EP2714957A1 - Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil - Google Patents

Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil

Info

Publication number
EP2714957A1
EP2714957A1 EP12725000.9A EP12725000A EP2714957A1 EP 2714957 A1 EP2714957 A1 EP 2714957A1 EP 12725000 A EP12725000 A EP 12725000A EP 2714957 A1 EP2714957 A1 EP 2714957A1
Authority
EP
European Patent Office
Prior art keywords
layer
diffusion layer
component
diffusion
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12725000.9A
Other languages
English (en)
French (fr)
Inventor
Norbert Czech
Sharad Chandra
Roland Herzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of EP2714957A1 publication Critical patent/EP2714957A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the invention relates to a method for applying a protective layer on a base metal detail with the features of the preamble of claim 1 and a coated with such a protective layer component for use in a
  • a method of the type mentioned in the introduction is e.g. from EP 1 637 622 A1.
  • Thermal barrier coatings serve to lower the material temperature of cooled components. As a result, their life can be extended, cooling air saved or the gas turbine can be operated with higher inlet temperatures.
  • Thermal barrier coating systems always consist of a metallic adhesive layer connected by diffusion to the base metal ⁇ base metal) and an overlying ceramic layer with poor thermal conductivity, which represents the actual barrier against heat flow and protects the base metal detail against high temperature corrosion and high temperature erosion.
  • Ceramic material for the thermal barrier coating has zirconia
  • thermal insulation layers are classified according to the respective application method into two main classes.
  • a first class are thermal barrier coatings by physical
  • thermal barrier coating is chemically bonded by formation of an Al, Zr mixed oxide on a pure alumina (TGO) film formed by the bond coat during application and then in service.
  • TGO pure alumina
  • thermal barrier coatings which are sprayed thermally (usually with atmospheric plasma, APS).
  • Thermal barrier coatings depending on the desired layer thickness and stress distribution, a porosity between about 10 and 25 vol .-% set. Since the bonding of the ceramic layer to the adhesive layer should take place here by mechanical clamping, the adhesive layer is sprayed in a targeted rough manner in order to maximize the interface and thus the adhesion forces. A certain amount of chemical bonding due to TGO formation only occurs during long-term operation. This application process is relatively simple, resulting in relatively cheap coating costs.
  • the invention has the object of developing a method according to the preamble of claim 1 so that it achieves a good thermal fatigue resistance of the protective layer, but nevertheless can be carried out in a simple manner. This is achieved with the features in the characterizing part of claim 1 reached
  • the invention is also based on the object, one with a against
  • Protective layer on the component can be produced in a simple manner and has a good thermal fatigue resistance. This is achieved with a component according to claim 7 or with a gas turbine according to claim 8.
  • M Ni, Co
  • MCrAlY layers contain the intermetallic ß phase NiCoAl as an aluminum supply, but this also has a
  • the MCrAlY layers are overly aluminized with an Al diffusion layer. Because of the risk of embrittlement, this is largely due to aluminum arms (AI ⁇ 8%)
  • the structure of an aluminized MCrAlY layer consists of an inner, largely unchanged y, ß mixed phase, ie a diffusion zone in which the Al content increases to about 20%, and an outer ß-NiAl phase with a proportion of about 30% AI.
  • This outer ß-NiAi phase represents a certain weak point of the layer system in terms of brittleness and crack sensitivity. It therefore becomes subjected the overaligned layer to an abrasive treatment so that the outer ⁇ -NiAl phase is removed down to the diffusion zone.
  • the aluminum activity is favorably influenced, so that the ability to TGO formation is favored.
  • a good bonding of the ceramic layer can be achieved without the need for a rough adhesion layer, which makes it possible, inter alia, for the MC rAI Y layer by means of low-pressure plasma spraying (LPPS) or by thermal spraying, for example high-speed flame spraying (HVOF ) or vacuum plasma spraying.
  • LPPS low-pressure plasma spraying
  • HVOF high-speed flame spraying
  • vacuum plasma spraying for example high-speed flame spraying (HVOF ) or vacuum plasma spraying.
  • High-speed fluid injection is less expensive and tends to produce smoother surfaces.
  • a method of applying a high temperature corrosion and high temperature erosion resistant protective layer to a base metal wherein an MCrAlY based adhesive layer is applied to the base metal, the adhesive layer
  • Overalumination is coated with an Al diffusion layer, the Al diffusion layer is subjected to an abrasive treatment, so that an outer build-up layer of the Al diffusion layer is removed, and on the remaining Al diffusion layer, a ceramic thermal barrier layer of yttria partially stabilized zirconia is applied.
  • the method is characterized in that the ceramic thermal barrier coating is applied to the remaining AL diffusion layer by atmospheric plasma spraying.
  • the applied adhesive layer is subjected to a smoothing treatment prior to its over-alkalization.
  • a smoothing treatment Preferably, in the smoothing treatment, a surface roughness of Ra ⁇ 2 ⁇ m is generated on the adhesive layer.
  • the adhesive layer is applied to the base metal by means of thermal spraying, for example high-speed flame spraying (HVOF) or vacuum plasma spraying of high-velocity flame spraying or vapor phase deposition.
  • HVOF high-speed flame spraying
  • vapor phase deposition for example high-speed flame spraying (HVOF) or vacuum plasma spraying of high-velocity flame spraying or vapor phase deposition.
  • the AL diffusion layer is subjected to a smoothing treatment, such that a smoothing treatment takes place on the remaining AL diffusion layer
  • the outer build-up layer of the AL diffusion layer is removed so far that the content of Al in a surface of the remaining Al diffusion layer exceeds 18 wt%. and less than 30% by weight.
  • a component for use in a hot gas region of a gas turbine having a surface which is at least partially applied in any conceivable combination by a method according to one, several or all of the previously described embodiments of the invention
  • High temperature corrosion and high temperature erosion resistant protective coating is provided.
  • a gas turbine having a hot gas area and a component arranged therein according to the second aspect of the invention.
  • the protective layer has a good thermal endurance, but can nevertheless be produced in a simple manner.
  • the invention provides a thermal barrier coating concept that combines the low cost of the APS process with the advantages of chemical bonding between the adhesive and ceramic layers.
  • the TCF behavior compared to the classic APS layers can be improved.
  • thermal barrier coatings with improved thermal endurance can be produced more easily and thus at lower cost than with EB-PVD processes.
  • FIG. 1 shows in a sectional view a region provided with a protective layer of a component of a component arranged in a hot gas region Gas turbine according to an embodiment of the invention.
  • FIG. 1 shows a sectional view of a region of a component 10, which is provided in a hot gas region, provided with a protective layer 12-14
  • Gas turbine 1 according to an embodiment of the invention.
  • the component 10 ' which for example can be designed as a turbine blade or as another hot gas to come into contact component of the gas turbine 1 "has a base metal 11 (base material) having a surface on" the protection against high-temperature corrosion and high-temperature erosion completely or partially with a
  • resistant ceramic thermal barrier coating 13 is provided.
  • the ceramic thermal barrier coating 13 consists of
  • Zirconia partially stabilized with about 7% by weight of yttria International Abbreviation: "YPSZ" by Ytfria Partially Stabiiised Zirconia.
  • the adhesive layer 12 is made of a MCrAlY based special alloy (e.g., LCO 22).
  • LPPS Low-pressure plasma spraying
  • High speed flame spraying HVOF
  • the applied adhesive layer 12 is subjected to a smoothing treatment (e.g., fine flattening), to which an adhesive layer 12 is applied
  • the overbalancing can be realized by a treatment in which a reactive Al-containing gas, which may be an Al halide (AIX2), at higher temperature
  • the outer make coat 14.2 is subjected to abrasive treatment such as abrasion treatment.
  • abrasive treatment such as abrasion treatment.
  • Hard particle blasting e.g., corundum, silicon carbide, reduced metal wires, etc.
  • machining with other known grinding or grinding techniques
  • polishing down to the inner diffusion zone 14.1 of the Al diffusion layer 14 removed.
  • the abrasive treatment is driven so far that the surface of the remaining Al diffusion layer 14 (diffusion zone 14.1) has an Al content of more than about 18% by weight and less than about 30% by weight.
  • the AL diffusion layer 14 is subjected to a smoothing treatment (e.g., fine flattening), so that a surface roughness of .mu.m is applied to the remaining AL diffusion layer 14 (diffusion zone 14.1)
  • a smoothing treatment e.g., fine flattening
  • the ceramic thermal barrier coating (YPSZ ceramic layer) 13 is then applied to the thus prepared surface of the remaining aluminum diffusion layer 14 by atmospheric plasma spraying (APS), wherein the same parameters can be used for the APS process as in the conventional one Adhesive layers.
  • APS atmospheric plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil, wobei bei dem Verfahren auf ein Basismetall (11) eine Haftschicht (12) auf MCrAI Y-Basis aufgebracht wird, die Haftschicht (12) durch Überalitierung mit einer AI-Diffusionschicht (14) überzogen wird» die AI-Diffusionsschicht (14) einer Abrasivbehandlung unterzogen wird, so dass eine äußere Aufbauschicht (14.2) der AI-Diffusionschicht (14) entfernt wird, und auf die verbleibende Al-Diffusionschicht (14) eine keramische Wärmedämmschicht (13) aus durch Yttriumoxid teilstabilisiertem Zirkoniumoxid aufgebracht wird, so dass eine gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständige Schutzschicht erzeugt wird. Gemäß der Erfindung soll das Verfahren eine gute Thermoermüdungsbeständigkeit der Schutzschicht erzielen, aber dennoch auf einfache Weise durchführbar sein. Dies wird u.a. dadurch erreicht, dass die keramische Wärmedämmschicht (13) durch atmosphärisches Plasmaspritzen auf die verbleibende Al-Diffusionschicht (14) aufgebracht wird.

Description

Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil
Die Erfindung betrifft ein Verfahren zum Aufbringen einer Schutzschicht auf ein Basismetail mit den Merkmalen des Oberbegriffes des Anspruches 1 sowie ein mit einer solchen Schutzschicht beschichtetes Bauteil zum Einsatz in einem
Heißgasbereich einer Gasturbine und eine Gasturbine mit einem solchen Bauteil,
Ein Verfahren der eingangsgenannten Art ist z.B. aus EP 1 637 622 A1 bekannt.
In modernen Gasturbinen werden die Oberflächen im Heißgasbereich fast vollständig mit Beschichtungen versehen. Ausnahmen können in manchen Fällen noch die Schaufeln hinterer Turbinenreihen bilden. Die dabei eingesetzten
Wärmedämmschichten (WDS) dienen zur Absenkung der Materialtemperatur gekühlter Bauteile. Hierdurch kann deren Lebensdauer verlängert, Kühlluft eingespart oder die Gasturbine mit höheren Eintrittstemperaturen betrieben werden.
Wärmedämmschichtsysteme bestehen immer aus einer mit dem Grundwerkstoff {Basismetall) durch Diffusion verbundenen metallischen Haftschicht und einer darüber liegenden Keramikschicht mit schlechter Wärmeleitfähigkeit, die die eigentliche Barriere gegen den Wärmestrom darstellt und das Basismetail gegen Hochtemperaturkorrosion und Hochtemperaturerosion schützt. Als
Keramikwerkstoff für die Wärmedämmschicht hat sich Zirkoniumoxid
durchgesetzt, das mit etwa 7 Gew.-% Yttriumoxid teilstabilisiert ist (Internationale Kurzbezeichnung:„YPSZ" von Yttria Partially Stabiiised Zirconia). Die Wärmedämm schichten werden nach dem jeweiligen Aufbringungsverfahren in zwei wesentliche Klassen eingeteilt.
Eine erste Klasse sind Wärmedämmschichten, die durch physikalische
Dampfabscheidungsprozesse mittels Elektronenstrahl (EB-PVD-Verfahren) aufgedampft sind. Diese Wärmedämmschichten weisen bei Einhaltung bestimmter Abscheidebedingungen eine säulenförmige (koiumnare), dehnungstolerante Struktur auf und bieten dadurch eine besonders günstige Beständigkeit gegen Thermoermüdung (Thermal Cycle Fatigue, TCF). Bei dem zugehörigen Verfahren zum Aufbringen der Wärmedämmschicht wird die Wärmedämmschicht chemisch durch Bildung eines AI, Zr-Mischoxides auf einer von der Haftschicht während der Aufbringung und anschließend im Betrieb gebildeten reinen Aluminiumoxidschicht (Thermally Grown Oxide, TGO) gebunden. Dieses Verfahren stellt einerseits besondere Anforderungen an das Oxidwachstum auf der Haftschicht,
gewährleistet aber andererseits eine besonders feste Bindung.
Eine zweite Klasse sind Wärmedämmschichten, die thermisch (meist mit atmosphärischem Plasma, APS) aufgespritzt werden. Bei diesen
Wärmedämmschichten wird abhängig von der gewünschten Schichtdicke und Spannungsverteilung eine Porosität zwischen etwa 10 und 25 Vol.-% eingestellt. Da hier die Bindung der Keramikschicht an der Haftschicht durch mechanische Verklammerung erfolgen soll, wird die Haftschicht gezielt rau gespritzt, um die Grenzfläche und damit die Adhäsionskräfte zu maximieren. Ein gewisser chemischer Bindungsanteil durch TGO-Bitdung entsteht erst im langzeitigen Betriebseinsatz. Dieses Aufbringungsverfahren ist relativ einfach, woraus relativ günstige Beschichtungskosten resultieren.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 so weiterzubilden, dass es eine gute Thermoermüdungsbestän- digkeit der Schutzschicht erzielt, aber dennoch auf einfache Weise durchführbar ist. Dies wird mit den Merkmalen im kennzeichnenden Teil des Anspruchs 1 erreicht
Der Erfindung liegt außerdem die Aufgabe zugrunde, ein mit einer gegen
Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht beschichtetes Bauteil zum Einsatz in einem Heißgasbereich einer Gasturbine sowie eine Gasturbine mit einem solchen Bauteil bereitzustellen, wobei die
Schutzschicht an dem Bauteil auf einfache Weise herstellbar ist und eine gute Thermoermüdungsbeständigkeit aufweist. Dies wird mit einem Bauteil gemäß Anspruch 7 bzw. mit einer Gasturbine gemäß Anspruch 8 erreicht.
Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert.
Auf Seiten der Haftschicht werden - bevorzugt in stationären Gasturbinen - thermisch gespritzte Auflageschichten auf MCrAI Y-Basis (M = Ni, Co) eingesetzt. MCrAlY-Schichten enthalten in einer NiCoCr („Y")- atrix die intermetallische ß- Phase NiCoAl als Aluminium-Vorrat. Diese hat allerdings auch einen
versprödenden Einfluss, so dass der praktisch realisierbare AI-Gehalt in der MCrAlY-Schicht bei < 12 Gew.-% liegt.
Zur weiteren Steigerung der Oxidationsbeständigkeit werden die MCrAlY- Schichten per Überalitierung mit einer Al-Diffusionsschicht überzogen. Wegen der Versprödungsgefahr wird dies weitgehend auf aluminiumarme (AI < 8 %)
Ausgangsschichten beschränkt
Die Struktur einer alitierten MCrAlY-Schicht besteht aus einer inneren, weitgehend unveränderten y, ß-Mischphase, d.h. einer Diffusionszone, in der der AI-Gehalt auf etwa 20 % ansteigt, und einer äußeren ß-NiAI-Phase mit einem Anteil von ca. 30 % AI. Diese äußere ß-NiAi-Phase stellt eine gewisse Schwachstelle des Schichtsystems hinsichtlich Sprödigkeit und Rissempfindlichkeit dar. Es wird daher die überalitierte Schicht einer Abrasivbehandlung unterzogen, so dass die äußere ß-NiAI-Phase bis herab zur Diffusionszone entfernt wird. Hierdurch wird auch die Aluminium-Aktivität günstig beeinflusst, so dass die Fähigkeit zur TGO-Bildung begünstigt wird.
Hierbei kann eine gute Anbindung der Keramikschicht erreicht werden, ohne dass eine raue Haftschicht notwendig ist, wodurch es unter anderem möglich ist, die MC rAI Y-Schicht mittels Niederdruck-Plasmaspritzens (LPPS) oder mittels thermischen Spritzens, zum Beispiel Hochgeschwindigkeits-Flammspritzens (HVOF) oder Vakuum-Plasmaspritzen , aufzubringen. Das Hochgeschwindigkeits- Fiammspritzen ist kostengünstiger und erzeugt tendenziell glattere Oberflächen.
Gemäß einem ersten Aspekt der Erfindung wird bereitgestellt ein Verfahren zum Aufbringen einer gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht auf ein Basismetall, wobei auf das Basismetall eine Haftschicht auf MCrAI Y-Basis aufgebracht wird, die Haftschicht durch
Überalitierung mit einer Al-Diffusionschicht überzogen wird, die AI- Diffusionsschicht einer Abrasivbehandlung unterzogen wird, so dass eine äußere Aufbauschicht der Al-Diffusionschicht entfernt wird, und auf die verbleibende AL- Diffusionschicht eine keramische Wärmedämmschicht aus durch Yttriumoxid teilstabilisiertem Zirkoniumoxid aufgebracht wird. Das erfindungsgemäße
Verfahren zeichnet sich dadurch aus, dass die keramische Wärmedämmschicht durch atmosphärisches Plasmaspritzen auf die verbleibende AL-Diffusionschicht aufgebracht wird.
Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens wird die aufgebrachte Haftschicht vor deren Überalitierung einer Glättungsbehandlung unterzogen. Bevorzugt wird bei der Glättungsbehandlung an der Haftschicht eine Oberflächenrauigkeit von Ra < 2pm erzeugt. Gemäß noch einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Haftschicht mittels thermischen Spritzens, zum Beispiel Hochgeschwindigkeits- Flammspritzens (HVOF) oder Vakuum-Plasmaspritzen Hochgeschwindigkeits- Flammspritzens oder Abscheidung aus der Dampfphase, auf das Basismetall aufgebracht.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die AL-Diffusionsschicht nach der Abrasivbehandlung einer Glättungsbehandlung unterzogen, so dass an der verbleibenden AL-Diffusionsschicht eine
Oberflächenrauigkeit von Ra £ 2pm erzeugt wird.
Gemäß noch einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird nach der Überalitierung der Haftschicht und vor der Abrasivbehandlung der AL-Diffusionsschicht eine Wärmebehandlung zur Beeinflussung der
mechanischen Eigenschaften des Basismetalls durchgeführt.
Gemäß noch einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden bei der Überalitierung in der AL-Diffusionsschicht eine innere
Diffusionszone mit einem AI-Gehalt von etwa 20 Gew.-% und auf der
Diffusionszone die äußere Aufbauschicht mit einem AI-Gehalt von etwa 30% erzeugt, wobei bei der Abrasivbehandlung die äußere Aufbauschicht der AL- Diffusionsschicht so weit entfernt wird, dass der Gehalt an AI in einer Oberfläche der verbleibenden Al-Diffusionsschicht über 18 Gew.-% und unter 30 Gew.-% beträgt.
Gemäß einem zweiten Aspekt der Erfindung wird bereitgestellt ein Bauteil zum Einsatz in einem Heißgasbereich einer Gasturbine, wobei das Bauteil eine Oberfläche aufweist, die zumindest teilweise mit einer nach einem Verfahren gemäß einer, mehreren oder allen zuvor beschriebenen Ausführungsformen der Erfindung in jeder denkbaren Kombination aufgebrachten gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht versehen ist.
Gemäß einem dritten Aspekt der Erfindung wird bereitgestellt eine Gasturbine mit einem Heißgasbereich und einem darin angeordneten Bauteil gemäß dem zweiten Aspekt der Erfindung.
Durch Anwendung des erfindungsgemäßen Verfahrens zum Herstellen der Schutzschicht auf dem Bauteil weist die Schutzschicht eine gute Thermoermü- dungsbeständigkeit auf, ist aber dennoch auf einfache Weise herstellbar.
Im Fazit wird durch die Erfindung ein Wärmedämmschichtkonzept bereitgestellt, das die günstigen Kosten des APS-Verfahrens mit den Vorteilen der chemischen Bindung zwischen der Haft- und der Keramikschicht kombiniert. Hierdurch kann das TCF-Verhalten gegenüber den klassischen APS-Schichten verbessert werden. Somit können Wärmedämmschichten mit verbesserter Thermoermü- dungsbeständigkeit einfacher und damit zu niedrigeren Kosten als mit EB-PVD- Verfahren hergestellt werden.
Die Erfindung erstreckt sich ausdrücklich auch auf solche Ausführungsformen, welche nicht durch Merkmalskombinationen aus expliziten Rückbezügen der Ansprüche gegeben sind, womit die offenbarten Merkmale der Erfindung - soweit dies technisch sinnvoll ist - beliebig miteinander kombiniert sein können.
Im Folgenden wird die Erfindung anhand einer bevorzugten Ausführungsform und unter Bezugnahme auf die beigefügte Figur beschrieben.
Fig.1 zeigt in einer Schnittansicht einen mit einer Schutzschicht versehenen Bereich eines in einem Heißgasbereich angeordneten Bauteils einer Gasturbine gemäß einer Ausführungsform der Erfindung.
Fig.1 zeigt in einer Schnittansicht einen mit einer Schutzschicht 12-14 versehenen Bereich eines in einem Heißgasbereich angeordneten Bauteils 10 einer
Gasturbine 1 gemäß einer Ausführungsform der Erfindung.
Das Bauteil 10» welches z.B. als Turbinenschaufel oder auch als ein anderes mit Heißgas in Berührung kommendes Bauteil der Gasturbine 1 ausgebildet sein kann» weist ein Basismetall 11 (Grundwerkstoff) mit einer Oberfläche auf» die zum Schutz gegen Hochtemperaturkorrosion und Hochtemperaturerosion komplett oder teilweise mit einer dagegen beständigen keramischen Wärmedämmschicht 13 versehen ist. Die keramische Wärmedämmschicht 13 besteht aus
Zirkoniumoxid, das mit etwa 7 Gew.-% Yttriumoxid teilstabilisiert ist (Internationale Kurzbezeichnung:„YPSZ" von Ytfria Partially Stabiiised Zirconia).
Zur Verbesserung der Haftung der Wärmedämmschicht 13 auf dem Basismetall 1 1 wird auf dieses (auf dessen Oberfläche) zunächst eine Auflageschicht bzw. Haftschicht 12 aufgebracht. Die Haftschicht 12 besteht aus einer Sonderlegierung auf MCrAlY-Basis (z.B. LCO 22). Der Buchstabe M steht hier für Ni oder Co oder eine Kombination davon. Das Aufbringen der Haftschicht 12 erfolgt durch
Niederdruckplasmaspritzen (LPPS) oder wie hier bevorzugt durch
Hochgeschwindigkeits-Flammspritzen (HVOF).
Anschließend wird die aufgebrachte Haftschicht 12 einer Glättungsbehandlung (z.B. Feinglätten) unterzogen, wobei an der Haftschicht 12 eine
Oberflächenrauigkeit von Ra < 2 μιτι erzeugt wird.
Danach wird zur Erhöhung des AI-Gehaltes in der Haftschicht 12 diese per Überalitieren mit einer AI-Diffusionsschicht 14 überzogen. Das Überalitieren kann realisiert werden durch eine Behandlung, bei der ein reaktives Al-haltiges Gas, das ein Al-Halogenid (AIX2) sein kann, bei höherer Temperatur eine
Einwärtsdiffusion von AI verbunden mit einer Auswärtsdiffusion von Ni bewirkt, wie z.B. ein chemisches Aufdampfen (Chemical Vapour Deposition, CVD).
Durch das Überalitieren entstehen auf der weitgehend unveränderten Haftschicht 12 innerhalb der Al-Diffusionsschicht 14 eine innere Diffusionszone 14.1 mit einem AI-Gehalt von etwa 20 Gew.-% und darauf eine äußere Aufbauschicht 4.2 aus einer spröden ß-NiAI-Phase mit einem AI-Gehalt von etwa 30 Gew.-%.
Nach der Überalitierung der Haftschicht 12 kann eine Wärmebehandlung zur Beeinflussung bzw. Einstellung der mechanischen Eigenschaften des
Basismetalls 1 1 durchgeführt, werden.
Anschließend wird die äußere Aufbauschicht 14.2 per Abrasivbehandlung, wie z.B. Strahlen mit harten Partikeln (z.B. Korund, Siliziumkarbid, verkleinerte Metalldrähte usw.) oder Bearbeiten mit anderen bekannten Schleif- oder
Poliermitteln, bis herab auf die innere Diffusionszone 14.1 der Al-Diffusionsschicht 14 entfernt. Die Abrasivbehandlung wird so weit getrieben, dass die Oberfläche der verbliebenen Al-Diffusionsschicht 14 (Diffusionszone 14.1 ) einen AI-Gehalt von über ca. 18 Gew.-% und unter ca. 30 Gew.-% aufweist.
Nach der Abrasivbehandlung wird die AL-Diffusionsschicht 14 einer Glättungs- behandlung (z.B. Feinglätten) unterzogen, so dass an der verbleibenden AL- Diffusionsschicht 14 (Diffusionszone 14.1 ) eine Oberflächenrauigkeit von
Ra < 2 pm erzeugt wird.
Auf die so vorbereitete Oberfläche der verbleibenden AL-Diffusionsschicht 14 wird dann die keramische Wärmedämmschicht (YPSZ-Keramikschicht) 13 durch atmosphärisches Plasmaspritzen (APS) aufgebracht, wobei für das APS- Verfahren die gleichen Parameter verwendet werden können wie bei üblichen Haftschichten.
Bezugszeichenliste
1 Gasturbine
10 Bauteil
1 1 Basismetall
12 Haftschicht
13 Wärmedämmschicht
14 AI-Diffusionsschicht
14,1 innere Diffusionszone
14.2 äußere Aufbauschicht

Claims

Patentansprüche
1 . Verfahren zum Aufbringen einer gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht auf ein Basismetall (1 1 ), wobei auf das Basismetall (11) eine Haftschicht (12) auf MCrAlY-Basis aufgebracht wird, die Haftschicht (12) durch Überalitierung mit einer AI-Diffusionschicht (14) überzogen wird, die AI-Diffusionsschicht (14) einer Abrasivbehandlung unterzogen wird, so dass eine äußere Aufbauschicht (14,2) der AI-Diffusionschicht (14) entfernt wird, und auf die verbleibende AL-Diffusionschicht (14) eine keramische Wärmedämmschicht (13) aus durch Yttriumoxid teilstabilisiertem Zirkoniumoxid aufgebracht wird,
dadurch gekennzeichnet, dass die keramische Wärmedämmschicht (13) durch atmosphärisches Plasmaspritzen auf die verbleibende AL-Diffusionschicht (14) aufgebracht wird.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die aufgebrachte Haftschicht (12) vor deren Überalitierung einer Glättungsbehandlung unterzogen wird.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass bei der Glättungsbehandlung an der Haftschicht (12) eine Oberflächenrauigkeit von Ra < 2 μιτη erzeugt wird.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Haftschicht (12) mittels thermischen Spritzverfahrens auf das Basismetall (1 1 ) aufgebracht wird.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die AL-Diffusionsschicht (14) nach der Abrasivbehandlung einer
Glättungsbehandlung unterzogen wird, so dass an der verbleibenden AL- Diffusionsschicht (14) eine Oberflächenrauigkeit von Ra < 2 μιτι erzeugt wird,
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass nach der Überalitierung der Haftschicht (12) und vor der Abrasivbehandlung der AL-Diffusionsschicht (14) eine Wärmebehandlung zur Beeinflussung der mechanischen Eigenschaften des Basismetalls (1 1 ) durchgeführt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei der Überalitierung in der AL-Diffusionsschicht (14) eine innere
Diffusionszone (14.1 ) mit einem AI-Gehalt von etwa 20 Gew.-% und auf der Diffusionszone (14.1 ) die äußere Aufbauschicht (14.2) mit einem AI-Gehalt von etwa 30 Gew.-% erzeugt werden, und dass bei der Abrasivbehandlung die äußere Aufbauschicht (14.2) der AL-Diffusionsschicht (14) so weit entfernt wird, dass der Gehalt an AI in einer Oberfläche der verbleibenden Al-Diffusionsschicht (14) über 18 Gew.-% und unter 30 Gew.-% beträgt.
8. Bauteil (10) zum Einsatz in einem Heißgasbereich einer Gasturbine (1 ), wobei das Bauteil (10) eine Oberfläche aufweist, die zumindest teilweise mit einer nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 aufgebrachten gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht versehen ist.
9. Gasturbine (1 ) mit einem Heißgasbereich und einem darin angeordneten Bauteil (10) gemäß Anspruch 8.
EP12725000.9A 2011-05-31 2012-05-31 Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil Withdrawn EP2714957A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011103731A DE102011103731A1 (de) 2011-05-31 2011-05-31 Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil
PCT/EP2012/060195 WO2012163991A1 (de) 2011-05-31 2012-05-31 Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil

Publications (1)

Publication Number Publication Date
EP2714957A1 true EP2714957A1 (de) 2014-04-09

Family

ID=46201638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12725000.9A Withdrawn EP2714957A1 (de) 2011-05-31 2012-05-31 Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil

Country Status (6)

Country Link
US (1) US20140141276A1 (de)
EP (1) EP2714957A1 (de)
JP (1) JP5878629B2 (de)
CA (1) CA2837415C (de)
DE (1) DE102011103731A1 (de)
WO (1) WO2012163991A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002239B1 (fr) * 2013-02-15 2015-04-10 Messier Bugatti Dowty Procede de fabrication d'une piece d'aeronef comportant un substrat et une couche de revetement du substrat
US9518325B2 (en) * 2013-03-19 2016-12-13 General Electric Company Treated coated article and process of treating a coated article
CN104404436B (zh) * 2014-11-25 2017-02-22 西安交通大学 基于液相过滤的低压等离子喷涂制备柱状陶瓷涂层的方法
DE102016103664A1 (de) * 2016-03-01 2017-09-07 Lufthansa Technik Ag Strömungselement und Verfahren zum Beschichten eines Strömungselements
GB201903484D0 (en) * 2019-03-14 2019-05-01 Rolls Royce Plc A method of removing a ceramic coating from a ceramic coated metallic article

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236745A (en) * 1991-09-13 1993-08-17 General Electric Company Method for increasing the cyclic spallation life of a thermal barrier coating
JP3219594B2 (ja) * 1994-04-27 2001-10-15 三菱重工業株式会社 高温酸化防止用遮熱コーティング方法
EP0826076B1 (de) * 1995-04-27 1999-07-07 Siemens Aktiengesellschaft Metallisches bauelement mit hochtemperatur schutzbeschichtung und verfahren zum beschichten eines bauelementes
ES2132927T3 (es) * 1995-07-25 1999-08-16 Siemens Ag Producto con un cuerpo basico metalico con canales de refrigeracion y su fabricacion.
US6555179B1 (en) * 1998-01-14 2003-04-29 General Electric Company Aluminizing process for plasma-sprayed bond coat of a thermal barrier coating system
DE19801424B4 (de) * 1998-01-16 2004-08-05 Forschungszentrum Jülich GmbH Wärmedämmstoff für hohe Temperaturen und seine Verwendung
US6203685B1 (en) * 1999-01-20 2001-03-20 International Business Machines Corporation Apparatus and method for selective electrolytic metallization/deposition utilizing a fluid head
US6472018B1 (en) * 2000-02-23 2002-10-29 Howmet Research Corporation Thermal barrier coating method
US6576067B2 (en) * 2001-08-31 2003-06-10 General Electric Co. Fabrication of an article having a protective coating with a polished, pre-oxidized protective-coating surface
DE102004045049A1 (de) * 2004-09-15 2006-03-16 Man Turbo Ag Verfahren zum Aufbringen einer Schutzschicht
DE102005053531A1 (de) * 2005-11-08 2007-05-10 Man Turbo Ag Wärmedämmende Schutzschicht für ein Bauteil innerhalb des Heißgasbereiches einer Gasturbine
DE102005060243A1 (de) * 2005-12-14 2007-06-21 Man Turbo Ag Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
WO2007112783A1 (de) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
US20090162692A1 (en) * 2007-12-24 2009-06-25 Bangalore Aswatha Nagaraj Coated Superalloy Articles
DE102008007870A1 (de) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012163991A1 *

Also Published As

Publication number Publication date
WO2012163991A1 (de) 2012-12-06
CA2837415A1 (en) 2012-12-06
US20140141276A1 (en) 2014-05-22
JP5878629B2 (ja) 2016-03-08
JP2014520205A (ja) 2014-08-21
DE102011103731A1 (de) 2012-12-06
CA2837415C (en) 2016-11-08

Similar Documents

Publication Publication Date Title
EP1945834B1 (de) Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine
EP1969156B1 (de) Verfahren zum beschichten einer schaufel und schaufel einer gasturbine
EP1637622A1 (de) Verfahren zum Aufbringen einer Schutzschicht
DE69925590T2 (de) Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu
DE602004011309T2 (de) Verstärkte Bindungsschicht für eine Wärmedämmschicht
EP1616979B1 (de) Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
EP1902160B1 (de) Keramische wärmedämmschicht
EP2714957A1 (de) Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
EP2468925A2 (de) Verfahren zur Herstellung eines Wärmedämmschichtaufbaus
CN109628929A (zh) 一种热障涂层及其制备方法与应用、航空发动机涡轮叶片
DE112008003460T5 (de) Überzogene Superlegierungs-Gegenstände
EP3320127B1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
EP1260602B1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
EP1970461A1 (de) Turbinenbauteil mit Wärmedämmschicht
DE102012108057B4 (de) Verfahren zur Herstellung einer Dampfturbinenschaufel der letzten Stufe
EP3205746B1 (de) Wärmedämmschicht mit hohem korrosionswiderstand
DE102013213742A1 (de) Cmas-inerte wärmedämmschicht und verfahren zu ihrer herstellung
WO2017152891A1 (de) Haftvermittlerschicht zur anbindung einer hochtemperaturschutzschicht auf einem substrat, sowie verfahren zur herstellung derselben
DE102014222686A1 (de) Doppellagige Wärmedämmschicht durch unterschiedliche Beschichtungsverfahren
EP2537959B1 (de) Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung
EP1900708B1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
DE112008003459T5 (de) Verfahren zum Aufbringen von Wärmesperren-Überzugssystemen
DE102015200076A1 (de) Wärmedämmschichtsystem mit keramischer poröser Grundschicht
WO2018209374A1 (de) VERFAHREN ZUR VERBESSERUNG DER VERSCHLEIßBESTÄNDIGKEIT EINES BAUTEILS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160629

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/073 20160101AFI20210224BHEP

Ipc: C23C 10/02 20060101ALI20210224BHEP

Ipc: C23C 10/48 20060101ALI20210224BHEP

Ipc: C23C 4/134 20160101ALI20210224BHEP

Ipc: C23C 10/60 20060101ALI20210224BHEP

Ipc: C23C 4/18 20060101ALI20210224BHEP

Ipc: C23C 4/02 20060101ALI20210224BHEP

Ipc: C23C 4/11 20160101ALI20210224BHEP

18W Application withdrawn

Effective date: 20210305