EP2711440A1 - Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel - Google Patents

Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel Download PDF

Info

Publication number
EP2711440A1
EP2711440A1 EP20130180200 EP13180200A EP2711440A1 EP 2711440 A1 EP2711440 A1 EP 2711440A1 EP 20130180200 EP20130180200 EP 20130180200 EP 13180200 A EP13180200 A EP 13180200A EP 2711440 A1 EP2711440 A1 EP 2711440A1
Authority
EP
European Patent Office
Prior art keywords
stack
component
coating
angle
opening surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20130180200
Other languages
English (en)
French (fr)
Other versions
EP2711440B8 (de
EP2711440B1 (de
Inventor
Peter Dr. Ernst
Bernd DISTLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Priority to EP13180200.1A priority Critical patent/EP2711440B8/de
Publication of EP2711440A1 publication Critical patent/EP2711440A1/de
Application granted granted Critical
Publication of EP2711440B1 publication Critical patent/EP2711440B1/de
Publication of EP2711440B8 publication Critical patent/EP2711440B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0627Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
    • B05B13/0636Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies by means of rotatable spray heads or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc

Definitions

  • the invention relates to a method for thermal coating of a component stack according to the preamble of independent claim 1 and to a device with a component stack according to the preamble of independent claim 12.
  • From the EP 2 029 317 B1 is a method for thermal coating of a component stack, comprising a component, known, wherein the component has a continuous component opening and a bearing component, in particular a connecting rod can be made of a molded part.
  • the continuous component opening is formed in a bearing component of a bearing base and a bearing cap, wherein an inner boundary surface of the component opening comprises a split component seat, in particular a bearing seat.
  • a component coating made of a layer material is formed on the inner boundary surface, for example a component seat for supporting a shaft.
  • the component is aligned with respect to a stack axis such that the component stack has a continuous stack opening, wherein the stack opening comprises a first stack opening area and a second stack opening area and the first stack opening area and the second stack opening area are arranged along the stack axis.
  • an inner boundary surface of the component opening is thermally internally coated with a coating jet by means of a thermal spray device.
  • the aim of this known method is the coating of the inner boundary surface of the components, which are arranged as a component stack.
  • the desired component coating should have a smooth and coherent layer course and be formed with regular or same layer thicknesses.
  • the object of the invention is therefore to provide an improved method for the thermal coating of a component stack and an improved device with a component stack available.
  • this object is achieved by a method having the features of independent claim 1 and a device having the features of independent claim 12.
  • the invention thus relates to a method for thermally coating a component stack, wherein according to the invention the component stack is coated such that a first angle is formed in a first coating passage between the first stack opening surface and the coating jet and in a second coating passage between the first stack opening surface and the coating jet second angle is trained.
  • the first angle and the second angle are formed relative to the first stack opening surface in opposite directions.
  • the advantage of the method is that the solution according to the invention makes it possible to coat components whose inner boundary surfaces along the stack axis have a non-uniform inner cross section with a substantially smooth component coating having a uniform layer course and identical and regular layer thicknesses.
  • Under components with inner boundary surfaces whose inner cross-section has a non-uniform course are to understand geometries that have, for example, in the direction of the stack axis convex or spherical geometries.
  • the first and second angles are formed between the first stack opening surface and the coating jet.
  • the coating jet is formed into a cone or ellipsoid
  • the center line of the cone or ellipsoid is preferably used as the reference line of the coating jet, so that the first and second angles are formed between the center axis of the coating jet and the first stack opening area.
  • the first and the second angle can be different or equal in magnitude.
  • a thermal spraying device for coating the components, a thermal spraying device, in particular a rotating plasma burner, is guided along the stacking axis through a stack opening surface such that the inner boundary surfaces of all components are successively coated with a component coating.
  • the coating of the component stack is preferably applied by a thermal spraying method, in particular by means of flame spraying, high-speed flame spraying, plasma spraying, or another thermal spraying method well known in the art.
  • first and second coating passages only correspond to a single complete run through, wherein, depending on the application, the first and second coating passages may also comprise the repeated passage of the thermal spraying device through the component stack and back.
  • the substantially smooth component coating having a uniform layer course and the same layer thickness is formed by impinging the coating jet, which forms the first angle relative to the first stack opening surface, approximately perpendicular to a part of the non-uniform inner boundary surface in the first coating pass, and thus after the first coating pass only the part of the inner boundary surface is coated with a proper layer thickness whose surface elements are aligned approximately perpendicular to the coating jet.
  • the coating jet forms the second angle relative to the stack opening area in opposite directions with respect to the first angle relative to the first stack opening area, and now the surface elements of the non-uniform inner periphery are coated, which are now aligned approximately perpendicular to the coating beam are.
  • the advantage of the method according to the invention is therefore that, in the case of components whose inner boundary surfaces have an internal cross-section which, for example, has a non-uniform or convex geometry, the angle at which the coating beam impinges is not too shallow, due to the two coating passages with the two angles. that is, approximately perpendicular to all surface elements.
  • the change of the first or second angle is realized in this method, for example by means of the change of the angle of a burner, a gun or a nozzle on the burner or the gun relative to the thermal spray device.
  • the second angle is formed by rotating the component stack about a first pivot point on the stack axis after the first coating pass such that the first stack opening surface and the second stack opening surface after rotation pass along an opposite arrangement with respect to rotation have the stacking axis.
  • the advantage of this embodiment is that the first angle corresponds to the second angle, that is, the first angle is fixed during the entire coating process, and the second angle is formed solely by rotating the component stack between the first and second coating pass, so that no further Changes to the settings of the angles are needed.
  • An opposite arrangement of the first stack opening surface and the second stack opening surface along the stack axis means that the component stack is rotated such that the thermal spraying device is moved only along the stack axis and, for example, in the first coating passage through the first stack opening area and in the second coating passage through the second stack opening area ,
  • the first pivot point can be at any point on the stack axis.
  • the second angle is formed by rotating the thermal spray device after the first coating pass around a second pivot point on the stack axis.
  • the second pivot may be at any point on the stack axis.
  • the thermal spray device in the first coating passage and the second coating passage is passed through the first stack opening surface.
  • the first angle and second angle between the first and second coating passages are advantageously formed, for example, by changing the angle, so that neither the component stack nor the thermal spraying device are rotated.
  • the change of the first or second angle is realized in this embodiment, for example by means of the change of the angle of a burner, a gun or a nozzle on the burner or the gun relative to the thermal spray device.
  • a first thermal spraying device with a first coating jet and a second thermal spraying device with a second coating jet are provided and the first coating passage and the second coating passage take place simultaneously.
  • two thermal spraying devices are provided, wherein the formation of the first angle by means of the first thermal spraying device and the second angle by means of the second thermal spraying device takes place simultaneously, so that the first and second coating pass take place simultaneously.
  • the coating of the inner boundary surface can be done in a coating pass.
  • the first and second thermal spray devices may be simultaneously guided along the stack axis from the first stack opening surface to the second stack opening surface and the first thermal spray device coated at the first angle and moving along the stack axis from the second stack opening surface to the first stack opening surface at the second angle with the second coated thermal spray device.
  • the simultaneous coating with the first and second thermal spraying device is possible.
  • the first angle and the second angle are between 0 and 30 degrees, between 5 and 15 degrees, and most preferably 10 degrees.
  • Advantages of the alignment of the coating jet in these angular ranges are that, on the one hand, the coating jet is prevented from being too flat against the inner boundary surfaces, and, on the other hand, by coating the inner boundary surfaces along the stack axis from two different angles at all points of the inner boundary surface uniform layer course and same layer thickness is generated thereby.
  • This measure is particularly advantageous if an inner cross-section of the inner boundary surface of the component opening along the stack axis is non-uniform, in particular convexly curved, formed.
  • the coating jet optimally strikes the inner boundary surface in approximately all points, due to the symmetry of the components.
  • the component stack is advantageously rotated during coating around the stack axis and / or the thermal spraying device, in particular a plasma torch.
  • the component stack is placed on a holder.
  • the device comprising the component stack or the component stack and the holder it is advantageous for the device comprising the component stack or the component stack and the holder to be rotatable about the thermal spraying device.
  • another advantageous Measure a simultaneous rotation of the thermal spray device and the device comprising the component stack or the component stack and the holder which, for example, components which have a complex geometry, be coated faster and more efficient and / or forms a better component coating.
  • a spacer is provided between the components of the component stack such that the components are arranged at a distance. This can advantageously after the completion of the coating passage, the components are cleanly separated again without damage.
  • the spacer is formed for example in the form of a disc, in particular in the form of a disc with a round or an oval spacer opening, wherein an inner cross-section and / or an outer cross section of the spacer along the stack axis polygonal, or concave, or convex curved may be formed ,
  • the spacer may additionally or alternatively be formed in the form of a disc with a round or an oval outer contour.
  • the spacer opening and the inner cross section of the spacer in the direction of the stack axis may have a different shape, so that they are advantageously adapted to the particular application.
  • the spacers can be formed as part of the component, which is particularly efficient for industrial manufacturing processes, as can be dispensed with an additional and separate from the component spacers.
  • the component is a bearing component and / or the inner boundary surface is designed as a component seat surface, in particular for supporting a shaft.
  • bearing components are known, for example, as connecting rods with a small connecting rod eye, a shaft and a large connecting rod eye, wherein the large connecting rod eye usually comprises a split component seat for the bearing of the connecting rod on a crankshaft.
  • Bearing components and connecting rods are available in large quantities eg in Reciprocating internal combustion engines for passenger cars and trucks, but also installed in engines for ships or in other machines in which a linear movement in a rotary motion, or vice versa, must be implemented.
  • the invention further relates to a component stack which, as already described in detail in the discussion of the method according to the invention, can be coated in such a way that a first angle can be formed between the first stack opening surface and the coating jet in a first coating passage and in a second coating passage between the first first stack opening surface and the coating jet, a second angle can be formed.
  • the first angle and the second angle can be formed in opposite directions relative to the first stack opening area.
  • the inventive device also comprises a holder for the component stack, wherein on the holder at least two, preferably ten or more bearing components are arranged in the form of a stack.
  • the holder makes it possible, especially in industrial production, where high volumes of components must be produced as efficiently and inexpensively, to arrange component mounting directly several bearing components in the form of a stack on the holder and to coat the components in this way in one operation.
  • the components can be removed after coating in a simple manner from the holder.
  • the component stack is rotatable with respect to the thermal spraying device is arranged and / or the thermal spraying device is rotatable about the stacking axis.
  • Fig. 1 shows a device with a stack of components from the prior art. Shown is a component stack 1 'of arranged components 2' with component openings 21 ', for example a bearing component, in particular a connecting rod, between the components 2' spacers 5 'are provided, which are for example formed as discs, so that the components 2' after completion of the coating passage can be separated.
  • the components 2 'and the spacers 5' are on a holder 4 'in such a way stacked on top of each other that all inner boundary surfaces 22 'of the component openings 21', for example, large connecting rods, can be coated in a coating passage by means of a known rotary thermal spraying device 3 ', for example a plasma torch.
  • the thermal spraying device 3 ' rotates during the coating pass around the stack axis A' and is shown in the vertical direction along the stack axis A 'guided such that successively the inner boundary surfaces of all components 2' with a component coating 6 'can be coated.
  • a homogeneous component coating 6' is formed along the stack axis A 'in the stack opening 11' of the component stack 1 '.
  • a homogeneous component coating 6 ' is to be understood as meaning a component coating 6' with a component coating that is essentially smooth in the direction of the stacking axis A 'over the entire component stack 1', with a uniform layer course and identical layer thicknesses, which forms on the components 2 '.
  • the angle between coating jet 31 'and a stack opening surface 111' during the coating passage is approximately 0 degrees, so that, starting from a rectangular inner cross section of the inner boundary surfaces 22 'of the components 2', the coating jet 31 'approximately perpendicular to the to be coated inner boundary surface 22nd ' meets.
  • Fig. 2 schematically shows a device with a stack of components 1 shows a total of three components 2 with a continuous component opening 21, for example, three bearing components or three connecting rods, which are stacked on a holder 4 one above the other in the form of a component stack 1 that an inner Boundary surface 22 of the components 2 can be successively coated by means of the thermal spray device 3.
  • the three components 2 are aligned with respect to a stacking axis A such that the component stack 1 has a continuous stack opening 11.
  • the stack opening 11 in this case comprises a first stack opening area 111 and a second stack opening area 112, the first stack opening area 111 and the second stack opening area 112 being arranged along the stack axis A.
  • the thermal spraying device 3, shown here as a plasma torch, with a coating jet 31 comprising a central axis M is guided in the operating state through the first stack opening surface 111 and / or second stack opening surface 112 to the inner boundary surfaces 22 of the component opening 21 and the inner boundary surfaces 22 thermally coated inside.
  • the plasma torch 3 can rotate about the stacking axis A during the coating process and is guided in the vertical direction along the stacking axis A, so that successively all internal boundary surfaces 22 in all components, for example in large connecting rods, can be coated with a component coating 6.
  • the in Fig. 2 shown component stack 1 rotatable with respect to the plasma torch 3 may be arranged.
  • the inner boundary surfaces are coatable in this arrangement such that in a first coating passage between the first stack opening surface 111 and the coating jet 31, a first angle (not shown) can be formed and in a second coating passage between the first stack opening surface 111 and the coating jet 31, a second angle (not shown) can be formed.
  • a first pivot point D1 and a second pivot point D2 are shown, about which in a particularly advantageous embodiment of the component stack 1 after the first coating pass on the stack axis A is rotated.
  • the component stack is rotated during this rotation such that the first stack opening surface 111 and the second stack opening surface 112 after rotation have an opposed arrangement with respect to the stack axis A with respect to rotation.
  • the rotation takes place about the second pivot point D2.
  • the device comprises a holder 4 for the component stack 1, so that the components 2 are fixed during the rotation and the coating.
  • Spacers 5 are provided between the components 2 of the component stack 1, so that the components 2 are arranged at a distance in the component stack 1.
  • Fig. 3a-3c Coated components are to be seen after different coating passes according to the inventive method. All three figures show a component stack 1 with two components 2, which are aligned with respect to the stacking axis A and spaced by means of spacers 5. On the stacking axis A, the pivot point D1 can be seen, around which the component stack is rotated.
  • the components 2 are, as in Fig. 2 illustrated aligned with respect to a stacking axis A such that the component stack 1 has a continuous stack opening 11, wherein the stack opening 11 comprises a first stack opening area 111 and a second stack opening area 112, and the first stack opening area 111 and the second stack opening area 112 along the stack axis A. are arranged.
  • the course of the inner cross section of the inner boundary surface 22 along the stack axis A is non-uniform or the inner boundary surface 22 is formed convexly curved in the present embodiment.
  • Fig. 3a a component stack 1 before the first coating pass.
  • Fig. 3b shows a component stack 1 with two components 2 after a first coating pass.
  • the inner boundary surface 22 which is only partially coated.
  • the component coating 6 formed after this first coating pass is irregular and has uneven layer thicknesses, since the coating jet impinges only on a part of the inner boundary surface of the continuous component opening and thus only this part of the inner boundary surface is coated after the first coating pass.
  • this first coating pass only the surfaces which have an orientation approximately perpendicular in the direction of the coating beam at the first angle and onto which the coating jet does not impinge too flat are coated.
  • Fig. 3c shows the component stack 1 after a second coating pass according to the inventive method.
  • the component coating 6 is in Fig. 3c is shown as a substantially smooth component coating 6 with a uniform layer course and the same layer thicknesses.
  • Fig. 4 essentially corresponds Fig. 2 , however, an embodiment of the invention is shown.
  • the difference to Fig. 2 consists in that a first thermal spraying device 7 with a first coating jet 71 and a second thermal spraying device 8 with a second coating jet 81 are provided.
  • the formation of the first angle (not shown) by means of the first thermal spray device 7 and the second angle (not shown) by means of the second thermal spray device 8 takes place simultaneously and the first and second coating passes take place simultaneously.
  • Fig. 5 from essentially match Fig. 2 and show component stack with inventive arrangement of the components and representation of the first and second angle.
  • Fig. 5a It is shown how between the first stack opening surface 111 and the coating jet 31, a first angle ⁇ is formed and in Fig. 5b in that a second angle ⁇ is formed in a second coating passage between the first stack opening surface 111 and the coating jet 31.
  • the first angle ⁇ and the second angle ⁇ are formed relative to the first stack opening area in opposite directions.

Abstract

Die Erfindung betrifft ein Verfahren zum thermischen Beschichten eines Bauteilstapels, umfassend ein Bauteil (2), wobei das Bauteil (2) eine durchgehende Bauteilöffnung (21) aufweist und das Bauteil (2) derart in Bezug auf eine Stapelachse (A) ausgerichtet wird, dass der Bauteilstapel (1) eine durchgehende Stapelöffnung (11) aufweist, wobei die Stapelöffnung (11) eine erste Stapelöffnungsfläche (111) und eine zweite Stapelöffnungsfläche (112) umfasst und die erste Stapelöffnungsfläche (111) und die zweite Stapelöffnungsfläche (112) entlang der Stapelachse (A) angeordnet werden, und eine innere Begrenzungsfläche (22) der Bauteilöffnung (21) mittels einer thermischen Spritzvorrichtung (3, 7, 8) mit einem Beschichtungsstrahl (31, 71, 81) thermisch innenbeschichtet wird. Erfindungsgemäss wird der Bauteilstapel (1) derart beschichtet, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31, 71, 81) ein erster Winkel (α) ausgebildet wird und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31, 71, 81) ein zweiter Winkel (β) ausgebildet wird, wobei der erste Winkel (α) und der zweite Winkel (β) relativ zur ersten Stapelöffnungsfläche (111) in entgegengesetzte Richtungen ausgebildet werden.

Description

  • Die Erfindung betrifft ein Verfahren zum thermischen Beschichten eines Bauteilstapels gemäss dem Oberbegriff des unabhängigen Anspruchs 1 sowie eine Vorrichtung mit einem Bauteilstapel gemäss dem Oberbegriff des unabhängigen Anspruchs 12.
  • Aus der EP 2 029 317 B1 ist ein Verfahren zum thermischen Beschichten eines Bauteilstapels, der ein Bauteil umfasst, bekannt, wobei das Bauteil eine durchgehende Bauteilöffnung aufweist und ein Lagerbauteil, insbesondere ein Pleuel aus einem Formteil sein kann. Die durchgehende Bauteilöffnung wird in einem Lagerbauteil aus einem Lagerboden und einem Lagerdeckel ausgebildet, wobei eine innere Begrenzungsfläche der Bauteilöffnung einen geteilten Bauteilsitz, insbesondere einen Lagersitz, umfasst. Ausserdem ist auf der inneren Begrenzungsfläche, beispielsweise ein Bauteilsitz zur Lagerung einer Welle eine Bauteilbeschichtung aus einem Schichtmaterial ausgebildet. Das Bauteil wird bei diesem Verfahren derart in Bezug auf eine Stapelachse ausgerichtet, dass der Bauteilstapel eine durchgehende Stapelöffnung aufweist, wobei die Stapelöffnung eine erste Stapelöffnungsfläche und zweite Stapelöffnungsfläche umfasst und die erste Stapelöffnungsfläche und die zweite Stapelöffnungsfläche entlang der Stapelachse angeordnet werden. Während des Beschichtungsvorgangs wird eine innere Begrenzungsfläche der Bauteilöffnung mittels einer thermischen Spritzvorrichtung mit einem Beschichtungsstrahl thermisch innenbeschichtet. Ziel dieses bekannten Verfahrens ist die Beschichtung der inneren Begrenzungsfläche der Bauteile, die als Bauteilstapel angeordnet sind. Die gewünschte Bauteilbeschichtung soll dabei einen glatten und zusammenhängenden Schichtverlauf aufweisen und mit regelmässigen bzw. gleichen Schichtdicken ausgebildet werden. Das Ausbilden einer derartigen Bauteilbeschichtung mit diesem aus dem Stand der Technik bekannten Verfahren ist aber nur möglich, wenn der Winkel zwischen Beschichtungsstrahl und innerer Begrenzungsfläche nicht zu flach und am besten annähernd senkrecht auf die innere Begrenzungsfläche trifft. Da der Winkel des Beschichtungsstrahls aber fest eingestellt ist, funktioniert dieses Verfahren nur bei Bauteilen, deren innere Begrenzungsfläche beispielsweise einen rechteckigen inneren Querschnitt aufweist. Anders ist das bei Bauteilen deren innere Begrenzungsflächen einen inneren Querschnitt hat, der eine ungleichförmige oder eine konvexe Geometrie aufweist. Bei diesen ist der Winkel des Beschichtungsstrahls in Teilbereichen zu flach, sodass kein glatter und zusammenhängenden Schichtverlauf und keine Bauteilbeschichtung mit regelmässigen bzw. gleichen Schichtdicken ausgebildet werden.
  • Aufgabe der Erfindung ist es daher, ein verbessertes Verfahren zum thermischen Beschichten eines Bauteilstapels und eine verbesserte Vorrichtung mit einem Bauteilstapel zur Verfügung zu stellen.
  • Erfindungsgemäss wird diese Aufgabe durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 und eine Vorrichtung mit den Merkmalen des unabhängigen Anspruchs 12 gelöst.
  • Die Erfindung betrifft somit ein Verfahren zum thermischen Beschichten eines Bauteilstapels, wobei erfindungsgemäss der Bauteilstapel derart beschichtet wird, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche und dem Beschichtungsstrahl ein erster Winkel ausgebildet wird und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche und dem Beschichtungsstrahl ein zweiter Winkel ausgebildet wird. Der erste Winkel und der zweite Winkel werden dabei relativ zur ersten Stapelöffnungsfläche in entgegengesetzte Richtungen ausgebildet.
  • Vorteil des Verfahrens ist, dass es die erfindungsgemässe Lösung ermöglicht, Bauteile, deren innere Begrenzungsflächen entlang der Stapelachse einen ungleichförmigen inneren Querschnitt aufweisen, mit einer im Wesentlichen glatten Bauteilbeschichtung mit einem gleichmässigen Schichtverlauf und gleichen und regelmässigen Schichtdicken zu beschichten. Unter Bauteilen mit inneren Begrenzungsflächen deren innerer Querschnitt einen ungleichförmigen Verlauf aufweist sind Geometrien zu verstehen, die beispielsweise in Richtung der Stapelachse konvex gewölbte oder ballige Geometrien haben.
  • Bei diesem Verfahren werden der erste und zweite Winkel zwischen der ersten Stapelöffnungsfläche und dem Beschichtungsstrahl ausgebildet. Da der Beschichtungsstrahl beispielsweise als Kegel oder Ellipsoid ausgebildet ist, wird als Referenzlinie des Beschichtungsstrahls bevorzugt die Mittelachse des Kegels oder Ellipsoids verwendet, sodass der erste und der zweite Winkel zwischen der Mittelachse des Beschichtungsstrahls und der ersten Stapelöffnungsfläche ausgebildet werden. Der erste und der zweite Winkel können dabei, je nach Anwendung betragsmässig unterschiedlich oder gleich gross sein.
  • Zum Beschichten der Bauteile wird eine thermische Spritzeinrichtung, insbesondere ein rotierender Plasmabrenner, entlang der Stapelachse, durch eine Stapelöffnungsfläche, derart geführt, dass nacheinander die inneren Begrenzungsflächen aller Bauteile mit einer Bauteilbeschichtung beschichtet werden. Die Beschichtung des Bauteilstapels wird dabei bevorzugt durch ein thermisches Spritzverfahren, insbesondere mittels Flammspritzen, Hochgeschwindigkeitsflammspritzen, Plasmaspritzen, oder ein anderes, aus dem Stand der Technik wohlbekanntes thermisches Spritzverfahren aufgebracht.
  • Unter einem Beschichtungsdurchgang ist das einmalige vollständige Durchlaufen der thermischen Spritzeinrichtung durch den Bauteilstapel und zurück, also von der ersten zur zweiten Stapelöffnung und zurück zu verstehen. Vorteilhaft entsprechen der erste und zweite Beschichtungsdurchgang nur einem einmaligen vollständige Durchlaufen, wobei je nach Anwendung der erste und zweite Beschichtungsdurchgang auch das mehrmalige Durchlaufen der thermischen Spritzeinrichtung durch den Bauteilstapel und zurück umfassen können.
  • Erfindungsgemäss wird die im Wesentlichen glatte Bauteilbeschichtung mit einem gleichmässigen Schichtverlauf und gleicher Schichtdicke dadurch ausgebildet, dass der Beschichtungsstrahl, der relativ zu ersten Stapelöffnungsfläche den ersten Winkel ausbildet, im ersten Beschichtungsdurchgang auf einen Teil der ungleichförmigen inneren Begrenzungsfläche annähernd senkrecht auftrifft und somit nach dem ersten Beschichtungsdurchgang nur der Teil der inneren Begrenzungsfläche mit einer ordnungsgemässen Schichtdicke beschichtet ist, dessen Flächenelemente annähernd senkrecht zum Beschichtungsstrahls ausgerichtet sind. Im zweiten Beschichtungsdurchgang bildet der Beschichtungsstrahl relativ zur Stapelöffnungsfläche den zweiten Winkel aus, der in Bezug auf den ersten Winkel relativ zur ersten Stapelöffnungsfläche in entgegengesetzte Richtungen ausgebildet ist, und es werden nun die Flächenelemente der ungleichförmigen inneren Begrenzungsfläche beschichtet, die jetzt annähernd senkrecht zum Beschichtungsstrahls ausgerichtet sind. Vorteil des erfindungsgemässen Verfahrens ist somit, dass bei Bauteilen, deren innere Begrenzungsflächen einen inneren Querschnitt haben, der beispielsweise einen ungleichförmige oder eine konvexe Geometrie aufweist, der Winkel, in welchem der Beschichtungsstrahl auftrifft, aufgrund der zwei Beschichtungsdurchgänge mit den beiden Winkeln nicht zu flach, also annähernd senkrecht zu allen Flächenelementen ist.
  • Die Änderung des ersten oder zweiten Winkels wird bei diesem Verfahren beispielsweise mittels der Änderung des Winkels eines Brenners, einer Pistole oder einer Düse am Brenner bzw. der Pistole relativ zur thermischen Spritzeinrichtung realisiert.
  • In Ausgestaltung der Erfindung wird der zweite Winkel dadurch ausgebildet, dass der Bauteilstapel nach dem ersten Beschichtungsdurchgang derart um einen ersten Drehpunkt auf der Stapelachse gedreht wird, dass die erste Stapelöffnungsfläche und die zweite Stapelöffnungsfläche nach der Drehung eine in Bezug auf vor der Drehung entgegengesetzte Anordnung entlang der Stapelachse aufweisen.
  • Vorteil dieses Ausführungsbeispiels ist, dass der erste Winkel dem zweiten Winkel entspricht, also während des gesamten Beschichtungsvorgangs der erste Winkel fest vorgegeben ist, und der zweite Winkel alleine dadurch ausgebildet wird, dass der Bauteilstapel zwischen dem ersten und zweiten Beschichtungsdurchgang gedreht wird, sodass keine weiteren Änderungen an den Einstellungen der Winkel nötig sind. Eine entgegengesetzte Anordnung der ersten Stapelöffnungsfläche und zweiten Stapelöffnungsfläche entlang der Stapelachse bedeutet, dass der Bauteilstapel derart gedreht wird, dass die thermische Spritzeinrichtung lediglich entlang der Stapelachse verfahren wird und beispielsweise im ersten Beschichtungsdurchgang durch die erste Stapelöffnungsfläche und im zweiten Beschichtungsdurchgang durch die zweite Stapelöffnungsfläche geführt wird. Der erste Drehpunkt kann sich dabei an einem beliebigen Punkt auf der Stapelachse befinden.
  • In einem weiteren Ausführungsbeispiel wird der zweite Winkel dadurch ausgebildet, dass die thermische Spritzeinrichtung nach dem ersten Beschichtungsdurchgang um einen zweiten Drehpunkt auf der Stapelachse gedreht wird. Im Unterschied zum vorherigen Ausführungsbeispiel wird bei diesem Ausführungsbeispiel anstatt des Bauteilstapels vorteilhaft die thermische Spritzeinrichtung gedreht. Der zweite Drehpunkt kann sich dabei an einem beliebigen Punkt auf der Stapelachse befinden.
  • In einem dritten bevorzugten Ausführungsbeispiel wird die thermische Spritzvorrichtung im ersten Beschichtungsdurchgang und im zweiten Beschichtungsdurchgang durch die erste Stapelöffnungsfläche geführt. Dabei werden vorteilhaft der erste Winkel und zweite Winkel zwischen dem ersten und zweiten Beschichtungsdurchgang beispielsweise mittels Änderung des Winkels ausgebildet, sodass weder der Bauteilstapel noch die thermische Spritzeinrichtung gedreht werden. Die Änderung des ersten oder zweiten Winkels wird bei diesem Ausführungsbeispiel beispielsweise mittels der Änderung des Winkels eines Brenners, einer Pistole oder einer Düse am Brenner bzw. der Pistole relativ zur thermischen Spritzeinrichtung realisiert.
  • In einer weiteren Ausgestaltung der Erfindung sind eine erste thermische Spritzeinrichtung mit einem ersten Beschichtungsstrahl und eine zweite thermische Spritzeinrichtung mit einem zweiten Beschichtungsstrahl vorgesehen und der erste Beschichtungsdurchgang und der zweite Beschichtungsdurchgang finden gleichzeitig statt. Bei diesem Ausführungsbeispiel sind also zwei thermische Spritzeinrichtungen vorgesehen, wobei das Ausbilden des ersten Winkels mittels der ersten thermischen Spritzeinrichtung und des zweiten Winkels mittels der zweiten thermischen Spritzeinrichtung gleichzeitig erfolgt, sodass der erste und zweite Beschichtungsdurchgang gleichzeitig stattfinden. Vorteil dieses Ausführungsbeispiels ist, dass das Beschichten der inneren Begrenzungsfläche in einem Beschichtungsdurchgang erfolgen kann. Die erste und zweite thermische Spritzeinrichtung können beispielsweise gleichzeitig entlang der Stapelachse von der ersten Stapelöffnungsfläche zur zweiten Stapelöffnungsfläche geführt werden und die erste thermische Spritzeinrichtung unter dem ersten Winkel beschichtet und beim Verfahren der entlang der Stapelachse von der zweiten Stapelöffnungsfläche zur ersten Stapelöffnungsfläche wird unter dem zweiten Winkel mit der zweiten thermischen Spritzeinrichtung beschichtet. Als Variante ist auch das gleichzeitige Beschichten mit der ersten und zweiten thermischen Spritzeinrichtung möglich.
  • Bevorzugt betragen der erste Winkel und der zweite Winkel zwischen 0 und 30 Grad, zwischen 5 und 15 Grad und besonders bevorzugt 10 Grad. Vorteile der Ausrichtung des Beschichtungsstrahls in diesen Winkelbereichen sind, dass einerseits verhindert wird, dass der Beschichtungsstrahl zu flach auf die inneren Begrenzungsflächen trifft, und andererseits durch das Beschichten der inneren Begrenzungsflächen entlang der Stapelachse aus zwei unterschiedlichen Winkeln an allen Punkte der inneren Begrenzungsfläche eine Beschichtung mit gleichmässigen Schichtverlauf und gleicher Schichtdicke dadurch erzeugt wird. Besonders vorteilhaft ist diese Massnahme, wenn ein innerer Querschnitt der inneren Begrenzungsfläche der Bauteilöffnung entlang der Stapelachse ungleichförmig, insbesondere konvex gewölbt, ausgebildet wird. Besonders vorteilhaft trifft der Beschichtungsstrahl bei Bauteilen mit einer inneren Begrenzungsfläche deren innerer Querschnitt konvex gewölbt ist, aufgrund der Symmetrie der Bauteile, in annähernd allen Punkte optimal auf die innere Begrenzungsfläche auf.
  • In Ausgestaltung der Erfindung wird vorteilhaft der Bauteilstapel beim Beschichten um die Stapelachse und / oder die thermische Spritzvorrichtung, insbesondere ein Plasmabrenner, rotiert. Somit kann je nach Ausführung, entweder die thermische Spritzeinrichtung oder der Bauteilstapel in eine Richtung oder aber der Bauteistapel und die thermische Spritzeinrichtung, bevorzugt in entgegengesetzte Richtung, rotiert werden. Im Speziellen wird der Bauteilstapel auf einer Halterung angeordnet. Sollte ein Drehen der thermischen Spritzeinrichtung um die Stapelachse bei gleichzeitig feststehendem Bauteilstapel nicht möglich sein, ist es vorteilhaft, dass die Vorrichtung, die den Bauteilstapel oder den Bauteilstapel und die Halterung umfasst, rotierbar um die thermische Spritzeinrichtung angeordnet ist. In einem anderen Ausführungsbeispiel kann eine andere vorteilhafte Massnahme ein gleichzeitiges Rotieren der thermischen Spritzeinrichtung und der Vorrichtung sein, die den Bauteilstapel oder den Bauteilstapel und die Halterung umfasst, wodurch beispielsweise Bauteile, welche eine komplexe Geometrie besitzen, schneller und effizienter beschichtet werden und/oder sich eine bessere Bauteilbeschichtung ausbildet.
  • Vorteilhaft wird zwischen den Bauteilen des Bauteilstapels ein Abstandshalter derart vorgesehen, dass die Bauteile beabstandet angeordnet werden. Damit können vorteilhafterweise nach Beendigung des Beschichtungsdurchgangs die Bauteile ohne Schaden wieder sauber getrennt werden. Der Abstandshalter ist beispielsweise in Form einer Scheibe, insbesondere in Form einer Scheibe mit einer runden oder einer ovalen Abstandshalteröffnung ausgebildet, wobei ein innerer Querschnitt und / oder ein äusserer Querschnitt des Abstandhalters entlang der Stapelachse mehreckig, oder konkav gewölbt, oder konvex gewölbt ausgebildet sein kann. Im Speziellen kann der Abstandshalter zusätzlich oder alternativ auch in Form einer Scheibe mit einer runden oder einer ovalen Aussenkontur ausgebildet werden. Je nach Ausführungsbeispiel können die Abstandshalteröffnung und der innere Querschnitt des Abstandshalters in Richtung der Stapelachse eine andere Form haben, sodass diese vorteilhaft an die jeweilige Anwendung angepasst werden. Insbesondere können die Abstandshalter als Teil des Bauteils ausgebildet werden, was für industrielle Herstellungsverfahren besonders effizient ist, da auf einen zusätzlichen und vom Bauteil getrennten Abstandshalter verzichtet werden kann.
  • In einer Ausführungsvariante ist das Bauteil ein Lagerbauteil und / oder die innere Begrenzungsfläche ist als eine Bauteilsitzfläche, insbesondere zur Lagerung einer Welle, ausgebildet. Solche Lagerbauteile sind beispielsweise als Pleuel mit einem kleinen Pleuelauge, einem Schaft und einem großen Pleuelauge bekannt, wobei das große Pleuelauge in der Regel einen geteilten Bauteilsitz für die Lagerung des Pleuels auf einer Kurbelwelle umfasst. Lagerbauteile und Pleuel werden in großen Stückzahlen z.B. in Hubkolbenbrennkraftmaschinen für Personenkraftwagen und Lastkraftwagen, aber auch in Motoren für Schiffe bzw. in anderen Maschinen verbaut, in denen eine lineare Bewegung in eine Drehbewegung, oder umgekehrt, umgesetzt werden muss.
  • Die Erfindung betrifft im Weiteren einen Bauteilstapel, der, wie bereits oben ausführlich bei der Diskussion des erfindungsgemässen Verfahrens beschrieben, derart beschichtbar ist, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche und dem Beschichtungsstrahl ein erster Winkel ausbildbar ist und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche und dem Beschichtungsstrahl ein zweiter Winkel ausbildbar ist. Der erste Winkel und der zweite Winkel sind dabei relativ zur ersten Stapelöffnungsfläche in entgegengesetzte Richtungen ausbildbar.
  • Die erfindungsgemässe Vorrichtung umfasst ausserdem eine Halterung für den Bauteilstapel, wobei auf der Halterung mindestens zwei, bevorzugt zehn oder mehr Lagerbauteile in Form eines Stapels angeordnet sind. Die Halterung ermöglicht es vor allem in der industriellen Fertigung, wo hohe Stückzahlen von Bauteilen möglichst effizient und kostengünstig hergestellt werden müssen, zur Bauteilbeschichtung gleich mehrere Lagerbauteile in Form eines Stapels auf der Halterung anzuordnen und die Bauteile auf diese Weise in einem Arbeitsgang zu beschichten. Ausserdem können die Bauteile nach der Beschichtung auf einfache Weise aus der Halterung entnommen werden.
  • Als vorteilhafte Massnahme ist der Bauteilstapel rotierbar in Bezug auf die thermische Spritzeinrichtung angeordnet ist und / oder die thermische Spritzeinrichtung ist um die Stapelachse rotierbar.
  • Im Folgenden wird die Erfindung an Hand der Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    eine Vorrichtung mit einem Bauteilstapel aus dem Stand der Technik;
    Fig. 2
    eine Vorrichtung mit einem Bauteilstapel mit erfindungsgemässer Anordnung der Bauteile;
    Fig. 3 a-c
    beschichtete Bauteile nach unterschiedlichen Beschichtungsdurchgängen nach dem erfindungsgemässen Verfahren;
    Fig. 4
    eine Vorrichtungsvariante mit einem Bauteilstapel mit erfindungsgemässer Anordnung der Bauteile;
    Fig. 5 a-b
    einen Bauteilstapel mit erfindungsgemässer Anordnung der Bauteile und Darstellung des ersten und zweiten Winkels.
  • Für die folgende Beschreibung der Figuren gilt, dass alle Bezugszeichen, die sich in den Beispielen auf Merkmale aus dem Stand der Technik beziehen mit Hochkomma versehen sind und alle Bezugzeichen, die sich auf Merkmale erfindungsgemässer Ausführungsbeispiele beziehen ohne Hochkomma gekennzeichnet sind.
  • Fig. 1 zeigt eine Vorrichtung mit einem Bauteilstapel aus dem Stand der Technik. Dargestellt ist ein Bauteilstapel 1' aus angeordneten Bauteilen 2' mit Bauteilöffnungen 21', z.B. ein Lagerbauteil, insbesondere ein Pleuel, wobei zwischen den Bauteilen 2' Abstandshalter 5' vorgesehen sind, die beispielsweise als Scheiben ausgebildet sind, damit die Bauteile 2' nach Beendigung des Beschichtungsdurchgangs getrennt werden können. Die Bauteile 2' und die Abstandshalter 5' sind auf einer Halterung 4' derart übereinander gestapelt, dass alle inneren Begrenzungsflächen 22' der Bauteilöffnungen 21', beispielsweise große Pleuelaugen, in einem Beschichtungsdurchgang mittels einer an sich bekannte rotierenden thermischen Spritzeinrichtung 3', beispielsweise ein Plasmabrenner, beschichtet werden können. Die thermische Spritzeinrichtung 3' rotiert dabei während des Beschichtungsdurchgangs um die Stapelachse A' und wird darstellungsgemäß in senkrechter Richtung entlang der Stapelachse A' derart geführt, dass nacheinander die inneren Begrenzungsflächen aller Bauteile 2' mit einer Bauteilbeschichtung 6' beschichtet werden können.
  • Aufgrund der Art und Weise wie die Bauteile 2' mit den jeweiligen Bauteilöffnungen 21' und die Abstandshalter 4' gestapelt sind, bildet sich entlang der Stapelachse A' in der Stapelöffnung 11' des Bauteilstapels 1' eine homogene Bauteilbeschichtung 6' aus. Unter einer homogenen Bauteilbeschichtung 6' ist eine Bauteilbeschichtung 6' mit einer in Richtung der Stapelachse A' über den ganzen Bauteilstapel 1' im Wesentlichen glatte Bauteilbeschichtung mit einem gleichmässigen Schichtverlauf und gleichen Schichtdicken zu verstehen, die sich auf den Bauteilen 2' ausbildet.
  • Der Winkel zwischen Beschichtungsstrahl 31' und einer Stapelöffnungsfläche 111' beträgt während des Beschichtungsdurchgangs annähernd 0 Grad, sodass, ausgehend von einem rechteckigen inneren Querschnitt der inneren Begrenzungsflächen 22' der Bauteile 2', der Beschichtungsstrahl 31' annähernd senkrecht auf die zu beschichtende innere Begrenzungsfläche 22' trifft.
  • Anhand der Fig. 2 wird im Folgenden eine Vorrichtung eines Bauteilstapels 1 mit erfindungsgemässer Anordnung der Bauteile 2 vorgestellt.
  • Die in Fig. 2 schematisch dargestellte Vorrichtung mit einem Bauteilstapel 1 zeigt insgesamt drei Bauteile 2 mit einer durchgehenden Bauteilöffnung 21, z.B. drei Lagerbauteile oder drei Pleuel, die derart auf einer Halterung 4 übereinander in Form eines Bauteilstapels 1 gestapelt sind, dass eine innere Begrenzungsfläche 22 der Bauteile 2 nacheinander mittels der thermischen Spritzeinrichtung 3 beschichtet werden können.
  • Die drei Bauteile 2 sind derart in Bezug auf eine Stapelachse A ausgerichtet, dass der Bauteilstapel 1 eine durchgehende Stapelöffnung 11 aufweist. Die Stapelöffnung 11 umfasst dabei eine erste Stapelöffnungsfläche 111 und eine zweite Stapelöffnungsfläche 112, wobei die erste Stapelöffnungsfläche 111 und die zweite Stapelöffnungsfläche 112 entlang der Stapelachse A angeordnet sind.
  • Die thermische Spritzeinrichtung 3, hier als ein Plasmabrenner dargestellt, mit einem Beschichtungsstrahl 31, der eine Mittelachse M umfasst, wird im Betriebszustand durch die erste Stapelöffnungsfläche 111 und / oder zweite Stapelöffnungsfläche 112 an die inneren Begrenzungsflächen 22 der Bauteilöffnung 21 geführt und die inneren Begrenzungsflächen 22 thermisch innenbeschichtet. Der Plasmabrenner 3 kann während des Beschichtungsvorgangs um die Stapelachse A rotieren und wird dabei darstellungsgemäss in senkrechter Richtung entlang der Stapelachse A geführt, so dass nacheinander alle inneren Begrenzungsflächen 22 in allen Bauteilen, beispielsweise in grossen Pleuelaugen, mit einer Bauteilbeschichtung 6 beschichtet werden können. In einer Variante kann der in Fig. 2 dargestellte Bauteilstapel 1 rotierbar in Bezug auf den Plasmabrenner 3 angeordnet sein.
  • Der in Fig. 2 dargestellte innere Querschnitt der inneren Begrenzungsfläche 22 der drei Bauteile, die entlang der Stapelachse A als Bauteilstapel angeordnet sind, weist einen ungleichförmigen Verlauf, nämlich konvex gewölbt, auf. Die inneren Begrenzungsflächen sind in dieser Anordnung derart beschichtbar, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche 111 und dem Beschichtungsstrahl 31 ein erster Winkel (nicht dargestellt) ausbildbar ist und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche 111 und dem Beschichtungsstrahl 31 ein zweiter Winkel (nicht dargestellt) ausbildbar ist.
  • In Fig. 2 sind ausserdem ein erster Drehpunkt D1 und ein zweiter Drehpunkt D2 dargestellt, um welche in einem besonders vorteilhaften Ausführungsbeispiel der Bauteilstapel 1 nach dem ersten Beschichtungsdurchgang auf der Stapelachse A gedreht wird. Der Bauteilstapel wird bei dieser Drehung derart gedreht, dass die erste Stapelöffnungsfläche 111 und die zweite Stapelöffnungsfläche 112 nach der Drehung eine in Bezug auf vor der Drehung entgegengesetzte Anordnung entlang der Stapelachse A aufweisen. Wird nicht der Bauteilstapel 1 sondern die thermische Spritzeinrichtung 3 gedreht, dann erfolgt die Drehung um den zweiten Drehpunkt D2. Dabei umfasst die Vorrichtung eine Halterung 4 für den Bauteilstapel 1, sodass die Bauteile 2 während der Drehung und der Beschichtung fixiert sind. Zwischen den Bauteilen 2 des Bauteilstapels 1 sind Abstandshalter 5 vorgesehen, sodass die Bauteile 2 beabstandet im Bauteilstapel 1 angeordnet werden.
  • In den Fig. 3a-3c sind beschichtete Bauteile nach unterschiedlichen Beschichtungsdurchgängen nach dem erfindungsgemässen Verfahren zu sehen. Alle drei Figuren zeigen einen Bauteilstapel 1 mit zwei Bauteilen 2, welche in Bezug auf die Stapelachse A ausgerichtet sind und mittels Abstandshaltern 5 beabstandet sind. Auf der Stapelachse A ist der Drehpunkt D1 zu sehen, um welchen der Bauteilstapel gedreht wird.
  • Die Bauteile 2 sind, wie in Fig. 2 dargestellt, derart in Bezug auf eine Stapelachse A ausgerichtet, dass der Bauteilstapel 1 eine durchgehende Stapelöffnung 11 aufweist, wobei die Stapelöffnung 11 eine erste Stapelöffnungsfläche 111 und eine zweite Stapelöffnungsfläche 112 umfasst, und die erste Stapelöffnungsfläche 111 und die zweite Stapelöffnungsfläche 112 entlang der Stapelachse A angeordnet sind. Der Verlauf des inneren Querschnitts der inneren Begrenzungsfläche 22 entlang der Stapelachse A ist ungleichförmig bzw. ist die inneren Begrenzungsfläche 22 im vorliegenden Ausführungsbeispiel konvex gewölbt ausgebildet.
  • Im Einzelnen zeigt die Fig. 3a einen Bauteilstapel 1 vor dem ersten Beschichtungsdurchgang. Fig. 3b zeigt einen Bauteilstapel 1 mit zwei Bauteilen 2 nach einem ersten Beschichtungsdurchgang. Deutlich zu sehen ist die innere Begrenzungsfläche 22, die nur teilweise beschichtet ist. Die nach diesem ersten Beschichtungsdurchgang ausgebildete Bauteilbeschichtung 6 ist unregelmässig und weist ungleiche Schichtdicken auf, da der Beschichtungsstrahl nur auf einen Teil der inneren Begrenzungsfläche der durchgehenden Bauteilöffnung auftrifft und somit nach dem ersten Beschichtungsdurchgang nur dieser Teil der inneren Begrenzungsfläche beschichtet ist. Beschichtet werden in diesem ersten Beschichtungsdurchgang nur die Flächen, die eine Orientierung annähernd senkrecht in Richtung des Beschichtungsstrahls mit dem ersten Winkel haben und auf welche der Beschichtungsstrahl nicht zu flach auftrifft.
  • Fig. 3c zeigt den Bauteilstapel 1 nach einem zweiten Beschichtungsdurchgang nach dem erfindungsgemässen Verfahren.
  • In diesem zweiten Beschichtungsdurchgang, wenn der zweite Winkel, der in Bezug auf den ersten Winkel relativ zur ersten Stapelöffnungsfläche in entgegengesetzte Richtungen ausgebildet ist, werden die Teile der ungleichförmigen inneren Begrenzungsfläche beschichtet, die beim vorherigen Beschichtungsdurchgang nicht annähernd senkrecht in Richtung des Beschichtungsstrahls ausgerichtet waren. Die Bauteilbeschichtung 6 ist in Fig. 3c als eine im Wesentlichen glatte Bauteilbeschichtung 6 mit einem gleichmässigen Schichtverlauf und gleichen Schichtdicken gezeigt.
  • Fig. 4 entspricht im Wesentlichen Fig. 2, allerdings ist eine Ausführungsvariante der Erfindung dargestellt. Der Unterschied zu Fig. 2 besteht darin, dass eine erste thermische Spritzeinrichtung 7 mit einem ersten Beschichtungsstrahl 71 und eine zweite thermische Spritzeinrichtung 8 mit einem zweiten Beschichtungsstrahl 81 vorgesehen sind. Bei dieser Ausführungsvariante erfolgt das Ausbilden des ersten Winkels (nicht dargestellt) mittels der ersten thermischen Spritzeinrichtung 7 und des zweiten Winkels (nicht dargestellt) mittels der zweiten thermischen Spritzeinrichtung 8 gleichzeitig und der erste und zweite Beschichtungsdurchgang finden gleichzeitig statt.
  • Die Fig. 5 a-b entsprechen im Wesentlichen Fig. 2 und zeigen Bauteilstapel mit erfindungsgemässer Anordnung der Bauteile und Darstellung des ersten und zweiten Winkels.
  • In Fig. 5a ist dargestellt, wie zwischen der ersten Stapelöffnungsfläche 111 und dem Beschichtungsstrahl 31 ein erster Winkel α ausgebildet ist und in Fig. 5b, wie in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche 111 und dem Beschichtungsstrahl 31 ein zweiter Winkel β ausgebildet ist. Der erste Winkel α und der zweite Winkel β sind dabei relativ zur ersten Stapelöffnungsfläche in entgegengesetzte Richtungen ausgebildet.
  • Es versteht sich, dass die zuvor beschriebenen Ausführungsbeispiele der Erfindung, je nach Anwendung, auch in jeder geeigneten Weise kombinierbar sind und die im Rahmen dieser Anmeldung beschriebenen Ausführungsbeispiele lediglich exemplarisch zu verstehen sind.

Claims (14)

  1. Verfahren zum thermischen Beschichten eines Bauteilstapels, umfassend ein Bauteil (2), wobei das Bauteil (2) eine durchgehende Bauteilöffnung (21) aufweist und das Bauteil (2) derart in Bezug auf eine Stapelachse (A) ausgerichtet wird, dass der Bauteilstapel (1) eine durchgehende Stapelöffnung (11) aufweist, wobei die Stapelöffnung (11) eine erste Stapelöffnungsfläche (111) und eine zweite Stapelöffnungsfläche (112) umfasst und die erste Stapelöffnungsfläche (111) und die zweite Stapelöffnungsfläche (112) entlang der Stapelachse (A) angeordnet werden, und eine innere Begrenzungsfläche (22) der Bauteilöffnung (21) mittels einer thermischen Spritzvorrichtung (3, 7, 8) mit einem Beschichtungsstrahl (31, 71, 81) thermisch innenbeschichtet wird, dadurch gekennzeichnet, dass
    der Bauteilstapel (1) derart beschichtet wird, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31, 71, 81) ein erster Winkel (α) ausgebildet wird und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31, 71, 81) ein zweiter Winkel (β) ausgebildet wird, wobei der erste Winkel (α) und der zweite Winkel (β) relativ zur ersten Stapelöffnungsfläche (111) in entgegengesetzte Richtungen ausgebildet werden.
  2. Verfahren nach Anspruch 1, wobei der zweite Winkel (β) dadurch ausgebildet wird, dass der Bauteilstapel (1) nach dem ersten Beschichtungsdurchgang derart um einen ersten Drehpunkt (D1) auf der Stapelachse (A) gedreht wird, dass die erste Stapelöffnungsfläche (111) und die zweite Stapelöffnungsfläche (112) nach der Drehung eine in Bezug auf vor der Drehung entgegengesetzte Anordnung entlang der Stapelachse (A) aufweisen.
  3. Verfahren nach Anspruch 1, wobei der zweite Winkel (β) dadurch ausgebildet wird, dass die thermische Spritzeinrichtung (3) nach dem ersten Beschichtungsdurchgang um einen zweiten Drehpunkt (D2) auf der Stapelachse (A) gedreht wird.
  4. Verfahren nach Anspruch 1, wobei die thermische Spritzvorrichtung (3) im ersten Beschichtungsdurchgang und im zweiten Beschichtungsdurchgang durch die erste Stapelöffnungsfläche (111) geführt wird.
  5. Verfahren nach Anspruch 1, wobei eine erste thermische Spritzeinrichtung (7) mit einem ersten Beschichtungsstrahl (31, 71) und eine zweite thermische Spritzeinrichtung (3,8) mit einem zweiten Beschichtungsstrahl (81) vorgesehen sind und der erste Beschichtungsdurchgang und der zweite Beschichtungsdurchgang gleichzeitig stattfinden.
  6. Verfahren nach einem der vorangehenden Ansprüche, wobei der Winkel (α) und der Winkel (β) zwischen 0 und 30 Grad, bevorzugt zwischen 5 und 15 Grad und besonders bevorzugt 10 Grad betragen.
  7. Verfahren nach einem der vorangehenden Ansprüche, wobei ein innerer Querschnitt der inneren Begrenzungsfläche (22) der Bauteilöffnung (21) entlang der Stapelachse (A) ungleichförmig, insbesondere konvex gewölbt ausgebildet wird.
  8. Verfahren nach einem der vorangehenden Ansprüche, wobei der Bauteilstapel (1) beim Beschichten um die Stapelachse (A) und / oder die thermische Spritzvorrichtung (3, 7, 8), insbesondere ein Plasmabrenner, rotiert wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, wobei das Bauteil (2) ein Lagerbauteil ist und / oder die innere Begrenzungsfläche (22) als eine Bauteilsitzfläche, insbesondere zur Lagerung einer Welle, ausgebildet ist.
  10. Verfahren nach einem der vorangehenden Ansprüche, wobei der Bauteilstapel (1) auf einer Halterung (4) angeordnet wird.
  11. Verfahren nach einem der vorangehenden Ansprüche, wobei zwischen den Bauteilen (2) des Bauteilstapels (1) ein Abstandshalter (5) derart vorgesehen wird, dass die Bauteile (2) beabstandet angeordnet werden.
  12. Vorrichtung mit einem Bauteilstapel, umfassend eine thermische Spritzvorrichtung (3, 7, 8) mit einem Beschichtungsstrahl (31, 71, 81) und ein Bauteil (2), wobei das Bauteil (2) eine durchgehende Bauteilöffnung (21) aufweist und das Bauteil (2) derart in Bezug auf eine Stapelachse (A) ausgerichtet ist, dass der Bauteilstapel (1) eine durchgehende Stapelöffnung (11) aufweist, wobei die Stapelöffnung (11) eine erste Stapelöffnungsfläche (111) und eine zweite Stapelöffnungsfläche (112) umfasst und die erste Stapelöffnungsfläche (111) und die zweite Stapelöffnungsfläche (112) entlang der Stapelachse (A) angeordnet sind, und eine innere Begrenzungsfläche (22) der Bauteilöffnung (21) thermisch innenbeschichtbar ist,
    dadurch gekennzeichnet, dass
    der Bauteilstapel (1) derart beschichtbar ist, dass in einem ersten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31, 71, 81) ein erster Winkel (α) ausgebildet ist und in einem zweiten Beschichtungsdurchgang zwischen der ersten Stapelöffnungsfläche (111) und dem Beschichtungsstrahl (31) ein zweiter Winkel (β) ausgebildet ist, wobei der erste Winkel (α) und der zweite Winkel (β) relativ zur ersten Stapelöffnungsfläche (111) in entgegengesetzte Richtungen ausgebildet sind.
  13. Vorrichtung nach Anspruch 12, wobei die Vorrichtung eine Halterung (4) für den Bauteilstapel (1) umfasst.
  14. Vorrichtung nach einem der Ansprüche 12 bis 13, wobei der Bauteilstapel (1) rotierbar in Bezug auf die thermische Spritzeinrichtung (3, 7, 8) angeordnet ist und / oder die thermische Spritzeinrichtung (3, 7, 8) um die Stapelachse (A) rotierbar ist.
EP13180200.1A 2012-09-19 2013-08-13 Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel Active EP2711440B8 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13180200.1A EP2711440B8 (de) 2012-09-19 2013-08-13 Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12185018 2012-09-19
EP13180200.1A EP2711440B8 (de) 2012-09-19 2013-08-13 Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel

Publications (3)

Publication Number Publication Date
EP2711440A1 true EP2711440A1 (de) 2014-03-26
EP2711440B1 EP2711440B1 (de) 2015-09-30
EP2711440B8 EP2711440B8 (de) 2015-11-04

Family

ID=46980781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13180200.1A Active EP2711440B8 (de) 2012-09-19 2013-08-13 Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel

Country Status (6)

Country Link
US (1) US9327302B2 (de)
EP (1) EP2711440B8 (de)
JP (1) JP6294029B2 (de)
CN (1) CN103657912B (de)
BR (1) BR102013022362B1 (de)
CA (1) CA2821094C (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314348A1 (de) * 1973-03-22 1974-09-26 Volvo Ab Flammspritzverfahren zum aufbringen eines verschleissfesten metallueberzugs auf die innenflaeche ringfoermiger gegenstaende
JPS54162635A (en) * 1978-06-15 1979-12-24 Kawasaki Heavy Ind Ltd Line explosive spraying method
EP0498479A1 (de) * 1991-02-02 1992-08-12 Ae Piston Products Limited Kolben
GB2262945A (en) * 1992-01-03 1993-07-07 Cofap Thermal spraying of piston rings with molybdenum alloy
GB2313171A (en) * 1996-05-16 1997-11-19 Cummins Engine Co Inc Coating piston rings
WO1999005339A1 (de) * 1997-07-28 1999-02-04 Volkswagen Aktiengesellschaft Thermisches beschichtungsverfahren, insbesondere für gleitlager
WO2004097272A1 (de) * 2003-04-28 2004-11-11 Man B & W Diesel A/S Kolben für einen grossmotor sowie verfahren zur herstellung einer verschleissschutzschicht bei einem derartigen kolben
EP1900473A1 (de) * 2006-09-15 2008-03-19 ThyssenKrupp Automotive AG Verfahren zur Herstellung eines Pleuels
US20090174150A1 (en) * 2008-01-08 2009-07-09 Thomas Smith Lateral side protection of a piston ring with a thermally sprayed coating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866241A (en) * 1988-03-30 1989-09-12 Union Carbide Corporation Plasma spray apparatus for coating irregular internal surfaces
US4886013A (en) * 1989-01-12 1989-12-12 Nordson Corporation Modular can coating apparatus
JP4042090B2 (ja) * 2001-03-23 2008-02-06 スズキ株式会社 シリンダブロックの溶射方法
DE10392994C5 (de) * 2002-08-02 2013-08-14 Mitsubishi Heavy Industries, Ltd. Wärmesperrschicht-Beschichtungsverfahren und dessen Verwendung
CN100376331C (zh) * 2004-02-27 2008-03-26 上海瑞法喷涂机械有限公司 陶瓷条棒氧、乙炔火焰喷枪装置及其控制方法
DE102006062687A1 (de) * 2006-10-30 2008-05-08 Daimler Ag Verfahren und Elektrode zur Herstellung einer im wesentlichen zylinderförmigen Lagerfläche einer radialen Wellenlagerung in elektrisch leitfähigem Material sowie Pleuel
AR076167A1 (es) * 2009-03-30 2011-05-26 Sumitomo Metal Ind Aparato y metodo para la aplicacion de un lubricante a una porcion roscada de una tuberia de acero

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314348A1 (de) * 1973-03-22 1974-09-26 Volvo Ab Flammspritzverfahren zum aufbringen eines verschleissfesten metallueberzugs auf die innenflaeche ringfoermiger gegenstaende
JPS54162635A (en) * 1978-06-15 1979-12-24 Kawasaki Heavy Ind Ltd Line explosive spraying method
EP0498479A1 (de) * 1991-02-02 1992-08-12 Ae Piston Products Limited Kolben
GB2262945A (en) * 1992-01-03 1993-07-07 Cofap Thermal spraying of piston rings with molybdenum alloy
GB2313171A (en) * 1996-05-16 1997-11-19 Cummins Engine Co Inc Coating piston rings
WO1999005339A1 (de) * 1997-07-28 1999-02-04 Volkswagen Aktiengesellschaft Thermisches beschichtungsverfahren, insbesondere für gleitlager
WO2004097272A1 (de) * 2003-04-28 2004-11-11 Man B & W Diesel A/S Kolben für einen grossmotor sowie verfahren zur herstellung einer verschleissschutzschicht bei einem derartigen kolben
EP1900473A1 (de) * 2006-09-15 2008-03-19 ThyssenKrupp Automotive AG Verfahren zur Herstellung eines Pleuels
EP2029317B1 (de) 2006-09-15 2010-08-18 ThyssenKrupp Metalúrgica Campo Limpo Ltda. Verfahren zur herstellung eines pleuels
US20090174150A1 (en) * 2008-01-08 2009-07-09 Thomas Smith Lateral side protection of a piston ring with a thermally sprayed coating

Also Published As

Publication number Publication date
EP2711440B8 (de) 2015-11-04
US9327302B2 (en) 2016-05-03
JP2014062319A (ja) 2014-04-10
US20140079890A1 (en) 2014-03-20
EP2711440B1 (de) 2015-09-30
JP6294029B2 (ja) 2018-03-14
BR102013022362B1 (pt) 2020-12-15
CA2821094C (en) 2020-10-27
BR102013022362A2 (pt) 2014-10-07
CN103657912A (zh) 2014-03-26
CA2821094A1 (en) 2014-03-19
CN103657912B (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
EP0951942B1 (de) Verfahren und Rotationszerstäuber zum serienweisen Beschichten von Werkstücken
DE1923234B2 (de) Verfahren und Düse zum luftlosen Umwandeln einer unter Überdruck strömenden Flüssigkeit
DE19809367B4 (de) Verfahren und Vorrichtung zur Feinbearbeitung von Kolbenlaufbahnen
WO2020051607A1 (de) Zylinderkopf
DE10303617A1 (de) Turbinenrad zum Antrieb schnell rotierender Werkzeuge
DE3102848C2 (de)
DE2517982B2 (de) Verfahren und vorrichtung zur kuehlung eines stranges beim stranggiessen von stahl
DE10006559A1 (de) Schleifverfahren und Schleifmaschine
EP2711440B1 (de) Thermisches Beschichten eines Bauteilstapels sowie Bauteilstapel
WO2006119730A2 (de) Verfahren und vorrichtung zur fertigung eines dreidimensionalen nockens und dreidimensionaler nocken, insbesondere zur variablen betätigung von hubventilen in brennkraftmaschinen
DE102017118138A1 (de) Verbesserte Haftung des thermischen Spritzens mittels Kompressionstechnik
DE2314348A1 (de) Flammspritzverfahren zum aufbringen eines verschleissfesten metallueberzugs auf die innenflaeche ringfoermiger gegenstaende
EP2505820B1 (de) Vorrichtung zum vernebeln bzw. versprayen von Flüssigkeiten in einem Brennraum
DE10112562A1 (de) Aussenmischdüse
DE2102483C3 (de) Verfahren und Vorrichtung zum Beschichten der Innenfläche eines hohlen zylindrischen Gegenstandes
EP1406749B1 (de) Verfahren und vorrichtung zum abtragen von einem im innern eines werkstücks angeordneten material
EP0383085B1 (de) Lochplatte für ein Kraftstoffeinspritzventil
EP2145974A1 (de) Verfahren zum Hochgeschwindigkeits-Flammenspritzen
WO2009144109A1 (de) Verfahren zum hochgeschwindigkeits-flammspritzen
WO2007082701A1 (de) Brennraumanordnung
AT517482B1 (de) Einrichtung zur reinigung von gegenständen
DE2553630C3 (de) Walzenanordnung für Auftragsmaschinen zum Auftragen zähflüssiger Medien, wie Leim, Lack etc.
DE636697C (de) Verfahren und Vorrichtung zum Haerten von Glas
DE398897C (de) Zerstaeuberduese
DE102016108955B4 (de) Zylinderinnenfläche eines Verbrennungsmotors zur Beschichtung mittels thermischen Spritzens sowie Verfahren zur Herstellung einer Zylinderlauffläche eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013001261

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0004000000

Ipc: B05B0015040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 1/02 20060101ALI20150320BHEP

Ipc: C23C 4/12 20060101ALI20150320BHEP

Ipc: C23C 4/00 20060101ALI20150320BHEP

Ipc: B05B 15/04 20060101AFI20150320BHEP

Ipc: C23C 4/02 20060101ALI20150320BHEP

Ipc: C23C 4/04 20060101ALI20150320BHEP

INTG Intention to grant announced

Effective date: 20150427

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: OERLIKON METCO AG, WOHLEN, CH

Free format text: FORMER OWNER: SULZER METCO AG, CH

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON METCO AG, WOHLEN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001261

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001261

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013001261

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05B0015040000

Ipc: B05B0014000000

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 11

Ref country code: CH

Payment date: 20230902

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 11

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230828

Year of fee payment: 11