EP2724795B1 - Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils - Google Patents

Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils Download PDF

Info

Publication number
EP2724795B1
EP2724795B1 EP13190282.7A EP13190282A EP2724795B1 EP 2724795 B1 EP2724795 B1 EP 2724795B1 EP 13190282 A EP13190282 A EP 13190282A EP 2724795 B1 EP2724795 B1 EP 2724795B1
Authority
EP
European Patent Office
Prior art keywords
bending
thickness
bent part
gripper
press brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13190282.7A
Other languages
English (en)
French (fr)
Other versions
EP2724795A1 (de
Inventor
Alfred HASELBÖCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Maschinen Austria GmbH and Co KG
Original Assignee
Trumpf Maschinen Austria GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Maschinen Austria GmbH and Co KG filed Critical Trumpf Maschinen Austria GmbH and Co KG
Publication of EP2724795A1 publication Critical patent/EP2724795A1/de
Application granted granted Critical
Publication of EP2724795B1 publication Critical patent/EP2724795B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/004Bending sheet metal along straight lines, e.g. to form simple curves with program control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0281Workpiece supporting devices

Definitions

  • the invention relates to a method for producing a bent part by means of a bending press, wherein the bent part is fed by means of a gripper of a robot in the bending press and then bent by operating the bending press. Furthermore, the invention relates to an arrangement with a bending press for bending a bent part and a robot, which is prepared for feeding the bending part in the bending press by means of a gripper.
  • bent parts to be bent by a robot which is equipped with a gripper, taken from a delivery area, supplied to the bending press and bent in the connection.
  • the bending part can be held by the robot during the bending process or can also be fixed to the bending press, for example by a tensioning mechanism.
  • a general problem when bending a bent part are the tolerances of the blank. For example, if it is a bent part made of sheet metal, then thickness tolerances of the raw material can lead to considerable deviations of the actual bending angle from a desired set bending angle.
  • the bent part then has to be bent over or disposed of as a waste. In any case, a re-inspection of the bent bent parts is required.
  • the object of the invention is achieved by a method according to claim 1. Furthermore, the object of the invention is achieved by an arrangement according to claim 9.
  • the pressing pressure / the path of travel of the bending press in the above-mentioned method or in the above-mentioned arrangement is increased / shortened as the measured value for the bending thickness increases.
  • a dependent parameter of the bending press for influencing the same can be used.
  • the pressing force depends on the pressing pressure.
  • the bending press is hydraulically driven, the amount of oil flowing into the hydraulic cylinders depends on the travel. If a spindle drive is provided, then the number of revolutions of a drive motor depends on the travel path.
  • the stated parameters are of course only illustrative examples. Other parameters can also be used to influence the bending press.
  • the proposed method or the proposed arrangement for the production of bent parts of all kinds, in particular for sheet metal bent parts are suitable.
  • the bending press can be designed, for example, as a press bending press or as a swivel press brake.
  • the robot can be designed as a commercial industrial robot with serially kinematic or parallel kinematic drive.
  • this list is purely illustrative.
  • the bending press or the robot may also have a different structure.
  • the proposed method or the proposed arrangement is not limited to the production of bent sheet metal parts, but for example, is applicable to pipe bending machines.
  • bent bent part is removed with the aid of the gripper of the robot from the bending press. In this way, a fully automatic process results in the production of a bent part.
  • the bending thickness is determined directly from the relative position of gripping elements of the gripper to each other or calculated.
  • the distance between two mutually displaceably mounted gripping elements which corresponds to the thickness of a bending part located in the gripper, can be directly determined (measured) with a linear measuring system.
  • the thickness of a bending part in the gripper can be calculated based on the relative position of gripping elements of the gripper relative to one another.
  • the gripping elements can be rotated relative to one another and grab a pair of tongs. The angular position of the gripping elements to one another can now provide information about how thick the bending part positioned between the gripping elements.
  • the bending thickness is determined at a predeterminable gripping force or a predetermined gripping pressure. As a result, reproducible measurement results for the bending thickness can be achieved, since the deformation of the bent part by the gripping gripper is always substantially the same. If the gripping force is so great that a falsification of the measurement result for the bending thickness is unavoidable, a (constant) correction value can also be determined in order to correct the measurement result.
  • a deformation of the gripper is determined and used for a correction of the measured value for the bending thickness.
  • the correction value for the bending thickness is thus determined based on the currently occurring deformation.
  • the said deformation can be determined directly, for example by means of strain gauges in the gripper, or calculated by the holding force.
  • the thickness of the bent part is determined at that gripping thereof which serves for feeding the bent part into the bending press.
  • a part to be bent is thus grasped, fed into the bending machine and then bent, wherein the bending thickness between the gripping of the bending part and the bending of the same is determined, without letting go of the bent part.
  • the measurement of the bending thickness without the bending part is raised in order to avoid a falsification of the measurement result by the load on the gripping elements.
  • the gripper could be slightly widened when lifting by an arising tilting moment.
  • the bent part is deposited at least on one side during measurement in order to avoid a falsification of the measurement result in this way largely.
  • the bending thickness is determined with a handle which only serves to determine the said thickness.
  • a separate “measuring handle” is performed to determine the bending thickness.
  • this may be advantageous if the thickness of the bent part is to be determined at a position which differs from the position at which the bent part is lifted.
  • this measurement is carried out without lifting the bending part.
  • the bending thickness is determined on or in the region of a bending line.
  • the bending of the bent part can be carried out particularly accurately, since its thickness is determined at the position at which it is later bent.
  • "in the region of the bending line” means in particular 20 cm away from the bending line, preferably 10 cm away from the bending line and more preferably 5 cm away from the bending line.
  • the deviation of the actual angle of the bent bent part from the desired angle is determined and the influence of the bending press is adapted by the measured value of the bending thickness such that a deviation between an actual bending angle and a desired bending angle is reduced becomes.
  • a control circuit for the best possible achievement of the desired angle is built up.
  • Fig. 1 shows a schematically illustrated arrangement with a bending press 1 for bending a bending part 2 and a robot 3, which is prepared for feeding the bending part 2 in the bending press 1 by means of a gripper 40.
  • the robot 3 removes an unbent bent part 2 from a stack 5 and places it in the bending press 2 with the aid of its gripper 40.
  • the hydraulic pump 6 and a valve 7, respectively By activating the hydraulic pump 6 and a valve 7, respectively, the hydraulic cylinders 8 are pressurized, whereupon the blade 9 moves downwards in the direction of the die 10.
  • the bending angle ⁇ can be influenced.
  • the bending press 1 comprises a controller 11, which is connected to a pressure gauge 12, a linear measuring 13 and to the pump 6 and the valve 7 respectively.
  • control and “rules” are used synonymously unless otherwise specified. This means that instead of a controller, a control can be provided and vice versa, unless stated otherwise.
  • the bending part 2 bent along the bending line 14 is removed from the bending press 1 by means of the gripper 40 as shown in this example and deposited on a stack 15 or another transport means (for example conveyor belt). In this way, a fully automatic sequence results in the production of the bending part. 2
  • the thickness of the bent part 2 is determined before bending with the aid of said gripper 40 and a Pressing pressure and / or a travel and / or a dependent parameter of the bending press 1 influenced by the measured value of the bending thickness such that a deviation between an actual bending angle ⁇ and a target bending angle is reduced.
  • the gripper 40 comprises means for determining the thickness of the bent part 2 (see in detail the Fig. 2 ), and the arrangement shown comprises means for transmitting a measured value of the bending thickness of the robot 3 to the bending press 1, specifically to the controller 11 (see dotted line). Furthermore, the controller 11 is adapted for influencing the pressing pressure and / or the travel path and / or a parameter dependent thereon of the bending press 1 by the measured value of the bending thickness such that a deviation between an actual bending angle ⁇ and a desired bending angle is reduced becomes.
  • the thickness of the bending part 2 is thus determined by the gripper 40 before the bending part 2 is bent by means of the bending press 1.
  • This reading is communicated to the controller 11 (e.g., by wire or radio), which in this example adjusts the pressing pressure and travel according to the determined bending thickness and target bending angle to be achieved.
  • the pressing pressure is increased with increasing measured value for the bending thickness, the travel is shortened accordingly.
  • a number of bending parts 2 can be produced with substantially the same actual bending angle ⁇ , even if their thickness varies. Bending is therefore not necessary or only in exceptional cases. Also, a follow-up of each bending part 2 can be omitted without risking disruptions in a fully automatic production process.
  • the bending press 1 Despite the influence of the bending press 1 with the measured value of the bending thickness, it is favorable if the deviation of the actual angle ⁇ of the bent bending part 2 from the desired angle is determined and the influence of the bending press 1 is adapted by the measured value of the bending thickness such that a deviation between an actual bending angle ⁇ and a desired bending angle is reduced.
  • the pressing pressure is increased if the actual bending angle ⁇ is too low for the bending parts 2 to be produced in the future, and the travel length is extended accordingly.
  • the bending press 1 is continuously readjusted. In principle, rich to random samples, so that the production process is only slightly disturbed.
  • Fig. 2 now shows a gripper 41 in detail, although in turn in a schematic representation.
  • the gripper 41 comprises a fixed gripping element (a fixed gripping jaw) 16 and a movable gripping element (a movable jaw) 17 which is rotatably mounted about a pivot point 18.
  • the gripper 41 comprises a linear motor 19, which is coupled to the movable jaw 17 and moves it.
  • the gripper 41 comprises a linear measuring system 20 for measuring a position of the linear motor 19.
  • the rotary joint 18, the linear movement of the linear motor 19 is converted into a rotary or pivotal movement of the gripping jaw 17, whereby the gripper 41 grabbing tongs.
  • the position of the gripping jaw 17 is dependent on the position of the linear motor 19. From the position of the linear motor 19 can thus be calculated, the distance of the gripping jaws 16, 17, which the thickness of the located in the gripper 41 Bending parts 2 denotes or corresponds to this. Due to the special design of the gripper 41 is relatively slim, so that bending parts 2 can be easily manipulated even in confined spaces.
  • the bending thickness is determined at a predeterminable gripping force or a specifiable gripping pressure. As a result, reproducible measurement results for the bending thickness can be achieved, since the deformation of the bending part 2 by the gripping gripper 41 and also the deformation of the gripper 41 itself is always substantially the same. It is also conceivable that the determination of the bending thickness is determined at any gripping force and from the deformations occurring a correction value for the bending thickness is determined. These deformations can be calculated, for example, or determined empirically.
  • the linear motor 19 is designed as a pneumatic cylinder or hydraulic cylinder, the pressure in the cylinder can be determined. If the linear motor 19 is designed as a spindle drive, then, for example, the current consumption of the motor can be used to calculate the gripping force.
  • force sensors can also be installed in the gripper elements 16, 17 (for example, piezo pressure sensors or strain gauges) in order to be able to determine the holding forces occurring in the gripper 41.
  • the thickness of the bending part 2 is calculated based on the relative position of the gripping jaws 16, 17 to each other.
  • the angular position of the gripping jaws 16, 17 to one another provides information about how thick the bending part 2 positioned between the gripping jaws 16, 17 is. It would also be conceivable that the bending thickness from the relative position of the gripping jaws 16, 17 is determined directly to each other, that is, measured.
  • Fig. 3 shows a variant of a gripper 42, in which the gripping jaw 17 is slidably mounted. With the help of a length measuring system between the gripping jaws 16, 17, the distance between them to one another and thus the thickness of the bending part 2 located in the gripper 42 can be measured directly.
  • the thickness of the bending part 2 is determined at that gripping thereof, which serves for feeding the bending part 2 into the bending press 1.
  • the bent part 2 is thus taken from the stack 5 and inserted into the bending press 1.
  • the bending thickness is determined in the manner previously indicated. This process is very efficient, since by measuring the bending thickness practically no loss of time during the production of a bent part 2 is formed. In particular, the bending thickness during the feeding movement of the robot 3 can be measured.
  • the method can be well integrated into existing systems, since the workflow with respect to the manipulation of the bending part 2 does not change.
  • the measurement of the bending thickness without the bending part 2 is raised in order to avoid a falsification of the measurement result by the load on the gripping elements 16, 17.
  • this could be done in the present example before lifting the bending part 2 from the stack 5 or after placing it in the bending press 1. This avoids that the gripper 40..42 is widened by the tilting moment of the bent part 2 or the resulting accelerations during the manipulation and the measurement result is falsified.
  • the bent part 2 is stored unilaterally during measurement.
  • the bent part 2 in the Fig.1 rest during the measurement at its trailing edge on the stack 5 so as to at least reduce a falsification of the measurement result.
  • the deformation of the gripper 40... 42 can furthermore be determined and used for the correction of the measured value for the bending thickness.
  • the said deformation can be determined directly, for example by means of strain gauges, or calculated by the holding force.
  • the bending thickness is determined on or in the region of the bending line 14.
  • the bending of the bending part 2 can be particularly accurate, since its thickness is determined at the position at which it is bent later.
  • the bending press 2 or depending on the arrangement of the delivery area (stack 5) and the removal area (stack 15), it may be difficult or even impossible, the bending thickness when feeding the bending part 2 in the bending press 1 or in the area of the bending line 14 to determine. It is therefore also advantageous if the bending thickness is determined in a separate "measuring handle", which only serves to determine the said thickness. In the present example, this can be realized in that the robot 3, the bending part 2 on the stack 5 laterally engages the bending line 14 and determines the bending thickness. Thereafter, the bending part 2 is grasped at its front edge and inserted into the bending press 2.
  • the bent part 2 can in turn be packed at its front edge and inserted into the bending press 1, whereupon the robot 3 lets go of the bent part 2 and misses on its side edge. It would also be conceivable that the bending part 2 is initially only a little pushed into the bending press 1, so that access to the bending line 14 remains free. Only after measuring this is pushed into the bending position. Of course, also applies to this variant that the measurement is preferably carried out without the bending part 2 (completely) raise, or that the deformation of the bending part 2 and / or the gripper 40..42 is taken into account in determining the bending thickness.
  • FIGS. 2 and 3 shown grippers 40..42 are drawn purely schematically and represent only illustrative examples.
  • a gripper can also have more than one movable gripping element and of course the gripping elements can also be driven by more than one linear motor.
  • FIG. 1 The arrangement shown is shown very schematically. Again, these may in reality include more or fewer components than shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Biegeteils mit Hilfe einer Biegepresse, wobei das Biegeteil mit Hilfe eines Greifers eines Roboters in die Biegepresse zugeführt und anschließend durch Betätigen der Biegepresse gebogen wird. Weiterhin betrifft die Erfindung eine Anordnung mit einer Biegepresse zum Biegen eines Biegeteils und einem Roboter, welcher für das Zuführen des Biegeteils in die Biegepresse mit Hilfe eines Greifers vorbereitet ist.
  • Ein solches Verfahren beziehungsweise eine solche Anordnung sind prinzipiell bekannt. Dabei werden zu biegende Biegeteile von einem Roboter, welcher mit einem Greifer ausgestattet ist, aus einem Anlieferbereich entnommen, der Biegepresse zugeführt und im Anschluss gebogen. Das Biegeteil kann während des Biegevorgangs vom Roboter gehalten werden oder aber auch beispielsweise durch einen Spannmechanismus an der Biegepresse fixiert werden. Ein generelles Problem beim Biegen eines Biegeteiles sind die Toleranzen des Rohteils. Handelt es sich beispielsweise um ein Biegeteil aus Blech, so können Dickentoleranzen des Rohmaterials zu erheblichen Abweichungen des Ist-Biegewinkels von einem erwünschten Soll-Biegewinkel führen. Das Biegeteil muss dann aufwändig nachgebogen oder überhaupt als Ausschuss entsorgt werden. Dazu ist jedenfalls eine Nachkontrolle der gebogenen Biegeteile erforderlich.
  • Bei vollautomatischen Fertigungsstraßen können unterschiedlich beziehungsweise schlecht gebogene Biegeteile zu erheblichen Problemen im Fertigungsablauf führen, insbesondere wenn nicht jedes Biegeteil kontrolliert wird und schlecht gebogene Biegeteile unerkannt bleiben. Dadurch kann die dem Biegen nachfolgende Fertigung, bei dem beispielsweise eine größere Baueinheit aus mehreren Bauteilen zusammengebaut wird, erschwert oder sogar zum Erliegen gebracht werden. Dokument DE 36 22 924 A1 offenbart ein Verfahren bzw. eine Anordnung gemäß dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 9. Eine Aufgabe der Erfindung ist es daher, eine verbesserte Anordnung mit einer Biegepresse und einem Roboter sowie ein verbessertes Verfahren zur Herstellung eines Biegeteils anzugeben. Insbesondere soll eine Abweichung zwischen einem Ist-Biegewinkel und einem Soll-Biegewinkel klein gehalten werden, ohne dass dazu jedes Biegeteil nachkontrolliert werden muss.
  • Die Aufgabe der Erfindung wird mit einem Verfahren gemäß Anspruch 1 gelöst. Weiterhin wird die Aufgabe der Erfindung durch eine Anordnung gemäß Anspruch 9 gelöst. Insbesondere wird der Pressdruck/der Verfahrweg der Biegepresse bei dem oben genannten Verfahren beziehungsweise bei der oben genannten Anordnung bei steigendem Messwert für die Biegeteildicke erhöht/verkürzt.
  • Durch die Bestimmung der Biegeteildicke vor dem Biegevorgang kann dieser dahingehend beeinflusst werden, dass der Ist-Biegewinkel einem Soll-Biegewinkel möglichst gut angenähert wird oder diesem sogar entspricht. Ein Nachbiegen ist daher nicht beziehungsweise nur in Ausnahmefällen nötig. Auch kann eine Nachkontrolle eines jeden Biegeteils entfallen, ohne dabei Störungen in einem vollautomatischen Fertigungsablauf zu riskieren.
  • Anstelle des Pressdrucks/des Verfahrwegs oder zusätzlich dazu kann generell ein davon abhängiger Parameter der Biegepresse für die Beeinflussung derselben verwendet werden. Beispielsweise ist die Presskraft vom Pressdruck abhängig. Wird die Biegepresse hydraulisch angetrieben, so hängt die Menge des in die Hydraulikzylinder fließenden Öls vom Verfahrweg ab. Ist ein Spindelantrieb vorgesehen, so hängt die Anzahl der Umdrehungen eines Antriebsmotors vom Verfahrweg ab. Die angeführten Parameter sind selbstverständlich nur illustrative Beispiele. Andere Parameter können ebenso zur Beeinflussung der Biegepresse herangezogen werden.
  • Generell eignen sich das vorgestellte Verfahren beziehungsweise die vorgestellte Anordnung zur Herstellung von Biegeteilen aller Art, insbesondere für Blechbiegeteile. Die Biegepresse kann dazu beispielsweise als Gesenkbiegepresse oder als Schwenkbiegepresse ausgebildet sein. Der Roboter kann als handelsüblicher Industrieroboter mit seriellkinematischem oder parallelkinematischem Antrieb ausgebildet sein. Natürlich ist diese Aufzählung rein illustrativ. Selbstverständlich kann die Biegepresse beziehungsweise der Roboter auch einen abweichenden Aufbau aufweisen. Weiterhin wird darauf hingewiesen, dass das vorgestellte Verfahren beziehungsweise die vorgestellte Anordnung nicht auf die Herstellung von Blechbiegeteilen limitiert ist, sondern beispielsweise auch auf Rohrbiegemaschinen anwendbar ist.
  • Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie aus der Beschreibung in Zusammenschau mit den Figuren.
  • Günstig ist es, wenn das gebogene Biegeteil mit Hilfe des Greifers des Roboters aus der Biegepresse entnommen wird. Auf diese Weise ergibt sich ein vollautomatischer Ablauf bei der Herstellung eines Biegeteils.
  • Günstig ist es, wenn die Biegeteildicke aus der relativen Stellung von Greifelementen des Greifers zueinander direkt bestimmt oder errechnet wird. Beispielsweise kann der Abstand zweier zueinander verschiebbar gelagerter Greifelemente, welcher der Dicke eines im Greifer befindlichen Biegeteils entspricht, mit einem Linearmeßsystem direkt bestimmt (gemessen) werden. Denkbar ist aber auch, dass die Dicke eines im Greifer befindlichen Biegeteils basierend auf der relativen Stellung von Greifelementen des Greifers zueinander errechnet wird. Beispielsweise können die Greifelemente zueinander gedreht werden und zangenartig zupacken. Die Winkelstellung der Greifelemente zueinander kann nun darüber Aufschluss geben, wie dick das zwischen den Greifelementen positionierte Biegeteil ist.
  • Vorteilhaft ist es, wenn die Biegeteildicke bei einer vorgebbaren Greifkraft oder einem vorgebbaren Greifdruck ermittelt wird. Dadurch können reproduzierbare Messergebnisse für die Biegeteildicke erzielt werden, da die Deformation des Biegeteils durch den zupackenden Greifer stets im Wesentlichen die gleiche ist. Sollte die Greifkraft so groß sein, dass eine Verfälschung des Messergebnisses für die Biegeteildicke unvermeidlich ist, so kann auch ein (konstanter) Korrekturwert bestimmt werden, um das Messergebnis richtigzustellen.
  • Vorteilhaft ist es aber auch, wenn eine Deformation des Greifers ermittelt und für eine Korrektur des Messwerts für die Biegeteildicke herangezogen wird. Bei dieser Variante wird der Korrekturwert für die Biegeteildicke also anhand der aktuell auftretenden Deformation bestimmt. Die genannte Deformation kann dabei direkt ermittelt werden, beispielsweise mit Hilfe von Dehnmeßstreifen im Greifer, oder über die Haltekraft berechnet werden.
  • Besonders vorteilhaft ist es, wenn die Dicke des Biegeteils bei jenem Greifen desselben ermittelt wird, das zum Zuführen des Biegeteils in die Biegepresse dient. Bei dieser Variante des Herstellungsverfahrens wird ein zu biegendes Teil also ergriffen, in die Biegemaschine zugeführt und anschließend gebogen, wobei die Biegeteildicke zwischen dem Ergreifen des Biegeteils und dem Biegen desselben ermittelt wird, ohne dabei das Biegeteil loszulassen. Dadurch kann das Verfahren gut in bestehende Systeme integriert werden, da sich der Arbeitsablauf in Bezug auf die Manipulation des Biegeteils nicht ändert. Zudem ist der vorgestellte Ablauf sehr effizient, da durch das Messen der Biegeteildicke praktisch kein Zeitverlust bei der Herstellung eines Biegeteils entsteht. Insbesondere kann die Biegeteildicke auch während der Zuführbewegung des Roboters gemessen werden.
  • Vorteilhaft erfolgt die Messung der Biegeteildicke ohne das Biegeteil anzuheben, um eine Verfälschung des Messergebnisses durch die Belastung auf die Greifelemente zu vermeiden. Beispielsweise könnte der Greifer beim Anheben durch ein entstehendes Kippmoment geringfügig aufgeweitet werden. Alternativ ist auch denkbar, dass das Biegeteil beim Messen wenigstens einseitig abgelegt wird, um eine Verfälschung des Messergebnisses auf diese Weise weitgehend zu vermeiden.
  • Besonders vorteilhaft ist es auch, wenn die Biegeteildicke bei einem Griff ermittelt wird, welcher nur der Ermittlung der genannten Dicke dient. Bei dieser Variante des Herstellungsverfahrens wird ein eigener "Messgriff" durchgeführt, um die Biegeteildicke festzustellen. Beispielsweise kann dies von Vorteil sein, wenn die Dicke des Biegeteils an einer Position ermittelt werden soll, die sich von jener Position unterscheidet, an der das Biegeteil angehoben wird. Vorteilhaft erfolgt auch diese Messung ohne das Biegeteil anzuheben.
  • Besonders vorteilhaft ist es weiterhin, wenn die Biegeteildicke auf oder im Bereich einer Biegelinie ermittelt wird. Dadurch kann das Biegen des Biegeteils besonders genau erfolgen, da dessen Dicke an jener Position ermittelt wird, an der es später gebogen wird. "Im Bereich der Biegelinie" bedeutet im Rahmen der Erfindung insbesondere 20 cm von der Biegelinie entfernt, bevorzugt 10 cm von der Biegelinie entfernt und weiter bevorzugt 5 cm von der Biegelinie entfernt.
  • Vorteilhaft ist es darüber hinaus, wenn die Abweichung des Ist-Winkels des gebogenen Biegeteils vom Soll-Winkel ermittelt wird und die Beeinflussung der Biegepresse durch den Messwert der Biegeteildicke derart adaptiert wird, dass eine Abweichung zwischen einem Ist-Biegewinkel und einem Soll-Biegewinkel verringert wird. Bei dieser Variante wird also praktisch ein Regelkreis zur möglichst guten Erreichung des Soll-Winkels aufgebaut. Dabei ist es jedoch nicht nötig, jedes Biegeteil hinsichtlich seines Ist-Biegewinkels zu überprüfen. Prinzipiell reichen stichprobenartige Messungen aus, um die Biegepresse initial beziehungsweise auch laufend nachzujustieren.
  • Günstig ist es schließlich, wenn die Anordnung zusätzlich umfasst:
    • wenigstens zwei Greifelemente im Greifer, von denen wenigstens eines drehbar gelagert ist,
    • einen mit dem zumindest einen drehbaren Greifelement gekoppelten Linearmotor zum Bewegen desselben,
    • ein Meßsystem zum Messen einer Stellung des Linearmotors und
    • Mittel zur Berechnung eines Abstands der Greifelemente, welcher die Dicke eines im Greifer befindlichen Biegeteils kennzeichnet, basierend auf der Stellung des Linearmotors. Bei dieser Ausführungsform wird wenigstens ein drehbar gelagertes Greifelement (z.B. eine Greifbacke) von einem Linearmotor bewegt. Dieser kann beispielsweise als Pneumatikzylinder, Hydraulikzylinder oder aber auch als Spindelantrieb ausgebildet sein. Durch das Drehgelenk wird die lineare Bewegung des Linearmotors in eine Dreh- beziehungsweise Schwenkbewegung des Greifelements umgewandelt, wodurch der Greifer zangenartig zupackt. Selbstverständlich kann der Greifer auch mehr als ein drehbar gelagertes Greifelement aufweisen und natürlich können die Greifelemente auch von mehr als einem Linearmotor angetrieben sein. Mit Hilfe eines Meßsystems wird die Stellung des Linearmotors ermittelt. Beispielsweise kann dazu ein handelsübliches Linearmeßsystem oder im Falle eines Spindelantriebs auch ein Winkelmeßsystem eingesetzt werden. Durch die Kopplung des Greifelements mit dem Linearmotor ist die Stellung des Greifelements abhängig von der Stellung des Linearmotors. Aus der Stellung des Linearmotors kann somit ein Abstand der Greifelemente berechnet werden, welcher die Dicke eines im Greifer befindlichen Biegeteils kennzeichnet. Durch die spezielle Bauweise kann der Greifer zudem relativ schlank gestaltet werden, sodass die Biegeteile auch bei beengten Platzverhältnissen problemlos manipuliert werden können.
  • Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert. Es zeigen:
  • Fig. 1
    eine schematisch dargestellte Anordnung mit einer Biegepresse und einem Roboter;
    Fig. 2
    einen beispielhaften Greifer des Roboters in Detailansicht und
    Fig. 3
    einen weiteren beispielhaften Greifer des Roboters in Detailansicht.
  • Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.
  • Fig. 1 zeigt eine schematisch dargestellte Anordnung mit einer Biegepresse 1 zum Biegen eines Biegeteils 2 und einem Roboter 3, welcher für das Zuführen des Biegeteils 2 in die Biegepresse 1 mit Hilfe eines Greifers 40 vorbereitet ist.
  • Der Roboter 3 entnimmt bei diesem Beispiel ein ungebogenes Biegeteil 2 von einem Stapel 5 und legt es mit Hilfe seines Greifers 40 in die Biegepresse 2 ein. Durch Aktivieren der Hydraulikpumpe 6 respektive eines Ventils 7 werden die Hydraulikzylinder 8 unter Druck gesetzt, worauf sich das Schwert 9 nach unten in Richtung Matrize 10 bewegt. Durch Steuerung des Pressdrucks und/oder des Verfahrwegs kann der Biegewinkel α beeinflusst werden. Zu diesem Zweck umfasst die Biegepresse 1 eine Steuerung 11, welche mit einem Manometer 12, einem Linearmeßsystem 13 sowie mit der Pumpe 6 respektive dem Ventil 7 verbunden ist. Damit ist es in an sich bekannter Weise möglich, einen beliebigen Pressdruck und einen beliebigen Verfahrweg für das Schwert 9 vorzugeben/zu steuern beziehungsweise zu regeln, um so nach Möglichkeit einen geforderten Soll-Biegewinkel zu erzielen.
  • An dieser Stelle wird angemerkt dass die Begriffe "Steuern" und "Regeln" wenn nichts anders angegeben synonymisch gebraucht werden. Das heißt dass anstelle einer Steuerung auch eine Regelung vorgesehen werden kann und umgekehrt, wenn nichts anderes angegeben ist.
  • Günstig ist es, wenn das entlang der Biegelinie 14 gebogene Biegeteil 2 wie in diesem Beispiel dargestellt mit Hilfe des Greifers 40 aus der Biegepresse 1 entnommen und auf einem Stapel 15 oder einem weiteren Transportmittel (z.B. Förderband) abgelegt wird. Auf diese Weise ergibt sich ein vollautomatischer Ablauf bei der Herstellung des Biegeteils 2.
  • Um die Abweichung zwischen dem Ist-Biegewinkel α und dem Soll-Biegewinkel auch bei toleranzbedingter Variation der Dicke der Biegeteile 2 möglichst gering zu halten, wird die Dicke des Biegeteils 2 vor dem Biegen mit Hilfe des genannten Greifers 40 bestimmt und ein Pressdruck und/oder ein Verfahrweg und/oder ein davon abhängiger Parameter der Biegepresse 1 durch den Messwert der Biegeteildicke derart beeinflusst, dass eine Abweichung zwischen einem Ist-Biegewinkel α und einem Soll-Biegewinkel verringert wird.
  • Dazu umfasst der Greifer 40 Mittel zur Bestimmung der Dicke des Biegeteils 2 (siehe im Detail die Fig. 2), und die gezeigte Anordnung umfasst Mittel zur Übermittlung eines Messwerts der Biegeteildicke vom Roboter 3 an die Biegepresse 1, konkret an deren Steuerung 11 (siehe strichlierte Linie). Weiterhin ist die Steuerung 11 für eine Beeinflussung des Pressdrucks und/oder des Verfahrwegs und/oder eines davon abhängigen Parameters der Biegepresse 1 durch den Messwert der Biegeteildicke eingerichtet ist, derart, dass eine Abweichung zwischen einem Ist-Biegewinkel α und einem Soll-Biegewinkel verringert wird.
  • Konkret wird die Dicke des Biegeteils 2 durch den Greifer 40 also ermittelt, bevor das Biegeteil 2 mit Hilfe der Biegepresse 1 gebogen wird. Dieser Messwert wird an die Steuerung 11 übermittelt (z.B. per Draht oder Funk), welche in diesem Beispiel den Pressdruck und den Verfahrweg entsprechend der ermittelten Biegeteildicke und dem zu erzielenden Soll-Biegewinkel einstellt. Im Speziellen wird der Pressdruck bei steigendem Messwert für die Biegeteildicke erhöht, der Verfahrweg entsprechend verkürzt.
  • Durch die genannte Maßnahme kann eine Reihe von Biegeteilen 2 mit im Wesentlichen gleichem Ist-Biegewinkel α hergestellt werden, auch wenn deren Dicke variiert. Ein Nachbiegen ist daher nicht beziehungsweise nur in Ausnahmefällen nötig. Auch kann eine Nachkontrolle eines jeden Biegeteils 2 entfallen, ohne dabei Störungen in einem vollautomatischen Fertigungsablauf zu riskieren.
  • Trotz der Beeinflussung der Biegepresse 1 mit dem Messwert der Biegeteildicke ist es günstig, wenn die Abweichung des Ist-Winkels α des gebogenen Biegeteils 2 vom Soll-Winkel ermittelt und die Beeinflussung der Biegepresse 1 durch den Messwert der Biegeteildicke derart adaptiert wird, dass eine Abweichung zwischen einem Ist-Biegewinkel α und einem Soll-Biegewinkel verringert wird. Im Speziellen wird der Pressdruck bei zu geringem Ist-Biegewinkel α für die zukünftig herzustellenden Biegeteile 2 erhöht, der Verfahrweg entsprechend verlängert. Dadurch wird die Biegepresse 1 laufend nachjustiert. Prinzipiell reichen dazu stichprobenartige Messungen aus, sodass der Fertigungsablauf dadurch nur wenig gestört wird.
  • Fig. 2 zeigt nun einen Greifer 41 im Detail, wenngleich auch wiederum in schematischer Darstellung. Der Greifer 41 umfasst ein festes Greifelement (eine feste Greifbacke) 16 und ein bewegliches Greifelement (eine bewegliche Backe) 17, welches um einen Drehpunkt 18 drehbar gelagert ist. Weiterhin umfasst der Greifer 41 einen Linearmotor 19, welcher mit der beweglichen Backe 17 gekoppelt ist und diese bewegt. Weiterhin umfasst der Greifer 41 ein Linearmeßsystem 20 zum Messen einer Stellung des Linearmotors 19. Durch das Drehgelenk 18 wird die lineare Bewegung des Linearmotors 19 in eine Dreh- beziehungsweise Schwenkbewegung der Greifbacke 17 umgewandelt, wodurch der Greifer 41 zangenartig zupackt. Durch die Kopplung der Greifbacke 17 mit dem Linearmotor 19 ist die Stellung der Greifbacke 17 abhängig von der Stellung des Linearmotors 19. Aus der Stellung des Linearmotors 19 kann somit der Abstand der Greifbacken 16, 17 berechnet werden, welcher die Dicke des im Greifer 41 befindlichen Biegeteils 2 kennzeichnet beziehungsweise diesem entspricht. Durch die spezielle Bauweise ist der Greifer 41 relativ schlank, sodass Biegeteile 2 auch bei beengten Platzverhältnissen problemlos manipuliert werden können.
  • Günstig ist es, wenn die Biegeteildicke bei einer vorgebbaren Greifkraft oder einem vorgebbaren Greifdruck ermittelt wird. Dadurch können reproduzierbare Messergebnisse für die Biegeteildicke erzielt werden, da die Deformation des Biegeteils 2 durch den zupackenden Greifer 41 und auch die Deformation des Greifers 41 selbst stets im Wesentlichen die gleiche ist. Denkbar ist aber auch, dass die Ermittlung der Biegeteildicke bei einer beliebigen Greifkraft ermittelt wird und aus den auftretenden Deformationen ein Korrekturwert für die Biegeteildicke bestimmt wird. Diese Deformationen können beispielsweise berechnet oder aber auch empirisch ermittelt werden.
  • Wenn der Linearmotor 19 als Pneumatikzylinder oder Hydraulikzylinder ausgebildet ist, kann dazu der Druck im Zylinder ermittelt werden. Ist der Linearmotor 19 als Spindelantrieb ausgebildet, so kann beispielsweise die Stromaufnahme des Motors für die Berechnung der Greifkraft herangezogen werden. Generell können auch Kraftsensoren in den Greifelementen 16, 17 verbaut sein (zum Beispiel Piezo-Drucksensoren oder Dehnmeßstreifen), um die im Greifer 41 auftretenden Haltekräfte bestimmen zu können.
  • Bei dem dargestellten Greifer 41 wird die Dicke des Biegeteils 2 basierend auf der relativen Stellung der Greifbacken 16, 17 zueinander errechnet. Die Winkelstellung der Greifbacken 16, 17 zueinander gibt darüber Aufschluss, wie dick das zwischen den Greifbacken 16, 17 positionierte Biegeteil 2 ist. Denkbar wäre aber auch, dass die Biegeteildicke aus der relativen Stellung der Greifbacken 16, 17 zueinander direkt bestimmt, das heißt gemessen wird. Fig. 3 zeigt dazu eine Variante eines Greifers 42, bei dem die Greifbacke 17 verschiebbar gelagert ist. Mit Hilfe eines Längenmeßsystems zwischen den Greifbacken 16, 17 kann der Abstand derselben zueinander und damit die Dicke des im Greifer 42 befindlichen Biegeteils 2 direkt gemessen werden.
  • Vorteilhaft ist es nun, wenn die Dicke des Biegeteils 2 bei jenem Greifen desselben ermittelt wird, das zum Zuführen des Biegeteils 2 in die Biegepresse 1 dient. Im vorliegenden Beispiel wird das Biegeteil 2 also vom Stapel 5 ergriffen und in die Biegepresse 1 eingelegt. Vor dem Biegen wird die Biegeteildicke in der bereits zuvor angegebenen Weise ermittelt. Dieser Ablauf ist sehr effizient, da durch das Messen der Biegeteildicke praktisch kein Zeitverlust bei der Herstellung eines Biegeteils 2 entsteht. Insbesondere kann die Biegeteildicke während der Zuführbewegung des Roboters 3 gemessen werden. Dadurch kann das Verfahren gut in bestehende Systeme integriert werden, da sich der Arbeitsablauf in Bezug auf die Manipulation des Biegeteils 2 nicht ändert.
  • In einer bevorzugten Ausführungsform erfolgt die Messung der Biegeteildicke ohne das Biegeteil 2 anzuheben, um eine Verfälschung des Messergebnisses durch die Belastung auf die Greifelemente 16, 17 zu vermeiden. Konkret könnte dies im vorliegenden Beispiel vor dem Anheben des Biegeteils 2 vom Stapel 5 oder nach dem Ablegen desselben in der Biegepresse 1 erfolgen. Dadurch wird vermieden, dass der Greifer 40..42 durch das Kippmoment des Biegeteils 2 oder auch die entstehenden Beschleunigungen bei der Manipulation aufgeweitet wird und das Messergebnis verfälscht wird.
  • Alternativ ist auch denkbar, dass das Biegeteil 2 beim Messen einseitig abgelegt wird. Beispielsweise kann das Biegeteil 2 in der Fig.1 während der Messung an seiner Hinterkante am Stapel 5 aufliegen, um so eine Verfälschung des Messergebnisses wenigstens zu verringern.
  • Um die Genauigkeit des ermittelten Messwerts weiter zu steigern, kann weiterhin die Deformation des Greifers 40..42 ermittelt werden und für die Korrektur des Messwerts für die Biegeteildicke herangezogen werden. Die genannte Deformation kann dabei direkt ermittelt werden, beispielsweise mit Hilfe von Dehnmeßstreifen, oder über die Haltekraft berechnet werden.
  • Generell ist es von Vorteil, wenn die Biegeteildicke auf oder im Bereich der Biegelinie 14 ermittelt wird. Dadurch kann das Biegen des Biegeteils 2 besonders genau erfolgen, da dessen Dicke an jener Position ermittelt wird, an der es später gebogen wird.
  • Je nach Bauform des Roboters 3, der Biegepresse 2 beziehungsweise auch in Abhängigkeit der Anordnung des Zulieferbereichs (Stapel 5) und des Abtransportbereichs (Stapel 15) kann es schwer oder sogar unmöglich sein, die Biegeteildicke beim Zuführen des Biegeteils 2 in die Biegepresse 1 auf oder im Bereich der Biegelinie 14 zu ermitteln. Von Vorteil ist es daher auch, wenn die Biegeteildicke bei einem eigenen "Messgriff" ermittelt wird, welcher nur der Ermittlung der genannten Dicke dient. Im vorliegenden Beispiel kann dies dadurch realisiert sein, dass der Roboter 3 das Biegeteil 2 am Stapel 5 seitlich an der Biegelinie 14 ergreift und die Biegeteildicke ermittelt. Danach wird das Biegeteil 2 an seiner Vorderkante ergriffen und in die Biegepresse 2 eingelegt. Denkbar wäre aber auch, dass dieser "Messgriff" nach dem Ablegen in der Biegepresse 1 erfolgt. Beispielsweise kann das Biegeteil 2 wiederum an seiner Vorderkante gepackt und in die Biegepresse 1 eingelegt werden, woraufhin der Roboter 3 das Biegeteil 2 loslässt und an seiner Seitenkante vermisst. Denkbar wäre auch, dass das Biegeteil 2 vorerst nur ein wenig in die Biegepresse 1 eingeschoben wird, sodass der Zugang zur Biegelinie 14 frei bleibt. Erst nach dem Messen wird dieses in die Biegeposition geschoben. Selbstverständlich gilt auch für diese Variante, dass das Messen bevorzugt erfolgt, ohne das Biegeteil 2 (vollständig) anzuheben, beziehungsweise dass die Deformation des Biegeteils 2 und/oder des Greifers 40..42 bei der Ermittlung der Biegeteildicke berücksichtigt wird.
  • Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten einer erfindungsgemäßen Anordnung beziehungsweise eines erfindungsgemäßen Greifers 40..42, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten eingeschränkt ist. An dieser Stelle wird darauf hingewiesen, dass die in den Figuren 2 und 3 dargestellten Greifer 40..42 rein schematisch gezeichnet sind und lediglich illustrative Beispiele darstellen. Selbstverständlich kann ein Greifer auch mehr als ein bewegliches Greifelement aufweisen und natürlich können die Greifelemente auch von mehr als einem Linearmotor angetrieben sein.
  • Auch die in der Fig. 1 dargestellte Anordnung ist stark schematisiert dargestellt. Auch diese kann in der Realität mehr oder auch weniger Bestandteile als dargestellt umfassen.
  • Der Ordnung halber sei abschließend darauf hingewiesen, dass die in den Figuren gezeigten Bestandteile zum besseren Verständnis ihres Aufbaus teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
  • Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.
  • Bezugszeichenaufstellung
  • 1
    Biegepresse
    2
    Biegeteil
    3
    Roboter
    40..42
    Greifer
    5
    Stapel ungebogener Biegeteile
    6
    Pumpe
    7
    Ventil
    8
    Hydraulikzylinder
    9
    Biegeschwert
    10
    Biegematrize
    11
    Steuerung
    12
    Manometer
    13
    Linearmeßsystem
    14
    Biegelinie
    15
    Stapel gebogener Biegeteile
    16
    feste Greifbacke
    17
    bewegliche Greifbacke
    18
    Drehgelenk
    19
    Linearmotor
    20
    Linearmeßsystem
    α
    Ist-Biegewinkel

Claims (10)

  1. Verfahren zur Herstellung eines Biegeteils (2) mit Hilfe einer Biegepresse (1), umfassend die Schritte:
    - Zuführen des Biegeteils (2) in die Biegepresse (1) mit Hilfe eines Greifers (40..42) eines Roboters (3) und
    - Biegen des Biegeteils (2) durch Betätigen der Biegepresse (1),
    dadurch gekennzeichnet, dass
    - die Dicke des Biegeteils (2) vor dem Biegen mit Hilfe von Mitteln (20) zur Bestimmung der Dicke des Biegeteils (2), die von dem genannten Greifers (40..42) umfasst sind, bestimmt wird
    - ein Messwert der Biegeteildicke vom Roboter (3) an die Biegepresse (1) übermittelt wird und
    - ein Pressdruck und/oder ein Verfahrweg und/oder ein davon abhängiger Parameter der Biegepresse (1) beim Biegen durch den Messwert der Biegeteildicke derart beeinflusst wird, dass eine Abweichung zwischen einem Ist-Biegewinkel (α) und einem Soll-Biegewinkel verringert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Pressdruck/der Verfahrweg bei steigendem Messwert für die Biegeteildicke erhöht/verkürzt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Biegeteildicke aus der relativen Stellung von Greifelementen (16, 17) des Greifers (40..42) zueinander direkt bestimmt oder errechnet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Biegeteildicke bei einer vorgebbaren Greifkraft oder einem vorgebbaren Greifdruck ermittelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dicke des Biegeteils (2) bei jenem Greifen desselben ermittelt wird, das zum Zuführen des Biegeteils (2) in die Biegepresse (1) dient.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Biegeteildicke bei einem Griff ermittelt wird, welcher nur der Ermittlung der genannten Dicke dient.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Biegeteildicke auf oder im Bereich einer Biegelinie (14) ermittelt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abweichung des Ist-Winkels (α) des gebogenen Biegeteils (2) vom Soll-Winkel ermittelt und die Beeinflussung der Biegepresse (1) durch den Messwert der Biegeteildicke derart adaptiert wird, dass eine Abweichung zwischen einem Ist-Biegewinkel (α) und einem Soll-Biegewinkel verringert wird.
  9. Anordnung, umfassend eine Biegepresse (1) zum Biegen eines Biegeteils (2) und einen Roboter (3), welcher für das Zuführen des Biegeteils (2) in die Biegepresse (1) mit Hilfe eines Greifers (40..42) vorbereitet ist,
    dadurch gekennzeichnet, dass
    - der Greifer (40..42) Mittel (20) zur Bestimmung der Dicke des Biegeteils (2) umfasst,
    - die Anordnung Mittel zur Übermittlung eines Messwerts der Biegeteildicke vom Roboter (3) an die Biegepresse (1) umfasst und
    - die Biegepresse (1) eine Steuerung (11) umfasst, die für eine Beeinflussung eines Pressdrucks und/oder eines Verfahrwegs und/oder eines davon abhängigen Parameters der Biegepresse (1) beim Biegen durch den Messwert der Biegeteildicke eingerichtet ist, derart, dass eine Abweichung zwischen einem Ist-Biegewinkel (α) und einem Soll-Biegewinkel verringert wird.
  10. Anordnung nach Anspruch 9, gekennzeichnet durch
    - wenigstens zwei Greifelemente (16, 17) im Greifer (40..42), von denen wenigstens eines drehbar gelagert ist,
    - einen mit dem zumindest einen drehbaren Greifelement (17) gekoppelten Linearmotor (19) zum Bewegen desselben,
    - ein Meßsystem (20) zum Messen einer Stellung des Linearmotors (19) und
    - Mittel zur Berechnung eines Abstands der Greifelemente (16, 17), welcher die Dicke eines im Greifer (40..42) befindlichen Biegeteils (2) kennzeichnet, basierend auf der Stellung des Linearmotors (19).
EP13190282.7A 2012-10-25 2013-10-25 Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils Active EP2724795B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA1155/2012A AT512892B1 (de) 2012-10-25 2012-10-25 Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils

Publications (2)

Publication Number Publication Date
EP2724795A1 EP2724795A1 (de) 2014-04-30
EP2724795B1 true EP2724795B1 (de) 2018-05-02

Family

ID=49509949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13190282.7A Active EP2724795B1 (de) 2012-10-25 2013-10-25 Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils

Country Status (2)

Country Link
EP (1) EP2724795B1 (de)
AT (1) AT512892B1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105598221A (zh) * 2014-11-25 2016-05-25 无锡市恒盛电机有限公司 折弯加工装置
CN105689458A (zh) * 2014-11-25 2016-06-22 无锡市恒盛电机有限公司 钣金的智能分阶段折弯装置
CN105689455A (zh) * 2014-11-25 2016-06-22 无锡市恒盛电机有限公司 基于定位控制的分段式折弯加工装置
CN104624739B (zh) * 2014-12-24 2016-08-24 广东中南声像灯光设计研究院 基于plc的电容厚度检测与裂纹反馈的板件折弯机及其弯折加工方法
CN104624726B (zh) * 2014-12-24 2016-08-24 广东中南声像灯光设计研究院 基于plc的x光厚度检测与折弯速度调节的折弯机及其折弯加工方法
CN104588439B (zh) * 2014-12-24 2016-09-07 广东中南声像灯光设计研究院 基于plc板厚检测与转速调节的折弯机及折弯加工方法
CN104942053A (zh) * 2015-06-22 2015-09-30 苏州边桐传感科技有限公司 带压力检测与扭矩调节的折弯装置
CN104942066A (zh) * 2015-06-23 2015-09-30 苏州边桐传感科技有限公司 基于厚度检测与反馈调控的折弯加工装置
CN104942056A (zh) * 2015-06-23 2015-09-30 苏州边桐传感科技有限公司 基于定位夹持控制与反馈控制的折弯加工装置
CN104942057A (zh) * 2015-06-23 2015-09-30 苏州边桐传感科技有限公司 基于裂纹检测反馈与夹持控制的折弯加工系统
CN104942091A (zh) * 2015-06-23 2015-09-30 苏州边桐传感科技有限公司 基于厚度调节折弯扭矩的安全折弯装置
CN104942073A (zh) * 2015-06-25 2015-09-30 苏州边桐传感科技有限公司 带反馈检测与夹持控制的钣金折弯加工系统及方法
CN104942081A (zh) * 2015-06-26 2015-09-30 苏州边桐传感科技有限公司 阶段折弯与磨压式折弯装置及方法
CN104959417A (zh) * 2015-06-26 2015-10-07 苏州边桐传感科技有限公司 基于阶段式折弯与反馈扭矩控制的钣金折弯系统及方法
CN104942095A (zh) * 2015-06-26 2015-09-30 苏州边桐传感科技有限公司 基于检测反馈与智能调控的钣金折弯装置及方法
CN109622675B (zh) * 2019-03-01 2024-02-02 山东红宝自动化有限公司 一种冷凝器散热片折弯机系统
CN113680871B (zh) * 2021-10-20 2021-12-31 江苏伊凯医疗器械有限公司 一种精密医疗器械加工用夹具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115602A1 (de) * 1983-01-06 1984-08-15 Hämmerle AG Vorrichtung zum Manipulieren von Werkstücken
IT1182514B (it) * 1985-07-15 1987-10-05 Imp Prima Spa Procedimento ed impianto per effettuare la piegatura di precisione di lamiere
DE3612146A1 (de) * 1986-04-10 1987-10-29 Hinkel Ralf Verfahren und einrichtung zur weglaengenmessung
DE4008149A1 (de) * 1990-03-14 1991-09-19 Hatebur Bernhard Dipl Ing Abkantvorrichtung
EP1181118B1 (de) * 1999-04-07 2004-12-08 Amada Company, Limited Automatisches biegesystem
JP4050619B2 (ja) * 2001-03-16 2008-02-20 バイストロニック レーザー アクチェンゲゼルシャフト プレスブレーキのストロークを調整する方法
ITTO20050880A1 (it) * 2005-12-16 2007-06-17 Crea Srl Macchina combinata pannellatrice-piegatrice
AT505743B1 (de) * 2007-03-30 2009-07-15 Trumpf Maschinen Austria Gmbh Verfahren zur festlegung eines einstellparameterwerts einer biegepresse
AT507911B1 (de) * 2009-03-04 2010-11-15 Trumpf Maschinen Austria Gmbh Verfahren zum freibiegen
AT508857B1 (de) * 2009-10-14 2011-07-15 Trumpf Maschinen Austria Gmbh Verfahren zur bestimmung der dicke eines werkstückes mit einer biegemaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT512892B1 (de) 2013-12-15
EP2724795A1 (de) 2014-04-30
AT512892A4 (de) 2013-12-15

Similar Documents

Publication Publication Date Title
EP2724795B1 (de) Anordnung mit einer Biegepresse und einem Roboter sowie Verfahren zur Herstellung eines Biegeteils
WO2007082323A1 (de) Biegepresse mit beschickungseinrichtung und verfahren zu deren betrieb
AT510949B1 (de) Steuer- und regelvorrichtung für eine biegepresse
AT513279B1 (de) Messeinrichtung und Messverfahren zum Messen der Dicke eines plattenförmigen Gegenstands sowie Biegemaschine
EP2447197A2 (de) Vorrichtung und Verfahren zum Wenden von Stapeln aus bogenförmigem Material
EP2368667A1 (de) Meßvorrichtung
EP3012196B1 (de) Einrichtung zur anordnung eines kantenschutzmittels und vorrichtung zum umreifen von packstücken mit vorgenannter einrichtung
EP3448597B1 (de) Transportverfahren zum umsetzen von werkstücken
EP1363063B1 (de) Schmiereinrichtung
EP2361785B1 (de) Verfahren zum Heften von Druckprodukten mit einer Heftmaschine und Heftmaschine zum Durchführen des Verfahrens
EP2508276B1 (de) Blechentnahmestation
WO2008119090A1 (de) Verfahren zur festlegung eines einstellparameterwerts einer biegepresse
EP1371588B1 (de) Positionseinrichtung für den Greiferwagen einer bogenverarbeitenden Stanz- und Prägemaschine
EP3219406A1 (de) Umformmaschine und verfahren zur positionskorrektur des schlittenaggregates einer solchen umformmaschine
EP3142952B1 (de) Vorrichtung und verfahren zum einstellen der position einer packstoffbahn zu einer referenz in einer verpackungsmaschine
EP2875962B1 (de) VERFAHREN ZUM EINSTELLEN EINER BUCHFERTIGUNGSSTRAßE
EP2412497A1 (de) Vorrichtung und Verfahen zum Wechseln des Oberwerkzeugs einer Stanzstation einer Bogenstanzmaschine
EP2329895B1 (de) Biegepresse und Biegewerkzeug mit Haltevorrichtung für ein Werkstück
DE102019120421A1 (de) Vorrichtung zum dreiseitigen Beschnitt der Kanten eines Druckprodukts
EP1345715B1 (de) Schmiedepresse mit stellvorrichtung auf matrizenseite
DE102004005334B4 (de) Vorrichtung zum Kaschieren zylindrischer Teile
WO2022207151A1 (de) Verfahren und vorrcihtung zum führen und zentrieren eines metallenen walzguts in einer walzstrasse
DE102009008112A1 (de) Verfahren zum Übergeben von Bogen
DE202015009902U1 (de) Tiefziehverpackungsmaschine mit Folienstanze
EP2548682A1 (de) Verfahren zum Zersägen eines Werkstücks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140919

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 5/00 20060101AFI20171206BHEP

Ipc: B21D 5/02 20060101ALI20171206BHEP

INTG Intention to grant announced

Effective date: 20180110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 994649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010051

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181025

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181025

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190925

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 994649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181025

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231030

Year of fee payment: 11