EP2758159A1 - Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren - Google Patents

Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren

Info

Publication number
EP2758159A1
EP2758159A1 EP12759718.5A EP12759718A EP2758159A1 EP 2758159 A1 EP2758159 A1 EP 2758159A1 EP 12759718 A EP12759718 A EP 12759718A EP 2758159 A1 EP2758159 A1 EP 2758159A1
Authority
EP
European Patent Office
Prior art keywords
dispersant
hydrolyzate
dispersion
protein
protein hydrolyzate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12759718.5A
Other languages
English (en)
French (fr)
Inventor
Gerd Dahms
Andreas Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
OTC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTC GmbH filed Critical OTC GmbH
Publication of EP2758159A1 publication Critical patent/EP2758159A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/016Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • C09B67/0066Aqueous dispersions of pigments containing only dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/32Protein hydrolysates; Fatty acid condensates thereof

Definitions

  • the present invention relates to a process for preparing a dispersion and to the use of a protein hydrolyzate as dispersant or dispersant.
  • the invention relates to a process for preparing a suspension and to the use of a protein hydrolyzate as a dispersant in a suspension.
  • Dispersions play an important role in a wide variety of technical fields.
  • the dispersion generally refers to heterogeneous mixtures of otherwise non-dissolvable substances. These can be both mixtures of substances of the same physical state, as well as mixtures of substances of different physical states.
  • the material to be distributed in a medium is referred to as a dispersed or disperse phase during which the medium in which the disperse phase is to be distributed is referred to as a dispersant or dispersant.
  • a mixture solid / solid
  • a suspension solid / liquid
  • an emulsion liquid / liquid
  • Other forms of dispersion are foams (gas / liquid) and aerosols (liquid / gas).
  • Dispersion can also be distinguished with regard to the particle size of the disperse phase.
  • a particle size of the disperse phase ⁇ lnm one speaks of a mole OD 41694 / UAM kular disperse dissolved phase, with a particle size between lnm and ⁇ generally of a colloidally dissolved phase and with a particle size of> ⁇ of a coarsely disperse dissolved phase.
  • a technically important form of the dispersions are the suspensions, ie the mixtures of solids in liquids.
  • the liquids may be both aqueous systems and hydrophobic substances such as oils. Examples of technically used suspensions are wall or top coats.
  • suspensions are used, for example, in flotation, as used in the field of ore or coal processing or papermaking. Also in the field of detergent technology suspensions play a crucial role, since here dirt particles of the tissue to be cleaned must be transferred to the wash liquor.
  • surfactants are used as dispersants for the preparation of dispersions.
  • Tensides have the property of lowering the interfacial tension between two different phases in a system. This property is evoked by the fact that surfactants have hydrophilic and hydrophobic regions in their molecular structure. While, for example, in an aqueous dispersion, the hydrophilic regions of the surfactant align with the aqueous phase, the hydrophobic regions align with the disperse phase, for example a solid.
  • the interfacial tension prevailing between the immiscible phases is reduced to such an extent that a corresponding distribution of the disperse phase in the dispersion medium is made possible.
  • surfactants have in their molecular structure on a polar, hydrophilic part and a nonpolar hydrophobic part. Depending on the charge of the polar portion of the molecular structure, a distinction is made between nonionic, anionic, cationic and amphoteric surfactants.
  • Another class of compounds that is used as a surface-active dispersant are the poloxamers. Poloxamers are block copolymers of ethylene oxide and propylene oxide which have hydrophilic and hydrophobic regions. The ethylene oxide units form the hydrophilic part, while the propylene oxide units form the hydrophobic part, resulting in the amphiphilic properties.
  • the poloxamers are low-foaming and foam-damping nonionic surfactants which are used for dispersion and emulsification in the chemical-technical industry.
  • a disadvantage of the poloxamers in particular is that they often have only a very limited biodegradability.
  • protein hydrolysates are suitable as dispersants for the preparation of dispersions.
  • Proteins serve as a material carrier of life and can be found among others as contractile proteins in muscles, collagen fibers in tendons and connective tissue, keratins in skin and hair or feathers. As a raw material base, they are available in very large quantities and can be converted by hydrolysis into protein hydrolysates.
  • Proteins themselves are made up of amino acids, which are linked to form chains via peptide bonds.
  • the chains thus formed orient themselves over hydrogen bonds. bonds in their secondary structure in helices, ⁇ -sheets, ⁇ -loops, or random-coil structures, which in turn are oriented in their tertiary structure via disulfide bridges.
  • the hitherto known proteinogenic amino acids from which proteins are formed have the following general basic structure:
  • All protein amino acids are oc-amino acids, i. they carry an amino group in ⁇ -position to the carboxyl group.
  • the individual amino acids differ in their residues R.
  • the amino acids can be divided into 4 groups: - Amino acids with nonpolar side groups. These include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan and proline.
  • a corresponding protein hydrolyzate has a surfactant character with hydrophilic and hydrophobic areas, similar to the surfactant-like poloxamers having. Similar to surfactant systems, protein hydrolyzates are able to reduce the surface tension of a liquid or the interfacial tension between two phases and to facilitate or assist the formation of dispersions.
  • the individual hydrolyzate molecules are arranged at a critical concentration and form aggregates of micelles within the water.
  • the critical micelle formation concentration can be uniquely determined.
  • Protein hydrolyzates with a surface-active structure similar to those of the block copolymers are in contrast to these rapidly biodegradable and can be produced with little energy from renewable natural resources.
  • the use of the method according to the invention thus results in both economic and clear ecological advantages.
  • water, an aqueous solution or a hydrophobic solvent is provided as the dispersion medium.
  • Aqueous solution in the sense of this invention means a system with a predominant proportion of water. This may include aqueous emulsions.
  • Hydrophobic solvents in the context of the invention are, for example, lipids in general, higher alcohols and nonpolar organic solvents. In particular, for the purposes of the invention, hydrophobic solvents also include oils and fats, such as, for example, mono-, di- or triglycerides.
  • the disperse phase is a solid or a liquid which is immiscible in the dispersant provided. ge phase provided.
  • the inventive method is suitable to prepare both suspensions, and emulsions.
  • the particle size of the disperse phase can be according to the invention between 1 nm and 1 mm.
  • a hydrolyzate of a protein having a successive sequence of amino acids with polar and nonpolar side groups is provided as protein hydrolyzate.
  • a keratin hydrolyzate is provided as a dispersant.
  • keratin hydrolysates show sequences of amino acids having a structure similar to the poloxamers.
  • the dispersant can in the process according to the invention in a concentration between> 1 wt .-% and ⁇ 50 wt .-, preferably between> 3 wt .- and ⁇ 35 wt .-, more preferably between> 5 wt .- and ⁇ 25 wt .- be used.
  • the invention relates to the use of protein hydrolysates as a dispersant, wetting agent, flotation agent and / or as a washing-active ingredient in a detergent.
  • protein hydrolysates can also be used as wetting agents, flotation agents and / or as detergent components in detergents on account of their surfactant properties.
  • the use of the described protein hydrolysates as detergent components in detergents gives rise to immense ecological but also economic advantages.
  • the protein underlying the protein hydrolyzate preferably has a successive sequence of amino acids with polar and nonpolar side groups.
  • protein hydrolysates Due to the high bioavailability of proteins such as keratin, corresponding protein hydrolysates can be made available in large quantities at very reasonable prices. In addition, protein hydrolysates are completely biodegradable and thus do not pose an environmental burden.
  • the protein hydrolyzate as a dispersant in a pigment-containing dispersion, preferably in a dispersion paint or a
  • Dispersion varnish or an oil-based pigment-containing dispersion such as a sunscreen cream to use.
  • the protein hydrolyzate may be used as a wetting agent in a composition for cleaning, e.g. used by vehicle rims.
  • a wetting agent with excellent dispersing properties in order to achieve a sufficient cleaning effect.
  • many substances that are of environmental concern and often irritating to the skin such as phosphoric acid, have been used to loosen the dirt adhering to the rims.
  • the phosphoric acid may also cause damage, for example, to alloy wheels due to chemical reactions between the acid and the rim material. It has been shown that protein hydrolysates, in particular
  • Keratinhydrolysate are able to ensure a sufficient cleaning effect even in basic, far less aggressive compositions.
  • a protein hydrolyzate such as a keratin hydrolyzate can be used advantageously.
  • large amounts of surfactants are used to produce the desired ores / coals clean up and separate from the dead stone. This is done especially at the place of ore extraction, which is often in developing countries.
  • Protein hydrolysates and, in particular, keratin hydrolysates offer the advantage here that they are completely biodegradable and thus the danger of drinking water contamination can be reduced.
  • slaughterhouse waste such as feathers, such as are produced in very large quantities in poultry processing
  • corresponding protein hydrolysates can serve as starting material for the provision of corresponding protein hydrolysates.
  • These can be converted by suitable hydrolysis processes into the corresponding hydrolyzate, which can then be provided as a solution or in freeze-dried form.
  • titanium dioxide powder (UV titanium M262, Sachtleben GmbH) is added to an aqueous solution of a keratin hydrolyzate having a hydrolyzate content of 25% by weight.
  • the ratio of aqueous keratin hydrolyzate solution to titanium dioxide powder is 60% by weight to 40% by weight.
  • the resulting mixture is homogenized with a dissolver disc or a wire stirrer as a stirring tool at a rotational speed between 2 and 10 m / s.
  • a stable titanium dioxide dispersion is obtained.
  • a freeze-dried pulverulent keratin hydrolyzate in a ratio by weight of 1/10 is added to a caprylic acid / capric acid triglyceride mixture (Rofetan GTCC, Univar GmbH).
  • the phase thus obtained is added to a titanium dioxide powder (UV titanium M262, Sachtleben GmbH).
  • the resulting mixture is homogenized with a dissolver disc or a wire stirrer as a stirring tool at a rotational speed between 2 and 10 m / s and it is added with continued homogenization 5 parts by weight of water.
  • a stable oil-based titanium dioxide dispersion is obtained.
  • UV-Titan M161 Sachtleben GmbH Titanium Dioxide, Alumina, Stearic 40,00
  • Zinc oxide powder (Z-Cote, BASF AG) is added at room temperature to an aqueous solution of a keratin hydrolyzate having a hydrolyzate content of 25% by weight.
  • the ratio of aqueous keratin hydrolyzate solution to zinc oxide powder is 60% by weight to 44% by weight.
  • the resulting mixture is homogenized with a dissolver disc or a wire stirrer as a stirring tool at a rotational speed between 4 and 8 m / s.
  • a stable zinc oxide dispersion is obtained.
  • Zinc oxide powder (Z-Cote MAX, BASF AG) is added at room temperature to an aqueous solution of a keratin hydrolyzate having a hydrolyzate content of 25% by weight.
  • the ratio of aqueous keratin hydrolyzate solution to zinc oxide powder is 60% by weight to 40% by weight.
  • the resulting mixture is homogenized with a dissolver disc or a wire stirrer as a stirring tool at a rotational speed between 4 and 8 m / s.
  • a stable zinc oxide dispersion is obtained.
  • 30% by weight of an aqueous keratin hydrolyzate having a hydrolyzate content of 25% by weight are mixed with 10% by weight of 1,3-butanediol, 10% by weight of a carylyl / capric glucoside, 1% by weight of sodium hydrogensulfide, 1% by weight of potassium hydroxide and 48 wt.
  • the resulting mixture showed excellent cleaning action against common oil and Teerverschmutzache.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Dispersion sowie die Verwendung eines Proteinhydrolysates als Dispergator bzw. Dispergiermittel. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung einer Suspension sowie die Verwendung eines Proteinhydrolysates als Dispergator in einer Suspension. Erfindungsgemäß wird dabei vorgeschlagen, als Dispergatoren insbesondere Hydrolysate von Proteinen mit einer aufeinanderfolgenden Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen einzusetzen.

Description

Verfahren zur Herstellung einer Dispersion und Verwendung von Proteinhydrolysaten als
Dispergatoren
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Dispersion sowie die Verwendung eines Proteinhydrolysates als Dispergator bzw. Dispergiermittel. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung einer Suspension sowie die Verwendung eines Proteinhydrolysates als Dispergator in einer Suspension.
Dispersionen spielen in den unterschiedlichsten Bereichen der Technik eine wichtige Rolle. Als Dispersion im Allgemeinen werden heterogene Gemische von ansonsten nicht ineinander lösbaren Stoffen bezeichnet. Dabei kann es sich sowohl um Mischungen von Stoffen gleichen Aggregatzustandes, wie auch um Mischungen von Stoffen unterschiedlicher Aggregatzustän- de handeln. Der in einem Medium zu verteilende Stoff wird als dispergierte oder disperse Phase bezeichnet, während der das Medium, in welchem die disperse Phase verteilt werden soll als Dispersionsmittel oder Dispergens bezeichnet wird. Je nach Aggregatzustand von disperser Phase und Dispergens wird dabei von einem Gemenge (Feststoff/Feststoff), einer Suspension (Feststoff/ Flüssigkeit) oder einer Emulsion (Flüssigkeit/Flüssigkeit) gesprochen. Weitere Formen der Dispersion sind Schäume (Gas/Flüssigkeit) und Aerosole (Flüssigkeit/Gas).
Dispersion lassen sich darüber hinaus hinsichtlich der Teilchengröße der dispersen Phase unterscheiden. Bei einer Teilchengröße der dispersen Phase < lnm spricht man von einer mole- OD 41694 / UAM kular dispers gelösten Phase, bei einer Teilchengröße zwischen lnm und Ιμηι im Allgemeinen von einer kolloid gelösten Phase und bei einer Teilchengröße von > Ιμιη von einer grob dispers gelösten Phase. Eine technisch wichtige Form der Dispersionen bilden die Suspensionen, also die Mischungen von Feststoffen in Flüssigkeiten. Dabei kann es sich bei den Flüssigkeiten sowohl um wässri- ge Systeme, als auch um hydrophobe Stoffe wie beispielsweise Öle handeln. Beispiele für technisch eingesetzte Suspensionen sind Wand- oder Deckfarben. Darüber hinaus werden Suspensionen beispielsweise bei der Flotation, wie sie im Bereich der Erz- oder Kohleaufbe- reitung oder der Papierherstellung Anwendung findet, eingesetzt. Auch im Bereich der Waschmitteltechnik spielen Suspensionen eine entscheidende Rolle, da hier Schmutzpartikel des zu reinigenden Gewebes in die Waschflotte überführt werden müssen.
Bisher werden als Dispergatoren zur Herstellung von Dispersionen Tenside eingesetzt. Tensi- de besitzen die Eigenschaft, die Grenzflächenspannung zwischen zwei unterschiedlichen Phasen in einem System herabzusetzen. Hervorgerufen wird diese Eigenschaft dadurch, dass Tenside hydrophile und hydrophobe Bereiche in ihrer Molekularstruktur aufweisen. Während sich zum Beispiel in einer wässrigen Dispersion die hydrophilen Bereiche des Tensids zur wässrigen Phase hin ausrichten, richten sich die hydrophoben Bereiche zur dispersen Phase, beispielsweise einem Feststoff, hin aus. Durch diese Art der Ausrichtung wird die zwischen den nicht mischbaren Phasen herrschende Grenzflächenspannung soweit herabgesetzt, dass ein entsprechende Verteile der dispersen Phase im Dispersionsmittel ermöglicht wird.
Alle Tenside weisen in ihrer Molekularstruktur einen polaren, hydrophilen Teil sowie einen unpolaren hydrophoben Teil auf. Je nach Ladung des polaren Abschnittes der Molekularstruktur unterscheidet man nichtionische, anionische, kationischen und amphotere Tensid. Eine weitere Verbindungsklasse, welche als oberflächenaktives Dispergens genutzt wird sind die Poloxamere. Poloxamere sind Blockcopolymere aus Ethylenoxid und Propylenoxid, welche über hydrophile und hydrophobe Bereiche verfügen. Die Ethylenoxid Einheiten bilden dabei den hydrophilen Teil, während die Propylenoxid-Einheiten den hydrophoben Teil aus- bilden, so dass sich die amphiphilen Eigenschaften ergeben. Bei den Poloxameren handelt sich um schaumarme und schaumdämpfende nichtionische Tenside, die zur Dispergierung und Emulgierung in der chemisch-technischen Industrie Anwendung finden.
Ein Nachteil insbesondere der Poloxamere ist, dass diese vielfach nur eine sehr begrenzte biologische Abbaubarkeit besitzen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein alternatives Verfahren zur Herstellung einer Dispersion anzugeben. Gelöst wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1. Ausgestaltungen des erfindungsgemäßen Verfahren finden sich in den Unteransprüchen sowie der nachfolgenden Beschreibung.
Überraschender Weise hat sich gezeigt, dass sich Proteinhydrolysate als Dispergatoren zur Herstellung von Dispersionen eignen.
Proteine dienen als stoffliche Träger des Lebens und sind unter anderem als kontraktile Eiweiße in Muskeln, Kollagenfasern in Sehnen und Bindegewebe, Keratine in Haut und Haaren oder Federn zu finden. Als Rohstoffbasis sind sie in sehr großer Menge verfügbar und lassen sich mittels Hydrolyse in Proteinhydrolysate überführen.
Proteine selbst sind aus -Aminosäuren aufgebaut, die über Peptidbindungen zu Ketten miteinander verbunden sind. Die so gebildeten Ketten orientieren über sich Wasserstoffbrücken- bindungen in ihrer Sekundärstruktur in -Helices, ß-Faltblatt, ß-Schleifen, oder Random-Coil Strukturen, welche sich wiederum in ihrer Tertiärstruktur über Disulfidbrücken orientieren. Die bisher bekannten proteinogenen Aminosäuren, aus welchen Proteine gebildet werden, weisen die folgende allgemeine Grundstruktur auf:
COOH
H2N C H
R Alle in Proteinen vorkommenden Aminosäuren sind oc- Aminosäuren, d.h. sie tragen eine Aminogruppe in α-Stellung zur Carboxylgruppe. Die einzelnen Aminosäuren unterscheiden sich in ihren Reste R. Nach diesen unterschiedlichen Seitengruppen kann man die Aminosäuren in 4 Gruppen einteilen: - Aminosäuren mit unpolaren Seitengruppen. Dazu gehören Glyzin, Alanin, Valin, Leucin, Isoleucin, Methionin, Phenylalanin, Tryptophan und Prolin.
- Aminosäuren mit polaren, aber ungeladenen Seitengruppen. Dazu gehören Serin, Threonin, Cystein, Tyrosin, Asparagin und Glutamin.
- Aminosäuren mit polaren basischen Seitengruppen. Dazu gehören Lysin, Arginin und Histi- din.
- Aminosäuren mit polaren sauren Seiten gruppen. Dazu gehören Asparaginsäure und Gluta- minsäure.
Überraschender Weise hat sich gezeigt, dass, wenn es bei der Anordnung der verschiedenen Aminosäuren zu aufeinanderfolgenden Sequenzen von Aminosäuren mit unpolaren und pola- ren Seitengruppen kommt, ein entsprechendes Protein-Hydrolysat einen Tensidcharakter mit hydrophilen und hydrophoben Bereichen, ähnlich den tensidartigen Poloxamere, aufweist. Ähnlich wie bei tensidischen Systemen sind Proteinhydrolysate in der Lage, die Oberflächenspannung einer Flüssigkeit oder die Grenzflächenspannung zwischen zwei Phasen herabzu- setzen und die Bildung von Dispersionen zu ermöglichen oder zu unterstützen.
Gibt man beispielsweise ein Proteinhydrolysat, das Aminosäuren mit aufeinanderfolgenden Sequenzen von Aminosäuren mit unpolaren und polaren Seitengruppen aufweist, in Wasser, so ordnen sich ab einer kritischen Konzentration die einzelnen Hydrolysatmoleküle und bil- den innerhalb des Wassers Aggregate aus Mizellen. Über Grenzflächenspannungsmessungen kann die kritische Mizellbildungskonzentration eindeutig bestimmt werden.
Proteinhydrolysate mit einem tensidischen Aufbau ähnlich dem der Blockcopolymere sind im Gegensatz zu diesen schnell biologisch abbaubar und unter geringem Energieaufwand aus nachwachsenden natürlichen Ressourcen herstellbar. Durch den Einsatz des erfindungs gemäßen Verfahrens ergeben sich so sowohl ökonomische als auch deutliche ökologische Vorteile.
In einer Ausgestaltung des erfindungs gemäßen Verfahrens wird als Dispersionsmittel Wasser, eine wässrige Lösung oder ein hydrophobes Lösungsmittel bereitgestellt. Wässrige Lösung im Sinne dieser Erfindung bedeutet dabei ein System mit einem überwiegenden Wasseranteil. Hierunter können auch wässrige Emulsionen fallen. Hydrophobe Lösungsmittel im Sinne der Erfindung sind beispielsweise Lipide im Allgemeinen, höherwertige Alkohole, und unpolare organische Lösungsmittel. Insbesondere werden im Sinne der Erfindung unter hydrophoben Lösungsmitteln auch Öle und Fette, wie beispielsweise Mono-, Di-, oder Triglyceride ver- standen.
Gemäß einer weiteren Ausgestaltung des erfindungs gemäßen Verfahrens wird als disperse Phase ein Feststoff oder eine in dem bereitgestellten Dispersionsmittel nicht mischbare flüssi- ge Phase bereitgestellt. Insoweit ist das erfindungsgemäße Verfahren geeignet sowohl Suspensionen, als auch Emulsionen herzustellen. Im Falle der Suspension kann die Teilchengröße der dispersen Phase erfindungs gemäß zwischen 1 nm und 1 mm liegen. Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird als Proteinhydrolysat ein Hydrolysat eines Proteins mit einer aufeinanderfolgenden Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen bereitgestellt. Überraschender Weise hat sich gezeigt, dass insbesondere Hydrolysate von Proteinen mit einer entsprechenden aufeinanderfolgenden Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen ge- eignet sind, eine Tensidwirkung zu entfalten.
In einer weiteren Ausgestaltung des erfindungs gemäßen Verfahrens wird als Dispergator ein Keratinhydrolysat bereitgestellt. Insbesondere Keratinhydrolysate zeigen Sequenzen von Aminosäuren, die eine zu den Poloxameren ähnliche Struktur aufweisen.
Der Dispergator kann in dem erfindungsgemäßen Verfahren in einer Konzentration zwischen >1 Gew.-% und <50 Gew.- , bevorzugt zwischen >3 Gew.- und <35 Gew.- , noch bevorzugter zwischen >5 Gew.- und <25 Gew.- eingesetzt werden. Neben dem zuvor beschriebenen Verfahren betrifft die Erfindung die Verwendung von Proteinhydrolysaten als Dispergator, Netzmittel, Flotationsmittel und/oder als waschaktiver Bestandteil in einem Waschmittel.
Überraschender Weise hat sich gezeigt, dass Proteinhydrolysate neben ihrer Eignung als Dispergatoren aufgrund ihrer tensidischen Eigenschaften auch als Netzmittel, Flotationsmittel und/oder als waschaktive Bestandteile in Waschmitteln eingesetzt werden können. Insbesondere durch die Verwendung der beschriebenen Proteinhydrolysate als waschaktive Bestandteile in Waschmitteln ergeben sich immense ökologische aber auch ökonomische Vorteile. Bevorzugt weist dabei das dem Proteinhydrolysat zugrundeliegende Protein eine aufeinanderfolgende Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen auf.
Aufgrund der hohen Bioverfügbarkeit von Proteinen wie beispielsweise Keratin können ent- sprechende Proteinhydrolysate in großen Mengen zu sehr günstigen Preisen verfügbar gemacht werden. Darüber hinaus sind Proteinhydrolysate vollständig biologisch abbaubar und stellen somit keine Umweltbelastung dar.
So ist es beispielsweise in vorteilhafter Weise möglich, das Proteinhydrolysat als Dispergator in einer Pigment-haltigen Dispersion, vorzugsweise in einer Dispersionsfarbe oder einem
Dispersionslack oder einer ölbasierten Pigment-haltigen Dispersion, wie beispielsweise einer Sonnenschutzcreme zu verwende.
Auch kann das Proteinhydrolysat als Netzmittel in einer Zusammensetzung zur Reinigung, z.B. von Fahrzeugfelgen verwendet werden. Insbesondere die an Fahrzeugfelgen auftretende Verschmutzung aus Bremsabrieb, Öl, Teer und Gummiresten bedarf eines Netzmittels mit hervorragenden Dispergiereigenschaften, um eine hinreichenden Reinigungseffekt zu erzielen. Bisher wurden dabei vielfach umwelttechnisch bedenkliche und vielfach auch hautreizende Stoffe, wie beispielsweise Phosphorsäure eingesetzt, um den an den Felgen anhaften- den Schmutz zu lösen. Dabei kann es durch die Phosphorsäure auch zu Beschädigungen beispielsweise an Leichtmetallfelgen durch chemische Reaktionen zwischen der Säure und dem Felgenmaterial kommen. Es hat sich gezeigt, dass Proteinhydrolysate, insbesondere
Keratinhydrolysate, in der Lage sind, eine hinreichende Reinigungswirkung auch in basischen, weit weniger aggressiven Zusammensetzungen zu gewährleisten.
Auch als Flotationshilfsmittel bei der Aufbereitung von Kohlen und/oder Erzen kann ein Proteinhydrolysat, wie beispielsweise ein Keratinhydrolysat vorteilhaft verwendet werden. In diesem Bereich werden große Mengen Tenside eingesetzt, um die gewünschten Erze/Kohlen aufzureinigen und vom tauben Gestein zu trennen. Dies erfolgt insbesondere am Ort der Erzgewinnung, der vielfach in Entwicklungsländern liegt. Hier sind oftmals nur sehr unzulängliche Mittel zur Trinkwasseraufbereitung gegeben, so dass es nicht ausgeschlossen werden kann, dass in den Wasserkreislauf gelangende Tenside ihren Weg in das Trinkwasser finden. Proteinhydrolysate und insbesondere Keratinhydrolysate bieten hier den Vorteil, dass sie vollständig biologisch abbaubar sind und somit die Gefahr eine Trinkwasserkontamination reduziert werden kann.
Als Ausgangsrohstoff für die Bereitstellung entsprechender Proteinhydrolysate können bei- spielsweise Schlachtabfälle wie Federn dienen, wie sie in sehr großen Mengen in der Geflügelverarbeitung anfallen. Diese können durch geeignete Hydrolyseprozesse in das entsprechende Hydrolysat überführt werden, welches dann als Lösung oder in gefriergetrockneter Form bereitgestellt werden kann. Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.
Beispiel 1:
Wässrige Titandioxid Dispersion
Bei Raumtemperatur wird zu einer wässrigen Lösung eines Keratinhydrolysates mit einem Hydroly satanteil von 25 Gew.- wird Titandioxid-Pulver (UV-Titan M262, Sachtleben GmbH) zugesetzt. Das Verhältnis von wässriger Keratinhydrolysat-Lösung zu Titandioxidpulver beträgt 60 Gew.- zu 40 Gew.- . Die erhaltene Mischung wird mit einer Dissolverscheibe oder einem Drahtrührer als Rührwerkzeug bei einer Umlaufgeschwindigkeit zwischen 2 und 10 m/s homogenisiert. Es wird eine stabile Titandioxid Dispersion erhalten.
Handelsname Hersteller CTFA/INCI [Gew.- ]
Phase A Keratinhydrolysat (25%) OTC GmbH Hydrolyzed Keratin 60,00
Phase B
UV-Titan M262 Sachtleben GmbH Titanium Dioxide, Alumina, Dimethicone 40,00
Summe: 100,00
Beispiel 2:
Ölbasierte Titandioxid Dispersion
Bei Raumtemperatur wird zu einer Caprylsäure/Caprinsäure Triglycerid Mischung (Rofetan GTCC, Univar GmbH) ein gefriergetrocknetes pulverförmiges Keratinhydrolysates in einem Gew.- Verhältnis von 1/10 gegeben. Der so erhaltenen Phase wird ein Titandioxid-Pulver (UV-Titan M262, Sachtleben GmbH) zugesetzt. Die erhaltene Mischung wird mit einer Dissolverscheibe oder einem Drahtrührer als Rührwerkzeug bei einer Umlaufgeschwindigkeit zwischen 2 und 10 m/s homogenisiert und er werden unter fortgesetzter Homogenisierung 5 Gew.- Wasser zugesetzt. Es wird eine stabile ölbasierte Titandioxid-Dispersion erhalten.
Handelsname Hersteller CTFA INCI [Gew.-%]
Phase A
Keratinhydrolysat Pulver OTC GmbH Hydrolyzed Keratin 5,00
Rofetan GTCC Univar GmbH Caprylic/Capric Triglyceride 50,00
Phase B
UV-Titan M161 Sachtleben GmbH Titanium Dioxide, Alumina, Stearic 40,00
Acid
Phase C
demin. Wasser Aqua/W ater 5,00
Summe: 100,00 Beispiel 3
Wässrige Zinkoxid Dispersion
A: Bei Raumtemperatur wird zu einer wässrigen Lösung eines Keratinhydrolysates mit einem Hydroly satanteil von 25 Gew.- wird Zinkoxid-Pulver (Z-Cote, BASF AG) zugesetzt. Das Verhältnis von wässriger Keratinhydrolysat-Lösung zu Zinkoxidpulver beträgt 60 Gew.- % zu 44 Gew.- . Die erhaltene Mischung wird mit einer Dissolverscheibe oder einem Drahtrührer als Rührwerkzeug bei einer Umlaufgeschwindigkeit zwischen 4 und 8 m/s homogenisiert. Es wird eine stabile Zinkoxid Dispersion erhalten.
B: Bei Raumtemperatur wird zu einer wässrigen Lösung eines Keratinhydrolysates mit einem Hydroly satanteil von 25 Gew.-% wird Zinkoxid-Pulver (Z-Cote MAX, BASF AG) zugesetzt. Das Verhältnis von wässriger Keratinhydrolysat-Lösung zu Zinkoxidpulver beträgt 60 Gew.- zu 40 Gew.- . Die erhaltene Mischung wird mit einer Dissolverscheibe oder einem Drahtrührer als Rührwerkzeug bei einer Umlaufgeschwindigkeit zwischen 4 und 8 m/s homogenisiert. Es wird eine stabile Zinkoxid Dispersion erhalten.
Handelsname Hersteller CTFA/INCI [Gew.-%] [Gew.-
%]
A B
Phase A
Keratinhydrolysat OTC GmbH Hydrolyzed Keratin 56,00 60,00
(25%)
Phase B
Z-Cote BASF Zinc Oxide 44,00 0,00
Z-Cote Max BASF Zinc Oxide, Diphenyl Capryl 0,00 40,00
Methicone
Summe: 100,00 100,00 Beispiel 4:
Felgenreiniger
30 Gew.- eines wässrigen Keratinhydrolysates mit einem Hydrolysatanteil von 25 Gew.- werden mit 10 Gew.- 1,3-Butandiols, 10 Gew.- eines Carylyl/Capryl Glucosides, 1 Gew.- % Natriumhydrogensulfid, 1 Gew.- Kaliumhydroxid und 48 Gew.- Wasser gemischt, um einen Reinigungsmittel insbesondere zur Reinigung von Fahrzeugfelgen bereitzustellen. Die erhaltene Mischung zeigte hervorragende Abreinigungswirkung gegenüber üblich Öl- und Teerverschmutzungen.
Handelsname Hersteller CTFA/INCI [Gew.-%]
Phase A
Keratinhydrolysat (25%) OTC GmbH Hydrolyzed Keratin 30,00
1,3 Butandiol Merck KGaA Butylene Glycol 10,00
Plantacare 810 UP Cognis Deutschland GmbH Caprylyl/Capryl Glucoside 10,00
Natriumhydrosulfit N Brüggemann Sodium Hydrosulfite 1,00
KOH-Plätzchen Merck KGaA Potassium Hydroxide 1,00 demin. Wasser Aqua/W ater 48,00
Summe: 100,00

Claims

Patentansprüche
1. Verfahren zum Dispergieren einer dispersen Phase in einem flüssigen Dispersionsmittel, aufweisend die Verfahrensschritte:
- Bereitstellen eines flüssigen Dispersionsmittels,
- Bereitstellen einer dispersen Phase
- Bereitstellen eines Dispergators, und
- Mischen der dispersen Phase mit dem flüssigen Dispersionsmittel unter Zugabe des Dispergators,
dadurch gekennzeichnet, dass als Dispergator ein Proteinhydrolysat zugegeben wird.
2. Verfahren nach Anspruch 1, wobei als Dispersionsmittel Wasser, eine wässrige Lösung oder ein hydrophobes Lösungsmittel bereitgestellt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei als disperse Phase ein Feststoff oder eine in dem bereitgestellten Dispersionsmittel nicht mischbare flüssige Phase bereitgestellt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei als Proteinhydrolysat ein Hydrolysat eines Proteins mit einer aufeinanderfolgenden Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen bereitgestellt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei als ein Proteinhydrolysat ein Keratinhydrolysat bereitgestellt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Dispergator der herzustellenden Dispersion in einer Konzentration zwischen >1 Gew.- und <50 Gew.- , bevorzugt zwischen >3 Gew.- und <35 Gew.- , noch bevorzugter zwischen >5 Gew.- und <25 Gew.- zugegeben wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei als disperse Phase ein Pigment bereitgestellt wird.
8. Verfahren nach Anspruch 7, wobei als disperse Phase Titandioxid und/oder Zinkoxid bereitgestellt wird.
9. Verwendung eines Proteinhydrolysates als Dispergator, Netzmittel, Flotationshilfsmittel und/oder als waschaktiver Bestandteil in einem Waschmittel.
10. Verwendung gemäß Anspruch 9, wobei das dem Proteinhydrolysat zugrundeliegende Protein eine aufeinanderfolgende Sequenz von Aminosäuren mit polaren und unpolaren Seitengruppen aufweist.
11. Verwendung nach einem der Ansprüche 9 oder 10, wobei das Proteinhydrolysat ein Keratinhydrolysat ist.
12. Verwendung nach einem der Ansprüche 9 bis 11, wobei das Proteinhydrolysat als Dispergator in einer Pigment-haltigen Dispersion, vorzugsweise in einer Dispersions- färbe oder einem Dispersionslack oder einer ölbasierten Pigment-haltigen Dispersion verwendet wird.
13. Verwendung nach einem der Ansprüche 9 bis 11, wobei das Proteinhydrolysat als Netzmittel in einer Zusammensetzung zur Reinigung von Fahrzeugfelgen verwendet wird.
14. Verwendung gemäß einem der Ansprüche 9 bis 11, wobei das Proteinhydrolysat als Flotationshilfsmittel bei der Aufbereitung von Kohlen und/oder Erzen verwendet wird.
EP12759718.5A 2011-09-21 2012-09-17 Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren Withdrawn EP2758159A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011053829A DE102011053829A1 (de) 2011-09-21 2011-09-21 Verfahren zur Herstellung einer Dispersion und Verwendung von Proteinhydrolysaten als Dispergatoren
PCT/EP2012/068260 WO2013041492A1 (de) 2011-09-21 2012-09-17 Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren

Publications (1)

Publication Number Publication Date
EP2758159A1 true EP2758159A1 (de) 2014-07-30

Family

ID=46875807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12759718.5A Withdrawn EP2758159A1 (de) 2011-09-21 2012-09-17 Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren

Country Status (9)

Country Link
US (1) US20140225021A1 (de)
EP (1) EP2758159A1 (de)
JP (1) JP6023925B2 (de)
KR (1) KR20140057655A (de)
CN (1) CN103889565B (de)
BR (1) BR112014006654A2 (de)
CA (1) CA2849036C (de)
DE (1) DE102011053829A1 (de)
WO (1) WO2013041492A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644186A1 (de) 2012-03-26 2013-10-02 OTC GmbH Haarspülungszusammensetzung für dauerhafte und halbdauerhafte Haarfärbeanwendungen
CN104762143A (zh) * 2015-03-23 2015-07-08 苏州谷力生物科技有限公司 一种餐具洗涤剂及其制备方法
CN105586178B (zh) * 2016-01-25 2018-09-11 王家高 一种无毒餐洗净及其制造方法
CN109233641A (zh) * 2017-06-13 2019-01-18 上海三银涂料科技股份有限公司 超耐擦拭耐污渍的水性多彩建筑涂料及其制备方法
CN113477405B (zh) * 2021-05-24 2022-05-27 长沙矿冶研究院有限责任公司 闪锌矿与铁闪锌矿的选矿活化剂及铁精矿浮选降锌的方法
WO2024133323A1 (en) * 2022-12-19 2024-06-27 Croda International Plc Hydrolysed protein dispersants

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535339A1 (ru) * 1973-04-10 1976-11-15 Волгоградский Химический Завод Им. С.М.Кирова Моющее средство дл очистки лакокрасочной и полимерной поверхности
JPS5785308A (en) * 1980-11-17 1982-05-28 Kao Corp Hair rinse composition
RO101787A2 (ro) * 1988-08-06 1991-12-09 Intreprinderea De Piele, Marochinarie Si Incaltaminte "13 Decembrie", Sibiu, Ro Agent de degresare pentru industria pielariei
JP3649341B2 (ja) * 1990-06-15 2005-05-18 株式会社資生堂 複合体及び複合体の組成物及び乳化剤組成物並びに乳化組成物
JPH05311105A (ja) * 1992-04-30 1993-11-22 Pentel Kk 水性顔料組成物
JPH06107997A (ja) * 1992-09-29 1994-04-19 Pentel Kk 水性インキ組成物
DE4433071C1 (de) * 1994-09-16 1995-12-21 Henkel Kgaa Milde Detergensgemische
DE19822603A1 (de) * 1998-05-20 1999-11-25 Goldschmidt Ag Th Pigmentpasten enthaltend hydrophob modifizierte Polyasparaginsäurederivate
DE20019871U1 (de) * 2000-11-23 2002-03-28 Goldwell GmbH, 64297 Darmstadt Haarbehandlungsmittel
JP2002235095A (ja) * 2001-02-13 2002-08-23 Wilson:Kk 防汚性能を有する硬質表面用洗浄剤組成物
JP2004113976A (ja) * 2002-09-27 2004-04-15 Toyo Ink Mfg Co Ltd 土壌浄化剤及び土壌浄化方法
US7129201B2 (en) * 2003-08-18 2006-10-31 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Aqueous-aqueous emulsions comprising a dispersed phase and a continuous surfactant phase with rod-like surfactants
DE102005031467A1 (de) * 2005-07-04 2007-01-25 Basf Ag Emulgatorsystem, Emulsion und deren Verwendung
CN1935253B (zh) * 2005-09-19 2010-11-24 广东合鑫医药有限公司 脑蛋白水解物分散片及其制备方法
DE102010001193A1 (de) * 2010-01-25 2011-07-28 Dahms, Gerd, 47138 Neue Tensidzusammensetzungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013041492A1 *

Also Published As

Publication number Publication date
DE102011053829A1 (de) 2013-03-21
CA2849036A1 (en) 2013-03-28
US20140225021A1 (en) 2014-08-14
BR112014006654A2 (pt) 2017-04-04
JP2014526592A (ja) 2014-10-06
KR20140057655A (ko) 2014-05-13
CN103889565B (zh) 2017-08-08
CN103889565A (zh) 2014-06-25
JP6023925B2 (ja) 2016-11-09
WO2013041492A1 (de) 2013-03-28
CA2849036C (en) 2017-01-24

Similar Documents

Publication Publication Date Title
EP2758159A1 (de) Verfahren zur herstellung einer dispersion und verwendung von proteinhydrolysaten als dispergatoren
EP2183327B1 (de) Wässrige pigmentpräparationen mit anionischen additiven auf allyl- und vinyletherbasis
WO2014000842A1 (de) Fettsäurekondensationsprodukte als dispergiermittel in pigmentpräparationen
DE1519771A1 (de) Verfahren zur Einkapselung von in einer Fluessigkeit fein verteilter Substanz
EP2315814B1 (de) Trockene pigmentpräparationen mit nichtionischen additiven
EP0582928A2 (de) Grenzflächenaktive Verbindungen auf Basis modifizierter Rizinusölfettkörper
EP1409593A1 (de) Wasserbasierende pigmentdispersionen, ihre herstellung und verwendung
WO2014056561A1 (de) Dispergiermittel aus nachwachsenden rohstoffen für bindemittelfreie pigmentpräparationen
EP3914634B1 (de) Wasserbasierte pigmentpräparationen, ihre herstellung und verwendung
DE102015219608B4 (de) Universelle Pigmentdispersionen auf Basis von N-Alkylglukaminen
DE2618977C3 (de) Flüssiges, scheuernd wirkendes Reinigungsmittel
WO2008132202A2 (de) Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
DE19540557B4 (de) Pigmentpräparationen mit hohem Feststoffgehalt
DE2160208A1 (de) Pigmentformierung
CH698774B1 (de) Verfahren zur Herstellung eines Talkprodukts mit hohem Reinheitsgrad.
EP3055367A1 (de) Anionische fettsäureamide als dispergiermittel für pigmentpräparationen
DE2827264A1 (de) Pigmentzusammensetzungen
EP0513782B1 (de) Stickstoffhaltige, grenzflächenaktive Mittel, abgeleitet aus Harzsäuren
DE60206492T2 (de) Verfahren zur herstellung einer pigmentdispersion, enthaltend einen träger wie z.b. rizinusöl oder pflanzenwachs
DE69516331T2 (de) Verfahren zur Einstellung von Pigmentteilchen, Pigment und Färbepräparat
EP0817831A1 (de) Verwendung von dimeralkohol- und trimeralkoholalkoxylaten als verdickungsmittel
EP1341725A1 (de) Verfahren und mittel zur behandlung des umlaufwassers in lackierkabinen
BOTEZ et al. Management Management
DE102007020426A1 (de) Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
WO2011054492A2 (de) Feststoff-zubereitungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190201