EP2729558A1 - Bioreaktor - Google Patents

Bioreaktor

Info

Publication number
EP2729558A1
EP2729558A1 EP12724932.4A EP12724932A EP2729558A1 EP 2729558 A1 EP2729558 A1 EP 2729558A1 EP 12724932 A EP12724932 A EP 12724932A EP 2729558 A1 EP2729558 A1 EP 2729558A1
Authority
EP
European Patent Office
Prior art keywords
liquid
interior
housing
hollow organ
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12724932.4A
Other languages
English (en)
French (fr)
Inventor
Roger Zink
Hermann Rees
Ottmar Heiny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard Apparatus Regenerative Technology Inc
Original Assignee
Harvard Bioscience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard Bioscience Inc filed Critical Harvard Bioscience Inc
Publication of EP2729558A1 publication Critical patent/EP2729558A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0247Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components for perfusion, i.e. for circulating fluid through organs, blood vessels or other living parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/06Stirrer or mobile mixing elements with horizontal or inclined stirrer shaft or axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/12Pulsatile flow

Definitions

  • the invention relates to a bioreactor according to the preamble of claim 1.
  • the technical article of MA Asnaghi at AI "A double-chamber rotation bioreactor for the development of tissue-engineered hollow organs: From concept to clinical trial" from Biomaterials 30, 2009, 5260-9, 1-10 disclose bioreactors for administering the exterior and interior of hollow organs with a liquid
  • the need for such exposure of hollow organs to a liquid is particularly evident in the field of transplantation medicine and regenerative medicine,
  • the artificial replacement organs (scaffolds) or the donor organs must be colonized with stem cells of the patient, which differentiate themselves by the addition of chemicals and certain growth factors Stem cells or frameworks are necessary to ensure the functionality of the organ and to prevent contamination with other cells, bacteria or fungi, thus minimizing rejection reactions.
  • the replacement organ is the donor organ of another human, it must also be cleared of any cells of the donor person prior to treatment with the subject's stem cells.
  • Bioreactors are used for these purposes. If the organs or replacement organs are hollow organs such as tracheas, bronchi, blood vessels, ureters, etc., special bioreactors are used which allow both the outside of the organ and the interior to be charged with a liquid. Such a special bioreactor is described in the above-mentioned article.
  • the liquid which is applied to the hollow organ may contain chemicals for destroying cells which are still present and consists in repopulating the organ with the stem cells of the organ recipient from a cell suspension.
  • FIG. 1 shows a cross section through a bioreactor according to the invention from above
  • Fig. 2 is a section along the line A-B of Fig. 1;
  • FIG. 3 shows a side view of the bioreactor from FIG. 1.
  • the bioreactor shown in cross section in FIG. 1 has a cylindrical housing 2, which receives a rotary device 3 along its longitudinal axis.
  • This rotary device 3 is rotatably mounted in the housing 2 with bearings and seals not shown in detail.
  • the housing 2 has on its side ports 11 and a window 12 for a camera, wherein monitoring of the cell suspension by suitable biochemical measures is possible through the ports 11 and monitored and recorded by the window 12 of the entire process of bioreaction with an external camera can be here, and here also an infrared camera can be used to monitor the temperature and to monitor the settlement of the cells on the hollow organ 1.
  • the rotary device 3 within the bioreactor has two receiving devices 8 and 10, between which the hollow organ 1 or replacement organ to be treated is clamped in a suitable manner. For example, the hollow member 1 is pushed over corresponding tubular ends of the receiving devices 8 and 10 and fixed there in a conventional manner, as shown in Fig. 1.
  • the first receiving device 8 is connected to the second receiving device 10 via two stirring rods 7, which run parallel to the longitudinal axis of the hollow organ 1 and thus also the entire device.
  • the two stirring rods 7 serve once in the illustrated embodiment, the rotation of the first receiving device 8 on the second recording device 10 to transmit. Furthermore, the stirring rods 7 serve to agitate the liquid, in particular the cell suspension within the housing 2 and thus to prevent a clumping or accumulation of cells at the bottom of the housing 2.
  • the second receiving device 10 has a scooping chamber, which is shown particularly well in FIG. 2.
  • This scoop chamber 5 extends tangentially to the longitudinal axis 4 of the clamped hollow organ 1 and thus to the axis of rotation of the rotary device 3.
  • the scoop chamber 5 is open on one side and closed on the other side, thus forming a blind hole.
  • the end of this blind hole, as seen along the longitudinal axis of this scooping chamber 5, extends beyond the longitudinal axis 4 of the clamped hollow organ 1.
  • the scoop chamber 5 is also connected via a flow channel 6 of smaller diameter with the interior of the hollow organ 1, namely the shape that this flow channel 6 branches off laterally from the scoop chamber 5 and ends in the axis of rotation or in the longitudinal axis 4 of the hollow organ 1.
  • the described bioreactor works as follows:
  • the rotation device 3 is removed from the housing 2. Then, the hollow organ 1 or replacement organ to be processed is clamped between the first receiving device 8 and the second receiving device 10 of the rotary device 3, which takes place in a manner known per se and described above. The aim is a reasonably liquid-tight connection between the ends of the hollow organ 1 and the first receiving device 8 and second receiving device 10. Subsequently, the rotary device 3 is used with the hollow organ 1 again in the housing 2 and the housing 2 with liquid, such as a cell suspension until filled to the height of the axis of rotation.
  • liquid such as a cell suspension
  • the rotary device 3 After reaching the correct chemical parameters and the correct temperature, the rotary device 3 is set in motion, for example by the left in the drawing over the housing 2 protruding shaft part is driven.
  • the first receiving device 8 thus also rotates, and the second receiving device 10 is also driven for rotation via the stirring rods 7.
  • the housing 2 is about half filled with liquid (cell suspension)
  • the scooping chamber 5 immerses each time, when the outer opening of the scooping chamber 5 is below the liquid level by the rotation of the second receiving device 10, into the liquid and takes this liquid especially during the phase of emergence.
  • the liquid As soon as the scooping chamber is above the liquid level and continues to rotate, the liquid enters the flow channel 6, which connects the scooping chamber 5 to the interior of the second receiving device 10 and thus to the interior of the hollow organ 1.
  • the liquid then exits via the first receiving device 8 and the drainage channels 9 back into the interior of the housing 2.
  • the opening of the scooping chamber 5 is at the top, no further flow of the hollow organ 1 with liquid takes place. Only in the next cycle, ie the next appearance of the opening of the scooping chamber 5 from the mirror of the liquid is again a flow through the interior of the hollow organ 1 with liquid.
  • this intermittent supply has proven to be sufficient to always provide the interior of the hollow organ 1 with fresh liquid and new cells.
  • the housing may also have other shapes, e.g. box-shaped or trough-shaped forms.
  • the liquid level may take other heights, if so desired, e.g. if the outside of the hollow organ is not or not so strong or permanently wetted with the liquid.
  • the housing 2 also has a special, not shown in the drawing, transport cover for the purpose of transporting the entire bioreactor to the operating room.
  • This transport cover is removable, sterilizable and can be placed tightly and serves to maintain the sterility of the interior of the housing 2 in a non-sterile environment.
  • another cover can be placed for normal operation, which then rests only on the housing 2 and allows gas exchange with the environment, whereby in the interior of the housing 2 an optimal concentration of oxygen and carbon dioxide and thus a correspondingly optimal partial pressure of these gases in the liquid is complied with.
  • agitators can take the form of paddles 13, which are attached to the stirring bars 7 and / or to the rotating part, eg to the first receiving device 8 or to the second receiving device 10.
  • the paddles act as stirring spoons, which run as close as possible to the bottom of the bioreactor housing and cause a vortex to appear there, which possibly dissolves detached cells.
  • the bioreactor according to the invention can be built.
  • the adaptation to the different forms of scaffolding then takes place via appropriate inserts, e.g. a Y-shape for a trachea with two bronchi or an L-shape for a trachea with a bronchia can be used.
  • inserts e.g. a Y-shape for a trachea with two bronchi or an L-shape for a trachea with a bronchia can be used.
  • These inserts also have different diameters, as do the natural organs.
  • the scaffolds are tied to the holder by surgical suture.
  • the hollow organ 1 can also be mounted on the receiving devices 8 and 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die Erfindung betrifft einen Bioreaktor zur Beaufschlagen der Außenseite und des Innenraums eines Hohlorgans (1) bzw. Hohlorgangerüstes mit einer Flüssigkeit, mit einem die Flüssigkeit unter Bildung eines Flüssigkeitsspiegels aufnehmenden Gehäuse (2) und einer innerhalb des Gehäuses (2) angeordneten, das Hohlorgan (1) aufnehmenden Rotationsvorrichtung (3) zur Drehung des Hohlorgans (1) um seine Längsachse (4) im Bereich des Flüssigkeitsspiegels. Bei bekannten derartigen Bioreaktoren muss der Innenraum des Hohlorgans mit einer besonderen Vorrichtung gespült werden, so dass auch hier ein Flüssigkeitsaustausch stattfindet. Die Aufgabe, einen Bioreaktor zur Beaufschlagung des Innenraums und der Außenseite von Hohlorganen so auszubilden, dass eine möglichst einfache und kostengünstige Spülung des Innenraums des Hohlorgans gewährleistet ist, wird dadurch gelöst, dass die Rotationsvorrichtung (3) eine zumindest teilweise tangential zur Längsachse verlaufende Schöpfkammer (5) aufweist, die über einen Strömungskanal (6) mit dem Innenraum des Hohlorgans (1) verbunden ist.

Description

Bioreaktor
Die Erfindung betrifft einen Bioreaktor nach dem Oberbegriff des Anspruchs 1. Aus dem Stand der Technik, z.B. dem Fachaufsatz von M. A. Asnaghi at AI„A double- chamber rotation bioreactor for the development of tissue-engineered hollow organs: From concept to clinical trial" aus Biomaterials 30, 2009, 5260-9, 1-10 sind Bioreaktoren zur Beaufschlagung der Außenseite und des Innenraums von Hohlorganen mit einer Flüssigkeit bekannt. Die Notwendigkeit einer solcher Beaufschlagung von Hohlorganen mit einer Flüssigkeit ergibt sich insbesondere im Rahmen der Transplantationsmedizin und der regenerativen Medizin, wobei Menschen mit einem unheilbar erkrankten Organ entweder künstliche Ersatzorgane oder Spenderorgane eingepflanzt werden. In beiden Fällen müssen die künstlichen Ersatzorgane (Gerüste) oder die Spenderorgane mit Stammzellen des Patienten besiedelt werden, welche sich durch Zugabe von Chemikalien und bestimmter Wachstumsfaktoren ausdifferenzieren. Diese Beaufschlagung der Organe bzw. Gerüste mit Stammzellen ist notwendig, um die Funktionalität des Organs zu gewährleisten und eine Kontamination mit anderen Zellen, Bakterien oder Pilzen zu verhindern und somit auch Abstoßungsreaktionen zu minimieren. Falls es sich bei dem Ersatzorgan um das Spenderorgan eines anderen Menschen handelt, muss dieses außerdem vor der Behandlung mit den Stammzellen der Zielperson von jeglichen Zellen der Spenderperson befreit werden. Zu diesen Zwecken dienen Bioreaktoren. Falls es sich bei den Organen bzw. Ersatzorganen um Hohlorgane wie Luftröhren, Bronchien, Blutgefäße, Harnleiter etc. handelt, werden spezielle Bioreaktoren verwendet, die es sowohl zulassen, die Außenseite des Organs als auch den Innenraum mit einer Flüssigkeit zu beaufschlagen. Ein derartiger spezieller Bioreaktor ist im oben genannten Artikel beschrieben. Die Flüssigkeit, mit der das Hohlorgan beaufschlagt wird, kann Chemikalien zur Zerstörung noch vorhandener Zellen enthalten und besteht bei der Wiederbesiedelung des Organs mit den Stammzellen des Organempfängers aus einer Zellsuspension. Bei bekannten Bioreaktoren zur Versorgung von Hohlorganen mit einer Flüssigkeit, insbesondere mit einer Zellsuspension, besteht das Problem, dass der Innenraum des Hohlorgans besonders gespült werden muss, weil hier auch durch Bewegung des Hohlorgans innerhalb der Flüssigkeit kein Flüssigkeitsaustausch stattfindet. Diese besondere Spülung des Innenraums erfolgt mit einer zusätzlichen elektrischen oder hydraulischen Pumpe. Es besteht daher die Aufgabe, einen Bioreaktor zur Beaufschlagung des Innenraums und der Außenseite von Hohlorganen so weiterzubilden, dass eine möglichst einfache und kostengünstige Spülung des Innenraums des Hohlorgans gewährleistet ist.
Gelöst wird diese Aufgabe mit den kennzeichnenden Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den Unteransprüchen entnehmbar.
Die Erfindung wird im folgenden unter Bezugnahme auf die begleitenden Zeichnungen näher erläutert. Diese zeigen: Fig. 1 einen Querschnitt durch einen erfindungsgemäßen Bioreaktor von oben;
Fig. 2 einen Schnitt entlang der Linie A-B aus Fig. 1; und
Fig. 3 eine Seitenansicht des Bioreaktors aus Fig. 1.
Der in Fig. 1 im Querschnitt dargestellte Bioreaktor weist ein zylindrisches Gehäuse 2 auf, welches entlang seiner Längsachse eine Rotationsvorrichtung 3 aufnimmt. Diese Rotationsvorrichtung 3 ist mit nicht im einzelnen dargestellten Lagern und Dichtungen rotierend in dem Gehäuse 2 befestigt. Das Gehäuse 2 weist an seiner Seite Ports 11 und ein Fenster 12 für eine Kamera auf, wobei durch die Ports 11 eine Überwachung der Zellsuspension durch geeignete biochemische Maßnahmen möglich ist und durch das Fenster 12 der gesamte Vorgang der Bioreaktion mit einer externen Kamera überwacht und aufgenommen werden kann, wobei hier auch eine Infrarot-Kamera Verwendung finden kann, um die Temperatur zu überwachen und die Ansiedlung der Zellen auf dem Hohlorgan 1 zu überwachen. Die Rotationsvorrichtung 3 innerhalb des Bioreaktors weist zwei Aufnahmevorrichtungen 8 bzw. 10 auf, zwischen denen das zu behandelnde Hohlorgan 1 bzw. Ersatzorgan in geeigneter Weise eingespannt wird. Beispielsweise wird das Hohlorgan 1 über entsprechende rohrförmige Enden der Aufnahmevorrichtungen 8 und 10 geschoben und dort in an sich bekannter Weise fixiert, so wie es in Fig. 1 dargestellt ist.
Die erste Aufnahmevorrichtung 8 ist mit der zweiten Aufnahmevorrichtung 10 über zwei Rührstäbe 7, welche parallel zur Längsachse des Hohlorgans 1 und damit auch der gesamten Vorrichtung verlaufen, verbunden. Die beiden Rührstäbe 7 dienen im dargestellten Ausführungsbeispiel einmal dazu, die Rotation von der ersten Aufnahmevorrichtung 8 auf die zweite Aufnahmevorrichtung 10 zu übertragen. Ferner dienen die Rührstäbe 7 dazu, die Flüssigkeit, insbesondere die Zellensuspension innerhalb des Gehäuses 2 zu agitieren und somit eine Verklumpung bzw. Ansammlung von Zellen am Boden des Gehäuses 2 zu verhindern.
Die zweite Aufnahmevorrichtung 10 weist eine Schöpfkammer auf, welche besonders gut in Fig. 2 dargestellt ist. Diese Schöpfkammer 5 verläuft tangential zu der Längsachse 4 des eingespannten Hohlorgans 1 und damit zur Rotationsachse der Rotationsvorrichtung 3. Die Schöpfkammer 5 ist einseitig offen und auf der anderen Seite geschlossen, bildet also ein Sackloch. Das Ende dieses Sackloches, gesehen entlang der Längsachse dieser Schöpfkammer 5, reicht über die Längsachse 4 des eingespannten Hohlorgans 1 hinaus. Die Schöpfkammer 5 ist darüber hinaus über einen Strömungskanal 6 kleineren Durchmessers mit dem Innenraum des Hohlorgans 1 verbunden, und zwar der Gestalt, dass dieser Strömungskanal 6 seitlich von der Schöpfkammer 5 abzweigt und in der Rotationsachse bzw. in der Längsachse 4 des Hohlorgans 1 endet. Da die Rotationsvorrichtung 3 bzw. die Aufnahmevorrichtung 10 innenseitig mit dem Hohlorgan verbunden sind, besteht eine durchgehende Verbindung von dem Einlass der Schöpfkammer 5 über den Strömungskanal 6 und den Innenraum der zweiten Aufnahmevorrichtung 10 in den Innenraum des Hohlorgans 1 und anschließend über den Innenraum der ersten Aufnahmevorrichtung 8 und drei von dieser senkrecht nach außen führenden Ablaufkanäle 9 zurück in das Innere des Gehäuses 2.
Der beschriebene Bioreaktor arbeitet wie folgt:
Zunächst wird ein eventuell auf dem Gehäuse 2 sitzender Deckel entfernt und anschließend wird die Rotationsvorrichtung 3 aus dem Gehäuse 2 entnommen. Sodann wird das zu bearbeitende Hohlorgan 1 oder Ersatzorgan zwischen die erste Aufnahmevorrichtung 8 und die zweite Aufnahmevorrichtung 10 der Rotationsvorrichtung 3 eingespannt, was in an sich bekannter und oben beschriebener Weise erfolgt. Ziel ist eine halbwegs flüssigkeitsdichte Verbindung zwischen den Enden des Hohlorgans 1 und der ersten Aufnahmevorrichtung 8 bzw. zweiten Aufnahmevorrichtung 10. Anschließend wird die Rotationsvorrichtung 3 mit dem Hohlorgan 1 wieder in das Gehäuse 2 eingesetzt und das Gehäuse 2 mit Flüssigkeit, beispielsweise einer Zellsuspension, bis zur Höhe der Rotationsachse gefüllt. Nach Erreichen der richtigen chemischen Parameter und der korrekten Temperatur wird die Rotationsvorrichtung 3 in Gang gesetzt, beispielsweise indem das in der Zeichnung links über das Gehäuse 2 hervorstehende Wellenteil angetrieben wird. Damit rotiert auch die erste Aufnahmevorrichtung 8 und über die Rührstäbe 7 wird auch die zweite Aufnahmevorrichtung 10 zur Rotation angetrieben. Da das Gehäuse 2 etwa zur Hälfte mit Flüssigkeit (Zellsuspension) gefüllt ist, taucht die Schöpfkammer 5 jedes Mal, wenn sich durch die Rotation der zweiten Aufnahmevorrichtung 10 die äußere Öffnung der Schöpfkammer 5 unterhalb des Flüssigkeitsspiegels befindet, in die Flüssigkeit ein und nimmt diese Flüssigkeit insbesondere während der Phase des Auftauchens in sich auf. Sobald die Schöpfkammer sich oberhalb des Flüssigkeitsspiegels befindet und weiter rotiert, gelangt die Flüssigkeit in den Strömungskanal 6, welcher die Schöpfkammer 5 mit dem Innenraum der zweiten Aufnahmevorrichtung 10 und damit dem Innenraum des Hohlorgans 1 verbindet. Die Flüssigkeit tritt sodann über die erste Aufnahmevorrichtung 8 und die Ablaufkanäle 9 wieder in den Innenraum des Gehäuses 2 aus. Sobald sich die Öffnung der Schöpfkammer 5 oben befindet, findet keine weitere Durchströmung des Hohlorgans 1 mit Flüssigkeit statt. Erst im nächsten Zyklus, also beim nächsten Auftauchen der Öffnung der Schöpfkammer 5 aus dem Spiegel der Flüssigkeit erfolgt wieder eine Durchströmung des Innenraums des Hohlorgans 1 mit Flüssigkeit. Diese intermittierende Versorgung hat sich jedoch als ausreichend erwiesen, um den Innenraum des Hohlorgans 1 immer mit frischer Flüssigkeit und neuen Zellen zu versorgen.
In anderen Ausführungsformen kann das Gehäuse auch andere Formen aufweisen, z.B. kastenförmige oder trogförmige Formen. Ferner kann der Flüssigkeitsspiegel andere Höhen annehmen, sofern dies im Einzelfall gewünscht ist, z.B. falls die Außenseite des Hohlorgans nicht oder nicht so stark oder aber dauernd mit der Flüssigkeit benetzt werden soll.
Das Gehäuse 2 verfügt auch über einen besonderen, in der Zeichnung nicht dargestellten, Transportdeckel zum Zwecke des Transports des gesamten Bioreaktors zu dem Operationssaal. Dieser Transportdeckel ist abnehmbar, sterilisierbar und dicht aufsetzbar und dient der Wahrung der Sterilität des Innenraums des Gehäuses 2 in unsteriler Umgebung. Weiterhin kann ein anderer Deckel zum Normalbetrieb aufgesetzt werden, der dann nur auf dem Gehäuse 2 aufliegt und den Gasaustausch mit der Umgebung zulässt, wodurch im Inneren des Gehäuses 2 eine optimale Konzentration an Sauerstoff und Kohlendioxid und somit ein entsprechend optimaler Partialdruck dieser Gase in der Flüssigkeit eingehalten wird. Außerdem ist es möglich, die Agitation der Zellen innerhalb der Suspension durch den Einsatz von Rührwerken innerhalb des Gehäuses 2 zu verbessern. Diese Rührwerke können die Form von Paddeln 13 annehmen, welche an den Rührstäben 7 und/oder an dem rotierenden Teil, z.B. an der ersten Aufnahmevorrichtung 8 oder an der zweiten Aufnahmevorrichtung 10 angebracht sind. Die Paddel wirken hierbei wie Rührlöffel, welche so nahe wie möglich am Boden des Gehäuses des Bioreaktors vorbeilaufen und einen Wirbel dort auftreten lassen, der eventuell abgesetzte Zellen löst.
Schließlich ist es möglich, den erfindungsgemäßen Bioreaktor an verschiedene Matrizen anzupassen. Beispielsweise kann der Bioreaktor für die Tracheen von Kindern, Jugendlichen oder Erwachsenen gebaut werden. Die Anpassung an die verschiedenen Formen der Gerüste erfolgt dann über entsprechende Einsätze, wobei z.B. eine Y-Form für eine Trachea mit zwei Bronchien oder eine L-Form für eine Trachea mit einer Bronchie verwendet werden kann. Diese Einsätze haben auch unterschiedliche Durchmesser, so wie die natürlichen Organe. Die Gerüste werden auf die Halterung mittels chirurgischer Nähseide aufgebunden. Auf die gleiche Weise kann das Hohlorgan 1 auch auf den Aufnahmevorrichtungen 8 und 10 befestigt werden.

Claims

Ansprüche
1. Bioreaktor zur Beaufschlagung der Außenseite und des Innenraums eines Hohlorgans (1) oder Hohlorgangerüstes mit einer Flüssigkeit, mit einem die Flüssigkeit unter Bildung eines Flüssigkeitsspiegels aufnehmenden Gehäuse (2) und einer innerhalb des Gehäuses (2) angeordneten, das Hohlorgan (1) aufnehmenden Rotationsvorrichtung (3) zur Drehung des Hohlorgans (1) um seine Längsachse (4) im Bereich des Flüssigkeitsspiegels, dadurch gekennzeichnet, dass die Rotationsvorrichtung (3) eine zumindest teilweise tangential zur Längsachse verlaufende Schöpfkammer (5) aufweist, die über einen Strömungskanal (6) mit dem Innenraum des Hohlorgans (1) verbunden ist.
2. Bioreaktor nach Anspruch 1, dadurch gekennzeichnet, dass die
Rotationsvorrichtung (3) mindestens einen parallel zur Längssachse (4) verlaufenden Rührstab (7) zur Agitation der Flüssigkeit aufweist.
3. Bioreaktor nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Rotationsvorrichtung (3) über eine das Hohlorgan (1) aufnehmende erste Aufnahmevorrichtung (8) verfügt, welche mindestens einen Ablaufkanal (9) zur Verbindung des Innenraums des Hohlorgans (1) mit dem Innenraum des Gehäuses (2) aufweist.
4. Bioreaktor nach einem der Ansprüche 2 oder 3, gekennzeichnet durch eine zweite Aufnahmevorrichtung (10), die über den mindestens einen Rührstab (7) mit der ersten Aufnahmevorrichtung (8) in Verbindung steht, wodurch die erste Aufnahmevorrichtung (8) durch Antrieb der zweiten Aufnahmevorrichtung (10) mit in Rotation versetzt wird.
5. Bioreaktor nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Rotationsvorrichtung (3) seitlich abstehende Paddel (13) zur Agitation der Flüssigkeit aufweist, welche insbesondere an dem mindestens einen Rührstab (7) angeordnet sein können.
Bioreaktor nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (2) mit einem dicht verschließenden, sterilisierbaren und abnehmbaren Deckel versehen ist.
Bioreaktor nach einem der voranstehenden Ansprüche, gekennzeichnet durch seitliche Ports (11) für Messsonden oder seitliche Fenster für eine Kamera zur Überwachung des Beaufschlagungsvorgangs.
EP12724932.4A 2011-07-07 2012-05-23 Bioreaktor Withdrawn EP2729558A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011107400A DE102011107400B3 (de) 2011-07-07 2011-07-07 Bioreaktor
PCT/EP2012/059560 WO2013004431A1 (de) 2011-07-07 2012-05-23 Bioreaktor

Publications (1)

Publication Number Publication Date
EP2729558A1 true EP2729558A1 (de) 2014-05-14

Family

ID=46201583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724932.4A Withdrawn EP2729558A1 (de) 2011-07-07 2012-05-23 Bioreaktor

Country Status (9)

Country Link
US (1) US9918463B2 (de)
EP (1) EP2729558A1 (de)
JP (1) JP2014518076A (de)
CN (1) CN103946365A (de)
AU (1) AU2012280664A1 (de)
CA (1) CA2841033A1 (de)
DE (1) DE102011107400B3 (de)
RU (1) RU2014103343A (de)
WO (1) WO2013004431A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2841010B1 (de) 2012-04-24 2023-08-23 Harvard Apparatus Regenerative Technology, Inc. Träger für künstliche gewebegerüste
US10449026B2 (en) 2012-06-26 2019-10-22 Biostage, Inc. Methods and compositions for promoting the structural integrity of scaffolds for tissue engineering
WO2014042771A2 (en) 2012-07-28 2014-03-20 Harvard Bioscience, Inc. Analytical methods
EP2943231A4 (de) 2013-01-09 2016-12-07 Harvard Apparatus Regenerative Tech Inc Synthetische gerüste
CN105349423B (zh) * 2015-09-30 2018-04-06 重庆大学 一种独立腔室的血管流体平台使用方法
RU2645455C1 (ru) * 2017-04-27 2018-02-21 Рубен Вагеевич Оганесян Биореактор для выращивания тканеинженерных конструкций
JP7144958B2 (ja) 2018-03-30 2022-09-30 株式会社エビデント 観察装置および観察システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2938668C2 (de) * 1979-09-25 1982-06-24 Bergwerksverband Gmbh, 4300 Essen Mechanischer Entschäumer für Gas-/Flüssigkeitsreaktoren
DE3826455A1 (de) * 1988-08-04 1990-02-22 Kernforschungsanlage Juelich Vorrichtung zur entnahme von fluessigkeitsproben
US5248613A (en) * 1991-07-08 1993-09-28 Roubicek Rudolf V Nonhomogeneous centrifugal film bioreactor
GB9116036D0 (en) * 1991-07-25 1991-09-11 Univ Leicester Preparing grafts for implantation
US5846498A (en) * 1996-02-27 1998-12-08 Praxair Technology, Inc. Reactor system
DE69810067T2 (de) * 1997-11-14 2003-10-02 Kansai Chem Eng Vorrichtung und Verfahren zur Flüssigkeitsejektion
US6720178B1 (en) * 2000-06-29 2004-04-13 University Of Louisville Research Foundation, Inc. Self-feeding roller bottle
KR20020088848A (ko) * 2001-05-21 2002-11-29 (주)코아바이오텍 세포배양관 및 이를 이용한 대량 세포배양기
US7348175B2 (en) * 2002-03-15 2008-03-25 St3 Development Corporation Bioreactor with plurality of chambers for conditioning intravascular tissue engineered medical products
US20040219659A1 (en) * 2002-04-22 2004-11-04 Altman Gregory H. Multi-dimensional strain bioreactor
US6841384B2 (en) * 2002-08-08 2005-01-11 Becton Dickinson Company Advanced roller bottle system for cell and tissue culturing
CN1974750A (zh) * 2006-11-16 2007-06-06 华东理工大学 用于组织工程软骨体外构建的两相生物反应器系统
KR100932863B1 (ko) * 2007-11-30 2009-12-21 코아스템(주) 세포배양을 위한 회전 구동 장치
CN101372664B (zh) * 2008-05-16 2012-01-11 北京航空航天大学 一种具有组织培养物拉压和旋转功能的组织工程反应器
CN101486966B (zh) * 2008-09-12 2012-12-26 广州齐志生物工程设备有限公司 一种动物细胞贴壁培养的生物反应器和方法
US8507263B2 (en) * 2009-08-07 2013-08-13 Maria Adelaide Asnaghi Rotating bioreactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013004431A1 *

Also Published As

Publication number Publication date
CN103946365A (zh) 2014-07-23
JP2014518076A (ja) 2014-07-28
US9918463B2 (en) 2018-03-20
WO2013004431A1 (de) 2013-01-10
AU2012280664A1 (en) 2014-01-23
DE102011107400B3 (de) 2012-10-04
RU2014103343A (ru) 2015-08-20
CA2841033A1 (en) 2013-01-10
US20140377848A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
DE102011107400B3 (de) Bioreaktor
DE69628475T2 (de) Einrichtung zum Waschen und Desinfizieren von Dialysatoren mittels elektrolytisch erzeugtem saurem Wasser
DE102006007412B4 (de) Verfahren zur Herstellung eines langgestreckten Cellulosehohlkörpers
DE69819896T2 (de) Vorrichtung und verfahren zur sterilisation von medizinischen geräten
DE19932439A1 (de) Bioreaktor
DE10021627B4 (de) Verfahren zur Herstellung eines vaskularisierten bioartifiziellen Gewebes und zugehöriger Versuchsreaktor
DE2549835A1 (de) Vorrichtung und verfahren zur sterilitaetspruefung von fluiden
DE1791186B1 (de) Dialysator fuer den Gebrauch als Kuenstliche Niere
EP0023040A1 (de) Vorrichtung zur Entkeimung von strömungsfähigen Mitteln
DE2253376A1 (de) Vorrichtung zur untersuchung der loeslichkeit und der aufloesung
EP1083984B1 (de) Verfahren zur mehrschichtigen besiedlung von substraten mit biologischen zellen und dafur verwendbare besiedlungsvorrichtungen
DE2742588A1 (de) Verfahren zur sterilisation eines dialysators mit semipermeabler membran
DE19715952A1 (de) Verfahren zur Behandlung von Mastitis bei Nutztieren, zum Beispiel Kühen, und Apparat zum Einspritzen von Ozon in Brüste
EP1309363A1 (de) Filteranordnung zum auftrennen von blut in plasma und zelluläre bestandteile sowie vorrichtung für deren einsatz am spender
EP3473344B1 (de) System zur oberflächenbehandlung von formteilen
EP1981963A1 (de) Reaktor und reaktoreinheit mit hohlfasern
DE2701976A1 (de) Blutwaschzentrifuge
DE202011103215U1 (de) Bioreaktor
DE2009155A1 (de) Vorrichtung zum sterilen Stoffaustausch
DE102004062828B4 (de) Reaktor mit einer rotierbar angeordneten Reaktoreinheit
DE102005021305A1 (de) Reaktoreinheit und Reaktor mit einer derartigen Reaktoreinheit
DE202006001143U1 (de) Wasch- und Desinfizierungsgerät für Frischwaren mit Ozonkonzentrationssensor
DE102013015522B4 (de) Dialysezelle für eine In-vitro-Freisetzungstestapparatur, Verwendung der Dialysezelle und In-vitro-Freisetzungstestapparatur
DE1667281A1 (de) Vorrichtung zum Desinfizieren von Wasser
CN220676433U (zh) 一种消毒装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HARVARD APPARATUS REGENERATIVE TECHNOLOGY, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150708