zu 0,1 %, Cu: bis zu 3 %, Ca: bis zu 0,015 %. Dabei gilt für das Verhältnis %Ti/%Nb des Ti-Gehalts %Ti und des Nb-Gehalts %Nb
    2,5 ≥ %Ti/%Nb ≥ 1,5,
    insbesondere
    2,2 ≥ %Ti/%Nb ≥ 1,8.
  • In der für ein erfindungsgemäßes Stahlflachprodukt erfindungsgemäß vorgesehenen Legierungsvorschrift sind außer Eisen nur A1 und Titan und Niob Pflichtbestandteile.
  • Das erfindungsgemäße kaltgewalzte Stahlband zeichnet sich durch r-Werte von mindestens 1,3 aus, wobei erfindungsgemäße Stahlflachprodukte regelmäßig r-Werte größer 1,3 erreichen. Der hohe r-Wert steht für eine gute Tiefziehfähigkeit des erfindungsgemäßen kaltgewalzten Stahlflachprodukts, da mit steigendem r-Wert die Neigung zum Ausdünnen beim Tiefziehen verringert wird und damit einhergehend stärkere Tiefziehgrade ermöglicht werden. Es bestände sonst die Gefahr von Bauteilversagen an der ausgedünnten Stelle.
  • Ein erfindungsgemäßes kaltgewalztes Stahlflachprodukt weist dabei nicht nur hohe r-Werte auf, sondern erreicht auch eine Dehnung A50 von regelmäßig mehr als 18 %. Unter optimalen Verarbeitungsbedingungen erzeugte erfindungsgemäße Stahlflachprodukte weisen Dehnungen A50 von 25 % und mehr auf.
  • Gleichzeitig ist charakteristisch für das Gefüge eines erfindungsgemäßen Stahlflachprodukts, dass es vollständig ferritisch und weitestgehend frei von κ-Karbiden (Fe-Al-C-Karbide) ist. Dementsprechend liegt der κ-Karbid-Gehalt eines erfindungsgemäße Stahlflachprodukts bei 0 Vol.-% (vollständig κ-Karbid-freier Zustand) bis höchstens 0,1 Vol.-%. Durch den minimierten κ-Karbid-Gehalt ist die Prozessierbarkeit des erfindungsgemäßen Stahlflachprodukts sicher gewährleistet.
  • Ein erfindungsgemäß zusammengesetztes Stahlflachprodukt zeichnet sich des Weiteren dadurch aus, dass in seinem Gefüge die Körner globulitisch ausgeprägt sind. Dabei beträgt das Verhältnis der Kornlänge in Walzrichtung zur Kornbreite in Querrichtung des Bands in der Regel weniger als 1,5, insbesondere weniger als 1,2. D.h., die Länge der Körner ist um maximal 50 %, insbesondere um höchstens 20 %, größer als ihre Breite.
  • Neben den Pflichtbestandteilen kann der erfindungsgemäße Stahl eine Vielzahl von weiteren Legierungselementen enthalten, um bestimmte Eigenschaften einzustellen. Die hierzu in Frage kommenden Elemente sind in der Gruppe "Mn, Si, Seltenerdmetall, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N" zusammengefasst. Jedes dieser jeweils wahlweise zugegebenen Legierungselemente kann im erfindungsgemäßen Stahl vorhanden sein oder vollständig fehlen, wobei das jeweilige Element auch dann als "nicht vorhanden" anzusehen ist, wenn es im erfindungsgemäßen Stahlflachprodukt in einer Menge präsent ist, in der es unwirksam ist und daher den herstellungsbedingt unvermeidbaren Verunreinigungen zuzurechnen ist.
  • Aluminium ist im erfindungsgemäßen Stahl in Gehalten von 6,5 - 12 Gew.-% vorhanden, wobei Al-Gehalte von mehr als 6,8 Gew.-% im Hinblick auf die angestrebte Dichtereduktion vorteilhaft sind. Typische Al-Gehalte erfindungsgemäßer Stahlflachprodukte liegen im Bereich von 6,5 - 10 Gew.-%, insbesondere 6,8 - 9 Gew.-%. Durch die Anwesenheit hoher Al-Gehalte ist die Dichte des Stahls verringert und seine Korrosions- und Oxidationsbeständigkeit deutlich verbessert. Gleichzeitig erhöht A1 in diesen Gehalten die Zugfestigkeit. Zu hohe Gehalte an A1 können jedoch zu einer Verschlechterung des Umformverhaltens führen, die sich in einer Abnahme des r-Wertes ausdrückt. Um die negativen Auswirkungen von A1 zu minimieren, ist daher der Al-Gehalt auf maximal 12 Gew.-% beschränkt. Ein optimal ausgewogenes Verhältnis von verminderter Dichte und Verarbeitbarkeit stellt sich ein, wenn im erfindungsgemäßen Stahl 6,5 - 10 Gew.-% Al, insbesondere mindestens 6,8 Gew.-% Al, vorhanden sind.
  • Der C-Gehalt ist in erfindungsgemäßem Stahl auf höchstens 0,1 Gew.-% beschränkt, wobei C-Gehalte von 0,015 - 0,05 Gew.-%, insbesondere 0,008 - 0,05 Gew.-%, besonders günstig sind. Oberhalb von 0,1 Gew.-% liegende C-Gehalte können die Bildung von unerwünschten spröden Kappa-Karbiden ("κ-Karbiden") an den Korngrenzen und eine dadurch bedingte Verminderung der Warm- und Kaltumformbarkeit verursachen.
  • Der Vermeidung der Entstehung von κ-Karbiden (Fe-Al-C-Verbindungen) kommt beim erfindungsgemäßen Stahl eine besondere Bedeutung zu. κ-Karbide bilden sich bei der Verarbeitung von gattungsgemäßen Stählen frühzeitig während der Warmverarbeitung bei hohen Temperaturen auf den Korngrenzen und bewirken eine Versprödung des Materials. Durch die im Rahmen der erfindungsgemäßen Vorgaben erfolgende Zugabe karbidbildender Legierungselemente wird ein möglichst geringer freier C-Gehalt eingestellt und so die Entstehung von κ-Karbiden weitgehend unterbunden.
  • Im erfindungsgemäßen Stahl sind zu diesem Zweck an erster Stelle 0,15 - 0,5 Gew.-% Ti und 0,1 - 0,2 Gew.-% Nb vorhanden. Dabei lässt sich die Wirkung von Titan dann besonders betriebssicher nutzen, wenn der Ti-Gehalt 0,15 - 0,3 Gew.-% beträgt. Entsprechendes gilt für Niob, wenn Nb in Gehalten von 0,1 - 0,15 Gew.-% im erfindungsgemäßen Stahl vorhanden ist. Gleichzeitig müssen die jeweiligen Ti- und Nb-Gehalte so eingestellt sein, dass sie die erfindungsgemäß für das Verhältnis dieser Gehalte vorgegebene Bedingung erfüllen. Ti- und Nb-Gehalte, die diese Vorgaben erfüllen, bewirken im erfindungsgemäßen Stahl die Bildung von feindispers verteilten Ti- und Nb-Karbiden, die die Ausbildung eines feinen, die Verformbarkeit des Stahlflachprodukts unterstützenden Gefüges fördern. Gleichzeitig wird freier Kohlenstoff gebunden, der andernfalls zur Entstehung von die Verformbarkeit behindernden, die Gefahr von Versprödung mit sich bringenden Fe-Al-C-Karbiden führen könnte. Bei zu hohen Gehalten an Ti und Nb können sich allerdings unerwünschte Ausscheidungen dieser Elemente im Stahl bilden, die eine Abnahme der Zähigkeit und Verformbarkeit bewirken könnten.
  • V, Zr und W sind ebenfalls effektive Karbidbildner und können in Gehalten von jeweils bis zu 1 Gew.-% die Wirkung der erfindungsgemäß vorgesehenen Pflichtgehalte an Nb und Ti ergänzen. Besonders zielgerichtet lässt sich die Wirkung von V, Zr und W dann nutzen, wenn ihr Gehalt jeweils auf bis zu 0,5 Gew.-%, insbesondere 0,3 Gew.-%, beschränkt ist.
  • Durch die Zugabe von Mn in Gehalten von bis zu 1 Gew.-%, insbesondere bis zu 0,5 Gew.-%, kann die Warmformbarkeit und Schweißbarkeit des erfindungsgemäßen Stahls verbessert werden. Darüber hinaus unterstützt Mn bei der Erschmelzung die Desoxidation und trägt zu einer Erhöhung der Festigkeit des Stahls bei. Diese positiven Wirkungen von Mn können besonders effektiv genutzt werden, wenn der Mn-Gehalt 0,05 - 0,5 Gew.-% beträgt.
  • Mo kann in Gehalten von jeweils bis zu 1 Gew.-% im erfindungsgemäßen Stahl enthalten sein. Mo bildet ebenfalls Karbide und trägt zur Erhöhung der Zugfestigkeit, Kriechbeständigkeit und Ermüdungsfestigkeit eines erfindungsgemäßen Stahlflachprodukts bei. Die von Mo mit C gebildeten Karbide sind besonders fein und verbessern so die Feinheit des Gefüges des erfindungsgemäßen Stahlflachprodukts. Hohe Gehalte an Mo verschlechtern jedoch die Warm- und Kaltumformbarkeit. Um dies besonders sicher zu vermeiden, kann der optional vorhandene Mo-Gehalt eines erfindungsgemäßen Stahls auf 0,5 Gew.-% beschränkt werden.
  • Um negative Einflüsse von Schwefel und Phosphor auf die Eigenschaften des erfindungsgemäß verarbeiteten Stahls zu vermeiden, sind der S-Gehalt auf maximal 0,03 Gew.-%, bevorzugt maximal 0,01 Gew.-%, und der P-Gehalt auf maximal 0,1 Gew.-%, bevorzugt maximal 0,05 Gew.-%, beschränkt.
  • Der N-Gehalt des erfindungsgemäßen Stahlflachprodukts ist auf höchstens 0,1 Gew.-%, insbesondere höchstens 0,02 Gew.-%, bevorzugt höchstens 0,001 Gew.-%, beschränkt, um die Bildung größerer Mengen von Al-Nitriden zu vermeiden. Diese würden die mechanischen Eigenschaften verschlechtern.
  • Die Anwesenheit von Seltenerdmetallen in Gehalten von bis zu 0,2 Gew.-% trägt zu einer verbesserten Beständigkeit gegen Oxidation und zu einer erhöhten Festigkeit eines erfindungsgemäßen Stahlflachprodukts bei. Gleichzeitig wirken Gehalte an Seltenerdmetallen entschwefelnd sowie desoxidierend. Die vom jeweiligen Seltenerdmetall gebildeten Oxide wirken zudem kornfeinend und fördern eine positive Texturauslese für verbesserte technologische Eigenschaften. Als Seltenerdmetalle eignen sich besonders Ce und La. Besonders zielgerichtet lassen sich die positiven Einflüsse von Seltenerdmetallen im erfindungsgemäßen Stahl nutzen, wenn die Gehalte an Seltenerdmetallen im Bereich von bis zu 0,05 Gew.-% liegen.
  • Grundsätzlich tragen die durch die Anwesenheit von einem oder mehreren der Elemente Ti, Nb, V, Zr, W, Mo jeweils gebildeten Karbide zur Steigerung der Festigkeit des erfindungsgemäßen Stahls bei.
  • Si in Gehalten von bis zu 2 Gew.-%, insbesondere bis zu 0,5 Gew.-%, unterstützt bei der Erschmelzung ebenfalls die Desoxidation und erhöht die Festigkeit und Korrosionsbeständigkeit des erfindungsgemäßen Stahls. Bei zu hohen Gehalten werden durch die Anwesenheit von Si allerdings die Duktilität des Stahls und seine Schweißeignung verringert. Typische Si-Gehalte erfindungsgemäßer Stähle liegen im Bereich von 0,1 - 0,5 Gew.-%, insbesondere 0,1 - 0,2 Gew.-%.
  • Auch durch die Zugabe von Cr in Gehalten von bis zu 3 Gew.-% kann in erfindungsgemäßem Stahl vorhandener Kohlenstoff zu Karbiden abgebunden werden. Gleichzeitig erhöht die Anwesenheit von Cr die Korrosionsbeständigkeit. Besonders zielsicher werden die vorteilhaften Eigenschaften von Cr im erfindungsgemäßen Stahl dann erreicht, wenn Cr in Gehalten von bis zu 1 Gew.-%, insbesondere bis zu 0,5 Gew.-%, vorhanden ist.
  • Um eine Erhöhung der Rekristallisationstemperatur zu vermeiden, ist der Co-Gehalt des erfindungsgemäßen Stahls auf max. 1 Gew.-%, insbesondere max. 0,5 Gew.-%, bevorzugt max. 0,3 Gew.-%, beschränkt.
  • Nickel in Gehalten von bis zu 2 Gew.-%, insbesondere 1 Gew.-%, trägt in erfindungsgemäßem Stahl ebenfalls zur Erhöhung der Festigkeit und Zähigkeit bei. Darüber hinaus verbessert Ni die Korrosionsbeständigkeit und verringert den Anteil an primärem Ferrit im Gefüge des erfindungsgemäßen Stahls. Besonders praxisgerecht lässt sich Ni im erfindungsgemäßen Stahl bei Gehalten von bis zu 0,5 Gew.-% nutzen.
  • Die Zugabe von B kann ebenfalls zur Ausbildung eines feinen, die Verformbarkeit des erfindungsgemäßen Stahls begünstigenden Gefüges führen. Zu hohe Gehalte an B können jedoch die Kaltumformbarkeit und die Oxidationsbeständigkeit beeinträchtigen. Daher ist der B-Gehalt des erfindungsgemäßen Stahls auf 0,1 Gew.-%, insbesondere bis zu 0,01 Gew.-%, bevorzugt 0,005 Gew.-%, beschränkt.
  • Cu in Gehalten von bis zu 3 Gew.-% verbessert im erfindungsgemäßen Stahl die Korrosionsbeständigkeit, kann aber bei höheren Gehalten auch die Warmumformbarkeit und Schweißbarkeit verschlechtern. Sofern vorhanden, ist daher der Cu-Gehalt bei einer praxisgerechten Ausgestaltung der Erfindung auf höchstens 1 Gew.-%, insbesondere 0,5 Gew.-%, beschränkt.
  • Ca in Gehalten von bis zu 0,015 Gew.-%, insbesondere 0,005 Gew.-% oder 0,003 Gew.-%, bindet im erfindungsgemäßen Stahl Schwefel, welcher die Korrosionsbeständigkeit vermindern könnte.
  • Bei der Erzeugung eines erfindungsgemäßen kaltgewalzten Stahlflachprodukts werden erfindungsgemäß folgende Arbeitsschritte durchlaufen:
    • Erschmelzen einer entsprechend den voranstehend erläuterten Maßgaben erfindungsgemäß zusammengesetzten Stahlschmelze.
    • Vergießen der Stahlschmelze zu einem Vorprodukt, wie einem Block, einer Bramme, einer Dünnbramme oder einem gegossenen Band. Hier hat sich insbesondere das Vergießen zu einem endabmessungsnah gegossenen Band als vorteilhaft herausgestellt. Das endabmessungsnahe Gießen kann dabei durch Einsatz von an sich zu diesem Zweck bekannten konventionellen Gießeinrichtungen erfolgen. Hierzu zählt z. B. die "Zwei-Rollen-Bandgießmaschine". Da dieses Verfahren mit einer mitlaufenden Kokille operiert, besteht keine Relativbewegung zwischen Kokille und erstarrender Bandschale. Auf diese Weise können diese Verfahren ohne Gießpulver arbeiten und sind daher grundsätzlich gut geeignet, das Vormaterial für die Herstellung von erfindungsgemäßen Stahlflachprodukten zu erzeugen. Beim Bandgießen ebenfalls positiv wirkt sich aus, dass das gegossene Band bis zu seiner Abkühlung allenfalls geringen mechanischen Spannungen ausgesetzt ist, so dass die Gefahr der Entstehung von Rissen im Hochtemperaturbereich minimiert ist.
  • Beim Erschmelzen der erfindungsgemäß vergossenen Stahlschmelze sollte zwischen der letzten Legierungszugabe und dem Abguss jeweils eine Wartezeit von mindestens etwa 15 Minuten vergehen, um eine gute Durchmischung der Stahlschmelze zu gewährleisten. Typische Abgusstemperaturen liegen im Bereich von etwa 1590 °C.
  • Anhand praktischer Versuche konnte gezeigt werden, dass sich erfindungsgemäße Stähle auch zu Blöcken vergießen lassen, die dann durch Vorblocken zu Brammen ausgewalzt werden.
    • Das Vorprodukt wird erforderlichenfalls auf eine 1000 - 1300 °C betragende Vorwärmtemperatur gebracht oder in diesem Temperaturbereich gehalten, wobei sich hier Vorwärmtemperaturen von 1200 - 1300 °C, insbesondere 1200 - 1280 °C, als besonders praxisgerecht erwiesen haben. Im Fall, dass das Vorprodukt eine Bramme ist, beträgt die Dauer, über die diese Vorerwärmung abläuft, beispielsweise 120 - 240 Minuten.
    • Das Vorprodukt wird, gegebenenfalls nach der optional durchgeführten Erwärmung auf die Vorwärmtemperatur, zu einem Warmband warmgewalzt, wobei die Walzendtemperatur mehr als 820 °C, insbesondere mehr als 850 °C, betragen soll und in der Praxis Warmwalzendtemperaturen von 830 - 960 °C eingestellt werden. Bei praktischen Versuchen haben sich im Bereich von 840 - 880 °C liegende Warmwalzendtemperaturen als besonders günstig herausgestellt.
    • Das erhaltene Warmband wird zu einem Coil gehaspelt, wobei die Haspeltemperatur bis zu 750 °C, insbesondere bis zu 650 °C, betragen kann. In der Praxis werden typischerweise Haspeltemperaturen von 450 - 750 °C, insbesondere 500 °C +/- 20 °C, eingestellt. Das so erhaltene Warmband hat eine mittlere Ferritkornlänge im Bandkern, die in Bandrichtung gemessen größer 100 µm ist.
    • Nach dem Haspeln wird das Warmband geglüht. Diese Glühung ist von besonderer Bedeutung für die Eigenschaften des erfindungsgemäß erzeugten Stahlflachprodukts. Die Warmbandglühung wird bei einer oberhalb von 650 °C liegenden, bis 1200 °C reichenden, insbesondere 700 - 900 °C betragenden Glühtemperatur durchgeführt. Glühtemperaturen von etwa 850 °C, insbesondere 850 °C +/-20 °C, haben sich dabei als besonders praxisgerecht erwiesen. Die hierfür vorgesehenen Glühzeiten betragen bei dieser üblicherweise als Haubenglühung durchgeführten Glühung typischerweise 1 - 50 h.
  • In Folge der in dem erfindungsgemäß vorgegebenen Temperaturbereich durchgeführten Glühung lässt sich das Warmband trotz seiner hohen Al-Gehalte kaltwalzen, ohne dass starke Kantenrisse oder gar Bandrisse auftreten. Die Warmbandglühung dient dabei der Erzeugung eines ausreichend erholten Bandkernbereichs, der Absenkung des Kaltwalzwiderstands und der Erhöhung des maximal erreichbaren Kaltwalzgrades. Eine durch die Warmbandglühung bewirkte Texturauslese und ein hoher Kaltverformungsgrad fördern die Ausbildung einer geeigneten Kaltbandtextur mit dem gewünschten Eigenschaftsprofil. Für die Warmbandglühung ist dabei insbesondere der Haubenglühprozess mit nach Maßgabe der voranstehend erläuterten Varianten eingestellten Spitzentemperaturen oberhalb von 650 °C geeignet.
    • Erforderlichenfalls kann nach dem Glühen ein Beizen des Warmbands durchgeführt werden, um auf dem Warmband haftende Rückstände zu entfernen.
    • Das geglühte und optional gebeizte Warmband wird dann zu einem kaltgewalzten Stahlflachprodukt kaltgewalzt. Das Kaltwalzen kann in einer Stufe oder zweistufig erfolgen. Beim zweistufigen Kaltwalzen kann in an sich bekannter Weise zwischen den Kaltwalzstufen eine Zwischenglühung durchgeführt werden. Durch zweistufiges Kaltwalzen mit Zwischenglühung wird eine positive Texturauslese gefördert.
  • In jedem Fall wird beim Kaltwalzen die vor dem Ende des Kaltwalzens absolvierte Walzstufe mit einem möglichst hohen Kaltverformungsgrad durchgeführt. Im Fall eines einstufigen Kaltwalzens bedeutet dies, dass das Warmband mit einem Kaltwalzgrad von mindestens 65 % kaltgewalzt wird, bzw. beim zwei- und mehrstufigen Kaltwalzen nach der Zwischenglühung ein Kaltwalzgrad von ebenfalls mindestens 65 % erreicht wird. Um optimale Walzergebnisse zu erhalten, kann dabei das zweistufige Kaltwalzen so durchgeführt werden, dass der Kaltwalzgrad in der ersten Stufe mindestens 40 % und der letzten Stufe mindestens 65 %, insbesondere mehr als 70 %, beispielsweise mindestens 80 %, beträgt.
  • Der hohe Kaltwalzgrad von mindestens 65 % in der jeweils letzten Kaltwalzstufe fördert die Ausbildung einer geeigneten Kaltbandtextur. Der Effekt ist bei den in erfindungsgemäßer Weise legierten Ti/Nb-legierten Materialien besonders ausgeprägt.
    • Nach dem Kaltwalzen wird das erhaltene Kaltband einer Glühung unterzogen, die im kontinuierlichen Glühprozess oder batchweise als Haubenglühung ausgeführt wird. Sowohl die Schlussglühung als auch die optional beim Kaltwalzen durchgeführten Zwischenglühungen können in konventioneller Weise bei Temperaturen und Glühdauern durchgeführt werden, die an sich bekannt sind. Bei der abschließenden Schlussglühung des Kaltbandes bildet sich ein Material mit rekristallisierter Mikrostruktur und vorteilhafter Textur aus. Die erhaltene Textur ist gekennzeichnet durch eine geringe Belegung der α-Fasern von weniger als 4 und einer starken Belegung der γ-Fasern von mehr als 4, was zu r-Werten größer 1,3 führt. Die jeweilige Glühung des kaltgewaltzen Bandes kann in im kontinuierlichen Durchlauf durchlaufenen Glühanlagen mit Glühtemperaturen von 750 - 850 °C über eine typische Dauer von 1 - 20 min erfolgen, wobei sich Glühtemperaturen von mehr als 780 °C, insbesondere 800 - 850 °C, und eine Glühdauer von 2 - 5 min als besonders praxisgerecht erwiesen haben. Alternativ kann die jeweilige Glühung auch in einer Haubenglühanlage durchgeführt werden, bei der die Glühtemperatur mehr als 650 °C, insbesondere 650 - 850 °C, und die Glühdauer 1 - 50 h beträgt. In der Praxis haben sich für das Haubenglühen Glühtemperaturen von 700 - 800 °C und eine Glühdauer von 1 - 30 h besonders bewährt.
    • Optional kann das erhaltene Kaltband beispielsweise zur Verbesserung seiner Korrosionsbeständigkeit mit einer metallischen Schutzschicht belegt werden, die beispielsweise auf A1 oder Zn basiert. Hierzu eignen sich die an sich bekannten Beschichtungsverfahren.
  • Zur Erprobung der Erfindung sind drei erfindungsgemäße Schmelzen E1,E2,E3 und zwei Vergleichsschmelzen V1,V2 erschmolzen worden, deren Zusammensetzungen in Tabelle 1 angegeben sind.
  • Die Stahlschmelzen E1 und E2 sind zu Vorprodukten in Form von Blöcken vergossen worden. Die Blöcke sind dann über eine Vorwärmdauer von jeweils zwei Stunden auf eine Vorwärmtemperatur VWT durcherwärmt und zu Brammen vorgeblockt worden.
  • Anschließend sind die durcherwärmten Brammen bei einer Warmwalzendtemperatur WET zu einem Warmband warmgewalzt und das erhaltene Warmband bei einer Haspeltemperatur HT jeweils zu einem Coil gewickelt worden.
  • Aus der Stahlschmelze E3 ist über eine Zwei-Rollen-Bandgießanlage als Vorprodukt ein gegossenes Band erzeugt worden, das anschließend ebenfalls zu einem Warmband mit einer Warmwalzendtemperatur WET warmgewalzt worden ist. Die Verarbeitung zum Warmband erfolgte in einer kontinuierlichen Prozessfolge unterbrechungsfrei im Anschluss an das Bandgießen, so dass das Vorprodukt bei Eintritt in die Warmwalzeinrichtung bereits eine im Bereich der erfindungsgemäß vorgegebenen Vorwärmtemperaturen liegende Temperatur aufwies und die Vorerwärmung entfallen konnte. Auch das aus dem Stahl E3 erzeugte Warmband ist nach dem Warmwalzen bei einer Haspeltemperatur HT zu einem Coil gehaspelt worden.
  • Nach dem Haspeln sind die jeweils erzeugten Warmbänder, soweit in Tabelle 2 nicht anders angegeben, bei einer Glühtemperatur GT über eine Glühdauer von jeweils acht Stunden einer Glühung in einer Haubenglühanlage unterzogen worden.
  • Die so geglühten Warmbänder sind in einer oder in zwei Stufen mit Kaltwalzgraden KWG1 (Kaltwalzgrad der ersten Kaltwalzstufe) und KWG2 (Kaltwalzgrad der jeweiligen zweiten Kaltwalzstufe) jeweils zu einem kaltgewalzten Stahlband kaltgewalzt worden. Sofern zweistufig kaltgewalzt worden ist, ist zwischen den Kaltwalzstufen jeweils eine Zwischenglühung bei einer Zwischenglühtemperatur ZGT durchgeführt worden. Nach dem Kaltwalzen haben die kaltgewalzten Stahlflachprodukte eine Schlussglühung bei einer Glühtemperatur SGT durchlaufen. Die Zwischenglühung und die Schlussglühung sind jeweils im kontinuierlichen Durchlauf absolviert worden.
  • Die jeweilige Vorwärmtemperatur VWT, Warmwalzendtemperatur WET, Haspeltemperatur HT, Glühtemperatur GT, der jeweilige Kaltwalzgrad KWG1, KWG2, sowie die jeweilige Zwischenglühtemperatur ZGT und Schlussglühtemperatur SGT, sind in Tabelle 2 angegeben.
  • Die an den so erzeugten kaltgewalzten Stahlbändern ermittelten mechanischen Eigenschaften "Streckgrenze Rp0,2", "Zugfestigkeit Rm", "Dehnung A50", "r-Wert r" und "n-Wert n" sind in Tabelle 3 angegeben. Alle mechanischtechnologischen Kennwerte wurden in Querrichtung ermittelt. Zusätzlich sind in Tabelle 3die Maximalwerte der Belegung der α- und γ-Fasern angegeben.
  • Es zeigt sich, dass die aus den erfindungsgemäß zusammengesetzten Stählen E1 und E2 in erfindungsgemäßer Weise erzeugten kaltgewalzten Stahlbänder Streckgrenzen, die regelmäßig größer 300 MPa, insbesondere größer 320 MPa sind, und dabei Werte von 380 MPa und mehr erreichen, und Zugfestigkeiten, die regelmäßig größer 460 MPa, insbesondere größer 480 MPa sind, und dabei Werte von 530 MPa und mehr erreichen, sowie Dehnungswerte A50 von mindestens 18 % aufweisen, die regelmäßig mehr als 21 % erreichen, insbesondere größer 25 % sind, und dabei stets r-Werte von 1,3 oder größer besitzen.
  • Nicht erfindungsgemäß zusammengesetzte kaltgewalzte Stahlbänder erreichen solche r-Werte selbst dann nicht, wenn diese Stahlbänder unter Berücksichtigung von Herstellparametern erzeugt worden sind, die eng angelehnt sind an die Parameter, die bei der Erzeugung der erfindungsgemäßen kaltgewalzten Stahlflachprodukte eingestellt worden sind. Auch erfindungsgemäß zusammengesetzte, jedoch nicht erfindungsgemäß verarbeitete Stahlflachprodukte erreichen die Eigenschaften von erfindungsgemäß hergestellten Stahlflachprodukten nicht oder lassen sich nicht einmal kaltwalzen.
  • Die erfindungsgemäß erzeugten Stahlbänder weisen dementsprechend trotz ihrer hohen Al-Gehalte eine überlegene Tiefzieheignung auf, ohne dass dazu aufwendige legierungs- oder verfahrenstechnische Maßnahmen erforderlich sind.
  • Ein Stahlflachprodukt mit optimalen Verformungseigenschaften (r ≈ 2, n ≈ 0,2, A50 ≈ 30 %) wird durch eine Kombination aus erfindungsgemäßer Legierung, hohem Kaltverformungsgrad und niedriger Warmwalztemperatur (ca. 850 °C) erreicht.
  • Die aus den erfindungsgemäßen Stählen in erfindungsgemäßer Weise erzeugten kaltgewalzten Stahlbänder enthalten neben einer Fe(Al)-Mischkristallmatrix lokal auftretende härtende Vorordnungsphase. Bei gängigen Warmwalzparametern wird im vollferritischen Phasengebiet gewalzt und man erhält Warmband mit typischen dreischichtigen Gefügeaufbau, der wiederum durch rekristallisierte globulitische Randbereiche und den nur erholten Kernbereich mit Stengelkristallen gekennzeichnet ist. Die erfindungsgemäß durchgeführte Warmbandglühung baut die Versetzungsdichte im erholten Bereich ab und erleichtert ein nachfolgendes Kaltwalzprozessing. Ohne die Warmbandglühung ist die Alpha-Faserntexturkomponente stark, mit Warmbandglühung dagegen schwach ausgeprägt. Ein niedriger maximaler Kaltwalzgrad von bis zu 50 % führt zu schwachen Gamma-Fasertexturkomponenten, ein einstufiges Kaltwalzen mit einem hohen Kaltwalzgrad von mindestens 65 %, insbesondere mindestens 80 %, oder ein zweistufig durchgeführtes Kaltwalzen mit entsprechend hoher Verformung in der letzten Walzstufe führen dagegen zu einer starken Gamma-Faserkomponente. Diese Abhängigkeiten sind stärker ausgeprägt bei niedrigeren Warmwalzendtemperaturen, die im Bereich von 830 - 960 °C, insbesondere 840 - 880 °C, liegen.
  • Das Verformungsverhalten des erhaltenen kaltgewalzten Stahlflachprodukts wird von der Textur maßgeblich beeinflusst. Hohe r- und n-Werte sowie eine hohe Bruchdehnung A50 treten besonders dann auf, wenn die Gamma-Fastertexturkomponente über die Alpha-Fasertexturkomponente dominiert. Eine im erfindungsgemäßen Rahmen liegende Kombination der Nb- und Ti-Gehalte, die erfindungsgemäß vorgegebene Warmbandglühung sowie die erfindungsgemäß vorgesehenen Parameter des Kaltwalzens gewährleisten, dass dieses Ziel erreicht wird. Tabelle 1
    C Si Mn P S Cr Mo Ni Al N Ti Nb V %Ti/%Mb
    E1 0,018 0,09 0,08 0,006 0,003 0,04 0,00 0,03 7,1 0,0048 0,180 0,100 0,004 1,8
    E2 0,017 0,11 0,09 0,005 0,003 0,09 0,00 0,03 8,5 0,0039 0,210 0,110 0,003 1,91
    E3 0,012 0,33 0,21 0,010 0,003 1,11 0,04 0,35 6,93 0,0020 0,262 0,120 0,010 2,18
    V1 0,007 0,18 0,09 0,050 0,003 0,03 0,01 0,03 7,2 0,0056 0,060 0,002 0,003 30
    V2 0,006 0,15 0,11 0,006 0,002 0,03 0,00 0,05 9,7 0,0051 0,070 0,004 0,004 17,5
    Gehaltsangaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen
    Tabelle 2
    Stahl VWT [°C] WET [°C] HT [°C] GT [°C] KWG1 [%] ZGT [°C] KWG2 [%] SGT [°C] Erfindungsgemäß?
    E1 1250 850 500 - Nicht rissfrei kaltwalzbar NEIN
    E1 1250 850 500 850 50 - - 830 NEIN
    E1 1250 860 500 850 50 830 70 830 JA
    E1 1250 870 500 850 80 - - 830 JA
    E1 1250 955 700 - 50 - - 830 NEIN
    E1 1250 940 700 850 50 - - 830 NEIN
    E1 1250 940 700 - 50 830 70 830 NEIN
    E1 1250 935 700 850 50 830 70 830 JA
    E1 1250 930 700 - 80 - - 830 NEIN
    E1 1250 955 700 850 80 - - 830 JA
    E2 1250 880 500 - Nicht rissfrei kaltwalzbar
    E2 1250 880 500 850 80 830 JA
    E2 1250 870 700 850 50 830 70 830 JA
    E3 - 860 600 850 80 - - 830 JA
    V1 1250 930 700 - Nicht rissfrei kaltwalzbar NEIN
    V1 1250 930 700 850 80 - - 830 NEIN
    V2 1250 980 700 850 Nicht rissfrei kaltwalzbar NEIN
    Tabelle 3
    Stahl Mechanisch-technologische Eigenschaften Maximalwert Texturkomponente (S=0,1) Erfindungsgemäß?
    Rp0,2 [MPa] Rm [MPa] A50 [%] r n α-Faser y-Faser {111}<011> {111}<112>
    E1 Nicht rissfrei kaltwalzbar NEIN
    E1 353 507 28,0 0,48 0,17 4 4 NEIN
    E1 346 502 27,0 1,36 0,18 3 6 JA
    E1 329 488 29,5 2,05 0,19 1 5 JA
    E1 421 521 19,0 0,8 0,13 12 2 NEIN
    E1 368 503 19,9 0,86 0,15 2 1,5 NEIN
    E1 363 523 21,9 1,03 0,17 12 6 NEIN
    E1 324 471 18,9 1,73 0,19 2 4 JA
    E1 373 529 23,4 1,09 0,17 8 5 NEIN
    E1 325 461 21,1 1,70 0,17 3 5 JA
    E1 Nicht rissfrei kaltwalzbar NEIN
    E2 406 556 18,3 1,93 0,17 2 5 JA
    E2 391 537 21,8 1,56 0,14 3 5 JA
    E3 451 588 18,2 1,71 0,18 1 5 JA
    V1 Nicht rissfrei kaltwalzbar NEIN
    V1 408 532 22,0 0,72 0,15 9 2 NEIN
    V2 Nicht rissfrei kaltwalzbar NEIN

Claims (15)

  1. Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen,
    - bestehend aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
    C: 0,008 - 0,1 %,
    Al: 6,5 - 12 %,
    Nb: 0,1 - 0,2 %,
    Ti: 0,15 - 0,5 %,
    P: bis zu 0,1 %,
    S: bis zu 0,03 %,
    N: bis zu 0,1 %
    sowie optional eines oder mehrere Elemente aus der Gruppe "Mn, Si, Seltenerdmetalle, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N" mit der Maßgabe enthält,
    Mn: bis zu 1 %,
    Seltenerdmetalle: bis zu 0,2 %,
    Si: bis zu 2 %,
    Zr: bis zu 1 %,
    V: bis zu 1 %,
    W: bis zu 1 %,
    Mo: bis zu 1 %,
    Cr: bis zu 3 %,
    Co: bis zu 1 %,
    Ni: bis zu 2 %,
    B: bis zu 0,1 %,
    Cu: bis zu 3 %,
    Ca: bis zu 0,015 %,
    - wobei für das Verhältnis %Ti/%Nb des Ti-Gehalts %Ti und des Nb-Gehalts %Nb gilt
    2,5 ≥ %Ti/%Nb ≥ 1,5.
  2. Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass sein Al-Gehalt 6,5 - 10 Gew.-% beträgt.
  3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Al-Gehalt mehr als 6,8 Gew.-% beträgt.
  4. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein C-Gehalt höchstens 0,05 Gew.-% beträgt.
  5. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Nb-Gehalt 0,1 - 0,15 Gew.-% beträgt.
  6. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass die sein Ti-Gehalt 0,15 - 0,3 Gew.-% beträgt.
  7. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Gefüge 0 bis 0,1 Vol.-% κ-Karbide enthält.
  8. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein r-Wert mindestens 1,3 beträgt.
  9. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass in seinem Gefüge die Körner ein Verhältnis der Kornlängen in Walzrichtung zur Kornbreite in Querrichtung des Stahlflachprodukts < 1,5 aufweisen.
  10. Verfahren zum Erzeugen eines kaltgewalzten, für Tiefziehanwendungen vorgesehenen Stahlflachprodukts umfassend folgende Arbeitsschritte
    - Erschmelzen einer Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,008 - 0,1 %,

    Al: 6, 5 - 12 %,
    Nb: 0,1 - 0,2 %,
    Ti: 0,15 - 0,5 %,
    P: bis zu 0,1 %,
    S: bis zu 0,03 %,
    N: bis zu 0,1 %
    sowie optional eines oder mehrere Elemente aus der Gruppe "Mn, Si, Seltenerdmetalle, Mo, Cr, Zr, V, W, Co, Ni, B, Cu, Ca, N" mit der Maßgabe enthält,
    Mn: bis zu 1 %,
    Seltenerdmetalle: bis zu 0,2 %,
    Si: bis zu 2 %,
    Zr: bis zu 1 %,
    V: bis zu 1 %,
    W: bis zu 1 %,
    Mo: bis zu 1 %,
    Cr: bis zu 3 %,
    Co: bis zu 1 %,
    Ni: bis zu 2 %,
    B: bis zu 0,1 %,
    Cu: bis zu 3 %,
    Ca: bis zu 0,015 %,
    - wobei für das Verhältnis %Ti/%Nb des Ti-Gehalts %Ti und des Nb-Gehalts %Nb gilt 2,5 ≥ %Ti/%Nb ≥ 1,5;
    - Vergießen der Stahlschmelze zu einem Vorprodukt;
    - optional Durcherwärmen oder Halten des Vorprodukts auf eine 1000 - 1300 °C betragende Vorwärmtemperatur;
    - Warmwalzen des Vorprodukts zu einem Warmband, wobei die Warmwalzendtemperatur 820 - 1000 °C beträgt;
    - Haspeln des Warmbands zu einem Coil, wobei die Haspeltemperatur im Bereich der Raumtemperatur bis 750 °C liegt;
    - Glühen des Warmbands bei einer mehr als 650 °C und bis zu 1200 °C betragenden Glühtemperatur über eine Glühdauer von 1 - 50 h;
    - optional Beizen des Warmbands;
    - Kaltwalzen des geglühten und optional gebeizten Warmbands zu einem kaltgewalzten Stahlflachprodukt in ein oder mehr Stufen mit einem Gesamt-Kaltwalzgrad von mindestens 65 %;
    - Schlussglühen des kaltgewalzten Stahlflachprodukts bei einer 650 - 850 °C betragenden Schlussglühtemperatur.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Vorprodukt ein gegossenes Band ist.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Warmwalzendtemperatur 830 - 960 °C beträgt.
  13. Verfahren nach einem der Ansprüche 10 bis 12,
    dadurch gekennzeichnet, dass die Haspeltemperatur 450 - 750 °C beträgt.
  14. Verfahren nach einem der Ansprüche 10 bis 13,
    dadurch gekennzeichnet, dass das Warmbandglühen als Haubenglühen durchgeführt wird.
  15. Verfahren nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet, dass das Kaltwalzen zwei- oder mehrstufig durchgeführt wird und zwischen den Stufen des Kaltwalzens eine Zwischenglühung erfolgt.
EP13155225.9A 2013-02-14 2013-02-14 Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung Active EP2767601B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13155225.9A EP2767601B1 (de) 2013-02-14 2013-02-14 Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
JP2015557422A JP6383368B2 (ja) 2013-02-14 2014-02-13 深絞りを適用するための冷間圧延された平鋼製品及びそれを製造するための方法
PCT/EP2014/052810 WO2014125016A1 (de) 2013-02-14 2014-02-13 Kaltgewalztes stahlflachprodukt für tiefziehanwendungen und verfahren zu seiner herstellung
CN201910355506.7A CN110295317A (zh) 2013-02-14 2014-02-13 用于深冲应用的冷轧扁钢产品及其制造方法
CN201480021223.4A CN105121673A (zh) 2013-02-14 2014-02-13 用于深冲应用的冷轧扁钢产品及其制造方法
BR112015019413A BR112015019413A2 (pt) 2013-02-14 2014-02-13 produto plano de aço laminado a frio para aplicações de estampagem e método para a sua produção
KR1020157024979A KR102193066B1 (ko) 2013-02-14 2014-02-13 딥드로잉 적용을 위한 냉간압연 평강 제품 및 그 제조 방법
US14/767,741 US10513762B2 (en) 2013-02-14 2014-02-13 Cold-rolled flat steel product for deep drawing applications and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13155225.9A EP2767601B1 (de) 2013-02-14 2013-02-14 Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung

Publications (2)

Publication Number Publication Date
EP2767601A1 true EP2767601A1 (de) 2014-08-20
EP2767601B1 EP2767601B1 (de) 2018-10-10

Family

ID=47757329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13155225.9A Active EP2767601B1 (de) 2013-02-14 2013-02-14 Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung

Country Status (7)

Country Link
US (1) US10513762B2 (de)
EP (1) EP2767601B1 (de)
JP (1) JP6383368B2 (de)
KR (1) KR102193066B1 (de)
CN (2) CN110295317A (de)
BR (1) BR112015019413A2 (de)
WO (1) WO2014125016A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170002436A1 (en) * 2015-07-01 2017-01-05 Posco Ferritic lightweight steel sheet having excellent strength and ductility and method for manufacturing the same
WO2017021464A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester manganhaltiger stahl, verwendung des stahls für flexibel gewalzte stahlflachprodukte und herstellverfahren nebst stahlflachprodukt hierzu
DE102015116186A1 (de) 2015-09-24 2017-03-30 Thyssenkrupp Ag Halbzeug und Verfahren zur Herstellung einer Fahrzeugkomponente, Verwendung eines Halbzeugs und Fahrzeugkomponente
EP3225702A1 (de) 2016-03-29 2017-10-04 Deutsche Edelstahlwerke GmbH Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
WO2020078529A1 (de) * 2018-10-15 2020-04-23 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines no elektrobands mit zwischendicke
US11970757B2 (en) 2018-11-08 2024-04-30 Thyssenkrupp Steel Europe Ag Electric steel strip or sheet for higher frequency electric motor applications, with improved polarization and low magnetic losses

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
CN107254636B (zh) * 2017-05-02 2019-02-22 嘉禾福顺机械实业有限公司 一种泵用合金钢材料及其制备方法
CN113584406A (zh) * 2021-07-14 2021-11-02 武汉钢铁有限公司 一种csp工艺生产的防火门板用钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1044801A (en) * 1963-01-30 1966-10-05 Yawata Iron & Steel Co Improvements in or relating to aluminum steels
EP0826787A2 (de) * 1996-08-27 1998-03-04 Fried. Krupp AG Hoesch-Krupp Leichtbaustahl und seine Verwendung für Fahrzeugteile und Fassadenverkleidungen
JP2001271136A (ja) * 2000-03-27 2001-10-02 Nisshin Steel Co Ltd 耐高温酸化性に優れた溶融アルミニウムめっき鋼板及びその製造方法
JP2007321168A (ja) * 2006-05-30 2007-12-13 Jfe Steel Kk 高剛性低密度鋼板およびその製造方法
JP2010121213A (ja) * 2003-06-18 2010-06-03 Nippon Steel Corp 延性に優れた高強度低比重鋼板の製造方法
US20100300585A1 (en) * 2007-05-16 2010-12-02 Arcelormittal France Low-density steel having good drawability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334923A (en) 1980-02-20 1982-06-15 Ford Motor Company Oxidation resistant steel alloy
JP3790398B2 (ja) 1999-12-10 2006-06-28 新日本製鐵株式会社 加工部断面耐食性に優れた被覆鋼
JP2001271148A (ja) * 2000-03-27 2001-10-02 Nisshin Steel Co Ltd 耐高温酸化性に優れた高Al鋼板
DE10128544C2 (de) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs
CN1161488C (zh) * 2001-10-19 2004-08-11 大田精密工业股份有限公司 低密度高延展性铁基的高尔夫球铁杆头的合金材料及其应用
JP2005060728A (ja) * 2003-08-11 2005-03-10 Nippon Steel Corp 低比重溶融アルミめっき鋼板及びそのプレス加工方法
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金
JP4324072B2 (ja) * 2004-10-21 2009-09-02 新日本製鐵株式会社 延性に優れた軽量高強度鋼とその製造方法
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1044801A (en) * 1963-01-30 1966-10-05 Yawata Iron & Steel Co Improvements in or relating to aluminum steels
EP0826787A2 (de) * 1996-08-27 1998-03-04 Fried. Krupp AG Hoesch-Krupp Leichtbaustahl und seine Verwendung für Fahrzeugteile und Fassadenverkleidungen
JP2001271136A (ja) * 2000-03-27 2001-10-02 Nisshin Steel Co Ltd 耐高温酸化性に優れた溶融アルミニウムめっき鋼板及びその製造方法
JP2010121213A (ja) * 2003-06-18 2010-06-03 Nippon Steel Corp 延性に優れた高強度低比重鋼板の製造方法
JP2007321168A (ja) * 2006-05-30 2007-12-13 Jfe Steel Kk 高剛性低密度鋼板およびその製造方法
US20100300585A1 (en) * 2007-05-16 2010-12-02 Arcelormittal France Low-density steel having good drawability

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRUX U ET AL: "Light-weight steels based on iron-aluminium - Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties", STEEL RESEARCH, DUESSELDORF, DE, vol. 73, no. 12, 1 December 2002 (2002-12-01), pages 543 - 548, XP009170715, ISSN: 0177-4832 *
S. U. BRÜX: "Tiefziehfähige Eisen-Aluminium-Leichtbaustähle", KONSTRUKTION, 4 April 2002 (2002-04-04)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170002436A1 (en) * 2015-07-01 2017-01-05 Posco Ferritic lightweight steel sheet having excellent strength and ductility and method for manufacturing the same
WO2017021464A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester manganhaltiger stahl, verwendung des stahls für flexibel gewalzte stahlflachprodukte und herstellverfahren nebst stahlflachprodukt hierzu
DE102015116186A1 (de) 2015-09-24 2017-03-30 Thyssenkrupp Ag Halbzeug und Verfahren zur Herstellung einer Fahrzeugkomponente, Verwendung eines Halbzeugs und Fahrzeugkomponente
WO2017050558A1 (de) 2015-09-24 2017-03-30 Thyssenkrupp Steel Europe Ag Halbzeug und verfahren zur herstellung einer fahrzeugkomponente, verwendung eines halbzeugs und fahrzeugkomponente
EP3225702A1 (de) 2016-03-29 2017-10-04 Deutsche Edelstahlwerke GmbH Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
WO2017167778A1 (de) 2016-03-29 2017-10-05 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
WO2020078529A1 (de) * 2018-10-15 2020-04-23 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines no elektrobands mit zwischendicke
US11970757B2 (en) 2018-11-08 2024-04-30 Thyssenkrupp Steel Europe Ag Electric steel strip or sheet for higher frequency electric motor applications, with improved polarization and low magnetic losses

Also Published As

Publication number Publication date
US20160017467A1 (en) 2016-01-21
CN110295317A (zh) 2019-10-01
WO2014125016A1 (de) 2014-08-21
US10513762B2 (en) 2019-12-24
BR112015019413A2 (pt) 2017-07-18
JP6383368B2 (ja) 2018-08-29
KR102193066B1 (ko) 2020-12-21
JP2016511795A (ja) 2016-04-21
EP2767601B1 (de) 2018-10-10
KR20150119230A (ko) 2015-10-23
CN105121673A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
EP2767601B1 (de) Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
EP2031081B1 (de) Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
EP1918406B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
EP2489748B1 (de) Aus einem Komplexphasenstahl hergestelltes warmgewalztes Stahlflachprodukt und Verfahren zu dessen Herstellung
EP1807542A1 (de) Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels &#34;direct strip casting &#34;
EP3332046B1 (de) Hochfester aluminiumhaltiger manganstahl, ein verfahren zur herstellung eines stahlflachprodukts aus diesem stahl und hiernach hergestelltes stahlflachprodukt
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
DE102015112889A1 (de) Hochfester manganhaltiger Stahl, Verwendung des Stahls für flexibel gewalzte Stahlflachprodukte und Herstellverfahren nebst Stahlflachprodukt hierzu
EP2767602B1 (de) Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
WO2015117934A1 (de) Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
EP3504349A1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
EP1918405B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Silizium legierten Mehrphasenstahl
DE102016117508B4 (de) Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
EP1398390B1 (de) Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge
EP3658307B9 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
EP3847284B1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
EP3405593B1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
EP3469108A1 (de) Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl
EP1411140B1 (de) Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
DE2636553B2 (de) Alterungsbeständiger Tiefziehstahl mit sehr niedriger Streckgrenzenfestigkeit und Verfahren zu seiner Herstellung
WO2019185108A1 (de) Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/14 20060101ALI20180115BHEP

Ipc: C22C 38/12 20060101ALI20180115BHEP

Ipc: C21D 9/48 20060101ALI20180115BHEP

Ipc: C21D 8/04 20060101AFI20180115BHEP

Ipc: C22C 38/06 20060101ALI20180115BHEP

Ipc: C21D 6/00 20060101ALI20180115BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180305

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 6/00 20060101ALI20180723BHEP

Ipc: C21D 8/02 20060101ALI20180723BHEP

Ipc: C21D 8/04 20060101AFI20180723BHEP

Ipc: C22C 38/14 20060101ALI20180723BHEP

Ipc: C22C 38/12 20060101ALI20180723BHEP

Ipc: C21D 9/48 20060101ALI20180723BHEP

Ipc: C22C 38/06 20060101ALI20180723BHEP

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20180820

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011261

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011261

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1051310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228