CA2836628A1 - Process for liquefaction of natural gas - Google Patents
Process for liquefaction of natural gas Download PDFInfo
- Publication number
- CA2836628A1 CA2836628A1 CA2836628A CA2836628A CA2836628A1 CA 2836628 A1 CA2836628 A1 CA 2836628A1 CA 2836628 A CA2836628 A CA 2836628A CA 2836628 A CA2836628 A CA 2836628A CA 2836628 A1 CA2836628 A1 CA 2836628A1
- Authority
- CA
- Canada
- Prior art keywords
- heat exchanger
- expander
- stream
- gas
- natural gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000003345 natural gas Substances 0.000 title claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000003303 reheating Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 238000004064 recycling Methods 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 48
- 238000005057 refrigeration Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 239000003949 liquefied natural gas Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
- F25J1/0202—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0225—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
- F25J1/0227—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0242—Waste heat recovery, e.g. from heat of compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/80—Hot exhaust gas turbine combustion engine
- F25J2240/82—Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/906—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
A process comprising: cooling natural gas with a heat exchanger and a first expander. The heat exchanger cools the feed natural gas to temperature higher than the outlet temperature of the expander, reheating the expander outlet stream in a first cold passage of the heat exchanger to slightly below the temperature of the feed natural gas to the heat exchanger, passing the cold outlet stream from the heat exchanger into a second expander wherein it is partly liquefied, separating the outlet stream of second expander into liquid and vapour fractions, collecting the liquid fraction for use as LNG product, reheating the vapour fraction in a second cold side passage of the heat exchanger to substantially the same temperature as the temperature of the feed natural gas to the heat exchanger, recycling the reheated vapour fraction partly as feed to the first expander and partly as feed to the heat exchanger.
Description
Process for Liquefaction of Natural Gas Field of the Invention 5The present invention relates to a method for liquefying methane-rich gas and, more particularly but not exclusively, relates to a method for producing liquefied natural gas (LNG).
Background to the Invention 10Liquefaction of natural gas can practically be achieved by:
- evaporation of liquid refrigerants - work expansion of gases in expansion machines (expanders).
Evaporation of liquid refrigerants gives the lowest power requirement and is the basis of the widely used Cascade and Mixed Refrigerant LNG processes.
Expander-based LNG installations are simple, compact, low in weight and can avoid the importation/preparation/storage of liquid refrigerants. These characteristics are attractive for smaller scale applications, particularly offshore, where low hydrocarbon inventory is desirable from safety considerations.
25However expander processes have certain drawbacks:
- until recently, limited capacity and experience with expanders - higher power requirement - higher internal gas flowrates, requiring larger line diameters, etc.
Background to the Invention 10Liquefaction of natural gas can practically be achieved by:
- evaporation of liquid refrigerants - work expansion of gases in expansion machines (expanders).
Evaporation of liquid refrigerants gives the lowest power requirement and is the basis of the widely used Cascade and Mixed Refrigerant LNG processes.
Expander-based LNG installations are simple, compact, low in weight and can avoid the importation/preparation/storage of liquid refrigerants. These characteristics are attractive for smaller scale applications, particularly offshore, where low hydrocarbon inventory is desirable from safety considerations.
25However expander processes have certain drawbacks:
- until recently, limited capacity and experience with expanders - higher power requirement - higher internal gas flowrates, requiring larger line diameters, etc.
2 With most expander-based processes the working fluid (typically nitrogen) 5remains in the vapour phase at the expander outlet.
Partially liquefying the feed gas itself in an expander, having a two-phase discharge flow, can reduce internal (recycle) gas flows and reduce power 10requirement.
LNG production in a liquefying expander is not a new idea (USP 2,903, 858 ¨
Bocquet).
The present inventors previously disclosed a process (GB Patent 2393504B, USP 7,234,321) with potentially lower power requirements, wherein a liquefying expander is combined with a precooling circuit which contains a simple mixed 20refrigerant generated from the feed natural gas.
= Other recent disclosures comprise precooling by a parallel/recycle gas expander followed by a liquefying expander:
WO 01/44735 (Minta et al) describing production of pressurised liquid natural gas (PLNG) at -112 C from feed gas compressed to a high pressure of "above 1600 psia".
US 2006/0213222 (Whitesell) describing production of LNG from a feed gas entering the process at, or compressed within, the process to a pressure of "between about 1500 psig to about 3500 psig".
Partially liquefying the feed gas itself in an expander, having a two-phase discharge flow, can reduce internal (recycle) gas flows and reduce power 10requirement.
LNG production in a liquefying expander is not a new idea (USP 2,903, 858 ¨
Bocquet).
The present inventors previously disclosed a process (GB Patent 2393504B, USP 7,234,321) with potentially lower power requirements, wherein a liquefying expander is combined with a precooling circuit which contains a simple mixed 20refrigerant generated from the feed natural gas.
= Other recent disclosures comprise precooling by a parallel/recycle gas expander followed by a liquefying expander:
WO 01/44735 (Minta et al) describing production of pressurised liquid natural gas (PLNG) at -112 C from feed gas compressed to a high pressure of "above 1600 psia".
US 2006/0213222 (Whitesell) describing production of LNG from a feed gas entering the process at, or compressed within, the process to a pressure of "between about 1500 psig to about 3500 psig".
3 Summary of the Invention Relative to the two above-mentioned patents, an inventive step in the present application consists of identifying operating conditions for the two expanders 5(the precooling expander and the liquefying expander) which allow for practical production of atmospheric pressure LNG at about -161 C. Moreover a very high , pressure feed gas, which is a feature of the above-mentioned patents, is no longer required.
10This results in a simplified process with improved thermal efficiency having a wide range of potential applications where the raw feed gas has a pressure as low as 40 bar (4 MPa) .
The present invention facilitates production of LNG from smaller gas fields, 15particularly offshore, due to its simple flow scheme, low power consumption and non-reliance on storage and use of liquid refrigerants. The liquefaction process itself generally does not require process columns, for instance for refrigerant preparation, which may be less easy to operate under such operating conditions.
Description of the Invention
10This results in a simplified process with improved thermal efficiency having a wide range of potential applications where the raw feed gas has a pressure as low as 40 bar (4 MPa) .
The present invention facilitates production of LNG from smaller gas fields, 15particularly offshore, due to its simple flow scheme, low power consumption and non-reliance on storage and use of liquid refrigerants. The liquefaction process itself generally does not require process columns, for instance for refrigerant preparation, which may be less easy to operate under such operating conditions.
Description of the Invention
4 According to the invention, there is provided a process for liquefying natural gas or other methane-rich gases. The feed gas, generally at a pressure of from 40 (4 MPa) to 100 bar (10 MPa), is liquefied to give LNG product at approx 1 bar (0.1 MPa) / -161 C by the expander-based plant configuration described above Sand comprising:
cooling feed gas and recycle gas (mentioned below) in a first step by means of a first heat exchanger and in a first work expander; the heat exchanger having an outlet temperature in the range of -50 to -80 C, preferably -600 to -70 C; the expander having a lower outlet temperature than that of the heat exchanger; the expander having its outlet stream reheated in a cold passage of the said heat exchanger and then recompressed to form part of the above mentioned recycle gas.
passing the cooled outlet stream from the said first heat exchanger partly into a hot passage in a second heat exchanger, wherein it is essentially condensed, and partly into a second work expander, the said second expander having a lower outlet temperature than the cold outlet of the second heat exchanger, the second expander outlet stream containing a significant amount of liquid (typically 10-15% wt);
the expander outlet being separated into a vapour fraction and a liquid fraction; the vapour fraction being reheated in cold passages in said second and first heat exchangers; then recompressed and returned to the inlet to the process as part of the above mentioned recycle gas.
cooling feed gas and recycle gas (mentioned below) in a first step by means of a first heat exchanger and in a first work expander; the heat exchanger having an outlet temperature in the range of -50 to -80 C, preferably -600 to -70 C; the expander having a lower outlet temperature than that of the heat exchanger; the expander having its outlet stream reheated in a cold passage of the said heat exchanger and then recompressed to form part of the above mentioned recycle gas.
passing the cooled outlet stream from the said first heat exchanger partly into a hot passage in a second heat exchanger, wherein it is essentially condensed, and partly into a second work expander, the said second expander having a lower outlet temperature than the cold outlet of the second heat exchanger, the second expander outlet stream containing a significant amount of liquid (typically 10-15% wt);
the expander outlet being separated into a vapour fraction and a liquid fraction; the vapour fraction being reheated in cold passages in said second and first heat exchangers; then recompressed and returned to the inlet to the process as part of the above mentioned recycle gas.
5 - reducing the pressure of the above mentioned separated liquid and of the condensed liquid from the hot passage from second heat exchanger (both typically around -120 C) to around to atmospheric pressure; reheating the flashed gas evolved in further cold passages in the above heat exchangers; removing the liquid for use as LNG
product.
it has been found that the lowest requirement for recycle gas compression power results from concentrating the extraction of mechanical work into the pressure range above 10 bar (1 MPa) approx at the outlet of the second 15expander. An advantage of this is that the outlet pressures from the two expanders can be equalized at around 10 bar (1MPa) , reducing the first heat exchanger to a three-passage configuration.
Whereas most existing LNG production relies on evaporation of liquid 20refrigerants to cool and condense the natural gas so as to form LNG product in a heat exchanger, this invention comprises a liquefaction process with moderate power requirement in which the necessary refrigeration, is largely supplied by work expansion of the feed gas itself. Cryogenic liquid refrigerants
product.
it has been found that the lowest requirement for recycle gas compression power results from concentrating the extraction of mechanical work into the pressure range above 10 bar (1 MPa) approx at the outlet of the second 15expander. An advantage of this is that the outlet pressures from the two expanders can be equalized at around 10 bar (1MPa) , reducing the first heat exchanger to a three-passage configuration.
Whereas most existing LNG production relies on evaporation of liquid 20refrigerants to cool and condense the natural gas so as to form LNG product in a heat exchanger, this invention comprises a liquefaction process with moderate power requirement in which the necessary refrigeration, is largely supplied by work expansion of the feed gas itself. Cryogenic liquid refrigerants
6 or other secondary working fluids such as nitrogen are therefore not required.
In this way energy is extracted at a low temperature level which results in improved thermodynamic efficiency. As a result, a significant proportion of the LNG is formed directly in a work extracting expander, in addition to that formed 5by condensation in an exchanger which is cooled by the reheating of the cold gas from the said work expander.
Description of Preferred Embodiments 10The invention will be described with reference to the accompanying drawings in which Figures 1 and 2 represent flow diagrams illustrating processes in accordance with the invention.
Figure 1 shows the operating features of the invention. The exact flow sheet will 15depend upon the feed gas specification, but will generally contain these basic elements. Where pressures are stated anywhere in this application as "bar"
these are bar absolute.
The feed natural gas (Stream 1) is passed through a pretreatment stage A in 20which components that would solidify or otherwise interfere with the downstream liquefaction process, such CO2, H2S, water vapour and mercury vapour, are removed to the extent necessary to give- appropriate and conventional maximum concentrations in the pretreated gas (Stream 2).
In this way energy is extracted at a low temperature level which results in improved thermodynamic efficiency. As a result, a significant proportion of the LNG is formed directly in a work extracting expander, in addition to that formed 5by condensation in an exchanger which is cooled by the reheating of the cold gas from the said work expander.
Description of Preferred Embodiments 10The invention will be described with reference to the accompanying drawings in which Figures 1 and 2 represent flow diagrams illustrating processes in accordance with the invention.
Figure 1 shows the operating features of the invention. The exact flow sheet will 15depend upon the feed gas specification, but will generally contain these basic elements. Where pressures are stated anywhere in this application as "bar"
these are bar absolute.
The feed natural gas (Stream 1) is passed through a pretreatment stage A in 20which components that would solidify or otherwise interfere with the downstream liquefaction process, such CO2, H2S, water vapour and mercury vapour, are removed to the extent necessary to give- appropriate and conventional maximum concentrations in the pretreated gas (Stream 2).
7 Stream 2 is mixed with part (Stream 4) of the recycle gas (Stream 3) to form Stream 6, which is passed through a passage in heat exchanger 6, leaving as Stream 7 at a temperature typically in the range -200 to -60 C, preferably -30 to -50 C. This temperature is typically low enough to condense sufficient NGL to 5meet the specification for the final LNG product. Any condensed hydrocarbons in separator C are removed as Stream 8. The outlet vapour from C (Stream 9) is further cooled in a passage in heat exchanger D, exiting as Stream 10 at a temperature in the range -50 to -80 C, preferably -60 to -70 C. The remaining part of the recycle gas (Stream 5) is cooled in gas expander E having an outlet 10Stream 11 with a temperature lower than the temperature of Stream 10.
= Optionally part or all of the pretreated feed gas may exit pretreatment stage A
via Stream 2a to join the recycle gas Stream 3 upstream of the point at which it is divided into Streams 4 & 5. This option may be convenient when the natural gas feed Stream 1 has only a small content of heavy hydrocarbon. In such a 15case the pretreated feed gas may be mixed with the whole of the recycle gas and then the resulting mixture divided to supply heat exchanger B through Stream 6 and gas expander E through Stream 5.
The pressure of Stream 11 will typically be around 15 bar (1.5 MPa). Stream 11 enters a first cold passage in heat exchanger D, leaving as Stream 12, which 20then passes through a first cold passage in heat exchanger B, emerging (Stream 13) at a temperature just below the temperature of Stream 6. The ratio of the flow rate of Stream 4 to the flow rate of Stream 5 is controlled so that the
= Optionally part or all of the pretreated feed gas may exit pretreatment stage A
via Stream 2a to join the recycle gas Stream 3 upstream of the point at which it is divided into Streams 4 & 5. This option may be convenient when the natural gas feed Stream 1 has only a small content of heavy hydrocarbon. In such a 15case the pretreated feed gas may be mixed with the whole of the recycle gas and then the resulting mixture divided to supply heat exchanger B through Stream 6 and gas expander E through Stream 5.
The pressure of Stream 11 will typically be around 15 bar (1.5 MPa). Stream 11 enters a first cold passage in heat exchanger D, leaving as Stream 12, which 20then passes through a first cold passage in heat exchanger B, emerging (Stream 13) at a temperature just below the temperature of Stream 6. The ratio of the flow rate of Stream 4 to the flow rate of Stream 5 is controlled so that the
8 temperature approach between the composite hot and cold sides of heat exchangers B and D are substantially uniform throughout their lengths.
A large part of Stream 10 is then passed (Stream 14) through a second gas expander F from which it emerges as Stream 15 at a pressure between 3 bar 5(0.3 MPa) and 20 bar (2 MPa) , preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa) and in a partly liquefied state. Stream 15 then enters vapour-liquid separator G. The liquid phase from Separator G (Stream 16) is then typically let down in a pressure reduction device H such as a valve or a turbine. The outlet from H (Stream 17), which is typically at or close to atmospheric pressure, is 10delivered into the LNG Tank I. If it is desired to reduce the nitrogen content of the product LNG, a conventional nitrogen stripping column (not shown) may be used, typically employing the sensible heat of Stream 16 for reboiling.
Optionally and preferably a part of Stream 10 flows as Stream 23 through a hot 15side passage in heat exchanger J, wherein it is liquefied by indirect heat exchange with the vapour from separator G (Stream 18), emerging as Stream 24. This is then typically let down in pressure through pressure reduction device K, such as a valve or a turbine. The outlet from K is routed either to vapour-liquid separator G, shown in broken line as Stream 25a, or preferably as 20Stream 25b to the LNG tank I. This second option helps to reduce accumulation of nitrogen in the recycle gas. Stream 18, having been heated in a first cold passage in heat exchanger J, emerges as Stream 19. It is then further heated in a second cold passage in heat exchanger D, emerging as
A large part of Stream 10 is then passed (Stream 14) through a second gas expander F from which it emerges as Stream 15 at a pressure between 3 bar 5(0.3 MPa) and 20 bar (2 MPa) , preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa) and in a partly liquefied state. Stream 15 then enters vapour-liquid separator G. The liquid phase from Separator G (Stream 16) is then typically let down in a pressure reduction device H such as a valve or a turbine. The outlet from H (Stream 17), which is typically at or close to atmospheric pressure, is 10delivered into the LNG Tank I. If it is desired to reduce the nitrogen content of the product LNG, a conventional nitrogen stripping column (not shown) may be used, typically employing the sensible heat of Stream 16 for reboiling.
Optionally and preferably a part of Stream 10 flows as Stream 23 through a hot 15side passage in heat exchanger J, wherein it is liquefied by indirect heat exchange with the vapour from separator G (Stream 18), emerging as Stream 24. This is then typically let down in pressure through pressure reduction device K, such as a valve or a turbine. The outlet from K is routed either to vapour-liquid separator G, shown in broken line as Stream 25a, or preferably as 20Stream 25b to the LNG tank I. This second option helps to reduce accumulation of nitrogen in the recycle gas. Stream 18, having been heated in a first cold passage in heat exchanger J, emerges as Stream 19. It is then further heated in a second cold passage in heat exchanger D, emerging as
9 Stream 20, which is then further heated in a second cold passage in heat exchanger B, emerging as Stream 21 at a temperature slightly below the temperature of Stream 6.
5Streams 13 and 21 are compressed in recycle compressor N, from which the outlet Stream 34 is cooled typically with cooling water in cooler 0.
Compressor N may consist of more than one stage with intercoolers. Streams 13 and 21 will not have the same pressure and may enter at different compressor stages.
The outlet stream from 0 forms the above-mentioned recycle gas Stream 3.
The flashing of Stream 16 across H and the flashing of Stream 24 across K will result in the evolution of vapour comprising mainly methane together with most of the nitrogen content of the feed gas. Typically this vapour (Stream 26), optionally combined with boil-off vapour resulting from heat leak into tank I, is 15heated in a second cold passage in heat exchanger J to form Stream 27, then in a third cold passage in heat exchanger D to give Stream 28 and finally in a third cold passage in heat exchanger B, emerging as Stream 29 at a temperature slightly below the temperature of Stream 6. A conventional booster blower (also not shown) may be provided in Stream 26 to ensure that the 20pressure of Stream 29 does not fall below atmospheric pressure. Stream 29 may typically be used as fuel gas.
Part or all of Stream 29 (Stream 30) optionally may be compressed for return to the recycle gas in a low pressure compressor L, leaving as Stream 31. This stream is cooled in cooler M, from which the outlet (Stream 32) joins Stream to form Stream 22, which then enters the suction of recycle compressor N
5instead of Stream 21 alone if this option is not used. A further option is to withdraw recycle gas (Stream 33) at a convenient point from compressor N
typically for use as gas turbine fuel. It may be convenient to use Stream 29 or Stream 33 as stripping gas for regeneration of adsorbents in the pretreatment stage A, prior to their ultimate combustion as fuels.
Figure 2 shows a preferred embodiment of the invention in which expanders E
and F have essentially the same outlet pressure of between 3 bar (0.3 MPa) and 20 bar (2 MPa), preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa).
The outlet stream from expander E (Stream 11) is then combined with Stream 1519 to form Stream 19a, which enters heat exchanger D in place of Stream 19 in Fig.1. The heat exchangers B and D then have only three passages, simplifying the construction of the exchanger and the operation of the plant.
Although in most applications it is expected that the Streams 2 and 3 will have 20temperatures close to ambient temperature, cooling below this level may be advantageous. It is feasible to cool those streams, and optionally the outlet streams from compressor intercoolers and aftercoolers, by means of a mechanical refrigeration cycle or by means of an absorption refrigeration system, typically using lithium bromide (LiBr), which could receive its heat supply from the exhaust of a gas turbine, gas engine or combined cycle or anything else suitable.
5Streams 13 and 21 are compressed in recycle compressor N, from which the outlet Stream 34 is cooled typically with cooling water in cooler 0.
Compressor N may consist of more than one stage with intercoolers. Streams 13 and 21 will not have the same pressure and may enter at different compressor stages.
The outlet stream from 0 forms the above-mentioned recycle gas Stream 3.
The flashing of Stream 16 across H and the flashing of Stream 24 across K will result in the evolution of vapour comprising mainly methane together with most of the nitrogen content of the feed gas. Typically this vapour (Stream 26), optionally combined with boil-off vapour resulting from heat leak into tank I, is 15heated in a second cold passage in heat exchanger J to form Stream 27, then in a third cold passage in heat exchanger D to give Stream 28 and finally in a third cold passage in heat exchanger B, emerging as Stream 29 at a temperature slightly below the temperature of Stream 6. A conventional booster blower (also not shown) may be provided in Stream 26 to ensure that the 20pressure of Stream 29 does not fall below atmospheric pressure. Stream 29 may typically be used as fuel gas.
Part or all of Stream 29 (Stream 30) optionally may be compressed for return to the recycle gas in a low pressure compressor L, leaving as Stream 31. This stream is cooled in cooler M, from which the outlet (Stream 32) joins Stream to form Stream 22, which then enters the suction of recycle compressor N
5instead of Stream 21 alone if this option is not used. A further option is to withdraw recycle gas (Stream 33) at a convenient point from compressor N
typically for use as gas turbine fuel. It may be convenient to use Stream 29 or Stream 33 as stripping gas for regeneration of adsorbents in the pretreatment stage A, prior to their ultimate combustion as fuels.
Figure 2 shows a preferred embodiment of the invention in which expanders E
and F have essentially the same outlet pressure of between 3 bar (0.3 MPa) and 20 bar (2 MPa), preferably between 5 bar (0.5 MPa) and 15 bar (1.5 MPa).
The outlet stream from expander E (Stream 11) is then combined with Stream 1519 to form Stream 19a, which enters heat exchanger D in place of Stream 19 in Fig.1. The heat exchangers B and D then have only three passages, simplifying the construction of the exchanger and the operation of the plant.
Although in most applications it is expected that the Streams 2 and 3 will have 20temperatures close to ambient temperature, cooling below this level may be advantageous. It is feasible to cool those streams, and optionally the outlet streams from compressor intercoolers and aftercoolers, by means of a mechanical refrigeration cycle or by means of an absorption refrigeration system, typically using lithium bromide (LiBr), which could receive its heat supply from the exhaust of a gas turbine, gas engine or combined cycle or anything else suitable.
Claims (8)
1. A process for liquefying natural gas or other methane-rich gases comprising:
cooling feed natural gas to a temperature of -50° to -80°C by means of a heat exchanger and a first gas expander, the heat exchanger receiving the feed natural gas and having an outlet temperature higher than the outlet temperature of the expander;
reheating the expander outlet stream in a first cold passage of said heat exchanger to just below the inlet temperature of the feed natural gas to said heat exchanger, compressing and recycling;
passing part or all of the cold outlet stream from said heat exchanger into a second expander in which it is partly liquefied;
separating the outlet stream of said second expander into vapour and liquid fractions;
collecting the liquid fraction for use as LNG product, - reheating the vapour fraction in a second cold side passage of said heat exchanger to just below the inlet temperature of the feed natural gas to said heat exchanger;
- recycling the said reheated vapour fraction after compression in part to the said first expander and in part to the said heat exchanger.
cooling feed natural gas to a temperature of -50° to -80°C by means of a heat exchanger and a first gas expander, the heat exchanger receiving the feed natural gas and having an outlet temperature higher than the outlet temperature of the expander;
reheating the expander outlet stream in a first cold passage of said heat exchanger to just below the inlet temperature of the feed natural gas to said heat exchanger, compressing and recycling;
passing part or all of the cold outlet stream from said heat exchanger into a second expander in which it is partly liquefied;
separating the outlet stream of said second expander into vapour and liquid fractions;
collecting the liquid fraction for use as LNG product, - reheating the vapour fraction in a second cold side passage of said heat exchanger to just below the inlet temperature of the feed natural gas to said heat exchanger;
- recycling the said reheated vapour fraction after compression in part to the said first expander and in part to the said heat exchanger.
2 A
process as claimed in Claim 1 in which the heat exchanger receives all the feed natural gas.
process as claimed in Claim 1 in which the heat exchanger receives all the feed natural gas.
3 A
process as claimed in Claim 1 in which the heat exchanger receives a large part, at least 30%, of the feed natural gas.
process as claimed in Claim 1 in which the heat exchanger receives a large part, at least 30%, of the feed natural gas.
4. A process as claimed in any preceding claim in which the feed natural gas is cooled to a temperature of -60° to -70°C.
5. A process as claimed in any preceding claim in which the said first and second gas expanders have essentially the same outlet pressure of between 3 bar (0.3 MPa) and 20 bar (2 MPa), preferably between 5 bar (0.5 MPa)and 15 bar (1.5 MPa), and the outlet streams from both expanders are combined prior to final reheating, compression and recycle
6. A process as claimed in any preceding claim in which any part or all of the feed and/or compressor discharge and/or recycle streams are cooled, typically by use of an absorption refrigeration cycles such as lithium bromide (LiBr).
7. A process as claimed in any preceding claim in which the heat requirement for an absorption refrigeration system is supplied by gas engine or gas turbine exhaust heat, such gas engines or turbines which may be used for supplying power to the process compressors.
to
to
8. A process as claimed in any preceding claim wherein such cooling of either feed and/or recycle streams is combined with removal of carbon dioxide and/or other impurities from the feed gas.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1110096.3A GB2486036B (en) | 2011-06-15 | 2011-06-15 | Process for liquefaction of natural gas |
GB1110096.3 | 2011-06-15 | ||
PCT/GB2012/000502 WO2012172281A2 (en) | 2011-06-15 | 2012-06-11 | Process for liquefaction of natural gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2836628A1 true CA2836628A1 (en) | 2012-12-20 |
CA2836628C CA2836628C (en) | 2019-06-25 |
Family
ID=44357822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2836628A Active CA2836628C (en) | 2011-06-15 | 2012-06-11 | Process for liquefaction of natural gas |
Country Status (11)
Country | Link |
---|---|
US (1) | US20140083132A1 (en) |
EP (1) | EP2721358A2 (en) |
JP (1) | JP5984192B2 (en) |
KR (1) | KR101820560B1 (en) |
CN (1) | CN103582792B (en) |
AU (1) | AU2012270148B2 (en) |
CA (1) | CA2836628C (en) |
GB (1) | GB2486036B (en) |
MX (1) | MX346703B (en) |
MY (1) | MY172653A (en) |
WO (1) | WO2012172281A2 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2713127A1 (en) * | 2012-09-28 | 2014-04-02 | Siemens Aktiengesellschaft | Method for liquefaction of natural gas |
GB2522421B (en) * | 2014-01-22 | 2016-10-19 | Dwight Maunder Anthony | LNG production process |
US9696086B2 (en) * | 2014-01-28 | 2017-07-04 | Dresser-Rand Company | System and method for the production of liquefied natural gas |
EP3043133A1 (en) * | 2015-01-12 | 2016-07-13 | Shell Internationale Research Maatschappij B.V. | Method of removing nitrogen from a nitrogen containing stream |
US9863697B2 (en) | 2015-04-24 | 2018-01-09 | Air Products And Chemicals, Inc. | Integrated methane refrigeration system for liquefying natural gas |
TWI641789B (en) | 2015-07-10 | 2018-11-21 | 艾克頌美孚上游研究公司 | System and methods for the production of liquefied nitrogen gas using liquefied natural gas |
TWI608206B (en) | 2015-07-15 | 2017-12-11 | 艾克頌美孚上游研究公司 | Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream |
TWI606221B (en) | 2015-07-15 | 2017-11-21 | 艾克頌美孚上游研究公司 | Liquefied natural gas production system and method with greenhouse gas removal |
GB2541464A (en) * | 2015-08-21 | 2017-02-22 | Frederick Skinner Geoffrey | Process for producing Liquefied natural gas |
US20170131027A1 (en) * | 2015-11-06 | 2017-05-11 | Fluor Technologies Corporation | Systems and Methods for LNG Refrigeration and Liquefaction |
JP6800977B2 (en) | 2015-12-14 | 2020-12-16 | エクソンモービル アップストリーム リサーチ カンパニー | Precooling of natural gas by high pressure compression and expansion |
KR102116718B1 (en) | 2015-12-14 | 2020-06-01 | 엑손모빌 업스트림 리서치 캄파니 | Method for liquefying natural gas in LNG carriers storing liquid nitrogen |
AU2016372709B2 (en) | 2015-12-14 | 2019-09-12 | Exxonmobil Upstream Research Company | Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen |
KR102137939B1 (en) * | 2015-12-14 | 2020-07-27 | 엑손모빌 업스트림 리서치 캄파니 | Method for producing expander-based LNG, reinforced with liquid nitrogen |
WO2017121042A1 (en) * | 2016-01-15 | 2017-07-20 | 成都赛普瑞兴科技有限公司 | Method and apparatus for liquefying methane-rich gas through expansion refrigeration |
WO2017162566A1 (en) | 2016-03-21 | 2017-09-28 | Shell Internationale Research Maatschappij B.V. | Method and system for liquefying a natural gas feed stream |
CN105823304B (en) * | 2016-03-23 | 2019-02-19 | 成都赛普瑞兴科技有限公司 | A kind of liquefied method and device of twin-stage swell refrigeration high methane gas |
US20190112008A1 (en) | 2016-03-31 | 2019-04-18 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Boil-off gas re-liquefying device and method for ship |
CN106052303A (en) * | 2016-06-07 | 2016-10-26 | 成都赛普瑞兴科技有限公司 | Efficient expansion refrigeration methane-rich gas liquefaction method and device |
CN107560316A (en) * | 2016-06-30 | 2018-01-09 | 通用电气公司 | natural gas liquefaction system and method |
FR3053771B1 (en) | 2016-07-06 | 2019-07-19 | Saipem S.P.A. | METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE |
AU2018218196B2 (en) | 2017-02-13 | 2021-04-08 | Exxonmobil Upstream Research Company | Pre-cooling of natural gas by high pressure compression and expansion |
SG11201906786YA (en) | 2017-02-24 | 2019-09-27 | Exxonmobil Upstream Res Co | Method of purging a dual purpose lng/lin storage tank |
CN106907273A (en) * | 2017-03-15 | 2017-06-30 | 广西利维船舶制造有限公司 | A kind of ship LNG vaporization system of utilization river heat supply |
KR102387172B1 (en) * | 2017-12-29 | 2022-04-15 | 대우조선해양 주식회사 | Boil-Off Gas Treating Apparatus and Method of Liquefied Gas Regasification System |
US10866022B2 (en) | 2018-04-27 | 2020-12-15 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream using a gas phase refrigerant |
US10788261B2 (en) * | 2018-04-27 | 2020-09-29 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream using a gas phase refrigerant |
JP7150063B2 (en) | 2018-06-07 | 2022-10-07 | エクソンモービル アップストリーム リサーチ カンパニー | Pretreatment and precooling of natural gas by high pressure compression and expansion |
AU2019322808B2 (en) | 2018-08-14 | 2022-10-13 | ExxonMobil Technology and Engineering Company | Conserving mixed refrigerant in natural gas liquefaction facilities |
US11635252B2 (en) | 2018-08-22 | 2023-04-25 | ExxonMobil Technology and Engineering Company | Primary loop start-up method for a high pressure expander process |
AU2019326291B9 (en) | 2018-08-22 | 2023-04-13 | ExxonMobil Technology and Engineering Company | Managing make-up gas composition variation for a high pressure expander process |
WO2020040953A2 (en) | 2018-08-22 | 2020-02-27 | Exxonmobil Upstream Research Company | Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same |
WO2020106397A1 (en) | 2018-11-20 | 2020-05-28 | Exxonmobil Upstream Research Company | Methods and apparatus for improving multi-plate scraped heat exchangers |
WO2020106394A1 (en) | 2018-11-20 | 2020-05-28 | Exxonmobil Upstream Research Company | Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers |
TWI746977B (en) * | 2019-01-22 | 2021-11-21 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Gas liquefaction method and gas liquefaction device |
EP3918261A1 (en) | 2019-01-30 | 2021-12-08 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Methods for removal of moisture from lng refrigerant |
US11668524B2 (en) | 2019-01-30 | 2023-06-06 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
GB2582815A (en) * | 2019-04-05 | 2020-10-07 | Frederick Skinner Geoffrey | Process for producing liquefied natural gas |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US20210063083A1 (en) | 2019-08-29 | 2021-03-04 | Exxonmobil Upstream Research Company | Liquefaction of Production Gas |
EP4031822A1 (en) | 2019-09-19 | 2022-07-27 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
WO2021055021A1 (en) | 2019-09-19 | 2021-03-25 | Exxonmobil Upstream Research Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US12050054B2 (en) | 2019-09-19 | 2024-07-30 | ExxonMobil Technology and Engineering Company | Pretreatment, pre-cooling, and condensate recovery of natural gas by high pressure compression and expansion |
WO2021055074A1 (en) | 2019-09-20 | 2021-03-25 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration |
US20210088273A1 (en) * | 2019-09-24 | 2021-03-25 | High Roller E & C, LLC | System and process for natural gas liquefaction |
US11808411B2 (en) | 2019-09-24 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen |
US11911732B2 (en) | 2020-04-03 | 2024-02-27 | Nublu Innovations, Llc | Oilfield deep well processing and injection facility and methods |
US11499775B2 (en) | 2020-06-30 | 2022-11-15 | Air Products And Chemicals, Inc. | Liquefaction system |
GB2601173B (en) | 2020-11-21 | 2022-11-16 | Frederick Skinner Geoffrey | Process for producing liquefied Hydrogen |
US12025370B2 (en) | 2022-10-14 | 2024-07-02 | Air Products And Chemicals, Inc. | Reverse Brayton LNG production process |
WO2024165416A1 (en) | 2023-02-10 | 2024-08-15 | Airco Process Technology A/S | Small scale expansion cycle methane liquefaction process |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2900796A (en) * | 1954-08-16 | 1959-08-25 | Constock Liquid Methane Corp | Method of liquefying natural gas |
US2903858A (en) | 1955-10-06 | 1959-09-15 | Constock Liquid Methane Corp | Process of liquefying gases |
US3433026A (en) * | 1966-11-07 | 1969-03-18 | Judson S Swearingen | Staged isenthalpic-isentropic expansion of gas from a pressurized liquefied state to a terminal storage state |
US3581511A (en) * | 1969-07-15 | 1971-06-01 | Inst Gas Technology | Liquefaction of natural gas using separated pure components as refrigerants |
US3677019A (en) * | 1969-08-01 | 1972-07-18 | Union Carbide Corp | Gas liquefaction process and apparatus |
GB8610855D0 (en) * | 1986-05-02 | 1986-06-11 | Boc Group Plc | Gas liquefaction |
FR2714722B1 (en) * | 1993-12-30 | 1997-11-21 | Inst Francais Du Petrole | Method and apparatus for liquefying a natural gas. |
MY122625A (en) * | 1999-12-17 | 2006-04-29 | Exxonmobil Upstream Res Co | Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling |
GB0120272D0 (en) * | 2001-08-21 | 2001-10-10 | Gasconsult Ltd | Improved process for liquefaction of natural gases |
AU2003900327A0 (en) * | 2003-01-22 | 2003-02-06 | Paul William Bridgwood | Process for the production of liquefied natural gas |
CN100473927C (en) * | 2004-04-26 | 2009-04-01 | 奥特洛夫工程有限公司 | Natural gas liquefaction method and device |
US7673476B2 (en) | 2005-03-28 | 2010-03-09 | Cambridge Cryogenics Technologies | Compact, modular method and apparatus for liquefying natural gas |
JP5139292B2 (en) * | 2005-08-09 | 2013-02-06 | エクソンモービル アップストリーム リサーチ カンパニー | Natural gas liquefaction method for LNG |
CN101228405B (en) * | 2005-08-09 | 2010-12-08 | 埃克森美孚上游研究公司 | Natural gas liquefaction process for producing LNG |
JP2007051788A (en) * | 2005-08-15 | 2007-03-01 | Daikin Ind Ltd | Refrigerating device |
EP1939564A1 (en) * | 2006-12-26 | 2008-07-02 | Repsol Ypf S.A. | Process to obtain liquefied natural gas |
CA2695348A1 (en) * | 2007-08-24 | 2009-03-05 | Exxonmobil Upstream Research Company | Natural gas liquefaction process |
US20120036888A1 (en) * | 2007-11-05 | 2012-02-16 | David Vandor | Method and system for the small-scale production of liquified natural gas (lng) and cold compressed gas (ccng) from low-pressure natural gas |
CN101871703A (en) * | 2009-04-21 | 2010-10-27 | 刘甄 | Lithium bromide absorbing type refrigeration and heat supply device |
AP3771A (en) * | 2011-02-16 | 2016-08-31 | Conocophillips Co | Integrated waste heat recovery in liquefied natural gas facility |
-
2011
- 2011-06-15 GB GB1110096.3A patent/GB2486036B/en active Active
-
2012
- 2012-06-11 MY MYPI2013004100A patent/MY172653A/en unknown
- 2012-06-11 CA CA2836628A patent/CA2836628C/en active Active
- 2012-06-11 AU AU2012270148A patent/AU2012270148B2/en active Active
- 2012-06-11 MX MX2013014870A patent/MX346703B/en active IP Right Grant
- 2012-06-11 CN CN201280027025.XA patent/CN103582792B/en active Active
- 2012-06-11 JP JP2014515273A patent/JP5984192B2/en active Active
- 2012-06-11 EP EP12733175.9A patent/EP2721358A2/en not_active Withdrawn
- 2012-06-11 US US14/118,945 patent/US20140083132A1/en not_active Abandoned
- 2012-06-11 WO PCT/GB2012/000502 patent/WO2012172281A2/en active Application Filing
- 2012-06-11 KR KR1020137032633A patent/KR101820560B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
GB201110096D0 (en) | 2011-07-27 |
CN103582792A (en) | 2014-02-12 |
JP2014522477A (en) | 2014-09-04 |
MY172653A (en) | 2019-12-09 |
GB2486036A (en) | 2012-06-06 |
EP2721358A2 (en) | 2014-04-23 |
MX2013014870A (en) | 2015-06-15 |
JP5984192B2 (en) | 2016-09-06 |
WO2012172281A3 (en) | 2013-12-05 |
AU2012270148A1 (en) | 2013-11-28 |
CN103582792B (en) | 2016-06-22 |
MX346703B (en) | 2017-03-28 |
AU2012270148B2 (en) | 2017-12-07 |
US20140083132A1 (en) | 2014-03-27 |
CA2836628C (en) | 2019-06-25 |
WO2012172281A2 (en) | 2012-12-20 |
WO2012172281A4 (en) | 2014-01-09 |
KR20140043745A (en) | 2014-04-10 |
KR101820560B1 (en) | 2018-01-19 |
GB2486036B (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2836628C (en) | Process for liquefaction of natural gas | |
US6751985B2 (en) | Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state | |
CA2584737C (en) | Natural gas liquefaction system | |
US8250883B2 (en) | Process to obtain liquefied natural gas | |
EP2564139B1 (en) | Process and apparatus for the liquefaction of natural gas | |
JP6629843B2 (en) | Production of low pressure liquid carbon dioxide from power generation systems and methods | |
EP1939564A1 (en) | Process to obtain liquefied natural gas | |
WO2015069138A2 (en) | Natural gas liquefaction method and unit | |
CA2704811A1 (en) | Method and system for the small-scale production of liquified natural gas (lng) from low-pressure gas | |
MX2012004349A (en) | Complete liquefaction methods and apparatus. | |
GB2522421A (en) | LNG production process | |
JP2022534588A (en) | Pretreatment and precooling of natural gas by high pressure compression and expansion | |
CA2583724C (en) | Method for providing cooling for gas liquefaction | |
WO2007148122A2 (en) | Process and device for producing lng | |
EP2796819B1 (en) | Method and apparatus for the liquefaction of natural gas | |
EP3479036A1 (en) | System and method for producing liquefied natural gas | |
US11561043B2 (en) | System and method for small scale LNG production |