EP2721358A2 - Process for liquefaction of natural gas - Google Patents

Process for liquefaction of natural gas

Info

Publication number
EP2721358A2
EP2721358A2 EP12733175.9A EP12733175A EP2721358A2 EP 2721358 A2 EP2721358 A2 EP 2721358A2 EP 12733175 A EP12733175 A EP 12733175A EP 2721358 A2 EP2721358 A2 EP 2721358A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
expander
feed
stream
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12733175.9A
Other languages
German (de)
English (en)
French (fr)
Inventor
Anthony Dwight Maunder
Geoffrey Frederick Skinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gasconsult Ltd
Original Assignee
Gasconsult Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gasconsult Ltd filed Critical Gasconsult Ltd
Publication of EP2721358A2 publication Critical patent/EP2721358A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Definitions

  • the present invention relates to a method for liquefying methane-rich gas and, more particularly but not exclusively, relates to a method for producing liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • Expander-based LNG installations are simple, compact, low in weight and can avoid the importation/preparation/storage of liquid refrigerants. These characteristics are attractive for smaller scale applications, particularly offshore, where low hydrocarbon inventory is desirable from safety considerations. 5However expander processes have certain drawbacks: until recently, limited capacity and experience with expanders higher power requirement
  • Partially liquefying the feed gas itself in an expander, having a two-phase discharge flow, can reduce internal (recycle) gas flows and reduce power lOrequirement.
  • WO 01/44735 (Minta et al) describing production of pressurised liquid 5 natural gas (PLNG) at -112°C from feed gas compressed to a high pressure of "above 1600 psia”.
  • an inventive step in the present application consists of identifying operating conditions for the two expanders 5(the precooling expander and the liquefying expander) which allow for practical production of atmospheric pressure LNG at about -161°C. Moreover a very high pressure feed gas, which is a feature of the above-mentioned patents, is no longer required. lOThis results in a simplified process with improved thermal efficiency having a wide range of potential applications where the raw feed gas has a pressure as low as 40 bar (4 Pa) .
  • the present invention facilitates production of LNG from smaller gas fields, 15particularly offshore, due to its simple flow scheme, low power consumption and non-reliance on storage and use of liquid refrigerants.
  • the liquefaction process itself generally does not require process columns, for instance for refrigerant preparation, which may be less easy to operate under such operating conditions.
  • the feed gas generally at a pressure of from 40 (4 MPa) to 100 bar (10 MPa), is liquefied to give LNG product at approx 1 bar (0.1 MPa) / -161°C by the expander-based plant configuration described aboveand comprising: cooling feed gas and recycle gas (mentioned below) in a first step by means of a first heat exchanger and in a first work expander; the heat exchanger having an outlet temperature in the range of -50° to -80°C, preferably -60° to -70°C; the expander having a lower outlet temperature than that of the heat exchanger; the expander having its outlet stream reheated in a cold passage of the said heat exchanger and then recompressed to form part of the above mentioned recycle gas.
  • this invention comprises a liquefaction process with moderate power requirement in which the necessary refrigeration is largely supplied by work expansion of the feed gas itself. Cryogenic liquid refrigerants or other secondary working fluids such as nitrogen are therefore not required. In this way energy is extracted at a low temperature level which results in improved thermodynamic efficiency. As a result, a significant proportion of the LNG is formed directly in a work extracting expander, in addition to that formed 5by condensation in an exchanger which is cooled by the reheating of the cold gas from the said work expander.
  • FIG 1 shows the operating features of the invention.
  • the exact flow sheet will 15depend upon the feed gas specification, but will generally contain these basic elements. Where pressures are stated anywhere in this application as “bar” these are bar absolute.
  • the feed natural gas (Stream 1) is passed through a pretreatment stage A in 0which components that would solidify or otherwise interfere with the downstream liquefaction process, such C0 2 , H 2 S, water vapour and mercury vapour, are removed to the extent necessary to give appropriate and conventional maximum concentrations in the pretreated gas (Stream 2).
  • Stream 2 is mixed with part (Stream 4) of the recycle gas (Stream 3) to form Stream 6, which is passed through a passage in heat exchanger B, leaving as Stream 7 at a temperature typically in the range -20° to -60°C, preferably -30° to -50°C. This temperature is typically low enough to condense sufficient NGL to 5meet the specification for the final LNG product.
  • Any condensed hydrocarbons in separator C are removed as Stream 8.
  • the outlet vapour from C (Stream 9) is further cooled in a passage in heat exchanger D, exiting as Stream 10 at a temperature in the range -50° to -80°C, preferably -60° to -70°C.
  • the remaining part of the recycle gas (Stream 5) is cooled in gas expander E having an outlet lOStream 11 with a temperature lower than the temperature of Stream 10.
  • pretreated feed gas may exit pretreatment stage A via Stream 2a to join the recycle gas Stream 3 upstream of the point at which it is divided into Streams 4 & 5.
  • This option may be convenient when the natural gas feed Stream 1 has only a small content of heavy hydrocarbon. In such a
  • 15case the pretreated feed gas may be mixed with the whole of the recycle gas and then the resulting mixture divided to supply heat exchanger B through Stream 6 and gas expander E through Stream 5.
  • the pressure of Stream 11 will typically be around 15 bar ( .5 MPa).
  • Stream 11 enters a first cold passage in heat exchanger D, leaving as Stream 12, which 0then passes through a first cold passage in heat exchanger B, emerging (Stream 13) at a temperature just below the temperature of Stream 6.
  • the ratio of the flow rate of Stream 4 to the flow rate of Stream 5 is controlled so that the temperature approach between the composite hot and cold sides of heat exchangers B and D are substantially uniform throughout their lengths.
  • a large part of Stream 10 is then passed (Stream 14) through a second gas expander F from which it emerges as Stream 15 at a pressure between 3 bar 5(0.3 MPa) and 20 bar (2 MPa) , preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa) and in a partly liquefied state.
  • Stream 15 then enters vapour-liquid separator G.
  • the liquid phase from Separator G (Stream 16) is then typically let down in a pressure reduction device H such as a valve or a turbine.
  • the outlet from H (Stream 17) which is typically at or close to atmospheric pressure, is lOdelivered into the LNG Tank I.
  • a conventional nitrogen stripping column (not shown) may be used, typically employing the sensible heat of Stream 16 for reboiling.
  • Stream 10 flows as Stream 23 through a hot 15side passage in heat exchanger J, wherein it is liquefied by indirect heat exchange with the vapour from separator G (Stream 8), emerging as Stream 24.
  • This is then typically let down in pressure through pressure reduction device K, such as a valve or a turbine.
  • the outlet from K is routed either to vapour-liquid separator G, shown in broken line as Stream 25a, or preferably as 0Stream 25b to the LNG tank I.
  • This second option helps to reduce accumulation of nitrogen in the recycle gas.
  • Stream 29 ISheated in a second cold passage in heat exchanger J to form Stream 27, then in a third cold passage in heat exchanger D to give Stream 28 and finally in a third cold passage in heat exchanger B, emerging as Stream 29 at a temperature slightly below the temperature of Stream 6.
  • a conventional booster blower (also not shown) may be provided in Stream 26 to ensure that the 0pressure of Stream 29 does not fall below atmospheric pressure.
  • Stream 29 may typically be used as fuel gas.
  • Part or all of Stream 29 (Stream 30) optionally may be compressed for return to the recycle gas in a low pressure compressor L, leaving as Stream 31.
  • This stream is cooled in cooler M, from which the outlet (Stream 32) joins Stream 21 to form Stream 22, which then enters the suction of recycle compressor N 5instead of Stream 21 alone if this option is not used.
  • a further option is to withdraw recycle gas (Stream 33) at a convenient point from compressor N typically for use as gas turbine fuel. It may be convenient to use Stream 29 or Stream 33 as stripping gas for regeneration of adsorbents in the pretreatment stage A, prior to their ultimate combustion as fuels.
  • Figure 2 shows a preferred embodiment of the invention in which expanders E and F have essentially the same outlet pressure of between 3 bar (0.3 MPa) and 20 bar (2 MPa), preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa).
  • the outlet stream from expander E (Stream 11) is then combined with Stream 15 9 to form Stream 19a, which enters heat exchanger D in place of Stream 9 in Fig. .
  • the heat exchangers B and D then have only three passages, simplifying the construction of the exchanger and the operation of the plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP12733175.9A 2011-06-15 2012-06-11 Process for liquefaction of natural gas Withdrawn EP2721358A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1110096.3A GB2486036B (en) 2011-06-15 2011-06-15 Process for liquefaction of natural gas
PCT/GB2012/000502 WO2012172281A2 (en) 2011-06-15 2012-06-11 Process for liquefaction of natural gas

Publications (1)

Publication Number Publication Date
EP2721358A2 true EP2721358A2 (en) 2014-04-23

Family

ID=44357822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12733175.9A Withdrawn EP2721358A2 (en) 2011-06-15 2012-06-11 Process for liquefaction of natural gas

Country Status (11)

Country Link
US (1) US20140083132A1 (ko)
EP (1) EP2721358A2 (ko)
JP (1) JP5984192B2 (ko)
KR (1) KR101820560B1 (ko)
CN (1) CN103582792B (ko)
AU (1) AU2012270148B2 (ko)
CA (1) CA2836628C (ko)
GB (1) GB2486036B (ko)
MX (1) MX346703B (ko)
MY (1) MY172653A (ko)
WO (1) WO2012172281A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032960A1 (en) * 2015-08-21 2017-03-02 Gasconsult Limited Process for producing liquefied natural gas

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713127A1 (de) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Verfahren zur Erdgasverflüssigung
GB2522421B (en) * 2014-01-22 2016-10-19 Dwight Maunder Anthony LNG production process
US9696086B2 (en) 2014-01-28 2017-07-04 Dresser-Rand Company System and method for the production of liquefied natural gas
EP3043133A1 (en) * 2015-01-12 2016-07-13 Shell Internationale Research Maatschappij B.V. Method of removing nitrogen from a nitrogen containing stream
US9863697B2 (en) 2015-04-24 2018-01-09 Air Products And Chemicals, Inc. Integrated methane refrigeration system for liquefying natural gas
TWI641789B (zh) 2015-07-10 2018-11-21 艾克頌美孚上游研究公司 使用液化天然氣製造液化氮氣之系統與方法
TWI608206B (zh) 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 藉由預冷卻天然氣供給流以增加效率的液化天然氣(lng)生產系統
TWI606221B (zh) 2015-07-15 2017-11-21 艾克頌美孚上游研究公司 一倂移除溫室氣體之液化天然氣的生產系統和方法
CA3003614A1 (en) * 2015-11-06 2017-05-11 Fluor Technologies Corporation Systems and methods for lng refrigeration and liquefaction
US20170167786A1 (en) 2015-12-14 2017-06-15 Fritz Pierre, JR. Pre-Cooling of Natural Gas by High Pressure Compression and Expansion
US20170167785A1 (en) * 2015-12-14 2017-06-15 Fritz Pierre, JR. Expander-Based LNG Production Processes Enhanced With Liquid Nitrogen
CN108291767B (zh) 2015-12-14 2021-02-19 埃克森美孚上游研究公司 在储存液氮的lng运输工具上的天然气液化的方法
EP3390941A1 (en) 2015-12-14 2018-10-24 Exxonmobil Upstream Research Company Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen
WO2017121042A1 (zh) * 2016-01-15 2017-07-20 成都赛普瑞兴科技有限公司 一种膨胀制冷富甲烷气液化的方法及装置
WO2017162566A1 (en) 2016-03-21 2017-09-28 Shell Internationale Research Maatschappij B.V. Method and system for liquefying a natural gas feed stream
CN105823304B (zh) * 2016-03-23 2019-02-19 成都赛普瑞兴科技有限公司 一种双级膨胀制冷富甲烷气液化的方法及装置
US20190112008A1 (en) * 2016-03-31 2019-04-18 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Boil-off gas re-liquefying device and method for ship
CN106052303A (zh) * 2016-06-07 2016-10-26 成都赛普瑞兴科技有限公司 一种高效膨胀制冷富甲烷气液化的方法及装置
CN107560316A (zh) * 2016-06-30 2018-01-09 通用电气公司 天然气液化系统和方法
FR3053771B1 (fr) 2016-07-06 2019-07-19 Saipem S.P.A. Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
JP7022140B2 (ja) * 2017-02-13 2022-02-17 エクソンモービル アップストリーム リサーチ カンパニー 高圧圧縮及び膨張による天然ガスの予冷
US10663115B2 (en) 2017-02-24 2020-05-26 Exxonmobil Upstream Research Company Method of purging a dual purpose LNG/LIN storage tank
CN106907273A (zh) * 2017-03-15 2017-06-30 广西利维船舶制造有限公司 一种利用江水供热的船舶lng汽化系统
KR102387172B1 (ko) * 2017-12-29 2022-04-15 대우조선해양 주식회사 액화가스 재기화 시스템의 증발가스 처리 장치 및 방법
US10866022B2 (en) 2018-04-27 2020-12-15 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
US10788261B2 (en) * 2018-04-27 2020-09-29 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
JP7150063B2 (ja) 2018-06-07 2022-10-07 エクソンモービル アップストリーム リサーチ カンパニー 高圧圧縮および膨張による天然ガスの前処理および前冷却
CA3109351C (en) 2018-08-14 2023-10-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
JP7179155B2 (ja) 2018-08-22 2022-11-28 エクソンモービル アップストリーム リサーチ カンパニー 高圧エキスパンダプロセスのための一次ループ始動方法
CA3109750A1 (en) 2018-08-22 2020-02-27 Exxonmobil Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
CA3109918C (en) * 2018-08-22 2023-05-16 Exxonmobil Upstream Research Company Managing make-up gas composition variation for a high pressure expander process
WO2020106394A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
TWI746977B (zh) * 2019-01-22 2021-11-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 氣體液化方法及氣體液化裝置
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
WO2020159671A1 (en) 2019-01-30 2020-08-06 Exxonmobil Upstream Research Company Methods for removal of moisture from lng refrigerant
GB2582815A (en) * 2019-04-05 2020-10-07 Frederick Skinner Geoffrey Process for producing liquefied natural gas
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
JP7326484B2 (ja) 2019-09-19 2023-08-15 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 高圧圧縮及び膨張による天然ガスの前処理及び予冷
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
JP7326485B2 (ja) 2019-09-19 2023-08-15 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 高圧圧縮及び膨張による天然ガスの前処理、予冷及び凝縮物回収
WO2021055074A1 (en) 2019-09-20 2021-03-25 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration
US20210088273A1 (en) * 2019-09-24 2021-03-25 High Roller E & C, LLC System and process for natural gas liquefaction
JP2022548529A (ja) 2019-09-24 2022-11-21 エクソンモービル アップストリーム リサーチ カンパニー Lng及び液体窒素のための船舶又は浮遊貯蔵ユニット上の両用極低温タンクのための貨物ストリッピング機能
US11911732B2 (en) 2020-04-03 2024-02-27 Nublu Innovations, Llc Oilfield deep well processing and injection facility and methods
US11499775B2 (en) 2020-06-30 2022-11-15 Air Products And Chemicals, Inc. Liquefaction system
GB2601173B (en) 2020-11-21 2022-11-16 Frederick Skinner Geoffrey Process for producing liquefied Hydrogen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900796A (en) * 1954-08-16 1959-08-25 Constock Liquid Methane Corp Method of liquefying natural gas
US2903858A (en) 1955-10-06 1959-09-15 Constock Liquid Methane Corp Process of liquefying gases
US3433026A (en) * 1966-11-07 1969-03-18 Judson S Swearingen Staged isenthalpic-isentropic expansion of gas from a pressurized liquefied state to a terminal storage state
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
US3677019A (en) * 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
GB8610855D0 (en) * 1986-05-02 1986-06-11 Boc Group Plc Gas liquefaction
FR2714722B1 (fr) * 1993-12-30 1997-11-21 Inst Francais Du Petrole Procédé et appareil de liquéfaction d'un gaz naturel.
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
GB0120272D0 (en) * 2001-08-21 2001-10-10 Gasconsult Ltd Improved process for liquefaction of natural gases
AU2003900327A0 (en) * 2003-01-22 2003-02-06 Paul William Bridgwood Process for the production of liquefied natural gas
MXPA06011644A (es) * 2004-04-26 2007-01-23 Ortloff Engineers Ltd Licuefaccion de gas natural.
US7673476B2 (en) 2005-03-28 2010-03-09 Cambridge Cryogenics Technologies Compact, modular method and apparatus for liquefying natural gas
CN101228405B (zh) * 2005-08-09 2010-12-08 埃克森美孚上游研究公司 生产lng的天然气液化方法
US20090217701A1 (en) * 2005-08-09 2009-09-03 Moses Minta Natural Gas Liquefaction Process for Ling
JP2007051788A (ja) * 2005-08-15 2007-03-01 Daikin Ind Ltd 冷凍装置
EP1939564A1 (en) * 2006-12-26 2008-07-02 Repsol Ypf S.A. Process to obtain liquefied natural gas
US9140490B2 (en) * 2007-08-24 2015-09-22 Exxonmobil Upstream Research Company Natural gas liquefaction processes with feed gas refrigerant cooling loops
US20120036888A1 (en) * 2007-11-05 2012-02-16 David Vandor Method and system for the small-scale production of liquified natural gas (lng) and cold compressed gas (ccng) from low-pressure natural gas
CN101871703A (zh) * 2009-04-21 2010-10-27 刘甄 溴化锂吸收式制冷供热装置
WO2012112692A1 (en) * 2011-02-16 2012-08-23 Conocophillips Company Integrated waste heat recovery in liquefied natural gas facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032960A1 (en) * 2015-08-21 2017-03-02 Gasconsult Limited Process for producing liquefied natural gas
US10641548B2 (en) 2015-08-21 2020-05-05 Gasconsult Limited Process for producing liquefied natural gas

Also Published As

Publication number Publication date
GB2486036A (en) 2012-06-06
KR20140043745A (ko) 2014-04-10
WO2012172281A3 (en) 2013-12-05
AU2012270148A1 (en) 2013-11-28
MX346703B (es) 2017-03-28
MY172653A (en) 2019-12-09
KR101820560B1 (ko) 2018-01-19
CA2836628A1 (en) 2012-12-20
CN103582792A (zh) 2014-02-12
CN103582792B (zh) 2016-06-22
MX2013014870A (es) 2015-06-15
US20140083132A1 (en) 2014-03-27
JP2014522477A (ja) 2014-09-04
AU2012270148B2 (en) 2017-12-07
JP5984192B2 (ja) 2016-09-06
GB2486036B (en) 2012-11-07
CA2836628C (en) 2019-06-25
GB201110096D0 (en) 2011-07-27
WO2012172281A2 (en) 2012-12-20
WO2012172281A4 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
CA2836628C (en) Process for liquefaction of natural gas
TWI641789B (zh) 使用液化天然氣製造液化氮氣之系統與方法
EP2171341B1 (en) Boil-off gas treatment process and system
EP2564139B1 (en) Process and apparatus for the liquefaction of natural gas
US8250883B2 (en) Process to obtain liquefied natural gas
US20030177785A1 (en) Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
JP6629843B2 (ja) 発電システム及び方法からの低圧液体二酸化炭素の生成
EP1939564A1 (en) Process to obtain liquefied natural gas
US20100175423A1 (en) Methods and apparatus for liquefaction of natural gas and products therefrom
CA2704811A1 (en) Method and system for the small-scale production of liquified natural gas (lng) from low-pressure gas
US20180313604A1 (en) Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
MX2012004349A (es) Aparato y metodo de licuefaccion completa.
WO2015069138A2 (en) Natural gas liquefaction method and unit
WO2015110779A2 (en) Lng production process
CA2583724C (en) Method for providing cooling for gas liquefaction
JP2022534588A (ja) 高圧圧縮及び膨張による天然ガスの前処理及び予冷
WO2007148122A2 (en) Process and device for producing lng
EP2796819B1 (en) Method and apparatus for the liquefaction of natural gas
EP3479036A1 (en) System and method for producing liquefied natural gas
CN105371590A (zh) 全回收冷量的天然气带预冷及混合制冷液化工艺
CA2772479C (en) Temperature controlled method to liquefy gas and a production plant using the method.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140514

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20161220