EP2714412A1 - Substrat portant un marquage polymère cristal liquide modifié - Google Patents

Substrat portant un marquage polymère cristal liquide modifié

Info

Publication number
EP2714412A1
EP2714412A1 EP12723479.7A EP12723479A EP2714412A1 EP 2714412 A1 EP2714412 A1 EP 2714412A1 EP 12723479 A EP12723479 A EP 12723479A EP 2714412 A1 EP2714412 A1 EP 2714412A1
Authority
EP
European Patent Office
Prior art keywords
liquid crystal
composition
chiral liquid
modifying agent
marking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12723479.7A
Other languages
German (de)
English (en)
Other versions
EP2714412B1 (fr
Inventor
Thomas Tiller
Olivier Rozumek
Tristan Jauzein
Andrea Callegari
Frédéric Gremaud
Brahim Kerkar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICPA Holding SA
Original Assignee
SICPA Holding SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICPA Holding SA filed Critical SICPA Holding SA
Priority to EP12723479.7A priority Critical patent/EP2714412B1/fr
Publication of EP2714412A1 publication Critical patent/EP2714412A1/fr
Application granted granted Critical
Publication of EP2714412B1 publication Critical patent/EP2714412B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/28Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/28Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
    • B41M5/281Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating using liquid crystals only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/25Public transport tickets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • C09K19/588Heterocyclic compounds
    • B42D2035/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • C09K2019/3408Five-membered ring with oxygen(s) in fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24835Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including developable image or soluble portion in coating or impregnation [e.g., safety paper, etc.]

Definitions

  • the present invention relates to a marking on an item or substrate, which marking is based on a chiral nematic (also called cholesteric) liquid crystal precursor composition.
  • a chiral nematic (also called cholesteric) liquid crystal precursor composition Prior to curing the chiral liquid crystal precursor composition in the chiral liquid crystal state at least one optical property exhibited by the composition is modified by two modifying agents of different types in at least one area of the item or substrate.
  • Counterfeit is no longer a national or a regional problem but a worldwide problem which has an impact not only on manufacturers but also on the consumer. Counterfeiting is a significant problem with goods like clothes and watches but becomes even more serious when it affects medicines and drugs. Each year thousands of people around the world die because of counterfeit drugs. Counterfeiting has also an impact on government revenues in that it affects the collection of taxes for, e.g., cigarettes and alcohol because of the existence of a black market where it is impossible to track and trace counterfeit (smuggled, diverted, etc.) products with no valid tax stamps.
  • optically variable inks Its principle is based on the difference in observable color of a marking made with optically variable inks when a packaging, security document, etc. carrying the marking is viewed from different angles ("viewing-angle dependent color").
  • Optically variable inks provide first-line recognizability not only by a person, but also facilitate machine-readability. Many patents describe this kind of security products, their composition and their application.
  • One example of the many types of optically variable inks is the class of compounds called cholesteric liquid crystals.
  • the cholesteric liquid crystal structure When illuminated with white light, the cholesteric liquid crystal structure reflects light of a certain color which depends on the material in question and generally varies with the viewing angle and the temperature.
  • the cholesteric material itself is colorless and the observed color is the result of a physical reflection effect at the cholesteric helical structure that is adopted by the chiral liquid crystal precursor composition at a given temperature. See, e.g., J.L. Fergason, Molecular Crystals, Vol. 1, pp. 293-307 (1966), the entire disclosure of which is incorporated by reference herein.
  • EP-A-1 381 520 and EP-A-1 681 586 disclose a birefringent marking and a method of applying the same in the form of a liquid crystal layer having a non-uniform pattern of regions of different thickness.
  • the applied liquid crystal coating or layer may provide for a hidden image on a reflecting substrate, which image is invisible when viewed under non-polarized light but is rendered visible under polarized light or with the help of a polarization filter.
  • U.S. Patent No. 5,678,863 discloses means for the identification of documents of value which include a paper or polymer region, said region having a transparent and translucent characteristic.
  • a liquid crystal material is applied to the region to produce an optical effect, which differs when viewed in transmitted and reflected light.
  • the liquid crystal material is in liquid form at room temperature and must be enclosed in a containing means such as microcapsules in order to be suitable for use in a printing process such as gravure, roller, spray or ink-jet printing.
  • the ordered liquid crystalline state depends upon the presence of a chiral dopant.
  • Nematic liquid crystals without chiral dopant show a molecular arrangement that is characterized by its birefringence.
  • Nematic polymers are known from, e.g., EP-A-0 216 712, EP-A-0 847 432, and U.S. Patent No. 6,589,445, the entire disclosures of which are incorporated by reference herein.
  • the liquid crystal based security feature provides first-line recognizability by the consumer and also by retailers and producers of goods and articles. Like for many other security features which are used in the market, there is always the temptation for counterfeiters to reproduce these security features and thereby mislead consumers and retailers. In view of the foregoing facts, there continues to be a need to improve the security of liquid crystal polymer materials based on liquid crystal precursors.
  • a second possibility of overcoming this problem is to insert the code inside the liquid crystal polymer film.
  • U.S. Patent No. 6,207,240 the entire disclosure of which is incorporated by reference herein, describes an effect coating of a cholesteric liquid crystal polymer (CLCP) with viewing angle dependent reflection color that further comprises absorption type pigments exhibiting a specific absorption color.
  • a marking such as a symbol or a text, is generated in the CLCP coating by laser irradiation.
  • the laser radiation carbonizes the CLCP material in the irradiated area.
  • the color of the substrate on which the CLCP is coated, or the color of absorption pigments incorporated into the CLCP becomes visible in the irradiated area.
  • the method requires high-power lasers to carbonize the material and to make the markings visible.
  • One of the drawbacks of the methods cited above is the lack of ability to modify the chiral liquid crystal polymer layer in a selective and controlled manner and to create a strong and reliable marking or coding that is difficult, if not impossible, to reproduce and also is compatible with a production line (processes for making items such as passports, packaging, etc.).
  • the present invention provides a marking on an item or on a substrate.
  • the marking comprises a (continuous or discontinuous) layer or a pattern of a chiral liquid crystal polymer composition that exhibits an initial set of optical properties and is made by curing a chiral liquid crystal precursor composition in a chiral liquid crystal state.
  • the layer or pattern comprises
  • At least one of the one or more first areas may be partially or completely overlapped by at least one second area and/or at least one of the one or more second areas may be partially or completely overlapped by at least one first area.
  • At least one of the one or more first areas may not be overlapped by any second area and/or at least one of the one or more second areas may not be overlapped by any first area.
  • the initial and the first and second modified sets of optical properties may differ with respect to at least one property of light that is reflected by the chiral liquid crystal polymer composition.
  • the at least one property may be selected from one or more of the spectrum, the polarization, and ⁇ , memo 3 ⁇ of the reflected light.
  • the initial and the first and second modified sets of optical properties may comprise at least one property that is indicative of an optically anisotropic state of the chiral liquid crystal polymer composition.
  • the chiral liquid crystal precursor composition may comprise (i) one or more nematic compounds A, (ii) one or more chiral dopant compounds B that are capable of giving rise to a cholesteric state of the chiral liquid crystal precursor composition, and (iii) at least one salt that changes a maximum wavelength of the selective reflection band exhibited by the polymer composition compared to a maximum wavelength of the selective reflection band exhibited by a polymer composition that does not contain the at least one salt.
  • the one or more nematic compounds A as well as the one or more chiral dopant compounds B may comprise at least one compound that comprises at least one polymerizable group.
  • the one or more nematic compounds A and all of the one or more chiral dopant compounds B may comprise at least one polymerizable group.
  • the chiral liquid crystal precursor composition may comprise at least one chiral dopant compound B of formula (I):
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl and Ci-C 6 alkoxy;
  • Ai and A 2 each independently denote a group of formula (i) to (iii):
  • D 2 denotes a group of formula m, n, o, p, q, r, s, and t each independently denote 0, 1, or 2; y denotes 0, 1, 2, 3, 4, 5, or 6; z equals 0 if y equals 0 and z equals 1 if y equals 1 to 6.
  • the at least one salt may be selected from metal salts and ammonium salts.
  • the at least one salt may comprise at least one of lithium perchlorate, lithium nitrate, lithium tetrafluoroborate, lithium bromide, lithium chloride, tetrabutylammonium perchlorate, tetrabutylammonium chloride, tetrabutylammonium tetrafluoroborate, tetrabutylammonium bromide, sodium carbonate, sodium chloride, and sodium nitrate.
  • the at least one salt may comprise lithium perchlorate.
  • the chiral liquid crystal precursor composition may be in an initial optically anisotropic state and in the one or more first areas the initial optically anisotropic state may be changed to a first modified optically anisotropic state, and in the one or more second areas the initial optically anisotropic state may be changed to a second modified optically anisotropic state or converted to an optically isotropic state.
  • the chiral liquid crystal precursor composition may be in an initial chiral liquid crystal state and in the one or more first areas the initial chiral liquid crystal state may be changed to a first modified chiral liquid crystal state by the first modifying agent, and in the one or more second areas the initial chiral liquid crystal state may be changed to a second modified chiral liquid crystal state or may be changed to a non-chiral liquid crystal state by the second modifying agent.
  • the first modifying agent may be solid and/or semi-solidis and the second modifying agent may be fluid and/or the first modifying agent may be virtually unable to penetrate the chiral liquid crystal precursor composition and the second modifying agent may at least partially penetrate the precursor composition.
  • a semi-solid is able to support its own weight and hold its shape, while having the ability to flow under pressure for instance.
  • the first modifying agent may be or may comprise a resin that is made from one or more polymerizable monomers.
  • at least one of the one or more polymenzable monomers may comprise at least two unsaturated carbon-carbon bonds and/or may comprise at least one heteroatom selected from O, N and S.
  • the resin may comprise a radiation-cured resin such as a UV-cured resin and/or the resin may comprise a dried aqueous resin.
  • the second modifying agent may be fluid and selected from one or more of (a) a modifying composition that comprises at least one compound selected from ketones having from 3 to about 6 carbon atoms, alkyl esters and dialkylamides of carboxylic acids which comprise a total of from 2 to about 6 carbon atoms, dialkyl sulfoxides comprising a total of from 2 to about 4 carbon atoms, and optionally substituted nitrobenzene, (b) a modifying composition that comprises at least one chiral liquid crystal precursor composition, and (c) a modifying composition that comprises at least one chiral dopant composition.
  • a modifying composition that comprises at least one compound selected from ketones having from 3 to about 6 carbon atoms, alkyl esters and dialkylamides of carboxylic acids which comprise a total of from 2 to about 6 carbon atoms, dialkyl sulfoxides comprising a total of from 2 to about 4 carbon atoms, and optionally substituted nitrobenzene
  • the first modifying agent may be selected from a solid or semi-solidis cured and/or dried resin made from one or more polymerizable monomers, and both the first modifying agent and the second modifying agent may change an initial maximum wavelength of the selective reflection band exhibited by the chiral liquid crystal precursor composition in the chiral liquid crystal state.
  • first modifying agent and the second modifying agent may act from opposite sides of the layer or pattern of the chiral liquid crystal precursor composition.
  • first modifying agent may be arranged between the substrate and the layer or pattern in the one or more first areas and the second modifying agent may act from the side opposite the substrate in the one or more second areas.
  • the one or more first areas and/or the one or more second areas may be in the form of at least one of an image, a picture, a logo, indicia, and a pattern representing a code selected from one or more of a 1 -dimensional barcode, a stacked 1- dimensional barcode, a 2-dimensional barcode, a 3-dimensional barcode, a cloud of dots, a network of lines and a data matrix and/or at least a part of the layer or pattern may be in the form of at least one of an image, a picture, a logo, indicia, and a pattern representing a code selected from one or more of a 1 -dimensional barcode, a stacked 1 -dimensional barcode, a 2-dimensional barcode, a 3-dimensional barcode, a data matrix.
  • the item or substrate may be or may comprise at least one of a label, packaging, a cartridge, a container or a capsule that contains foodstuffs, nutraceuticals, pharmaceuticals, or beverages, a banknote, a credit card, a stamp, a tax label, anti-tamper seal, a security document, a passport, an identity card, a driver's license, an access card, a transportation ticket, an event ticket, a voucher, an ink-transfer film, a reflective film, an aluminum foil, and a commercial good.
  • a label a label, packaging, a cartridge, a container or a capsule that contains foodstuffs, nutraceuticals, pharmaceuticals, or beverages, a banknote, a credit card, a stamp, a tax label, anti-tamper seal, a security document, a passport, an identity card, a driver's license, an access card, a transportation ticket, an event ticket, a voucher, an ink-transfer film, a reflective film, an aluminum foil,
  • the present invention also provides a method of providing a marking on an item or substrate as well as an item or substrate produced by this method.
  • the method comprises: a) applying onto a surface of an item or substrate, which carries a first modifying agent in one or more first areas, a curable chiral liquid crystal precursor composition which assumes an initial chiral liquid crystal state upon heating it in such a way that the composition covers at least a part of the one or more first areas, the first modifying agent being able to modify the initial chiral liquid crystal state of the composition; b) heating the applied composition to bring the same to a first modified chiral liquid crystal state in the one or more first areas and to the initial chiral liquid crystal state in all other areas, if any, of the applied composition; c) applying to one or more second areas of the applied composition at least one second modifying agent which is of a different type than the first modifying agent and (1) is able to locally modify the initial and/or first modified chiral liquid crystal states provided by b), or (2) is able
  • At least one of the one or more first areas may be partially or completely overlapped by at least one second area and/or at least one of the one or more second areas may be partially or completely overlapped by at least one first area.
  • At least one of the one or more first areas may not be overlapped by any second area and/or at least one of the one or more second areas may not be overlapped by any first area.
  • the initial and first and second modified sets of optical properties may differ with respect to at least one property of light that is reflected by the chiral liquid crystal polymer composition.
  • the at least one property may be selected from one or more of the spectrum, the polarization, and ⁇ , memo 3 ⁇ of the reflected light.
  • the initial and first and second modified sets of optical properties may comprise at least one property that is indicative of an optically anisotropic state of the chiral liquid crystal polymer composition and/or is indicative of a conversion of an optically anisotropic state to an optically isotropic state of the composition.
  • the chiral liquid crystal precursor composition may comprise (i) one or more nematic compounds A, (ii) one or more chiral dopant compounds B that are capable of giving rise to a cholesteric state of the chiral liquid crystal precursor composition, and (iii) at least one salt that changes a maximum wavelength of the selective reflection band ( ⁇ ) exhibited by the polymer composition compared to a maximum wavelength of the selective reflection band exhibited by a polymer composition that does not contain the at least one salt.
  • the one or more nematic compounds A as well as the one or more chiral dopant compounds B may comprise at least one compound that comprises at least one polymerizable group.
  • the one or more nematic compounds A and all of the one or more chiral dopant compounds B may comprise at least one polymerizable group.
  • the chiral liquid crystal precursor composition may comprise at least one chiral dopant compound B of formula (I):
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl and Ci-C 6 alkoxy;
  • Ai and A 2 each independently denote a group of formula (i) to (iii):
  • D 2 denotes a group of formula
  • n, o, p, q, r, s, and t each independently denote 0, 1, or 2; y denotes 0, 1, 2, 3, 4, 5, or 6; z equals 0 if y equals 0 and z equals 1 if y equals 1 to 6.
  • the at least one salt may be selected from metal salts and ammonium salts.
  • the at least one salt may comprise at least one of lithium perchlorate, lithium nitrate, lithium tetrafluoroborate, lithium bromide, lithium chloride, tetrabutylammonium perchlorate, tetrabutylammonium chloride, tetrabutylammonium tetrafluoroborate, tetrabutylammonium bromide, sodium carbonate, sodium chloride, and sodium nitrate.
  • the at least one salt may comprise lithium perchlorate and/or lithium bromide.
  • the chiral liquid crystal precursor composition may be in an initial optically anisotropic state and in the one or more first areas the initial optically anisotropic state may get changed to a first modified optically anisotropic state, and in the one or more second areas the initial optically anisotropic state may get changed to a second modified optically anisotropic state or converted to an optically isotropic state (depending on the nature of the second modifying agent, as set forth below).
  • the first modifying agent may be solid or semi-solidis and the second modifying agent may be fluid and/or the first modifying agent may be virtually unable to penetrate the chiral liquid crystal precursor composition and the second modifying agent at least partially penetrates the chiral liquid crystal precursor composition.
  • the first modifying agent may be or may comprise a resin that is made from one or more polymerizable monomers.
  • at least one of the one or more polymerizable monomers may comprise at least two unsaturated carbon-carbon bonds and/or may comprise at least one heteroatom selected from O, N and S.
  • the resin may comprise a radiation-cured resin such as a UV-cured resin and/or the resin may comprise a dried aqueous resin.
  • the second modifying agent may be fluid and selected from one or more of (a) a modifying composition that comprises at least one compound selected from ketones having from 3 to about 6 carbon atoms, alkyl esters and dialkylamides of carboxylic acids which comprise a total of from 2 to about 6 carbon atoms, dialkyl sulfoxides comprising a total of from 2 to about 4 carbon atoms, and optionally substituted nitrobenzene, (b) a modifying composition that comprises at least one chiral liquid crystal precursor composition, and (c) a modifying composition that comprises at least one chiral dopant composition.
  • a modifying composition that comprises at least one compound selected from ketones having from 3 to about 6 carbon atoms, alkyl esters and dialkylamides of carboxylic acids which comprise a total of from 2 to about 6 carbon atoms, dialkyl sulfoxides comprising a total of from 2 to about 4 carbon atoms, and optionally substituted nitrobenzene
  • the first modifying agent may be selected from a solid or semi-solidis cured and/or dried resin made from one or more polymerizable monomers, and both the first modifying agent and the second modifying agent may change an initial maximum wavelength of the selective reflection band exhibited by the chiral liquid crystal precursor composition in the chiral liquid crystal state.
  • step b) and/or step d) may comprise a heating of the chiral liquid crystal precursor composition to a temperature of from about 55°C to about 150°C.
  • the chiral liquid crystal precursor composition may be applied by at least one of spray coating, knife coating, roller coating, screen coating, curtain coating, gravure printing, flexography, screen-printing, pad printing, continuous ink-jet printing, drop-on-demand ink-jet printing, and valve -jet printing and/or the chiral liquid crystal precursor composition may be applied in the form of at least one of a (continuous or discontinuous) layer, an image, a picture, a logo, indicia, and a pattern representing a code selected from one or more of a 1 -dimensional barcode, a stacked 1 -dimensional barcode, a 2-dimensional barcode, a 3- dimensional barcode, a cloud of dots, a network of lines and a data matrix.
  • the first modifying agent may have been provided on the item or substrate in the one or more first areas by at least one of spray coating, knife coating, roller coating, screen coating, curtain coating, gravure printing, flexography, offset printing, dry offset printing, letterpress printing, screen-printing, pad printing, continuous ink-jet printing, drop-on-demand ink-jet printing, and valve -jet printing and/or the first modifying agent may be present on the item or substrate in the one or more first areas in the form of at least one of an image, a picture, a logo, indicia, and a pattern representing a code selected from one or more of a 1 -dimensional barcode, a stacked 1 -dimensional barcode, a 2- dimensional barcode, a 3-dimensional barcode, a cloud of dots, a network of lines and a data matrix.
  • the second modifying agent may be applied in the one or more second areas by at least one of continuous ink-jet printing, drop-on-demand ink-jet printing, spray coating, and valve -jet printing and/or the second modifying agent may be applied in the one or more second areas in the form of at least one of an image, a picture, a logo, indicia, and a pattern representing a code selected from one or more of a 1 -dimensional barcode, a stacked 1- dimensional barcode, a 2-dimensional barcode, a 3-dimensional barcode, a cloud of dots, a network of lines and a data matrix.
  • the item or substrate may be or may comprise at least one of a label, packaging, a cartridge, a container or a capsule that contains foodstuffs, beverages, nutraceuticals or pharmaceuticals, a banknote, a credit card, a stamp, a tax label, anti-tamper seal, a security document, a passport, an identity card, a driver's license, an access card, a transportation ticket, an event ticket, a voucher, an ink-transfer film, a reflective film, an aluminum foil, and a commercial good.
  • Fig. 1 is scheme illustrating the procedures described in Examples 1 and 2;
  • Fig. 2 and 3 shows different patterns that are obtainable by arranging first and second areas on the substrate in different ways.
  • the substrate or item for use in the present invention is not particularly limited and can be of various types.
  • the substrate or item may, for example, consist (essentially) of or comprise one or more of a metal (for example, in the form of a container such as a can a capsule or a closed cartridge for holding various items such as, e.g., nutraceuticals, pharmaceuticals, beverages or foodstuffs), a fabric, a coating, glass (for example, in the form of a container such as a bottle for holding various items such as, e.g., nutraceuticals, pharmaceuticals, beverages or foodstuffs), cardboard (e.g., in the form of packaging), paper, and a polymeric material such as, e.g., PET (polyethylene terephthalate) or polyethylene (e.g., in the form of a container or as a part of a security document).
  • a metal for example, in the form of a container such as a can a capsule or a closed cartridge for holding various items such as,
  • any substrate or item (which may not necessarily be flat and may be uneven) whose surface is not soluble, or only slightly soluble, in solvent(s) used in the chiral liquid polymer chiral liquid crystal precursor composition is a suitable substrate for the purposes of the present invention.
  • the substrate may advantageously have a dark or black surface or background in at least those areas in which the chiral liquid crystal precursor composition is to be applied.
  • a dark or black background the light transmitted by the cholesteric liquid crystal material is largely absorbed by the background, whereby any residual backscattering from the background does not disturb the perception of the cholesteric liquid crystal material's own reflection with the unaided eye.
  • the reflection color of the cholesteric liquid crystal material is less visible when compared with a black or dark background, due to the strong backscattering from the background.
  • a cholesteric liquid crystal material can be recognized with the help of a circular polarization filter because it selectively reflects only one of the two possible circular polarized light components, in accordance with its chiral helical structure. Further, even with a light or white background is it possible to measure optical properties of the chiral liquid crystal polymer such as, e.g., ⁇ , letter 3 ⁇ with physical means.
  • the substrate according to the present invention may further comprise additional security elements, such as organic and/or inorganic pigments, dyes, flakes, optically variable elements, magnetic pigments, etc.
  • the layer or pattern comprises, optionally (and preferably) in addition to one or more areas that exhibit the initial set of optical properties (i.e., in which no modifying agent has been applied), (1) one or more first areas (e.g., one, two, three, four, five, six, ten, fifteen, or twenty first areas, in a case of a datamatrix this could be 256 areas when making a datamatrix 16* 16) which exhibit a first modified set of optical properties that is different from the initial set of optical properties and is obtainable by contacting the chiral liquid crystal precursor composition in an uncured state in the one or more first areas with a first modifying agent and (2) one or more second areas (e.g., one, two, three, four, five, six, ten, fifteen, or twenty second areas, in a case of a datamatrix this could be 256 areas when making a datamatrix 16* 16) which exhibit a second modified set of optical properties that is different from the initial set of optical properties and different from the first modified set of optical
  • first and second modified sets of optical properties in order for the first and second modified sets of optical properties to be different it is sufficient for these sets to differ with respect to at least and only one optical property.
  • the first and second modified sets of optical properties may comprise identical optical properties as long as (at least) one optical property comprised therein is different.
  • the layer or pattern may comprise more than two different areas (i.e., in addition to the one or more first areas, the one or more second areas and, optionally the one or more areas exhibiting the initial set of optical properties) in which the initial set of optical properties has been modified by more than two different modifying agents as long as there are at least two areas in which two different types of modifying agents have separately or together changed the initial set of optical properties.
  • the layer may comprise three, four, five etc. different areas in which three, four, five, etc. different modifying agents have changed the initial set of optical properties to result in three, four, five, etc. different modified sets of optical properties.
  • the present invention is not limited to the use of only two modifying agents of different types and also is not limited to the use of only one modifying agent of a certain type.
  • three modifying agents of different types may be used, or one first modifying agent and two different second modifying agents may be employed.
  • first area there may be at least one first area that is completely or partially overlapped by a second area and/or there may be at least one second area that is completely or partially overlapped by a first area.
  • first area is larger than a second area and completely encompasses/covers the second area and the case where a second area is larger than a first area and completely encompasses/covers the first area (cf. Fig 2) .
  • second area is larger than a first area and completely encompasses/covers the first area (cf. Fig 2) .
  • first area and a second area are of the same size and completely coincide.
  • modifying agents there may be one or more areas in which only the first modifying has been employed, one or more areas in which only the second modifying agent has been employed, one or more areas in which only the third modifying agent has been employed, one or more areas in which both the first modifying agent and the second modifying agent have been employed, one or more areas in which both the first modifying agent and the third modifying agent have been employed, one or more areas in which both the second modifying agent and the third modifying agent have been employed, and one or more areas in which all three modifying agents have been employed.
  • the marking of the present invention will usually comprise at least one area which shows the initial set of optical properties (i.e., without modification by any modifying agent), the presence of a corresponding area is not required.
  • the present invention also contemplates a marking in which the entire area occupied by the chiral liquid crystal precursor composition in the chiral liquid crystal state is occupied (and modified) by the first modifying agent and in which one or more (second) areas of the chiral liquid crystal precursor composition (but not the entire area thereof) are additionally modified by the second modifying agent (thereby giving rise to a marking having one or more first areas modified by only the first modifying agent, the remainder being one or more third areas modified by both the first modifying agent and the second modifying agent).
  • the first and second modifying agents for use in the present invention are of a different type.
  • modifying agents are of a different type if they differ in their consistency (e.g., solid and/or semi-solidis in one case and fluid (e.g., liquid) in the other case) and/or if they differ in their chemical nature (e.g., monomeric in one case and polymeric in the other case, or essentially organic in one case and essentially inorganic in the other case) and/or if they change/modify an optical property of the composition by a different mechanism and/or if they change/modify different optical properties of the composition and/or if they are able to at least partially penetrate the uncured chiral liquid crystal precursor composition in one case and are substantially unable to penetrate the uncured chiral liquid crystal precursor composition in the other case.
  • the initial set and the first and second (and optionally third, fourth, etc.) modified sets of optical properties of the marking of the present invention may differ in at least one property of the light that is reflected by the chiral liquid crystal polymer composition in a chiral liquid crystal state.
  • the at least one property may be the spectrum (e.g., in the visible, infrared and/or UV range), the polarization, or ⁇ , discipline 3 ⁇ (e.g., in the visible, infrared and/or UV range) of the reflected light.
  • ⁇ , font 3 ⁇ may, for example, be measured using an analytical spectral device that measures the reflectance of a sample in the infrared-near-infrared-visible-UV range of the spectrum, such as the LabSpec Pro device made by Analytical Spectral Devices Inc. of Boulder, Colorado.
  • an analytical spectral device that measures the reflectance of a sample in the infrared-near-infrared-visible-UV range of the spectrum
  • the initial set and the first and second (and optionally third, fourth, etc.) modified sets of optical properties may comprise at least one property that is indicative of an optically anisotropic or optically isotropic state of the liquid crystal polymer composition.
  • An example of a corresponding property is the reflection of circular polarized light.
  • a chiral liquid crystal precursor composition that may be used for making the marking of the present invention and may be applied (e.g., deposited) onto at least a part of at least one surface of the substrate (and, in a preferred embodiment, over at least a part of the first modifying agent provided on the at least one surface of the substrate) preferably comprises a mixture of (i) one or more nematic compounds A and (ii) one or more cholesteric (i.e., chiral dopant) compounds B (including cholesterol) which are capable of giving rise to a cholesteric state of the composition.
  • cholesteric i.e., chiral dopant
  • the pitch of the obtainable cholesteric state depends on the relative ratio of the nematic and the cholesteric compounds and the helical twisting power of the cholesteric compound(s).
  • the (total) concentration of the one or more nematic compounds A in a chiral liquid crystal precursor composition for use in the present invention will be about four to about fifty times the (total) concentration of the one or more cholesteric compounds B.
  • a chiral liquid crystal precursor composition with a high concentration of cholesteric compounds is not desirable (although possible in many cases) because the one or more cholesteric compounds tend to crystallize, thereby making it impossible to obtain the desired liquid crystal state having specific optical properties.
  • Nematic compounds A which are suitable for use in the chiral liquid crystal precursor composition are known in the art; when used alone (i.e., without cholesteric compounds) they arrange themselves in a state characterized by its birefringence.
  • Non-limiting examples of nematic compounds A which are suitable for use in the present invention are described in, e.g., WO 93/22397, WO 95/22586, EP-B-0 847 432, U.S. Patent No. 6,589,445, US 2007/0224341 Al and JP 2009-300662 A. The entire disclosures of these documents are incorporated by reference herein.
  • a preferred class of nematic compounds for use in the present invention comprises one or more (e.g., 1, 2 or 3) polymerizable groups, identical or different from each other, per molecule.
  • polymerizable groups include groups which are capable of taking part in a free radical polymerization and in particular, groups comprising a carbon-carbon double or triple bond such as, e.g., an acrylate moiety, a vinyl moiety or an acetylenic moiety.
  • Particularly preferred as polymerizable groups are acrylate moieties.
  • the nematic compounds for use in the present invention further may comprise one or more (e.g., 1, 2, 3, 4, 5 or 6) optionally substituted aromatic groups, preferably phenyl groups.
  • Examples of the optional substituents of the aromatic groups include those which are set forth herein as examples of substituent groups on the phenyl rings of the chiral dopant compounds of formula (I) such as, e.g., (Cl -C6)alkyl and/or (C 1 -C6)alkoxy groups.
  • Examples of groups which may optionally be present to link the polymerizable groups and the aryl (e.g., phenyl) groups in the nematic compounds A include those which are exemplified herein for the chiral dopant compounds B of formula (I) (including those of formula (IA) and formula (IB) set forth below).
  • the nematic compounds A may comprise one or more groups of formulae (i) to (iii) which are indicated above as meanings for Ai and A 2 in formula (I) (and formulae (IA) and (IB)), typically bonded to optionally substituted phenyl groups.
  • Specific non-limiting examples of nematic compounds which are suitable for use in the present invention include:
  • the one or more cholesteric (i.e., chiral dopant) compounds B for use in the present invention preferably comprise at least one polymerizable group.
  • suitable examples of the one or more chiral dopant compounds B include those of formula (I):
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl and Ci-C 6 alkoxy;
  • Ai and A 2 each independently denote a group of formula (i) to (iii):
  • D 2 denotes a group of formula
  • n 0, p, q, r, s, and t each independently denote 0, 1, or 2;
  • y denotes 0, 1, 2, 3, 4, 5, or 6;
  • z 0 if y equals 0 and z equals 1 if y equals 1 to 6.
  • the one or more chiral dopant compounds B may comprise one or more isomannide derivatives of formula (IA):
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl and Ci-C 6 alkoxy;
  • Ai and A 2 each independently denote a group of formula (i) to (iii):
  • D 2 denotes a group of formula
  • n, o, p, q, r, s, and t each independently denote 0, 1 , or 2;
  • y denotes 0, 1 , 2, 3, 4, 5, or 6;
  • z 0 if y equals 0 and z equals 1 if y equals 1 to 6.
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl.
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs in formula (IA) (and in formula (I)) each independently denote Ci-C 6 alkoxy.
  • Ri, R 2 , R 3 and R4 each independently denote Ci-C 6 alkyl; and
  • m, n, 0, and p each independently denote 0, 1 , or 2.
  • the one or more chiral dopant compounds B may comprise one or more isosorbide derivatives represented by formula (IB):
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs each independently denote Ci-C 6 alkyl and Ci-C 6 alkoxy;
  • Ai and A 2 each independently denote a group of formula (i) to (iii):
  • D 2 denotes a group of formula
  • y denotes 0, 1, 2, 3, 4, 5, or 6;
  • z 0 if y equals 0 and z equals 1 if y equals 1 to 6.
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and R 8 each independently denote Ci-C 6 alkyl.
  • Ri, R 2 , R 3 , R4, R5, R 6 , R7 and Rs in formula (IB) each independently denote Ci-C 6 alkoxy.
  • Ri, R 2 , R 3 and R4 each independently denote Ci-C 6 alkyl; and
  • m, n, 0, and p each independently denote 0, 1 , or 2.
  • Ri, R 2 , R 3 and R4 each independently denote Ci-C 6 alkoxy; and
  • m, n, 0, and p each independently denote 0, 1 , or 2.
  • the alkyl and alkoxy groups of Ri, R 2 , R 3 , R4, R5, R 6 , R7 and R 8 in formulae (I), (IA) and (IB) may comprise 3, 4, 6 or 7 carbon atoms and in particular, 4 or 6 carbon atoms.
  • alkyl groups comprising 3 or 4 carbon atoms include isopropyl and butyl.
  • alkyl groups comprising 6 or 7 carbon atoms include hexyl, 2-methylpentyl, 3- methylpentyl, 2,2-dimethylpentyl, and 2,3-dimethylpentyl.
  • alkoxy groups comprising 3 or 4 carbon atoms include isopropoxy, but-1- oxy, but-2-oxy, and tert-butoxy.
  • alkoxy groups comprising 6 or 7 carbon atoms include hex-l -oxy, hex-2-oxy, hex-3-oxy, 2-methylpent-l-oxy, 2-methylpent-2-oxy, 2- methylpent-3-oxy, 2-methylpent-4-oxy, 4-methylpent-l-oxy, 3-methylpent-l -oxy, 3-methylpent- 2-oxy, 3-methylpent-3-oxy, 2,2-dimethylpent-l-oxy, 2,2-dimethylpent-3-oxy, 2,2-dimethylpent- 4-oxy, 4,4-dimethylpent-l-oxy, 2,3-dimethylpent-l -oxy, 2,3-dimethylpent-2-oxy, 2,3- dimethylpent-3-oxy, 2,3-dimethylpent-4-oxy, and 3,4-dimethyl
  • Non-limiting specific examples of chiral dopant compounds B of formula (I) for use in the present invention include:
  • the one or more chiral dopant compounds B will usually be present in a total concentration of from about 0.1% to about 30% by weight, e.g., from about 0.1% to about 25%, or from about 0.1% to about 20% by weight, based on the total weight of the composition.
  • concentrations of from 3% to 10% by weight, e.g., from 5% to 8% by weight, based on the total weight of the composition will often be obtained with concentrations of from 3% to 10% by weight, e.g., from 5% to 8% by weight, based on the total weight of the composition.
  • the one or more nematic compounds A will often be present in a concentration of from about 30% to about 50% by weight, based on the total weight of the composition.
  • a further component of the chiral liquid crystal precursor composition for use in the present invention is a salt and in particular, a salt that is capable of changing the position of the selective reflection band exhibited by the cured chiral liquid crystal precursor composition (in the chiral liquid crystal state) compared to the position of the selective reflection band exhibited by the cured composition without the salt.
  • the explanations in U.S. Provisional Patent Application Nos. 61/420, 580 and 61/420,582, both filed December 7, 2010, the entire disclosures of which are expressly incorporated by reference herein, may be referred to.
  • the extent to which the position of the selective reflection band exhibited by a given cured chiral liquid crystal precursor composition can be shifted by the presence of a salt depends on various factors such as, inter alia, the cation of the salt, the anion of the salt, and the concentration of the salt per gram of dry extract.
  • a salt it is preferred for a salt to be present in a given chiral liquid crystal precursor composition at a concentration which shifts the position of the selective reflection band exhibited by a cured chiral liquid crystal precursor composition by at least about 5 nm, e.g., by at least about 10 nm, by at least about 20 nm, by at least about 30 nm, by at least about 40 nm, or by at least about 50 nm.
  • Suitable (total) salt concentrations are often within the range of from about 0.01 % to about 10 % by weight, e.g., from about 0.1 % to about 5 % by weight, based on the solids content of the chiral liquid crystal precursor composition. Salt concentrations above the indicated ranges are often difficult to achieve due to the limited solubility of the salt in the chiral liquid crystal precursor composition.
  • Non-limiting examples of suitable salts include salts which comprise a metal cation (main group metals, transition metals, lanthanides and actinides).
  • the metal may be an alkali or alkaline earth metal such as, e.g., Li, Na. Li salts are particularly preferred.
  • Further non- limiting examples of suitable salts include quaternary ammonium salts such as tetraalkylammonium salts.
  • Suitable anions include "regular" ions such as, e.g., halide (e.g., fluoride, chloride, bromide, iodide), perchlorate, nitrate, nitrite, sulfate, sulfonate, sulfite, carbonate, bicarbonate, cyanide, cyanate, and thiocyanate, as well as complex ions such as, e.g., tetrafiuoroborate.
  • halide e.g., fluoride, chloride, bromide, iodide
  • perchlorate nitrate, nitrite, sulfate, sulfonate, sulfite, carbonate, bicarbonate, cyanide, cyanate, and thiocyanate
  • complex ions such as, e.g., tetrafiuoroborate.
  • suitable salts include lithium perchlorate, lithium nitrate, lithium tetrafiuoroborate, lithium bromide, lithium chloride, tetrabutylammonium perchlorate, tetrabutylammonium chloride, tetrabutylammonium tetrafiuoroborate, tetrabutylammonium bromide, sodium carbonate, sodium chloride, and sodium nitrate.
  • mixtures of two or more salts e.g., two, three, four or more salts
  • two or more salts may be used as well. If two or more salts are present, they may or may not comprise the same cation and/or the same anion. .
  • the at least one salt may comprise lithium perchlorate and/or lithium bromide.
  • a non-limiting example of a first modifying agent for use in the present invention includes a substance and in particular, a resin that is capable of changing the position of the selective reflection band exhibited by a cured chiral liquid crystal precursor composition which contains a salt that is capable of changing the position of the selective reflection band exhibited by the cured chiral liquid crystal precursor composition (in the chiral liquid crystal state) compared to the position of the selective reflection band exhibited by the cured composition without the salt.
  • modifying resin will hereafter be referred to as "modifying resin.”
  • the detailed explanations in U.S. Provisional Patent Application Nos. 61/420,580 and 61/420,582 may again be referred to.
  • the modifying resin for use as a first modifying agent in the present invention will usually be arranged between the substrate and the chiral liquid crystal precursor composition (and in direct contact with the latter).
  • a modifying resin for use in the present invention is not particularly limited as long as it is capable of changing at least one optical property that is exhibited by the cured chiral liquid crystal precursor composition on the substrate to a noticeable extent.
  • the modifying resin prefferably be capable of shifting the position of the selective reflection band as represented by ⁇ , memo 3 ⁇ and in particular, to be capable of shifting ⁇ , ⁇ ⁇ , ⁇ by at least about 5 nm, e.g., by at least about 10 nm, by at least about 20 nm, by at least about 30 nm, by at least about 40 nm, or by at least about 50 nm.
  • This capability depends on various factors such as, inter alia, the components of the chiral liquid crystal precursor composition, for example, the salt(s) and the chiral dopant(s) comprised therein, and the presence (or absence) of functional groups in the modifying resin (and thus on the surface thereof).
  • the polymerizable monomers are not limited to those which are polymerizable by free radical polymerization. Rather, these monomers also include, for example, monomers which are polymerizable by cationic and/or anionic polymerization and/or by polycondensation.
  • organic resins such as polyacrylates, polymethacrylates, polyvinylethers, polyvinylesters, polyesters, polyethers, polyamides, polyurethanes, polycarbonates, polysulfones, phenolic resins, epoxy resins, and mixed forms of these resins.
  • Mixed inorganic/organic resins such as silicones (e.g., polyorganosiloxanes) are suitable as well.
  • aqueous resins such as, e.g., polyamide resins (for example CAS No 175893-71-7, CAS No 303013-12-9, CAS No 393802-62-5, CAS No 122380-38-5, CAS No 9003-39-8).
  • Non-limiting examples of modifying resins for use as first modifying agent in the present invention further include those which are made from one or more monomers selected from poly ether acrylates, modified polyether acrylates (such as, e.g., amine-modified poly ether acrylates), polyester acrylates, modified polyester acrylates (such as, e.g., amine-modified polyester acrylates), hexafunctional polyester acrylates, tetrafunctional polyester acrylates, aromatic difunctional urethane acrylates, aliphatic difunctional urethane acrylates, aliphatic trifunctional urethane acrylates, aliphatic hexafunctional urethane acrylates, urethane monoacrylates, aliphatic diacrylates, bisphenol A epoxy acrylates, modified bisphenol A epoxy acrylates, epoxy acrylates, modified epoxy acrylates (such as, e.g., fatty acid modified epoxy acrylates), acrylic oligomers, hydrocarbon acrylate oligo
  • a modifying resin for use in the present invention does not have to be completely cured (polymerized) or dried before it is contacted with a chiral liquid crystal precursor composition as long as it is able to withstand the components and in particular, the solvent that may be (and usually will be) present in the (uncured) chiral liquid crystal precursor composition (e.g., that the modifying resin does not get dissolved thereby to any significant extent).
  • the curing of an only partially cured modifying resin may be completed, for example, together with the curing of the chiral liquid crystal precursor (e.g., by UV-radiation).
  • the instant method allows straightforward creation of logo, marking, coding, barcode, pattern, data matrix, etc. which contains different information and/or color at the same time.
  • the possibilities afforded by the instant method include using mixtures of modifying resins (e.g., mixtures of two, three, four or more modifying resins), both in the form of cured physical mixtures of two or more modifying resins and in the form of two or more different modifying resins which are (separately) present on different locations of the surface of the substrate.
  • two or more different chiral liquid crystal precursor compositions which differ, for example, in the concentration of salt(s) contained therein and/or differ by containing different salts therein may also be used.
  • This alone gives rise to a large number of possible combinations of chiral liquid crystal precursor compositions and modifying resins which may be present on the surface of a single substrate.
  • This large number of possible combinations allows, among others, the possibility of creating a specific code and/or marking which is difficult to counterfeit because anyone who wants to reproduce it would have to know the exact composition of the chiral liquid crystal precursor compositions, the type, amount, and concentration of salt(s) contained therein and the nature of the modifying resin(s).
  • the already large number of possible combinations can be further (and significantly) increased by using more than one second modifying agent in combination with one or more (or each) of the combinations of chiral liquid crystal precursor composition(s) and first modifying agent(s).
  • additional specific security elements such as, e.g., near-infrared, infrared and/or UV security elements, magnetic particles, pigments in at least two different size ranges such as, e.g., "normal" size and nanoscale pigments (known exclusively to the producer of the marking) into the chiral liquid crystal precursor composition and/or into the modifying resin, makes counterfeiting even more difficult.
  • the present invention also contemplates and encompasses the use of chiral liquid crystal precursor compositions and modifying resins which comprise such additional specific security elements.
  • a modifying resin for use in the present invention may shift all or a part of the selective reflection band exhibited by a cured chiral liquid crystal precursor composition from the IR range to the visible range, or from the visible range to the UV range, or from the IR range to the UV range, and vice versa e.g from UV to visible.
  • the chiral liquid crystal precursor composition and the composition for making the modifying resin or other first modifying agent can be applied onto the surface of the substrate or item by any suitable method such as, for example, spray coating, knife coating, roller coating, screen coating, curtain coating, gravure printing, flexography, offset printing, dry offset printing, letterpress printing, screen-printing, pad printing, and ink-jet printing (for example continuous ink-jet printing, drop-on-demand ink-jet printing, valve -jet printing).
  • the application (e.g., deposition) of a composition for making the layer or pattern and/or a composition for making the modifying resin is carried out with a printing technique such as, e.g., ink-jet printing (continuous, drop-on-demand, etc.), flexography, pad printing, rotogravure printing, screen-printing, etc.
  • a printing technique such as, e.g., ink-jet printing (continuous, drop-on-demand, etc.), flexography, pad printing, rotogravure printing, screen-printing, etc.
  • flexography printing is employed both for applying the modifying resin and for applying the chiral liquid crystal precursor composition.
  • ink-jet printing techniques are used both for applying the modifying resin and for applying the chiral liquid crystal precursor composition.
  • the industrial ink-jet printers commonly used for numbering, coding and marking applications on conditioning lines and printing presses, are particularly suitable.
  • Preferred ink-jet printers include single nozzle continuous ink-jet printers (also called raster or multi level deflected printers) and drop-on-demand ink-jet printers, in particular valve -jet printers.
  • the thickness of the applied liquid crystal polymer composition, after curing, according to the above described application techniques will usually be at least about 1 ⁇ , e.g., at least about 2 ⁇ , or at least about 3 ⁇ or at least about 4 ⁇ , and will usually be not more than about 20 ⁇ , e.g., not more than about 15 ⁇ , not more than about 10 ⁇ , or not more than about 6 ⁇ .
  • the thickness of the applied modifying resin, after curing, according to the above described application techniques will usually be at least about 1 ⁇ , e.g., at least about 2 ⁇ or at least about 3 ⁇ , or at least about 5 ⁇ , but will usually be not more than about 10 ⁇ .
  • composition for use in the present invention i.e., a composition for making a chiral liquid crystal precursor or a composition for making a modifying resin
  • the composition will usually comprise a solvent to adjust its viscosity to a value which is suitable for the employed application (printing) technique.
  • Typical viscosity values for fiexographic printing of the composition used in the present invention are in the range of from about 10 seconds to about 120 seconds, preferably 10 to 100 seconds, more preferably 10 to 60 seconds even more preferably 10 to 40 seconds using e.g. a cup DIN number 4 at 25°C.
  • Suitable solvents are known to those of skill in the art.
  • Non- limiting examples thereof include low-viscosity, slightly polar and aprotic organic solvents, such as, e.g., methyl ethyl ketone (MEK), acetone, cyclohexanone, ethyl acetate, ethyl 3- ethoxypropionate, and mixtures of two or more thereof.
  • MEK methyl ethyl ketone
  • composition for use in the present invention i.e., a composition for making a chiral liquid crystal precursor or a composition for making a modifying resin
  • the composition will usually also comprise at least one conductivity agent known by those of skill in the art.
  • a chiral liquid crystal precursor composition and/or a composition for making a modifying resin for use in the present invention is to be cured/polymerized by UV radiation the composition will also comprise at least one photo initiator.
  • the many suitable photoinitiators include a-hydroxyketones such as 1 -hydro xy-cyclohexyl-phenyl-ketone and a mixture (e.g., about 1 :1) of 1-hydroxy-cyclohexyl-phenyl-ketone and one or more of benzophenone, 2 -hydroxy-2 -methyl- 1 -phenyl- 1-propanone, and 2-hydroxy-l -[4-(2- hydroxyethoxy)phenyl]-2-methyl-l-propanone; phenylglyoxylates such as methylbenzoylformate and a mixture of oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy- ethoxy]-e
  • a composition for use in the present invention i.e., a composition for making a chiral liquid crystal precursor or a composition for making a modifying resin
  • a method which is different from irradiation with UV light such as, e.g., by means of high-energy particles (e.g., electron beams), X-rays, gamma-rays, etc.
  • high-energy particles e.g., electron beams
  • X-rays e.g., X-rays
  • gamma-rays e.g., X-rays
  • the use of a photoinitiator can, of course, be dispensed with.
  • the composition for making a modifying resin thermally will usually contain at least one thermal polymerization initiator such as, e.g., a peroxide or an azo compound.
  • thermal polymerization initiators are well known to those of skill in the art.
  • a chiral liquid crystal precursor composition and a composition for providing a modifying resin for use in the present invention may also comprise a variety of other optional components which are suitable and/or desirable for achieving a particular desired property of the composition and in general, may comprise any components/substances which do not adversely affect a required property of the composition to any significant extent.
  • optional components are resins, silane compounds, adhesion promoters, sensitizers for the photoinitators (if present), etc.
  • especially a chiral liquid crystal precursor composition for use in the present invention may comprise one or more silane compounds.
  • Non- limiting examples of suitable silane compounds include optionally polymerizable silanes such as those of formula R1R2R3-S1-R4 wherein Ri, R 2 , and R3 independently represent alkoxy and alkoxyalkoxy having a total of from 1 to about 6 carbon atoms and R4 represents vinyl, allyl, (Ci_ io)alkyl, (meth)acryloxy(Ci_6)alkyl, and glycidyloxy(Ci_6)alkyl such as, e.g., vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris(2-methoxyethoxy)silane, 3-methacryloxypropyl- trimethoxysilane, octyltriethoxysilane, and 3-glycidyloxypropyl triethoxysilane from the Dynasylan ® family supplied by Evonik.
  • Ri, R 2 , and R3 independently represent alkoxy and alkoxy
  • the concentration of the one or more silane compounds, if present, in the chiral liquid crystal precursor composition will usually be from about 0.5% to about 5% by weight, based on the total weight of the composition.
  • a composition for making a modifying resin and/or a composition for making a chiral liquid crystal precursor for use in the present invention may further comprise one or more pigments and/or dyes which absorb in the visible or invisible region of the electromagnetic spectrum and/or one or more pigments and/or dyes which are luminescent and/or one or more magnetic particles and/or one or more pigments in different size ranges (e.g., "normal" size and nanoscale pigments).
  • suitable pigments and/or dyes which absorb in the visible or invisible region of the electromagnetic spectrum include phthalocyanine derivatives.
  • suitable luminescent pigments and/or dyes include lanthanide derivatives.
  • suitable magnetic pigments include particles of transitional metal oxides such as iron and chromium oxides. The presence of pigment(s) and/or dye(s) will enhance and reinforce the security of the marking against counterfeiting.
  • the composition may be brought to a chiral liquid crystal state exhibiting the initial set of optical properties (and the first modified set of optical properties in the one or more first areas).
  • the chiral liquid crystal precursor composition is heated, whereby the solvent contained in the composition, if present, is evaporated and the promotion of the desired chiral liquid crystal state takes place.
  • the temperature used to evaporate the solvent and to promote the formation of the liquid crystal state depends on the components of the chiral liquid crystal precursor composition and will in many cases range from about 55°C to about 150°C, e.g., from about 55°C to about 100°C, preferably from about 60°C to about 100°C.
  • suitable heating sources include conventional heating means such as a hot plate, an oven, a stream of hot air and in particular, radiation sources such as, e.g., an IR lamp.
  • the required heating time depends on several factors such as, e.g., the components of the chiral liquid crystal precursor composition, the type of heating device and the intensity of the heating (energy output of the heating device). In many cases a heating time of from about 0.1 s, about 0.5 s, or about 1 second to about 30 seconds such as, e.g., not more than about 20 seconds, not more than about 10 seconds, or not more than about 5 seconds will be sufficient.
  • the second modifying agent(s) may be applied onto the one or more second areas of the composition in the initial chiral liquid crystal state (and optionally also onto one or more of the one or more first areas or parts thereof).
  • the second modifying agent is capable of changing the initial chiral liquid crystal state (optionally upon heating, depending on the type of the second modifying agent) and the first modified chiral liquid crystal state (if applied to a first area or a part thereof).
  • the second modifying agent may be applied while the chiral liquid crystal precursor composition is still in a heated state (e.g., immediately following the completion of the heating operation) or may be applied after the chiral liquid crystal precursor composition has cooled down to at least some extent (e.g., is at substantially room temperature). If desired, the cooling of the chiral liquid crystal precursor composition can be accelerated by means known to those of skill in the art such as, e.g., by blowing ambient air onto the previously heated composition. Applying the second modifying agent to the chiral liquid crystal precursor composition in a cooled-down state may improve the resolution of the marking. On the other hand, applying the second modifying agent immediately after completion of the heating operation may be desirable if the entire process of making the marking is to be conducted in an as simple and speedy as possible manner.
  • the second modifying agent for use in the present invention will not extract any of the compounds which form the initial or first modified chiral liquid crystal state and will also not modify the chemical structure of these compounds to any significant extent (and preferably, not at all). Without wishing to be bound by any theory, it is speculated that at least some of the second modifying agents that can be employed will initiate a very localized and controlled reorganization of the chiral liquid crystal state.
  • the second modifying agent usually will, depending on its nature, modify the initial (unmodified) chiral liquid crystal state (and, if applied in one of the one or more first areas or parts thereof, also the first modified chiral liquid crystal state) from a (predominantly or substantially) anisotropic state which is characterized by specific optical properties to:
  • a (second) modified chiral liquid crystal state exhibiting a second modified set of optical properties with at least one optical property that is different from a corresponding optical property of the initial chiral liquid crystal state (as provided by, e.g., a species II or species III modifying agent set forth below).
  • the second modifying agent may, for example, be a "species I" modifying agent.
  • a species I modifying agent will usually comprise one or more aprotic organic compounds which are liquid at room temperature and preferably have a relatively high dipole moment and a relatively high dielectric constant.
  • Non-limiting examples thereof include ketones having from 3 to about 6 carbon atoms, alkyl esters and dialkylamides of carboxylic acids which comprise a total of from 2 to about 6 carbon atoms, dialkyl sulfoxides comprising a total of from 2 to about 4 carbon atoms, and optionally substituted (e.g., alkyl-substituted) nitrobenzene such as, e.g., dimethyl ketone, methyl ethyl ketone, ethyl acetate, dimethyl formamide, dimethyl sulfoxide, nitrobenzene, nitrotoluene, and mixtures of two or more thereof.
  • Preferred compounds for use in or as species I modifying agent include acetone, methyl ethyl ketone and ethyl acetate.
  • a species I modifying agent for use in the present invention may further comprise one or more resins to adjust its viscosity.
  • the resin(s) must be compatible with the application (e.g., printing) technique that is to be employed.
  • Non-limiting examples of resins which may be suitable, depending on the particular circumstances, include polyesters resins such as, e.g, DYNAPOL® L 1203 , L 205, L 206, L 208, L 210, L 41 1 , L 651, L658, L 850, L 912, L 952, LH 530, LH 538, LH 727, LH 744, LH 773, LH 775, LH 818, LH 820, LH 822, LH 912, LH 952, LH 530, LH 538, LH 727, LH 744, LH 773, LH 775, LH 818, LH 820, LH 822, LH 823, LH 826, LH 828,
  • the one or more resins are selected from DYNAPOL® L 1203 , L 205, L 206, L 208, L 210, L 41 1 , L 651 , L658, L 850, L 912, L 952, LH 530, LH 538, LH 727, LH 744 from Evonik.
  • a typical concentration range for the one or more resins is from about 3% to about 15% by weight, based on the total weight of the species I modifying agent.
  • the species I modifying agent may further comprise one or more conductivity agents such as, e.g., salts which are to impart sufficient conductivity to the species I modifying agent so as to allow its use in combination with a printer such as, e.g., a continuous ink-jet printer.
  • conductivity agents such as, e.g., salts which are to impart sufficient conductivity to the species I modifying agent so as to allow its use in combination with a printer such as, e.g., a continuous ink-jet printer.
  • suitable conductivity agents include those which are set forth above as examples of conductivity agents for use in the chiral liquid crystal precursor composition of the present invention such as, e.g., tetrabutyl ammonium nitrate, tetrabutyl ammonium perchlorate, tetrabutyl ammonium hexafiuorophosphate, potassium hexafiuorophosphate,potassium thiocyanate, lithium perchlorate and other conductivity agents known in the art.
  • the species I modifying agent comprises a solvent or a solvent mixture
  • the initial chiral liquid crystal state (and also the first modified chiral liquid crystal state, if applicable) will locally (in the one or more second areas) change from a (predominantly or substantially) optically anisotropic state to a (predominantly or substantially) optically isotropic state.
  • the second modifying agent may further be a "species ⁇ " modifying agent, i.e., a
  • the chiral liquid crystal precursor composition for application in one or more second areas of the chiral liquid precursor composition may be the same as or different from the base chiral liquid precursor composition to be modified. Further, everything that is set forth above with respect to the base chiral liquid precursor composition (e.g., components, application methods, etc.) applies equally and without exception also to the chiral liquid precursor composition for us as a second modifying agent (species II modifying agent).
  • the one or more chiral dopant compounds B will usually be present in the species II modifying agent in a total concentration of from about 0.1% to about 30% by weight, e.g., from about 0.1% to about 25%, or from about 0.1% to about 20% by weight, based on the total weight of the species II modifying agent.
  • the one or more nematic compounds A will often be present in the species II modifying agent in a concentration of from about 30% to about 50% by weight, based on the total weight of the species II modifying agent.
  • the one or more differences may relate to, e.g., one or more of the compounds A and B and/or a salt as described in [0109] that are present in these compositions and/or to the concentrations of one or more of these compounds.
  • a or the only difference between these compositions may be that one or more (or all) of the chiral dopant compounds B are present in the species II modifying agent in a concentration/concentrations that is/are different from the corresponding concentration/concentrations in the base composition.
  • the one or more chiral dopant compounds B in the base composition are of formula (I) above and/or related formulae and at least one of the one or more chiral dopant compounds B in the species II modifying agent is different from formula (I) and/or related formulae.
  • at least one of the one or more chiral dopant compounds B in the species II modifying agent may be an isosorbide or isomannide derivative as described in, e.g., EP-B-0 847 432, GB-A-2 330 139, and U.S. Patent No. 6,589,445, the entire disclosures of which are incorporated by reference herein.
  • the species II modifying agent may also be applied to one or more areas on the surface of the substrate or item which do not carry the base composition (but may optionally carry a first modifying agent). In this way a further variability in the marking of the present invention may be created, i.e., one or more areas with a species II modifying agent in a chiral liquid crystal state (obtained after renewed heating) and/or one or more areas with a species II modifying agent whose chiral liquid crystal state (formed after heating) is modified by the first modifying agent.
  • the application e.g.
  • the system is brought to a second modified chiral liquid crystal state to obtain the second modified set of optical properties in the one or more second areas.
  • at least the one or more second areas is heated, whereby the solvent contained in the species II modifying agent, if present, is evaporated and the promotion of the desired second modified chiral liquid crystal state in the one or more second areas takes place.
  • the temperature used to evaporate the solvent and to promote the formation of the second modified chiral liquid crystal state depends on the components of the species II modifying agent and will in many cases range from about 55°C to about 150°C, e.g., from about 55°C to about 100°C, preferably from about 60°C to about 100°C.
  • suitable heating sources include conventional heating means and in particular, radiation sources such as, e.g., an IR lamp
  • the marking according to the present invention is not identical or comparable to a simple superposition of two chiral nematic liquid crystal layers. This constitutes a significant difference over the prior art.
  • a species II modifying agent i.e., a (second) chiral liquid crystal precursor composition
  • the marking according to the present invention is not identical or comparable to a simple superposition of two chiral nematic liquid crystal layers. This constitutes a significant difference over the prior art.
  • the base chiral liquid crystal precursor composition is deposited on a substrate and brought to the initial chiral liquid crystal state this state is characterized by a pitch pi .
  • the second chiral liquid crystal precursor composition (species II modifying agent) is deposited on one or more second areas of the base composition and brought to the second modified chiral liquid crystal state the second modified state is characterized by a pitch p2 (which may be the same or different from pi).
  • p2 which may be the same or different from pi
  • the product that is obtained after curing/polymerizing in the process of the present invention is not a superposition of a first chiral liquid crystal state having a pitch pi and a second chiral liquid crystal state having a pitch p2.
  • an area carrying the second chiral liquid crystal precursor composition once brought to the second modified chiral liquid crystal state, has a pitch p2' which is different from p 1 and p2 but it is somewhat dependent on the nature of p 1.
  • the second modifying agent may be a "species III" modifying agent, i.e., a chiral dopant composition.
  • the chiral dopant composition preferably comprises one or more (e.g., one, two, three or four) chiral dopant compounds C of formula (I) set forth above and/or related formulae.
  • the chiral dopant composition comprises at least one chiral dopant compound C and at least one other chiral dopant compound D which is different from a compound of formula (I) and related formulae.
  • the at least one chiral dopant compound D may be selected, for example, from the derivatives of isosorbides and isomannides which are disclosed in, e.g., EP-B-0 847 432, GB-A- 2 330 139, and U.S. Patent No. 6,589,445, the entire disclosures of which are incorporated by reference herein.
  • chiral dopant compounds C which are preferably present in the chiral dopant composition (species III modifying agent)
  • the chiral dopant compounds B set forth above may, for example, be used. Accordingly, everything that is set forth above with respect to compounds B applies equally and without exception also to compounds C.
  • a (or the only) chiral dopant compound C that is present in the chiral dopant composition may be identical to a (or the only) chiral dopant compound B that is present in the chiral liquid crystal precursor composition.
  • the chiral dopant composition will usually comprise the one or more chiral dopant compounds in a total concentration of from about 0.1% to about 30% by weight, e.g., from about 0.1% to about 25%, or from about 0.1% to about 20% by weight, based on the total weight of the composition. Often, the total concentration will be from 3% to 10% by weight, e.g., from 5% to 8% by weight, based on the total weight of the chiral liquid crystal precursor composition.
  • the composition will usually comprise a solvent to adjust its viscosity to a value which is suitable for the employed application (printing) technique.
  • Typical viscosity values for ink-jet printing inks are in the range of from about 4 to about 30 mPa.s at 25°C. Suitable solvents are known to those of skill in the art.
  • Non-limiting examples thereof include low-viscosity, slightly polar and aprotic organic solvents, such as, e.g., methyl ethyl ketone (MEK), acetone, ethyl acetate, ethyl 3-ethoxypropionate, toluene and mixtures of two or more thereof.
  • MEK methyl ethyl ketone
  • Others suitable components needed for printing techniques used in the context of the present invention may also be present (resins, salts, etc.) and are known to those of skilled in the art.
  • the chiral dopant composition may comprise one or more conductivity agents such as, e.g., salts which are to impart sufficient conductivity to the chiral dopant composition so as to allow its use in combination with a printer such as, e.g., a continuous ink-jet printer.
  • conductivity agents such as, e.g., salts which are to impart sufficient conductivity to the chiral dopant composition so as to allow its use in combination with a printer such as, e.g., a continuous ink-jet printer.
  • suitable conductivity agents include those which are set forth above as examples of conductivity agents for use in the chiral liquid crystal precursor composition of the present invention such as, e.g., tetrabutyl ammonium nitrate, tetrabutyl ammonium perchlorate, tetrabutyl ammonium hexafiuorophosphate, potassium hexafluorophosphate, potassium thiocyanate, lithium perchlorate and other conductivity agents known in the art.
  • conductivity agents include those which are set forth above as examples of conductivity agents for use in the chiral liquid crystal precursor composition of the present invention such as, e.g., tetrabutyl ammonium nitrate, tetrabutyl ammonium perchlorate, tetrabutyl ammonium hexafiuorophosphate, potassium hexafluorophosphate, potassium thiocyanate, lithium perchlorate and other conductivity agents known in the art.
  • the one or more second areas are brought to the second modified chiral liquid crystal state having the second modified set of optical properties.
  • the solvent contained in the composition, if present, is evaporated and the promotion of the desired second modified chiral liquid crystal state takes place.
  • the temperature used to evaporate the solvent and to promote the formation of the second modified chiral liquid crystal state depends on, e.g., the components of chiral dopant composition and will in many cases range from about 55°C to about 150°C, e.g., from about 55°C to about 100°C, preferably from about 60°C to about 100°C.
  • suitable heating sources include conventional heating means and in particular, radiation sources such as, e.g., an IR lamp.
  • the deposition of the one or more second modifying agents may be performed onto one or more second areas of the chiral liquid crystal precursor composition in the initial chiral liquid crystal state (which second areas may include or exclusively be the one or more first areas or parts thereof in which the composition is in the first modified chiral liquid crystal state), preferably with a printing technique and in particular, a technique selected from continuous ink-jet printing, drop-on-demand ink-jet printing, valve -jet printing and spray coating.
  • ink-jet techniques are used for applying the modifying composition.
  • the industrial ink-jet printers commonly used for numbering and coding and marking applications on conditioning lines and printing presses, are particularly suitable.
  • Preferred ink-jet printers are single nozzle continuous ink-jet printers (also called raster or multi level deflected printers) and drop-on-demand ink-jet printers, in particular valve -jet printers.
  • a stream of air is passed over the surface of the chiral liquid crystal precursor composition, preferably (substantially) parallel thereto.
  • the stream of air can be generated by any means, e.g., with an industrial air dryer.
  • the stream of air will preferably not be intense and/or of high speed.
  • the temperature of the air will usually be ambient (e.g., about 20°C) but may also be somewhat lower or higher, e.g., up to about 60°C, up to about 40°C, or up to about 30°C.
  • the phrase "immediately after the application of a second modifying agent" is intended to mean without delay, e.g., within a period of not more than about 10 seconds, for example, not more than about 5 seconds, not more than about 3 seconds, not more than about 2 seconds, or not more than about 1 second following the completion of the application of the second modifying agent.
  • the area of the applied chiral liquid crystal precursor composition onto which each of the first and second (and any additional) modifying agents is applied will usually be from about 0.1% to about 99.9% of the total area of the applied chiral liquid crystal precursor composition.
  • the area will often be at least about 1%, e.g., at least about 5% or at least about 10% and not higher than about 99%, e.g., not higher than about 95% or not higher than about 90% of the total area of the applied chiral liquid crystal precursor composition.
  • the first modifying agent it is, of course, possible to use more than one second modifying agent (e.g., two, three or more different second modifying agents) and to apply them simultaneously and/or successively onto the applied chiral liquid crystal precursor composition (e.g., in different areas of the applied chiral liquid crystal precursor composition).
  • the different second modifying agents may comprise two different species III modifying agents, or they may comprise a species I modifying agent, a species II modifying agent and a species III modifying agent, or they may comprise two different species II modifying agents and a species I modifying agent, etc.
  • first second modifying agent it also is possible, for example, to apply a first second modifying agent and to thereafter apply a different second modifying agent in at least a part of the area(s) in which the initially applied first second modifying agent has been applied (and, optionally, also in one or more areas where the first second modifying agent has not been applied).
  • a species I modifying agent and a species II modifying agent and/or a species III modifying agent it may be desirable for reasons of convenience to carry out the heating that is needed for a species II or species III modifying agent also in the case of the species I modifying agent.
  • the chiral liquid crystal precursor composition after the application of the species I modifying agent (and optionally, the passing of air over the surface of the chiral liquid crystal precursor composition) to further modify the chiral liquid crystal state and/or to remove any residual solvent that was present in the species I modifying agent.
  • an (additional) heating operation after the application of the species I modifying agent will not be necessary.
  • the temperature used for this (optional) heating operation will in many cases range from about 55°C to about 150°C, e.g., from about 55°C to about 100°C, or from about 60°C to about 100°C.
  • heating sources include conventional heating means and in particular, radiation sources such as, e.g., an IR lamp.
  • a multi-head system with, e.g., two, three, four, five or more heads
  • each head contains a different modifying agent.
  • An advantage of such a configuration is that during the printing process one can obtain a sequentially different modification of the initial chiral liquid crystal state and therefore a great number of unique markings.
  • the multi-head system one can also obtain different zones with different optical properties on the same marking, which constitute in itself a unique marking (especially when it is in the form of a data matrix). Examples of such data matrices with various multicolor data matrices are described in, e.g., WO 2008/127950 and WO 01/24106, the entire disclosures of which are incorporated by reference herein.
  • the second modifying agent may further comprise one or more pigments and/or dyes which absorb in the visible or invisible region of the electromagnetic spectrum and/or may further comprise one or more pigments and/or dyes which are luminescent.
  • suitable pigments and/or dyes which absorb in the visible or invisible region of the electromagnetic spectrum include phthalocyanine derivatives.
  • suitable luminescent pigments and/or dyes include lanthanide derivatives. The presence of pigment(s) and/or dye(s) will enhance and reinforce the security of the marking against counterfeiting.
  • the modifying composition for use in the present invention may comprise any other components/substances which do not adversely affect the required properties of the modifying composition to any significant extent.
  • the marking according to the present invention eventually is obtained by curing and/or polymerizing the composition that has been locally modified (in one or more areas) by the action of the first and second modifying agents (and any additional modifying agents, if employed).
  • the fixing or hardening is preferably performed by irradiation with UV-light, which induces polymerization of the polymerizable groups present in the chiral liquid crystal precursor composition (and optionally in the modifying agent(s)).
  • an entire process for making a marking of the present invention may comprise the following steps (using one first modifying agent and one second modifying agent): - providing a functionalized substrate which comprises a first modifying agent onto the surface of a substrate or item;
  • functionalized substrate it is meant a substrate as described above which comprise the first modifying agent according to the present invention (e.g the at least one resin as described above cured and/or dried, see Fig 1)
  • a PET substrate (thickness 50 ⁇ ) is functionalized with a UV curable resin used as a first modifying agent.
  • This first modifying agent is deposited on the substrate using a flexographic printing process in one or more first areas and is cured with a UV dryer.
  • the functionalized substrate is placed on a conveyor belt and is passed under a first continuous inkjet nozzle (Head 1 ; CLJ printer from Domino, UK; jet pressure 2500-3000 mbar; nozzle width 75 ⁇ ) which contains a chiral liquid crystal precursor composition (see Composition 1 below). Head 1 applies a layer of Composition 1 (thickness 5 ⁇ ) onto the functionalized substrate. Thereafter the thus coated substrate is heated with an IR lamp (Strip IR, PCS Inc.
  • the chiral liquid crystal layer which is on top of the functionalized substrate comprises one or more first areas exhibiting a first modified set of optical properties (located in the areas where the resin has been deposited) that is different from the initial set of optical properties obtained in the areas where Composition 1 is directly applied to the substrate, i.e., in the absence of the first modifying agent.
  • the substrate having the chiral liquid crystal layer thereon is passed under a second continuous inkjet nozzle (Head 2) which applies a second modifying agent (see Composition 2 below) on top of the substrate in one or more areas where the first modifying agent was not applied.
  • Head 2 a second continuous inkjet nozzle
  • the resulting product is subjected to a stream of ambient air. It is observed that in the area(s) where the second modifying agent has been deposited a second modified set of optical properties appears. This second set is different from the initial set of optical properties and from the first set of optical properties.
  • the substrate with the three different areas is then subject to curing with a UV dryer (see above) to fix the liquid crystal polymer state and to obtain a marking according to the present invention that exhibits at least three different sets of optical properties.
  • Composition 1
  • Composition 2 is a composition of Composition 2:
  • MIBK Methyl isobutyl ketone
  • MEK Methyl ethyl ketone
  • Example 1 is repeated but replacing Composition 2 by Composition 3 set forth below.
  • the resultant product is subjected not only to a stream of ambient air but is also heated with an IR lamp for about 1 second to promote the chiral liquid crystal state of Composition 3.
  • Examples 1 and 2 are repeated with the exception that Head 2 applies Composition 2 (Example 1) or Composition 3 (Example 2) in one or more second areas which completely or partially overlap or are located within one or more first areas, to thereby create one or more areas which exhibit a (third) modified set of optical properties that is different from the initial, first and second sets of modified properties.
  • Corresponding patterns are illustrated in Fig. 2. This allows, for example, to create a data matrix which is the sum of dots of different optical properties (e.g., different colors) within a limited area, to thereby enhance the level of security (if, for example, the second modifying agent comprises a fluorescent dye.).
  • Fig 3 shows a marking in the form of a datamatrix code generated as in Example as follow: the first modifying agent is in form of a rectangle, wherein it is superposed the liquid crystal polymer layer which has been further modified by the second modifying agent in the form of a datamatrix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)
  • Liquid Crystal Substances (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

La présente invention porte sur un marquage sur un article ou un substrat, lequel marquage est à base d'une composition de précurseur de cristaux liquides nématiques chiraux (également appelés cholestériques). Avant durcissement de la composition de précurseur de cristaux liquides chiraux à l'état de cristaux liquides chiraux, au moins une propriété optique présentée par la composition est modifiée par deux agents de modification de types différents dans au moins une zone de l'article ou du substrat.
EP12723479.7A 2011-05-27 2012-05-24 Substrat portant un marquage polymère cristal liquide modifié Active EP2714412B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12723479.7A EP2714412B1 (fr) 2011-05-27 2012-05-24 Substrat portant un marquage polymère cristal liquide modifié

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161490949P 2011-05-27 2011-05-27
US201161492171P 2011-06-01 2011-06-01
EP11168536 2011-06-01
PCT/EP2012/059663 WO2012163778A1 (fr) 2011-05-27 2012-05-24 Substrat portant un marquage polymère cristal liquide modifié
EP12723479.7A EP2714412B1 (fr) 2011-05-27 2012-05-24 Substrat portant un marquage polymère cristal liquide modifié

Publications (2)

Publication Number Publication Date
EP2714412A1 true EP2714412A1 (fr) 2014-04-09
EP2714412B1 EP2714412B1 (fr) 2019-03-13

Family

ID=47258391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12723479.7A Active EP2714412B1 (fr) 2011-05-27 2012-05-24 Substrat portant un marquage polymère cristal liquide modifié

Country Status (16)

Country Link
US (1) US8821756B2 (fr)
EP (1) EP2714412B1 (fr)
JP (1) JP5764812B2 (fr)
KR (1) KR20140033385A (fr)
CN (1) CN103582569B (fr)
AR (1) AR086508A1 (fr)
BR (1) BR112013029939B1 (fr)
CA (1) CA2834719A1 (fr)
CO (1) CO6811874A2 (fr)
IL (1) IL229224A0 (fr)
MA (1) MA35127B1 (fr)
MX (1) MX2013013894A (fr)
RU (1) RU2013158145A (fr)
SG (1) SG194961A1 (fr)
UY (1) UY34087A (fr)
WO (1) WO2012163778A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175579A1 (fr) * 2018-03-13 2019-09-19 Johnson Matthey Public Limited Company Dispositif de sécurité, procédé de fabrication d'un dispositif de sécurité et procédé d'authentification d'un produit

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231449A1 (en) * 2013-02-19 2014-08-21 Gojo Industries, Inc. Refill container labeling
NL1040357C2 (en) * 2013-08-28 2015-03-03 Stichting Dutch Polymer Inst Liquid crystal network.
TW201520216A (zh) 2013-10-21 2015-06-01 Sicpa Holding Sa 對掌性摻雜物與使用聚合性液晶材料標記之識別法及鑑別法
EP3124282B1 (fr) * 2014-03-26 2019-12-18 Toppan Printing Co., Ltd. Support a prevention de contrefaçon, et son procédé de fabrication
JP6433776B2 (ja) * 2014-12-11 2018-12-05 富士フイルム株式会社 光学部材の製造方法
JP6363012B2 (ja) * 2014-12-11 2018-07-25 富士フイルム株式会社 光学部材および光学部材を有する画像表示装置
CN104851361A (zh) * 2015-02-13 2015-08-19 厦门天马微电子有限公司 一种防伪标签及其制造方法
PT3067214T (pt) * 2015-03-13 2018-03-01 Omya Int Ag Método para criar um padrão oculto
CN105398252B (zh) * 2015-07-28 2017-05-10 中国人民银行印制科学技术研究所 一种含有智能荧光材料的防伪元件
CN109476945B (zh) * 2016-07-25 2021-08-17 锡克拜控股有限公司 多组分反应性墨和印刷方法
EP3778248A4 (fr) 2018-03-29 2021-06-02 FUJIFILM Corporation Procédé de formation d'image
RU2694028C1 (ru) * 2018-09-17 2019-07-08 Михаил Николаевич Бурдаев Способ расширения функциональности конструктивных элементов, используемых при пилотируемых космических полетах
GB2578117B (en) * 2018-10-16 2021-06-09 De La Rue Int Ltd Security devices and methods for their manufacture
US11351811B2 (en) * 2020-05-29 2022-06-07 International Business Machines Corporation Optically-passive magnetic signature and identification feature with electromagnetic tamper detection
JPWO2022138142A1 (fr) * 2020-12-25 2022-06-30

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586724B1 (fr) 1985-08-27 1988-03-11 Routier Equip Sa Barriere metallique, notamment pour l'equipement de voies de circulation routiere
WO1993022397A1 (fr) 1992-04-27 1993-11-11 Merck Patent Gmbh Systeme electro-optique a cristaux liquides
GB2268906A (en) 1992-07-24 1994-01-26 Portals Ltd Counterfeit protection for documents using optical effects of liquid crystal
DE4405316A1 (de) 1994-02-19 1995-08-24 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
DE19532408A1 (de) 1995-09-01 1997-03-06 Basf Ag Polymerisierbare flüssigkristalline Verbindungen
DE19843724A1 (de) 1997-10-08 1999-04-15 Basf Ag Polymerisierbare chirale Verbindungen und deren Verwendung
DE19836885A1 (de) 1998-08-14 2000-02-17 Clariant Gmbh Lasermarkierung von Effektbeschichtungen
WO2001024106A1 (fr) 1999-09-27 2001-04-05 Sicpa Holding S.A. Code a barres multidimensionnel et appareil de lecture de code a barres multidimensionnel
US6589445B2 (en) 2000-06-27 2003-07-08 Fuji Photo Film Co., Ltd. Light-reaction type optically active compound, light-reaction type chiral agent, liquid crystal composition, liquid crystal color filter, optical film, recording medium, and method of changing twist structure of liquid crystal
US6917399B2 (en) * 2001-02-22 2005-07-12 3M Innovative Properties Company Optical bodies containing cholesteric liquid crystal material and methods of manufacture
ATE337191T1 (de) 2001-04-24 2006-09-15 Merck Patent Gmbh Doppelbrechende markierung
GB0319908D0 (en) * 2003-08-23 2003-09-24 Koninkl Philips Electronics Nv Method of producing an electronic device, electronic device and apparatus for implementing the method
US20060262235A1 (en) * 2003-08-23 2006-11-23 Koninklijke Philips Electronics N.V. Method of producing a colour display device and colour display device
DE10342674B4 (de) * 2003-09-16 2007-07-19 Leonhard Kurz Gmbh & Co. Kg Verfahren und Foliensystem zur Herstellung eines individualisierten optisch variablen Elements
RU2367677C2 (ru) 2003-11-21 2009-09-20 КБА-Метроник АГ Способ модификации хиральных жидкокристаллических пленок с помощью экстрагентов
JP4446444B2 (ja) 2004-11-22 2010-04-07 日東電工株式会社 偽造防止機能付シートの製造方法、物品、認証カード、バーコードラベル、及び認証システム
CN1881077A (zh) * 2005-04-27 2006-12-20 日立麦克赛尔株式会社 聚合物的表面改性方法
US20060257633A1 (en) 2005-04-27 2006-11-16 Hitachi Maxell, Ltd. Method for modifying surface of polymer substrate, method for forming plated film on polymer substrate, method for producing polymer member, and coating member
US8134660B2 (en) * 2006-03-13 2012-03-13 Dai Nippon Printing Co., Ltd. Optical diffusion device, projection screen, design member and security medium
EP1876216A1 (fr) * 2006-06-27 2008-01-09 Sicpa Holding S.A. Structures multicouches cholestériques
US8905313B2 (en) 2007-04-12 2014-12-09 Honeywell International Inc. Method and system for creating and reading multi-color co-planar emissive indicia using printable dyes and pigments
WO2009112206A2 (fr) * 2008-03-11 2009-09-17 Rolic Ltd. Élément de sécurité biométrique optique
CA2719793C (fr) * 2008-04-02 2014-10-07 Sicpa Holding Sa Identification et authentification par utilisation de marquages en un materiau cristal liquide
JP5540473B2 (ja) 2008-06-12 2014-07-02 凸版印刷株式会社 コレステリック液晶ディスプレイ用品
US20100025641A1 (en) 2008-08-04 2010-02-04 Fujifilm Corporation Infrared region selective reflection coat and infrared region selective reflection film
JP5451235B2 (ja) * 2009-07-31 2014-03-26 富士フイルム株式会社 複屈折パターンを有する物品の製造方法及び複屈折パターン作製材料
JP5717324B2 (ja) * 2009-08-05 2015-05-13 凸版印刷株式会社 偽造防止構造体及びその製造方法
WO2011069691A1 (fr) 2009-12-08 2011-06-16 Sicpa Holding Sa Marquage à base de polymères cristaux liquides chiraux
BR112012013585A2 (pt) 2009-12-08 2017-03-28 Sicpa Holding Sa marcação modificada com base em polímeros cristalinos líquidos quirais
KR20120098765A (ko) 2009-12-08 2012-09-05 시크파 홀딩 에스.에이. 개질된 키랄 액정 고분자를 기반으로 하는 마킹
AU2010330331A1 (en) 2009-12-08 2012-06-07 Sicpa Holding Sa Chiral liquid crystal polymer marking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175579A1 (fr) * 2018-03-13 2019-09-19 Johnson Matthey Public Limited Company Dispositif de sécurité, procédé de fabrication d'un dispositif de sécurité et procédé d'authentification d'un produit

Also Published As

Publication number Publication date
CN103582569A (zh) 2014-02-12
IL229224A0 (en) 2014-01-30
US20120328852A1 (en) 2012-12-27
US8821756B2 (en) 2014-09-02
SG194961A1 (en) 2013-12-30
KR20140033385A (ko) 2014-03-18
UY34087A (es) 2012-11-30
JP2014524846A (ja) 2014-09-25
CN103582569B (zh) 2017-04-05
CA2834719A1 (fr) 2012-12-06
WO2012163778A1 (fr) 2012-12-06
MA35127B1 (fr) 2014-05-02
AR086508A1 (es) 2013-12-18
RU2013158145A (ru) 2015-07-10
CO6811874A2 (es) 2013-12-16
EP2714412B1 (fr) 2019-03-13
JP5764812B2 (ja) 2015-08-19
BR112013029939A2 (pt) 2017-08-08
MX2013013894A (es) 2014-01-24
BR112013029939B1 (pt) 2021-02-02

Similar Documents

Publication Publication Date Title
EP2714412B1 (fr) Substrat portant un marquage polymère cristal liquide modifié
EP2509792B1 (fr) Marquage modifié à base de polymères cristaux liquides chiraux
EP2509795B1 (fr) Marquage de polymères cristaux liquides chiraux
EP2649156B1 (fr) Marquage composite à base de précurseurs chiraux de cristaux liquides
EP2509794B1 (fr) Marquage à base de polymères cristaux liquides chiraux
US8426013B2 (en) Marking based on modified chiral liquid crystal polymers
US10611919B2 (en) Salt-free composite marking based on chiral liquid crystal precursors comprising chiral acrylate dopants
US10308872B2 (en) Composite marking based on chiral liquid crystal precursors and modifying resins
CN105899642B (zh) 基于手性液晶前体和改性树脂的复合标记
EP3066175B1 (fr) Marquage composite sans sel à base de précurseurs chiraux de cristaux liquides comprenant des dopants chiraux d'acrylate
EP3066174A1 (fr) Marquage composite à base de précurseurs chiraux de cristaux liquides et de résines modificatrices
TW201302990A (zh) 具有改質液晶聚合物標記之基底

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012057727

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B41M0003140000

Ipc: B42D0025364000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20181129

RIC1 Information provided on ipc code assigned before grant

Ipc: B41M 3/14 20060101ALI20181116BHEP

Ipc: C09K 19/34 20060101ALI20181116BHEP

Ipc: C09K 19/04 20060101ALI20181116BHEP

Ipc: B42D 25/364 20140101AFI20181116BHEP

Ipc: B42D 25/391 20140101ALI20181116BHEP

Ipc: B42D 25/387 20140101ALI20181116BHEP

Ipc: B41M 5/28 20060101ALI20181116BHEP

Ipc: C09K 19/58 20060101ALI20181116BHEP

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1107173

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012057727

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1107173

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012057727

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120524

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240418

Year of fee payment: 13

Ref country code: FR

Payment date: 20240418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240430

Year of fee payment: 13