EP2699353A1 - Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible. - Google Patents

Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible.

Info

Publication number
EP2699353A1
EP2699353A1 EP12720642.3A EP12720642A EP2699353A1 EP 2699353 A1 EP2699353 A1 EP 2699353A1 EP 12720642 A EP12720642 A EP 12720642A EP 2699353 A1 EP2699353 A1 EP 2699353A1
Authority
EP
European Patent Office
Prior art keywords
microfluidic
channel
openings
chamber
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12720642.3A
Other languages
German (de)
English (en)
Inventor
Maxime DAHAN
Mathieu Morel
Jean-Christophe Galas
Denis Bartolo
Vincent Studer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Victor Segalen Bordeaux 2
Universite Pierre et Marie Curie Paris 6
Ecole Normale Superieure
Universite Bordeaux Segalen
Fonds ESPCI Georges Charpak
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Victor Segalen Bordeaux 2
Universite Pierre et Marie Curie Paris 6
Ecole Normale Superieure
Universite Bordeaux Segalen
Fonds ESPCI Georges Charpak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Victor Segalen Bordeaux 2, Universite Pierre et Marie Curie Paris 6, Ecole Normale Superieure, Universite Bordeaux Segalen, Fonds ESPCI Georges Charpak filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2699353A1 publication Critical patent/EP2699353A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation

Definitions

  • the present invention relates to the field of microfluidics.
  • Microfluidics implements systems of micrometric dimensions, the size of which is generally between a few tens and a few hundred microns.
  • control can concern the quantity of molecules interacting with the cancer cells, the concentration map of the molecules to which the cancer cells are subjected, the evolution over time of the quantity of these molecules and / or the concentration map of these molecules. applied to cancer cells, etc.
  • microfluidic systems can be used for toxicity tests of certain molecules on living cells and / or cellular tissues.
  • the control of the amount of molecules, possibly toxic, administered to the cells and the way in which these molecules are administered is necessary to determine the threshold of toxicity.
  • An example of a microfluidic system widely used to stimulate living cells is presented in document US Pat. No. 7,374,906. This microfluidic system makes it possible, in particular, to subject living cells to a concentration gradient of molecules, whose map is here a linear, stable profile. in time.
  • a major disadvantage of this type of microfluidic system is that living cells are subjected to a flow generating disturbing shear forces. This shearing effect is particularly troublesome when one seeks to study the chemotactic response of the growth cone of nerve cells. Indeed, the flow generates shear stresses that modify the response of the target cells in the best case, or even cause the death or tearing of the cells.
  • microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients
  • R. L. Smith et al., (2010) 9: 613-622 Such a microfluidic system is for example presented in the article "Microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients", R. L. Smith et al., (2010) 9: 613-622.
  • This microfluidic system comprises a microfluidic device 100 and means (not shown) for supplying the device with fluids.
  • the microfluidic device 100 disclosed herein is shown in FIG. 1 in an exploded perspective view.
  • It comprises a PDMS structure in which several fluid supply channels 130a, 130b, 130c, 130d are formed independent of one another.
  • the upper wall 120 of each of these channels 130a, 130b, 130c, 130d has one or more orifice (s) 110 passing through this wall.
  • On the side of the wall 120 opposite the microfluidic channels there is a culture chamber 140 for living cells filled with a culture medium 150 in the form of a gel, such as agarose.
  • the wall 120 thus forms a membrane, insofar as it makes it possible to separate two media, namely the microfluidic channels 130a, 130b, 130c, 130d, in which a fluid is intended to circulate, and the culture chamber 140.
  • a glass plate 160 makes it possible to close the culture chamber 140, in its upper part.
  • the fluid supply means are not shown. It should however be noted that one or more fluid (s) can be introduced into each of the channels 130a, 130b, 130c, 130d, these fluids comprising molecules for stimulating living cells, passing through the wall 120 PDMS via the orifices of diffusion 110.
  • microfluidic device 100 To control the culture of living cells in space, it is possible, with the microfluidic device 100, to choose the channels in which a fluid is sent with molecules for stimulating living cells. It is thus possible to choose precisely the orifices 110 from which these molecules will diffuse into the culture chamber 140.
  • the device 100 also has a great flexibility in the choice of the stimulation molecules that can be used, insofar as each of the fluid supply channels 130a, 130b, 130c, 130d provides a means of supply that is specific to it.
  • This microfluidic system however has several disadvantages. It requires the use of a culture chamber 140 comprising a culture medium 150 in the form of a gel to prevent the passage of fluid from the fluid supply channels to the culture chamber.
  • the device actually manufactured and tested has square orifices of 20 ⁇ x 20 ⁇ . These dimensions are relatively large and promote the passage of the fluid to the culture chamber 140.
  • the gel slows down the diffusion of the stimulation molecules towards the targeted living cells.
  • the stabilization of the concentration map of these stimulation molecules within the culture chamber 140 is slow.
  • the pacing molecules diffuse in all directions in the gel. Consequently, for each orifice 110 taken independently of the others, the stimulation molecules are distributed, at a target located in the gel, over a surface greater than the passage surface of an orifice 110 located in the wall 120.
  • the stimulation of the target by specific molecules is therefore less precise than it is theoretically with a prior choice for the sizing of the orifices.
  • At the level of the target one therefore loses in spatial resolution, compared to the spatial resolution theoretically provided by the dimensions of an orifice.
  • the diffusion orifices 110 have a certain surface density on the surface of the wall 120, which can hardly be increased.
  • the distance between two neighboring orifices made in the PDMS wall 120 is between 300 ⁇ and 400 ⁇ .
  • the density of the orifices 110 that can be obtained with the manufacturing method used in this article is limited.
  • the DRIE method used in this article to make the microfluidic device has limits on the density of microfluidic channels that can be obtained.
  • An object of the invention is to overcome at least one of these disadvantages.
  • the invention proposes a microfluidic system for controlling a concentration map of molecules capable of stimulating a target, for example formed by a set of living cells, characterized in that the system comprises:
  • a microfluidic device comprising: • n c ⁇ 1 channel (aux) microfluidic (s), the or each channel being provided with at least one inlet for at least one fluid and at least one outlet for this fluid;
  • one or more fluid supply means for supplying the or each microfluidic channel with fluid, at least one of these fluids comprising molecules for stimulating the target.
  • the system may provide other technical features, taken alone or in combination:
  • the microporous membrane is provided with pores whose hydraulic diameter is between ⁇ , ⁇ and 12 ⁇ , preferably between ⁇ , ⁇ and 3 ⁇ ;
  • the surface density of the pores of the microporous membrane is between 10 3 and 10 10 pores / cm 2;
  • the microporous membrane is made of a material chosen from: glass, polycarbonate, polyester, polyethylene terephthalate, quartz, silicon, silica or silicon carbide;
  • a cover for the microfluidic channels, said cover being made of a material chosen from: glass or silicon, a non-elastomeric photocured polymer, a metal, an electrically or semiconducting conducting alloy, a ceramic, quartz sapphire, an elastomer; said at least one inlet orifice and said at least one outlet orifice for the fluids are formed in the lid;
  • microfluidic channels each comprise at least one photocured and / or thermoset resin wall
  • the chamber or the microfluidic channel comprises a base made of an optically transparent material, this base being disposed on the other side of the chamber or the microfluidic channel, with respect to the microporous membrane;
  • the microfluidic chamber or channel comprises side walls made of photocured and / or thermoset resin
  • a plurality of means is provided for feeding the microfluidic channels, each of these supply means feeding one of the microfluidic channels;
  • optical display means is provided
  • the optical display means uses a photoactivation localization microscopy technique or a stimulated emission depletion microscopy technique
  • the openings form a two-dimensional network in the plane to which they belong;
  • FIGS. 3 (a) to 3 (d) represent, as the case may be, steps of a process for manufacturing the microfluidic device represented in FIG. 2 or intermediate structures obtained at the end of certain steps of this process;
  • FIGS. 4 (a) to 4 (c) show intermediate structures obtained during the manufacture of an assembly formed by a base and side walls of the device, said assembly being intended to form a part of the microfluidic device of FIG. 2;
  • FIG. 5 (a) represents fluids flowing in the microfluidic channels of the microfluidic device according to the invention represented in FIG. 2, one of these fluids comprising stimulation molecules for the target cells and FIG. b) represents a concentration profile of stimulation molecules in a chamber of the device of FIG. 2;
  • FIG. 6 shows another microfluidic device according to the invention, in a sectional view
  • FIGS. 7 (a), 7 (b), 7 '(a), 7' (b) and 7 (c) to 7 (f) represent manufacturing steps of the microfluidic device of FIG. 6 or intermediate structures obtained in the manufacture of this microfluidic device;
  • FIG. 8 is a diagram showing the microfluidic device of FIG. 6, in a partial bottom view
  • FIG. 9 represents, in a perspective view, the microfluidic channels of the microfluidic device of FIG. 6, which are arranged such that each microfluidic channel comprises several openings;
  • FIG. 10 shows, in a view from above, microfluidic channels of a microfluidic device according to a variant of Figure 6, these channels being arranged such that each microfluidic channel comprises an opening opening on a microporous membrane of this device;
  • FIGS. 12 (a) to 12 (d) represent, as the case may be, steps of a method of manufacturing an alternative embodiment of a microfluidic device according to the invention or intermediate structures obtained at the after certain steps of this process.
  • a microfluidic device 1 comprising two microfluidic channels, each of these channels being provided with openings opening onto the membrane, as well as its manufacturing method.
  • This microfluidic device 1 comprises a lid 2, advantageously rigid, provided with orifices 21, 22 for the circulation of fluids in microfluidic channels, a side wall 3 and a central wall 30, both advantageously made of photocuric and / or thermoset resin .
  • the side wall 3 of the device 1 is made of a single layer of photocured resin and / or thermoset.
  • the microfluidic device 1 also comprises, in its lower part, two openings 47, 470 covered by a microporous membrane 5 extending transversely to the base of the side wall 3 and the central wall 30.
  • opening 47, 470 is meant the end surface of the channel which extends between the walls of the device and which is intended to be covered by the membrane 5.
  • the openings 47, 470 are arranged in the same plane and can be likened to an array of openings, in this case to a dimension, in this plane.
  • the term "network" of openings simply designates the fact that there are several openings, without there necessarily being a link between these openings and / or a specific arrangement of these openings in the plan to which they belong.
  • the openings 47, 470 are fed by two different microfluidic channels and necessarily arranged in a row in the same plane.
  • certain openings may be fed by the same channel, the openings being also arranged in two dimensions in the same plane.
  • the walls 3, 30 and the cover 2 make it possible to define two microfluidic channels 4, 40, closed at their respective openings 47, 470 by the microporous membrane 5.
  • the fluid inlet for each of these channels 4, 40 respectively corresponds to at the orifice 21 or 22.
  • the fluid outlets for these microfluidic channels are not shown.
  • the microporous membrane 5 separates two media, namely the microfluidic channel and the external medium of this channel, this external medium being for example formed by a culture chamber 8 in which the target to be stimulated is intended to be arranged.
  • the gel used in the Smith et al. is not a membrane, because it does not separate the microfluidic channel and the culture chamber, but instead forms a culture medium filling the culture chamber.
  • microporous membrane 5 prevents the fluid intended to flow in the microfluidic channels 4, 40 to pass on the other side of this membrane, the latter, however, to broadcast molecules that may stimulate the target, which are likely to be transported by the fluid in at least one of the microfluidic channels 4, 40 as will be detailed in the following description.
  • the device 1 according to the invention does not require the presence of a gel in the culture chamber 8.
  • the microfluidic device 1 also comprises a base 6, advantageously rigid and transparent, and side walls 7a, 7b, advantageously made of photocured resin and / or thermoset. These lateral walls 7a, 7b, the base 6 and the microporous membrane make it possible to form the chamber 8. In order to form the chamber 8, four side walls are provided, these walls actually being comparable to a single contour, since the manufacturing process advantageously performs these walls in one piece.
  • the bottom of the chamber 8 is formed by the upper face 61 of the base 6, which is intended to receive the target, for example formed of living cells. In this case, the living cells are intended to be placed apart from the microporous membrane 5, on the base 6 of the chamber 8. They can thus be cultured under standard conditions, separately from the microfluidic device 1.
  • microfluidic channels 4, 40 make it possible to circulate a fluid comprising molecules capable of stimulating the target. This is done, as will be explained in more detail in the following description, by diffusion through the microporous membrane 5 to the chamber 8, then by diffusion through the chamber 8 (culture chamber) at the bottom of which find, for example, living cells (CV) that we try to stimulate.
  • a fluid comprising molecules capable of stimulating the target. This is done, as will be explained in more detail in the following description, by diffusion through the microporous membrane 5 to the chamber 8, then by diffusion through the chamber 8 (culture chamber) at the bottom of which find, for example, living cells (CV) that we try to stimulate.
  • CV living cells
  • the base 6 is made of an optically transparent material, for example glass. This is interesting because it is then possible to have an optical display means 18 outside the device for visualizing, for example, the response to a stimulation of the living cells arranged at the bottom of the chamber 8.
  • the cover 2 may be made of a material chosen from: glass or silicon, a non-elastomeric photocrosslinked polymer, a metal, an electrically conductive or semi-conductive alloy, a ceramic, quartz, sapphire, an elastomer.
  • the microporous membrane 5 is chosen to avoid any fluid passage between the mircrofluidic channels 4, 40 and the chamber 8. In reality, the microporous membrane 5 can not be completely sealed to a fluid passage. Also, it can be considered that the cells in the chamber 8 are not subject to any flow if the fluid flow rate through the microporous membrane 5 is less than a limit value.
  • this limit speed is of the order 1 ⁇ ⁇ / s.
  • the shear stresses applied to the cells are negligible.
  • the speed in each microfluidic channel 4, 40 may be between ⁇ / s and ⁇ / s, or even be greater than 10,000 ⁇ / s.
  • the hydraulic resistance R h .membrane of the microporous membrane 5 must be, depending on the speed of the fluid in the channel 4, 40 from 100 to 10,000 times greater than the hydraulic resistance Rh channel channel of the microfluidic channel 4, 40.
  • the term ⁇ must be less than 10 "10 m to respect the relation (R3).
  • the pore surface density p should be less than 10 5 pores / cm 2 .
  • the relation (R3) can of course be generalized as a function of the considered value of the limit velocity of the fluid passing through the microporous membrane 5, on the one hand, and of the flow velocity of this fluid in the microfluidic channel 4, 40 on the other hand.
  • the microporous membrane 5 may have pores whose hydraulic diameter is between 0.05 ⁇ ⁇ 12 ⁇ . In particular, if the pore is cylindrical then, the hydraulic diameter of the pore corresponds to its diameter.
  • this hydraulic diameter will however be between 0.05 ⁇ and 3 ⁇ . Indeed, it should be noted that the use of a membrane with pores whose hydraulic diameter is less than 3 ⁇ will avoid any passage of flow in the chamber 8, for most conditions of use likely to be encountered.
  • the pores may therefore have hydraulic diameters advantageously between 0.2 ⁇ and 3 ⁇ .
  • no lower limit for the hydraulic pore diameter which is why it is possible to implement pores with a hydraulic diameter of 0.05 ⁇ .
  • the use of the microfluidic device is a priori more delicate (for example in the choice of flow rates in the microfluidic channel 4, 40) to ensure that the
  • the increase in this hydraulic diameter is accompanied by a decrease in the number of pores of the membrane associated with each of the openings 47, 470 covered by the membrane 5.
  • this reduction in the number of pores of the membrane by opening promotes the increase of the hydraulic resistance through each opening of the microfluidic device. For this reason, it is conceivable to use pores whose hydraulic diameter goes beyond 3 ⁇ by limiting the conceivable range of fluid flow rates in the microfluidic channels.
  • an opening necessarily corresponds to one and only one diffusion orifice because there is no membrane such as that proposed in the invention.
  • the hydraulic resistance depends on the diameter of the orifice itself in the Smith et al.
  • microporous membrane 5 thus has a real advantage, since it makes it possible to dispense with a gel and the disadvantages that this gel involves.
  • the pore density of the microporous membrane 5 can be between 10 3 and 10 10 pores / cm 2 .
  • the height of the pores can be between 50 nm and 100 ⁇ .
  • microporous membrane 5 can be made in various materials such as glass, quartz, silicon, silica or silicon carbide or polymers of the same nature as the polymers that can be used for the rest of the microfluidic device. It is thus possible to use polycarbonate, polyester or polyethylene terephthalate.
  • a microporous membrane 5 of polycarbonate whose pore diameter is between 0.2 ⁇ and 1 ⁇ , for example cyclopore type from Whatman (Whatman Cyclopore TM).
  • a microporous membrane 5 of polyester of which the pore diameter is between 0.4 and 3 ⁇ ⁇ , e.g., Transwell type Corning (Corning ® Transwell ®).
  • a microporous membrane 5 of polyethylene terephthalate the pore diameter of which is between 0.4 ⁇ and 8 ⁇ , for example of the "Track-Etched" type from the company Becton Dickinson.
  • microporous membranes have the advantage of being compatible with a method of manufacturing the microfluidic device 1, which is described hereinafter with reference to FIGS. 3 (a) to 3 (d). They also have the advantage of being biocompatible and functionalizable to be specifically permeable to various molecules. Functionalisable means that the microporous membrane 5 can be chemically modified to fulfill a particular function (retention of certain species, chemical reactions, etc.).
  • the device may have the following dimensions.
  • the height h of the microfluidic channel may be between 1 ⁇ and 1,000 ⁇ , advantageously between 10 ⁇ and 200 ⁇ . Its width (not shown) can be between 10 ⁇ and 2 mm.
  • the height h 'of the chamber 8 can be between 10 ⁇ and 1,000 ⁇ , advantageously between 50 ⁇ and 200 ⁇ .
  • the distance between the entrance E and the exit S is a few centimeters.
  • Optical display means 18 may be associated with the microfluidic device, as mentioned above. This optical display means 18 makes it possible to know the concentration map of the stimulating molecules applied to the target cells. It also allows functional imaging of the biological response of cells to stimulation molecules. It is therefore much easier to perform correlations experimentally between the observed behavior of the target cells and the concentration map applied to them.
  • This observation can be made at high spatial resolution because the base of optically transparent material can be very thin.
  • fluorescence microscopy of high resolution, or even super-resolution with techniques such as photoactivation localization microscopy (PALM for "Photo-Activated Localized Microscopy” according to the English terminology) or stimulated emission depletion microscopy (STED for "STimulated- Emission-Depletion "according to the English terminology), using for example a base formed with a glass slide of 150 ⁇ thick.
  • PAM photoactivation localization microscopy
  • STED stimulated emission depletion microscopy
  • An exemplary method of manufacturing the microfluidic device 1 according to the invention is a method which comprises at least the steps of:
  • step (a) The operation performed in step (a) is shown in Fig. 3 (a).
  • the stamp 1 'used during step (a) may be made of elastomeric material such as PDMS. It comprises a profile used as a mold complementary to that of the microfluidic device 1 that is to be produced.
  • the stamp 1 'thus has a protuberance 1' has a vertical slot 1 'c to form the central wall 30 of the microfluidic device 1 that is desired. It also has a hollow zone 1 'surrounding the protrusion Va, zone in which said first side wall 3 of the microfluidic device 1 is intended to be formed.
  • the support 2 ' can also be made of PDMS and has a planar profile.
  • the microporous membrane 5 is previously disposed on the support 2 ', then the stamp V is pressed against the support 2'.
  • the stamp 1 'thus wedges the membrane 5 against the support 2' via the protuberance 1'a.
  • the volume between the stamp V and the support 2 ' is filled in the appropriate quantity, especially in the hollow zone 1' b of the stamp 1 'and in the slot made in the protuberance 1'a, for example with resin photocurable and / or photopolymerizable in liquid form RL.
  • This filling does not change the position of the microporous membrane 5, because it is wedged between the stamp 1 'and the support 2'.
  • the photocurable and / or photopolymerizable resin is a solution or a dispersion based on monomers and / or prepolymers. Photocure and / or photopolymerizable resins commonly used as adhesives, adhesives or surface coatings are used in the process of the invention.
  • adhesives, adhesives or surface coatings usually used in the optical field are chosen.
  • Such resins when irradiated and photocrosslinked and / or photopolymerized, become solid.
  • the solid thus formed is transparent, free of bubbles or any other irregularity.
  • Such resins are generally based on monomers / comonomers / pre-polymers of the epoxy, epoxysilane, acrylate, methacrylate, acrylic acid or methacrylic acid type, but there may also be mentioned thiolene, polyurethane and urethane-acrylate resins.
  • the resins can be replaced by photocurable aqueous gels such as polyacrylamide gels and are chosen to be liquid at room temperature.
  • the resins can also be replaced by polydimethylsiloxane (PDMS).
  • the polymerization and / or the crosslinking of these resins is carried out by photoactivation using any appropriate means, such as irradiation with visible UV radiation, I.R.
  • a resin is preferably chosen which, once polymerized and / or crosslinked, is rigid and non-flexible, since the elastomeric resins tend to deform when flowing fluids under pressure in the microfluidic device 1.
  • the use of elastomeric photocurable resins is not excluded.
  • a pressure P is then applied to the stamp 1 'to expel any excess resin.
  • the projecting parts and in particular the protuberance 1 'of stamp 1' of elastomer are in contact with the support 2 '.
  • the liquid resin takes the form of the hollow zones of the V patch.
  • step (b) The structure obtained at the end of step (b) is shown in FIG. 3 (b).
  • step (b) the irradiation of the resin is made in the axis perpendicular to the base of the device, through the stamp 1 '.
  • the irradiation must be dosed so, if desired, to leave on the surface of the first side wall 3 and the central wall 30 of resins, active polymerization and / or crosslinking sites.
  • the stamp V is removed from the device.
  • the first resin side wall 3 is observed photopolymerized and / or photo-crosslinked, of complementary profile to that of the hollow zones of the stamp 1 '.
  • the printing with an elastomer stamp Y in a resin in the liquid state makes it possible to obtain structures of very small sizes with a very good resolution.
  • step (c) the lid 2 is then fixed with orifices for the circulation of fluid in the microfluidic channels 4, 40, on the side of said first lateral wall 3 previously in contact with the patch Y.
  • the structure obtained at the end of step (c) is shown in FIG. 3 (c), without the openings of the lid, which are located in another plane.
  • the cover 2 may be made of glass, silicon, a solid polymer film, a metal, a conductive or semiconductor alloy, a ceramic, quartz, sapphire, an elastomer.
  • a glass slide, a polymer film or a silicon wafer is chosen.
  • the materials used to form the lid 2 are chosen according to the application that will be made of the microfluidic device 1.
  • a cover 2 of optically transparent material such as glass
  • optically transparent material such as glass
  • Another asset of the glass is its very good thermal conductivity which allows a homogeneous heating of the devices.
  • the arrangement of the microporous membrane 5 at the bottom of the microfluidic channel 4 makes its use compatible with standard living cell culture protocols. Indeed, it is then conceivable that the base 6 is a lamella of glass on which a culture of living cells is carried out, this lamella then being fixed on the structure obtained at the end of step (c) to form the chamber 8 (culture chamber), as explained in the following description.
  • the manufacturing method described above can allow the manufacture of openings whose dimensions reach 5 ⁇ , with a pitch (distance between the respective centers of two neighboring openings) between two adjacent openings being as small as ⁇ , and therefore especially between 10 ⁇ and values less than 300 ⁇ ! ⁇ , as mentioned in the article by Smith &. al.
  • the pitch may be between 10 ⁇ and 250 ⁇ .
  • the assembly comprising a base 6 and two second lateral walls 7a, 7b can be made from the following process steps: (e- ⁇ ) use an open mold 3 'of elastomeric material having a support face 3'a and a cavity 3'b for receiving a photocurable and / or thermosetting liquid RL resin;
  • step (e- ⁇ ) to (e 3 ) The structure obtained at the end of steps (e- ⁇ ) to (e 3 ) is represented in FIG. 4 (a), in the case where step (e 3 ) consists of a photo-irradiation of the liquid resin .
  • the mold 3 ' such as the stamp 1' and the support 2 ', can be made of an elastomer such as PDMS.
  • the photocurable and / or thermosetting liquid resin used for these steps may be chosen from the possibilities already described for the liquid resin used in step (a).
  • the liquid resins used for steps (a) and (e- ⁇ ) to (e 3 ) are the same.
  • photocurable aqueous gels such as those previously described or polydimethylsiloxane (PDMS) could be used.
  • the base 6 can be chosen from the materials used for the lid.
  • a material optically transparent to facilitate optical viewing by a dedicated device may in particular be glass, the base 6 thus forming a glass cover usually used for the culture of living cells (CV).
  • CV living cells
  • the use of glass also makes it possible to take advantage of existing chemical and biological surface treatments for this substrate.
  • the mask 4 ' may have orifices 4'a, 4'b for photo-irradiating specific areas of the liquid resin to form said second sidewalls 7a, 7b of the microfluidic device.
  • step ( ⁇ 3) is complete, it remains only to remove the mask 4 'and the mold 3' during a step (e) to leave only the assembly formed by said second side walls 7a, 7b and the base 6.
  • This set is shown in Figure 4 (b).
  • a step (es) is then performed, the latter consisting in rinsing said assembly, for example by an ethanol / acetone mixture in 90/10 volume proportions. This rinsing makes it possible to remove all the non-photo-irradiated or unheated resin that can remain on the base 6.
  • this set must be biocompatible.
  • this assembly can be strongly photo-irradiated, for example by UV, then perform an energetic rinsing in a neutral solution, such as water for several hours.
  • the chambers or more generally the various elements of the device, with biocompatible materials.
  • a living cell culture can then be performed on the upper face 61 of the base 6, as shown in Figure 4 (c).
  • This culture is carried out under standard conditions.
  • this culture can be carried out on a base 6 in the form of a conventional glass slide.
  • step (d) can be performed.
  • step (d) The operation performed in step (d) is shown in Fig. 3 (d).
  • the microfluidic device 1 is ready for use. It comprises in particular living cells on the upper face 61 of the base 6, which is opposite to the microporous membrane 5 within the chamber 8 (culture chamber).
  • the microfluidic device 1 To operate the microfluidic device 1, it is associated, within a microfluidic system, with at least one means for supplying at least one of the microfluidic channels 4, 40 with a fluid comprising molecules capable of stimulating a target, such as living cells.
  • two independent fluid reservoirs may be provided, one for supplying the microfluidic channel 4 with a fluid F1 comprising stimulation molecules for the target, the other for supplying the second microfluidic channel 40 with a neutral fluid F2.
  • microfluidic channels 4, 40 that can be used with these reservoirs is shown diagrammatically in FIG. 5 (a), according to a view from above.
  • the fluid F1 is introduced into the microfluidic channel 4 via the inlet E 4 , and leaves this channel 4 via the outlet S 4 .
  • the fluid F 2 is introduced into the microfluidic channel 40 via the inlet E40, and leaves this channel 40 through the outlet S 40 .
  • the two microfluidic channels 4, 40 are of course separated by the central wall 30 of the microfluidic device 1.
  • the separation carried out by the central wall 30 recycles the fluids circulating in each of the microfluidic channels 4, 40, since no mixing can take place between these fluids. Moreover, thanks to this separation, the flow velocities of the fluids can extend over a wide range of values, for example between ⁇ ⁇ / s and 10,000 ⁇ / ⁇ or more, without risking a hydrodynamic mixing of the two fluids under the effect of shear forces. In addition, a difference in speed of circulation of the fluids between the different channels is possible without this causing any problem of operation of the device.
  • the fluids F 1 , F 2 differ only in the presence, in one of the two fluids and in low concentration, of stimulation molecules for the target cells.
  • FIG. 5 (b) schematizes the flow of the fluids F 1, F 2 in the various parts of the microfluidic device, which is shown schematically in a vertical sectional view.
  • Each fluid Fi, F 2 is therefore intended to flow into one of the microfluidic channels 4, 40 of the microfluidic device 1, both in contact with the microporous membrane 5, but not in the chamber 8 (culture chamber).
  • the concentration map of these molecules in the channels 4, 40 is represented by the curve C1, in steps.
  • the transport of these molecules is carried out first by diffusion through the microporous membrane 5, then by diffusion through the chamber 8, to finally reach the upper face 61 of the base 6 of the chamber 8, face 61 on which living cells are located.
  • the concentration map must then stabilize in the chamber 8.
  • the stabilization time t sta b is of the order of h ' 2 / D where h' is the height of the chamber 8 and D the diffusion coefficient of the molecules intended to stimulate the target cells in the chamber 8. It should be noted that to avoid stabilization too high, the height of the chamber will generally be limited to 500 ⁇ .
  • the concentration map thus stabilized in the chamber 8 is represented by the curve C2, which is in the form of a curve representative of an "erf" type function.
  • the chamber 8, closed, can be replaced by a microfluidic channel comprising orifices, advantageously lateral, although no fluid is then intended to flow in this microfluidic channel when a test is in progress.
  • channels can be connected to the side ports to recover secretions from living cells for the purpose of chemically analyzing them.
  • the target cells could also be arranged not on the basis of the chamber 8 or the microfluidic channel, but on the microporous membrane 5 itself.
  • the concentration map obtained at the level of the target cells corresponds to the concentration map generated in the microfluidic channels 4, 40.
  • the target cells are located on the side of the membrane 5, which is opposite to the side in contact with the fluids flowing in the microfluidic channels 4, 40.
  • the microfluidic device 101 shown in FIG. 6 comprises several microfluidic channels 401, 402 each comprising several openings 401 ', 402' on the one hand and 403 ', 404' on the other hand which open onto the microporous membrane 500.
  • These openings 401 ', 402' , 403 ', 404' are arranged in the same plane P, so as to form an array of openings which is two-dimensional in this plane.
  • the plane P is represented in FIG. 6 as well as in FIG. 8, the latter representing said openings in bottom view at this plane P.
  • the microporous membrane 500 extends transversely relative to the side walls of the various microfluidic channels to cover the different channels in their lower parts and thus cover the different openings.
  • the microporous membrane 500 covers all of said openings 401 ', 402', 403 ', 404' of the microfluidic channels 401, 402. This makes it possible to cover the different openings with a single membrane, which is particularly convenient when the network of openings is dense.
  • the method according to the invention can make it possible to manufacture 5 ⁇ openings, separated from one another by a no 10 ⁇ . The step is here defined as the distance separating the respective centers from two neighboring openings.
  • the microporous membrane 500 is provided with pores.
  • the characteristics of this membrane 500 may be the same as the membrane 5 of the microfluidic device 1 described previously in support of FIGS. 2, 3 (a) to 3 (d) and 4 (a) to 4 (c).
  • the microfluidic device 101 also includes a lid 200 for the microfluidic channels.
  • This cover 200 may be made of a material chosen from: glass or silicon, a non-elastomeric photocrosslinked polymer, a metal, an electrically conductive or semi-conductive alloy, a ceramic, quartz, sapphire, an elastomer.
  • the inlet and outlet ports for fluids for circulation in the microfluidic channels 401, 402 may be formed in this lid 200 (not shown).
  • the hydraulic diameter of the pores of the microporous membrane 500 prevents the fluids flowing in the microfluidic channels 401, 402 from crossing this membrane 500, only the molecules capable of stimulating the target passing therethrough.
  • the concentration map of these stimulation molecules is then generated by the choice of the fluid supply of each of the different microfluidic channels 401, 402.
  • the openings 401 ', 402', 403 ', 404' opening on the microporous membrane 500 form diffusion zones for the stimulation molecules, which can be likened to pixels providing chemical information to the target.
  • the microfluidic device 101 advantageously provides a closed culture chamber 8 for said target. This chamber is thus disposed on the side of the microporous membrane 500 which is opposed to the first microfluidic channels 401, 402.
  • the chamber has characteristics similar to those of the chamber 8 of the microfluidic device 1 described above, its dimensions however to be adapted.
  • microporous membrane 500 extends transversely between the side walls of the chamber to close said chamber in its upper part.
  • the target may be disposed on the base 61 of the chamber 8, base 61 which is disposed on the other side of the chamber 8, with respect to the microporous membrane 500.
  • the culture chamber 8 may be replaced by a microfluidic channel comprising orifices, advantageously lateral, no fluid however being intended to flow into this channel.
  • An optical display means such as the means 18 previously described and shown in FIG. 2, can also be associated with the microfluidic device 101, in particular if the base of the chamber 8 or the microfluidic channel is optically transparent.
  • the method of manufacturing the microfluidic device 101 is based on steps similar to the steps (a) to (d) previously described for the microfluidic device shown in Figure 2, adapting it.
  • Steps (a) and (b) are thus implemented to achieve the structure 200 shown in Figure 7 (b).
  • the stamp 10 ' is thus used in an elastomeric material for printing a liquid RL photocurable and / or thermosetting placed on a support 20 'provided with the microporous membrane 500 (Fig. 7 (a)).
  • a photo-irradiation and / or heating of the liquid is carried out to form several walls with the microporous membrane 500.
  • steps (a) and (b) are implemented to provide another structure 200 'shown in Figure 7' (b). More precisely, during step (a) the stamp 10 "is used in an elastomeric material for printing a photocurable and / or thermosetting RL liquid placed on a support 20", in the absence of any microporous membrane (FIG. '(at)). Then, during step (b), photoirradiation and / or heating of the liquid is carried out to form several walls.
  • the structures 200 ', 200 "which have been produced independently of one another are assembled to one another, by means of a new photo-irradiation or a new heating. to create a permanent bond between the liquid resins of structures 200 'and 200 "(Fig. 7 (c)).
  • step (c) previously described a cover 200 having orifices (not shown) is thus bonded to the various walls 3 ', 30' of the structure 200 ", on the opposite side to the microporous membrane 500 to form the microfluidic channels 401, 402.
  • microfluidic channels 401, 402 appear. It will be noted that the microfluidic channel 401 on the one hand, and the microfluidic channel 402 on the other hand, have different depths, which makes it possible to superpose the channels in a plane, as can be seen in FIG. 9.
  • an assembly comprising at least the base 6 and said at least two second side walls 7a, 7b made of photocured resin and / or thermoset to form the chamber 8.
  • This assembly is itself manufactured with a method incorporating the steps (e- ⁇ ) to ( ⁇ 3 ) described previously in support of Figures 4 (a) to 4 (c).
  • the walls of the microfluidic channels 401, 402 of the microfluidic device 101 thus obtained, as well as the walls of the chamber 8 of this device can be produced with resins as described above or, alternatively, with aqueous gels.
  • photocurable such as polyacrylamide gels, chosen to be liquid at room temperature.
  • the resins can also be replaced by polydimethylsiloxane (PDMS).
  • this device is associated, within a microfluidic system, with at least one means for feeding at least one of the microfluidic channels 401, 402 with a fluid comprising molecules likely to stimulate a target, such as living cells.
  • a clean feed means such as a fluid reservoir for each microfluidic channel 401, 402 may be provided.
  • the connection between the reservoir and the associated microfluidic channel may be effected by means of a capillary.
  • microfluidic channels 401, 402 are shown diagrammatically in FIG. 9, in a partial perspective view which represents only the channels 401, 402 supplying the openings 401 ', 402', 403 ', 404' according to the sectional view AA of FIG. Figure 8, a section that also corresponds to the view chosen to describe the manufacturing process in support of Figures 7 (a) to 7 (f), 7 '(a) and 7' (b).
  • each channel has only one opening, so that there are as many channels as openings.
  • FIG. 10 represents only four channels 4010, 4020, 4030, 4040 (associated respectively with an opening 40 0 ', 4020', 4030 ', 4040') on the twelve microfluidic channels associated with the twelve FIG. 8 apertures.
  • each microfluidic channel may be fed with a dedicated fluid, which may in particular comprise molecules for stimulating the target.
  • each channel is thus independent. Furthermore, it can then be input modulated by valves for passing at least two fluids successively in the channel.
  • microfluidic device thus formed is therefore a device comparable to the device described in support of FIG. 2. However, it comprises more than two microfluidic channels.
  • microfluidic channels to supply fluid, depending on the desired map concentration of molecules that can stimulate the target.
  • microfluidic channels with different types of target stimulating molecules. In this way, one can carry out a precise and varied control in the space of the culture of living cells.
  • a microfluidic channel with a fluid comprising stimulation molecules and another microfluidic channel, for example immediately adjacent to the first microfluidic channel, with a fluid comprising a neutral solution.
  • the fluids are then mixed in the chamber 8 to form a very particular concentration map at the base of the chamber, when the target cells are located on this base.
  • microfluidic channels Another conceivable arrangement of the microfluidic channels is as follows.
  • the microfluidic channel thus supplies fluid these four openings.
  • FIG. 12 (d) A method of manufacturing such a device is presented in support of Figs. 12 (a) to 12 (d), in the case where a chamber 8 is otherwise provided (Fig. 12 (d)).
  • the patch 101 ' may be made of elastomeric material such as PDMS. It has a profile used as a complementary mold of that of the microfluidic device that we want to produce.
  • the stamp 101 'thus comprises a protuberance 101' provided with several vertical slots 101 'to form the various walls 301' of the microfluidic device. It also includes a hollow zone 101 'surrounding the protuberance 101', an area in which the side wall 300 'of the microfluidic device is to be formed.
  • the support 201 ' can also be made in PDMS and has a planar profile.
  • microporous membrane 500 ' is previously disposed on the support 201', then the stamp 101 'is pressed against the support 201'.
  • the volume between the stamp 101 'and the support 201' is filled in the appropriate amount, for example with photocurable and / or photopolymerizable resin in liquid form RL. After filling the volume located between the stamp 101 'and the support 201' with liquid resin RL, a pressure P is then applied to the stamp 101 'to expel any excess resin.
  • step (b) The structure obtained at the end of step (b) is shown in FIG. 3 (b).
  • the resin is irradiated through the stamp 101 '. Then, the stamp 101 'is removed from the device.
  • the cover 200 ' is then fixed on the side of said first lateral wall 300' previously in contact with the patch 101 '.
  • the structure obtained at the end of this step is shown in FIG. 12 (c).
  • the chamber 8 is manufactured according to the method previously described in support of Figures 4 (a) to 4 (c), and then assembled with the structure shown in Figure 12 (c). This assembly operation is shown in Figure 12 (d).
  • the flow direction of the fluid in the channel is noted F in Fig. 12 (d). It is noted that it successively feeds the various openings opening onto the membrane 500 '.
  • the presence of the chamber 8 is not mandatory, a channel may in particular be provided in place of this chamber 8.
  • the membrane 500 ' will have the same characteristics as the membranes 5, 500 described above.
  • the invention thus uses a membrane whose hydraulic pore diameter is judiciously chosen to avoid the passage of the fluid from the microfluidic channels to the opposite side of the membrane, comprising for example the chamber or another microfluidic channel.
  • the hydraulic diameter of the pores can also extend over a wide range.
  • the invention therefore does not require any culture medium in the form of a gel to prevent the passage of fluid from the microfluidic channels to the chamber or this other microfluidic channel.
  • the diffusion in the culture chamber is therefore carried out in a liquid culture medium, such as water.
  • This diffusion in the chamber is therefore faster than in a culture medium made with a gel. This allows you to run a test more quickly and also chain different tests more quickly.
  • the accuracy with which stimulation molecules reach a target obtained with the device according to the invention is excellent, and much better than with known devices.
  • the method according to the invention makes it possible to manufacture a network of small openings with a high surface density.
  • the size of the openings can reach 5 ⁇ and the distance between the respective centers of two neighboring openings can reach 10 ⁇ .
  • the sizing of the openings is totally independent of the hydraulic diameter of the pores of the microporous membrane.
  • a microfluidic device with small openings size of 30 microns or less for example
  • a microporous membrane having large pores 3 microns for example
  • a microfluidic device with large openings size of 2000 microns for example
  • a microporous membrane 500 having small pores 0.2 micron for example
  • the invention finds particular application in the field of biology, for the culture, observation and study of living cells.
  • the microfluidic system can also be used for the manufacture of biochips or for the stimulation of tissues, in particular for the production of artificial tissues.
  • the advantages of the invention may be of interest for other fields of application, for example to determine thresholds of toxicity of certain molecules in cosmetology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Water Supply & Treatment (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne un système microfluidique pour contrôler une carte de concentration de molécules susceptibles de stimuler une cible, par exemple formée par un ensemble de cellules vivantes, caractérisé en ce que le système comprend un dispositif microfluidique (1) comportant : n c ≥ 1 canal(aux) microfluidique(s) (4, 40), le ou chaque canal étant muni d'au moins un orifice d'entrée pour au moins un fluide et d'au moins un orifice de sortie pour ce fluide; n 0 ≥ 2 ouvertures (47, 470) formées dans le canal microfluidique ou réparties dans les différents canaux microfluidiques, lesdites ouvertures étant agencées dans un même plan de sorte qu'elles forment un réseau à au moins une dimension dans ce plan, les nombres n c de canal(ux) microfluidique(s) et n 0 d'ouvertures étant reliés par la relation (I) avec 1 ≤ i ≤ n c et n 0/ci le nombre d'ouvertures pour le canal c i ; au moins une membrane microporeuse (5) recouvrant le réseau d'ouvertures, la cible étant destinée à être disposée du côté de la membrane qui est opposé au canal(aux) microfluidique(s); un ou plusieurs moyen(s) d'alimentation en fluide pour alimenter le ou chaque canal microfluidique en fluide, l'un au moins de ces fluides comportant des molécules pour stimuler la cible.

Description

SYSTÈME MICROFLUIDIQUE POUR CONTRÔLER LA CONCENTRATION DE MOLÉCULES DE STIMULATION D'UNE CIBLE
La présente invention se rapporte au domaine de la microfluidique.
La microfluidique met en œuvre des systèmes de dimensions micrométriques, dont la taille est généralement comprise entre quelques dizaines et quelques centaines de microns.
Ces systèmes trouvent application dans de nombreux domaines comme les tests de diagnostic cellulaire, le développement de médicaments, la biologie fondamentale ou la cosmétologie.
Dans ces domaines, il existe une demande croissante de systèmes microfluidiques pour déterminer quantitativement la réponse de cellules vivantes à certaines molécules et particulièrement, la réponse à une carte de concentration spatialement et temporellement contrôlée.
Par exemple, il peut s'agir de mesurer la réponse de cellules cancéreuses à des molécules utilisées pour la chimiothérapie. Pour déterminer avec précision cette réponse, il est nécessaire d'exercer un contrôle sur l'application des molécules qui vont engendrer cette réponse. Ce contrôle peut concerner la quantité de molécules interagissant avec les cellules cancéreuses, la carte de concentration des molécules auxquelles les cellules cancéreuses sont soumises, l'évolution dans le temps de la quantité de ces molécules et/ou de la carte de concentration de ces molécules appliquées aux cellules cancéreuses, etc.
Dans le domaine de la cosmétologie, des systèmes microfluidiques peuvent servir à des tests de toxicité de certaines molécules sur des cellules vivantes et/ou des tissus cellulaires. Le contrôle de la quantité de molécules, éventuellement toxiques, administrée aux cellules et la façon dont ces molécules sont administrées est nécessaire pour déterminer le seuil de toxicité. Un exemple de système microfluidique largement utilisé pour stimuler des cellules vivantes est présenté dans le document US 7 374 906. Ce système microfluidique permet notamment de soumettre les cellules vivantes à un gradient de concentration de molécules, dont la carte est ici un profil linéaire, stable dans le temps.
Un inconvénient majeur de ce type de système microfluidique est que les cellules vivantes sont soumises à un flux générant des forces de cisaillement les perturbant. Cet effet de cisaillement est particulièrement gênant lorsque l'on cherche à étudier la réponse chimiotactique du cône de croissance de cellules nerveuses. En effet, le flux génère des contraintes de cisaillement qui modifient la réponse des cellules cibles dans le meilleur des cas, voire qui provoquent la mort ou l'arrachement des cellules.
Le comportement physiologique des cellules vivantes ainsi étudiées est perturbé avec le système divulgué dans ce document.
Des solutions ont donc été proposées pour soumettre des cellules vivantes à une carte de concentration de molécules et/ou à des combinaisons de plusieurs cartes de concentration de molécules différentes, sans qu'elles soient perturbées par un flux.
Un tel système microfluidique est par exemple présenté dans l'article « Microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients », R.L. Smith & al., (2010) 9 : 613-622.
Ce système microfluidique comprend un dispositif microfluidique 100 et des moyens (non représentés) pour alimenter le dispositif avec des fluides.
Le dispositif microfluidique 100 divulgué dans ce document est représenté sur la figure 1 , selon une vue en perspective éclatée.
Il comprend une structure en PDMS dans laquelle sont formés plusieurs canaux d'alimentation en fluide 130a, 130b, 130c, 130d indépendants les uns des autres. La paroi supérieure 120 de chacun de ces canaux 130a, 130b, 130c, 130d comporte un ou plusieurs orifice(s) 110 traversant cette paroi. Du côté de la paroi 120 opposé aux canaux microfluidiques, se situe une chambre de culture 140 pour des cellules vivantes remplie d'un milieu de culture 150 se présentant sous la forme d'un gel, tel que l'agarose. La paroi 120 forme donc une membrane, dans la mesure où elle permet de séparer deux milieux, à savoir les canaux microfluidiques 130a, 130b, 130c, 130d, dans lesquels un fluide est destiné à circuler, et la chambre de culture 140.
Une plaque en verre 160 permet de fermer la chambre de culture 140, dans sa partie supérieure.
Les moyens d'alimentation des fluides ne sont pas représentés. Il faut cependant noter qu'un ou plusieurs fluide(s) peut être introduit dans chacun des canaux 130a, 130b, 130c, 130d, ces fluides comprenant des molécules destinées à stimuler les cellules vivantes, en traversant la paroi 120 en PDMS via les orifices de diffusion 110.
Pour contrôler la culture des cellules vivantes dans l'espace, il est possible, avec le dispositif microfluidique 100, de choisir les canaux dans lesquels est envoyé un fluide comportant des molécules de stimulation des cellules vivantes. On peut ainsi choisir avec précision les orifices 110 à partir desquels ces molécules diffuseront dans la chambre de culture 140.
Par ailleurs, pour contrôler la culture des cellules vivantes dans le temps, il est possible de décaler dans le temps l'alimentation en fluide des différents canaux 130a, 130b, 130c, 130d.
Le dispositif 100 présente également une grande souplesse dans le choix des molécules de stimulation pouvant être utilisées, dans la mesure où chacun des canaux d'alimentation en fluide 130a, 130b, 130c, 130d prévoit un moyen d'alimentation qui lui est propre.
Ce système microfluidique présente cependant plusieurs inconvénients. Il nécessite l'emploi d'une chambre de culture 140 comportant un milieu de culture 150 sous forme de gel pour éviter le passage du fluide depuis les canaux d'alimentation en fluide vers la chambre de culture.
Dans le cas d'espèce, le dispositif effectivement fabriqué et testé présente des orifices carrés de 20μΐη x 20μΐη. Ces dimensions sont relativement importantes et favorisent le passage du fluide vers la chambre de culture 140.
Les auteurs précisent que des orifices 110 carrés de dimensions plus faibles, par exemple de 4um x 4μιη, pourraient être envisagés. Pour autant, la technique de fabrication employée (DRIE) est connue pour ne pas permettre la formation d'orifices au-dessous d'un rapport d'aspect maximal, typiquement de 1 : 20, ce rapport d'aspect étant ici défini par le ratio entre la dimension du côté de l'orifice sur la profondeur de cet orifice. Pour une dimension donnée du côté d'un orifice 110, ce rapport d'aspect maximal limite la profondeur de l'orifice et donc la résistance hydraulique que peut conférer cet orifice. On augmente donc le risque de passage de fluide d'un canal 130a, 130b, 130c, 130d vers la chambre de culture 140.
Quelle que soit la taille des orifices, on comprend donc que le fluide passerait vers la chambre de culture 140 en l'absence d'un milieu de culture 150 sous forme de gel.
Il convient par ailleurs de noter que la présence indispensable du gel apporte des inconvénients dans le fonctionnement du dispositif microfluidique 100.
En effet, le gel ralentit la diffusion des molécules de stimulation vers les cellules vivantes ciblées. Ainsi, la stabilisation de la carte de concentration de ces molécules de stimulation au sein de la chambre de culture 140 est lente.
De plus, il convient de noter que les molécules de stimulation diffusent dans toutes les directions dans le gel. En conséquence, pour chaque orifice 110 pris indépendamment des autres, les molécules de stimulation se répartissent, au niveau d'une cible située dans le gel, sur une surface plus grande que la surface de passage d'un orifice 110 situé dans la paroi 120. La stimulation de la cible par des molécules spécifiques est donc moins précise qu'elle ne l'est théoriquement avec un choix préalable pour le dimensionnement des orifices. Au niveau de la cible, on perd donc en résolution spatiale, par rapport à la résolution spatiale théoriquement fournie par les dimensions d'un orifice.
En outre, il convient de noter que les orifices de diffusion 110 présentent une certaine densité surfacique à la surface de la paroi 120, qui peut difficilement être augmentée. Dans le cas d'espèce, la distance entre deux orifices voisins réalisés dans la paroi 120 en PDMS est comprise entre 300μηι et 400μηη.
Or, la densité des orifices 110 susceptible d'être obtenue avec le procédé de fabrication employé dans cet article est limitée. En effet, la méthode DRIE employée dans cet article pour fabriquer le dispositif microfluidique présente des limites concernant la densité des canaux microfluidiques pouvant être obtenue. Chacun de ces canaux microfluidiques débouchant, par conception, sur un seul orifice 110, il en résulte que la densité surfacique des orifices 110 est en conséquence également limitée.
Cet inconvénient s'ajoute au fait que la précision de la stimulation d'une cible théoriquement fournie par les dimensions d'un orifice n'est pas celle qui est réellement obtenue au niveau de la cible.
Un objectif de l'invention est de pallier l'un au moins de ces inconvénients.
Pour atteindre cet objectif, l'invention propose un système microfluidique pour contrôler une carte de concentration de molécules susceptibles de stimuler une cible, par exemple formée par un ensemble de cellules vivantes, caractérisé en ce que le système comprend :
- un dispositif microfluidique comportant : • nc≥ 1 canal(aux) microfluidique(s), le ou chaque canal étant muni d'au moins un orifice d'entrée pour au moins un fluide et d'au moins un orifice de sortie pour ce fluide ;
• n0≥ 2 ouvertures formées dans le canal microfluidique ou réparties dans les différents canaux microfluidiques, lesdites ouvertures étant agencées dans un même plan de sorte qu'elles forment un réseau dans ce plan, les nombres nc de canal(ux) microfluidique(s) et n0 d'ouvertures étant reliés par la relation n0 = Σ^ τΐο^. avec 1 < i≤ nc et n0/c. le nombre d'ouvertures pour le canal Ct (le terme ∑ correspond à l'opérateur « somme »);
• au moins une membrane microporeuse recouvrant le réseau d'ouvertures, la cible étant destinée à être disposée du côté de la membrane qui est opposé au canal(aux) microfluidique(s);
- un ou plusieurs moyen(s) d'alimentation en fluide pour alimenter le ou chaque canal microfluidique en fluide, l'un au moins de ces fluides comportant des molécules pour stimuler la cible.
Le système pourra prévoir d'autres caractéristiques techniques, prises seules ou en combinaison :
- la membrane microporeuse est munie de pores dont le diamètre hydraulique est compris entre Ο,Οδμητι et 12μηπ, de préférence entre Ο,Οδμΐη et 3μηι ;
- la densité surfacique des pores de la membrane microporeuse est comprise entre 103 et 1010 pores/cm2 ;
- la membrane microporeuse est réalisée en un matériau choisi parmi : le verre, le polycarbonate, le polyester, le polyéthylène téréphtalate, le quartz, le silicium, la silice ou le carbure de silicium ;
- il est prévu un couvercle pour les canaux microfluidiques, ledit couvercle étant réalisé en un matériau choisi parmi : du verre ou du silicium, un polymère photoréticulé non élastomérique, un métal, un alliage conducteur électrique ou semi-conducteur, une céramique, du quartz, du saphir, un élastomère ; - ledit au moins un orifice d'entrée et ledit au moins un orifice de sortie pour les fluides sont formés dans le couvercle ;
- les canaux microfluidiques comprennent chacun au moins une paroi en résine photodurcie et/ou thermodurcie ;
- il est prévu une chambre de culture de ladite cible, fermée, ou un canal microfluidique, disposé du côté de la membrane microporeuse qui est opposé au(x) canal(aux) microfluidique(s), la cible étant ainsi située dans la chambre ou ledit un autre canal microfluidique ;
- la chambre ou le canal microfluidique comprend une base réalisée en un matériau optiquement transparent, cette base étant disposée de l'autre côté de la chambre ou du canal microfluidique, par rapport à la membrane microporeuse ;
- la chambre ou le canal microfluidique comprend des parois latérales en résine photodurcie et/ou thermodurcie ;
- il est prévu une pluralité de moyens pour alimenter les canaux microfluidiques, chacun de ces moyens d'alimentation alimentant l'un des canaux microfluidiques ;
- il est prévu un moyen de visualisation optique ;
- le moyen de visualisation optique met en œuvre une technique de microscopie de localisation par photoactivation ou une technique de microscopie de déplétion par émission stimulée ;
- les ouvertures forment un réseau à deux dimensions dans le plan auquel elles appartiennent ;
- les centres respectifs de deux ouvertures voisines sont séparés d'une distance comprise entre 10μΐη et 250μηι.
D'autres caractéristiques, buts et avantages de l'invention seront énoncés dans la description détaillée ci-après faite en référence aux figures suivantes :
- la figure 2 est un schéma d'un dispositif microfluidique conforme à l'invention, selon une vue en perspective partiellement coupée; - les figures 3(a) à 3(d) représentent, selon le cas, des étapes d'un procédé de fabrication du dispositif microfluidique représenté sur la figure 2 ou des structures intermédiaires obtenues à l'issue de certaines étapes de ce procédé ;
- les figures 4(a) à 4(c) représentent des structures intermédiaires obtenues lors de la fabrication d'un ensemble formé par une base et des parois latérales du dispositif, ledit ensemble étant destiné à former une partie du dispositif microfluidique de la figure 2 ;
- la figure 5(a) représente des fluides s'écoulant dans les canaux microfluidiques du dispositif microfluidique selon l'invention représenté sur la figure 2, l'un de ces fluides comportant des molécules de stimulation pour les cellules cibles et la figure 5(b) représente un profil de concentration de molécules de stimulation dans une chambre du dispositif de la figure 2 ;
- la figure 6 représente un autre dispositif microfluidique conforme à l'invention, selon une vue en coupe ;
- les figures 7(a), 7(b), 7'(a), 7'(b) et 7(c) à 7(f) représentent des étapes de fabrication du dispositif microfluidique de la figure 6 ou des structures intermédiaires obtenues dans la fabrication de ce dispositif microfluidique ;
- la figure 8 est un schéma représentant le dispositif microfluidique de la figure 6, selon une vue de dessous partielle ;
- la figure 9 représente, selon une vue en perspective, des canaux microfluidiques du dispositif microfluidique de la figure 6, lesquels sont agencés de sorte que chaque canal microfluidique comprenne plusieurs ouvertures ;
- la figure 10 représente, selon une vue de dessus, des canaux microfluidiques d'un dispositif microfluidique selon une variante de la figure 6, ces canaux étant agencés de sorte que chaque canal microfluidique comprenne une ouverture débouchant sur une membrane microporeuse de ce dispositif ;
- la figure 11 représente une étape de fabrication du dispositif représenté sur la figure 10 ; - les figures 12(a) à 12(d) représentent, selon le cas, des étapes d'un procédé de fabrication d'une variante de réalisation d'un dispositif microfluidique conforme à l'invention ou des structures intermédiaires obtenues à l'issue de certaines étapes de ce procédé.
Tout d'abord, nous présentons à l'appui de la figure 2, un dispositif microfluidique 1 conforme à l'invention comportant deux canaux microfluidiques, chacun de ces canaux étant muni d'ouvertures débouchant sur la membrane, ainsi que son procédé de fabrication à l'appui des figures 3(a) à 3(d) et 4(a) à 4(c).
Ce dispositif microfluidique 1 comprend un couvercle 2, avantageusement rigide, muni d'orifices 21 , 22 pour la circulation de fluides dans des canaux microfluidiques, une paroi latérale 3 et une paroi centrale 30, toutes deux avantageusement réalisées en résine photodurcie et/ou thermodurcie. En particulier, la paroi latérale 3 du dispositif 1 est réalisée dans une seule couche de résine photodurcie et/ou thermodurcie.
Le dispositif microfluidique 1 comprend également, dans sa partie inférieure, deux ouvertures 47, 470 recouvertes par une membrane microporeuse 5 s'étendant transversalement à la base de la paroi latérale 3 et de la paroi centrale 30. Par ouverture 47, 470, on entend la surface d'extrémité du canal qui s'étend entre les parois du dispositif et qui est destinée à être recouverte par la membrane 5.
Les ouvertures 47, 470 sont agencées dans un même plan et peuvent être assimilées à un réseau d'ouvertures, en l'occurrence à une dimension, dans ce plan. Dans le cadre de l'invention, le terme de « réseau » d'ouvertures désigne simplement le fait qu'il existe plusieurs ouvertures, sans qu'il y ait nécessairement un lien entre ces ouvertures et/ou un agencement spécifique de ces ouvertures dans le plan auquel elles appartiennent.
Par exemple, sur la figure 1 , les ouvertures 47, 470 sont alimentées par deux canaux microfluidiques différents et nécessairement disposées en ligne dans un même plan. En revanche, dans d'autres modes de réalisation qui sont décrits ci-après, certaines ouvertures peuvent être alimentées par un même canal, les ouvertures étant par ailleurs agencées en deux dimensions dans un même plan.
Les parois 3, 30 et le couvercle 2 permettent de définir deux canaux microfluidiques 4, 40, fermés au niveau de leurs ouvertures 47, 470 respectives par la membrane microporeuse 5. L'entrée de fluide pour chacun de ces canaux 4, 40 correspond respectivement à l'orifice 21 ou 22. Les sorties de fluide pour ces canaux microfluidiques ne sont pas représentées.
La membrane microporeuse 5 sépare deux milieux, à savoir le canal microfluidique et le milieu extérieur de ce canal, ce milieu extérieur étant par exemple formé par une chambre de culture 8 dans laquelle la cible à stimuler est destinée à être disposée. A cet égard, il convient de noter que le gel employé dans l'article de Smith & al. n'est pas une membrane, car elle ne sépare pas le canal microfluidique et la chambre de culture, mais forme au contraire un milieu de culture remplissant la chambre de culture.
De plus, la membrane microporeuse 5 empêche le fluide destiné à s'écouler dans les canaux microfluidiques 4, 40 de passer de l'autre côté de cette membrane, cette dernière laissant cependant diffuser les molécules susceptibles de stimuler la cible, qui sont susceptibles d'être transportées par le fluide dans l'un au moins des canaux microfluidiques 4, 40 comme cela sera détaillé dans la suite de la description. Le dispositif 1 selon l'invention ne nécessite pas la présence d'un gel dans la chambre de culture 8.
Le dispositif microfluidique 1 comprend également une base 6, avantageusement rigide et transparente, et des parois latérales 7a, 7b, avantageusement réalisées en résine photodurcie et/ou thermodurcie. Ces parois latérales 7a, 7b, la base 6 et la membrane microporeuse permettent de former la chambre 8. Pour former la chambre 8, quatre parois latérales sont prévues, ces parois pouvant en réalité être assimilées à un seul contour, car le procédé de fabrication réalise avantageusement ces parois d'un seul tenant. Le fond de la chambre 8 est formé par la face supérieure 61 de la base 6, laquelle est destinée à recevoir la cible par exemple formée de cellules vivantes. Dans ce cas, les cellules vivantes sont destinées à être disposées à l'écart de la membrane microporeuse 5, sur la base 6 de la chambre 8. Elles peuvent ainsi être cultivées dans des conditions standard, séparément du dispositif microfluidique 1.
Les canaux microfluidiques 4, 40 permettent de faire circuler un fluide comportant des molécules susceptibles de stimuler la cible. Ceci s'effectue, comme cela sera expliqué de façon plus détaillée dans la suite de la description, par diffusion à travers la membrane microporeuse 5 vers la chambre 8, puis par diffusion à travers la chambre 8 (chambre de culture) au fond duquel se trouve, par exemple, des cellules vivantes (CV) qu'on cherche à stimuler.
Avantageusement, la base 6 est réalisée en un matériau optiquement transparent, par exemple du verre. Ceci est intéressant, car il est alors possible de disposer un moyen de visualisation optique 18 à l'extérieur du dispositif pour visualiser, par exemple, la réponse à une stimulation des cellules vivantes disposées au fond de la chambre 8.
Le couvercle 2 peut être réalisé en un matériau choisi parmi : du verre ou du silicium, un polymère photoréticulé non élastomérique, un métal, un alliage conducteur électrique ou semi-conducteur, une céramique, du quartz, du saphir, un élastomère.
La membrane microporeuse 5 est choisie pour éviter tout passage de fluide entre les canaux mircrofluidiques 4, 40 et la chambre 8. En réalité, la membrane microporeuse 5 ne peut pas être totalement étanche à un passage de fluide. Aussi, on peut considérer que les cellules situées dans la chambre 8 ne sont soumises à aucun flux si la vitesse de traversée du fluide à travers la membrane microporeuse 5 est inférieure à une valeur limite.
On peut par exemple considérer que cette vitesse limite est de l'ordre 1 μΐη/s. Dans ce cas, les contraintes de cisaillement appliquées aux cellules sont négligeables. Par ailleurs, la vitesse dans chaque canal microfluidique 4, 40 peut être comprise entre ΙΟΟμΐη/s et ΙΟΟΟΟμηΊ/s, voire être au-delà de 10 000 μηι/s.
Aussi, pour obtenir la valeur limite de Ι μΐη/s, la résistance hydraulique Rh.membrane de la membrane microporeuse 5 doit être, selon la vitesse du fluide dans le canal 4, 40 de 100 à 10 000 fois supérieure à la résistance hydraulique Rh. canai du canal microfluidique 4, 40.
Par exemple, si la vitesse d'écoulement du fluide dans le canal microfluidique 4, 40 est de ΙΟΟΟΟμίη/s, alors il faut respecter l'inégalité :
10 000*Rn, canal < Rh.membrane (R1 ) pour s'assurer que la vitesse du fluide à travers la membrane 5 est bien inférieure à la valeur limite considérée de 1 μΐτι/s.
Par ailleurs, si on considère un canal microfluidique 4, 40 rectangulaire de hauteur h, de largeur w et de longueur L, et une membrane microporeuse 5 d'épaisseur e et présentant des pores identiques et cylindriques de rayon rp0re, avec une densité surfacique de pores p, alors la relation (R1 ) s'écrit sous la forme:
10 000*μ.Ι_/ (w.h3 ) < M.e/(rp0re p. Lw) (R2) soit : Θ = rpore 4.p/e < 10-4* h3/L2 (R3)
Pour un canal microfluidique 4, 40 de hauteur h = 100 μΐΎΐ, de largeur w = 1 000 μΐη et de longueur L = 1 000 pm alors le terme Θ doit être inférieur à 10"10 m pour respecter la relation (R3). De plus, si on considère des pores cylindriques de rayon de 1 μΐη et une épaisseur de membrane de 10 μm, alors la densité surfacique de pores p doit être inférieure à 105 pores/cm2. La relation (R3) peut bien entendue être généralisée en fonction de la valeur considérée de la vitesse limite du fluide passant à travers la membrane microporeuse 5 d'une part, et de la vitesse d'écoulement de ce fluide dans le canal microfluidique 4, 40 d'autre part.
La membrane microporeuse 5 pourra présenter des pores dont le diamètre hydraulique est compris entre 0,05 μηι βί 12 μηι. En particulier, si le pore est cylindrique alors, le diamètre hydraulique du pore correspond à son diamètre.
Avantageusement, ce diamètre hydraulique sera cependant compris entre 0,05 μητι et 3 μηπ. En effet, il convient de noter que l'utilisation d'une membrane avec des pores dont le diamètre hydraulique est inférieur à 3μΐη évitera tout passage de flux dans la chambre 8, pour la plupart des conditions d'utilisation susceptibles d'être rencontrées.
Actuellement, les fabricants de membranes proposent sur le marché des membranes dont le diamètre hydraulique des pores est généralement supérieur à 0,2 μητι. Dans le cadre de l'invention, les pores pourront donc présenter des diamètres hydrauliques avantageusement compris entre 0,2 μΐη et 3 μηι. Cependant, il n'y a en théorie pas de limite inférieure pour le diamètre hydraulique des pores, ce qui explique pourquoi il est envisageable de mettre en œuvre des pores dont le diamètre hydraulique atteint 0,05 μΐη.
Si des pores dont le diamètre hydraulique est supérieur à 3μηη sont utilisés, l'utilisation du dispositif microfluidique est a priori plus délicate (par exemple dans le choix des débits d'écoulement dans le canal microfluidique 4, 40) pour s'assurer que le fluide ne traverse pas la membrane microporeuse 5. Il convient cependant de noter que l'augmentation de ce diamètre hydraulique s'accompagne d'une diminution du nombre de pores de la membrane associé à chacune des ouvertures 47, 470 recouvertes par la membrane 5. Or, cette diminution du nombre de pores de la membrane par ouverture favorise l'augmentation de la résistance hydraulique à travers chaque ouverture du dispositif microfluidique. Pour cette raison, il est envisageable d'utiliser des pores dont le diamètre hydraulique va au-delà de 3 μητι en limitant la plage envisageable des débits de fluide dans les canaux microfluidiques.
Dans le dispositif de Smith & al., une ouverture correspond obligatoirement à un et un seul orifice de diffusion car il n'y a aucune membrane telle que celle proposée dans l'invention. En conséquence, la résistance hydraulique dépend du diamètre de l'orifice lui-même dans le dispositif de Smith & al.
La mise en œuvre d'une membrane microporeuse 5 présente donc un réel avantage, puisqu'elle permet de s'affranchir d'un gel et des inconvénients que ce gel implique.
La densité des pores de la membrane microporeuse 5 peut quant à elle être comprise entre 103 et 1010 pores/cm2. La hauteur des pores peut être comprise entre 50 nm et 100 μητι.
Par ailleurs, la membrane microporeuse 5 peut être réalisée dans divers matériaux tels que le verre, le quartz, le silicium, la silice ou le carbure de silicium ou encore des polymères de même nature que les polymères susceptibles d'être employés pour le reste du dispositif microfluidique. On peut ainsi employer du polycarbonate, du polyester ou du polyéthylène téréphtalate.
Selon un premier exemple, on peut prévoir une membrane microporeuse 5 en polycarbonate, dont le diamètre des pores est compris entre 0,2 μΐη et 1 μιη, par exemple de type cyclopore de la société Whatman (Whatman Cyclopore™). Selon un deuxième exemple, on peut prévoir une membrane microporeuse 5 en polyester, dont le diamètre des pores est compris entre 0,4 μΐη et 3 μηη, par exemple de type Transwell de la société Corning (Corning® Transwell®). Selon un troisième exemple, on peut prévoir une membrane microporeuse 5 en polyéthylène téréphtalate, dont le diamètre des pores est compris entre 0,4 μηη et 8 μΐτι, par exemple de type « Track- Etched » de la société Becton Dickinson. Ces membranes microporeuses présentent l'avantage d'être compatibles avec un procédé de fabrication du dispositif microfluidique 1 , qui est décrit ci-après en référence aux figures 3(a) à 3(d). Elles présentent également l'avantage d'être biocompatibles et fonctionnalisables pour être spécifiquement perméables à des molécules variées. Par fonctionnalisable, on entend que la membrane microporeuse 5 peut être modifiée chimiquement pour remplir une fonction particulière (rétention de certaines espèces, réactions chimiques,...).
De manière générale, le dispositif pourra présenter les dimensions suivantes. La hauteur h du canal microfluidique peut être comprise entre 1 μητι et 1 000 μητι, avantageusement entre 10 μΐη et 200 μηι. Sa largeur (non représentée) peut être comprise entre 10 μΐη et 2 mm. La hauteur h' de la chambre 8 peut être comprise 10 μΐη et 1 000 μΐη, avantageusement entre 50 μΐη et 200 μητι. Par ailleurs, la distance entre l'entrée E et la sortie S est de quelques centimètres.
Un moyen de visualisation optique 18 peut être associé au dispositif microfluidique, comme mentionné précédemment. Ce moyen de visualisation optique 18 permet de connaître la carte de concentration des molécules stimulantes appliquée aux cellules cibles. Il permet également de réaliser une imagerie fonctionnelle de la réponse biologique des cellules aux molécules de stimulation. Il est donc beaucoup plus aisé d'effectuer expérimentalement des corrélations entre le comportement observé des cellules cibles et la carte de concentration qui leur est appliquée.
Cette observation peut s'effectuer à haute résolution spatiale car la base en matériau optiquement transparent peut être très fine. Par exemple, on peut réaliser de la microscopie de fluorescence de haute résolution, voire même de super-résolution, avec des techniques telles que la microscopie de localisation par photoactivation (PALM pour « Photo-Activated Localized Microscopy » selon la terminologie anglo-saxonne) ou la microscopie de déplétion par émission stimulée (STED pour « STimulated- Emission-Depletion » selon la terminologie anglo-saxonne), en utilisant par exemple une base formée avec une lamelle de verre de 150 μΐη d'épaisseur.
Un exemple de procédé de fabrication du dispositif microfluidique 1 selon l'invention est un procédé qui comporte au moins les étapes consistant à:
(a) utiliser un timbre 1 ' en un matériau élastomérique pour imprimer un liquide photodurcissable et/ou thermodurcissable placé sur un support 2' muni de la membrane microporeuse 5 ;
(b) photo-irradier et/ou chauffer le liquide pour former d'une part, une première paroi latérale 3 fermée à sa base par la membrane microporeuse 5 et d'autre part, une paroi centrale 30 en contact avec la membrane 5 ;
(c) coller le couvercle 2 muni d'orifices (non représentés) sur la première paroi latérale 3 et sur la paroi centrale 30, du côté opposé au support 2' pour former des canaux microfluidiques 4, 40 dans chacun desquels un fluide peut circuler;
(d) après avoir retiré le support 2', coller sur les parties de la première paroi latérale 3 et de la paroi centrale 30 rendues accessibles par le retrait du support 2', un ensemble comprenant au moins la base 6 et lesdites au moins deux deuxièmes parois latérales 7a, 7b en résine photodurcie et/ou thermodurcie, pour former la chambre 8.
Ce procédé s'appuie sur le procédé divulgué dans le document WO 2008/009803.
L'opération effectuée lors de l'étape (a) est représentée sur la figure 3(a).
Le timbre 1 ' utilisé lors de l'étape (a) peut être réalisé en matériau élastomère tel que le PDMS. Il comporte un profil utilisé comme moule complémentaire de celui du dispositif microfluidique 1 que l'on veut produire. Le timbre 1 ' comporte ainsi une protubérance 1 'a munie d'une fente verticale 1 'c pour former la paroi centrale 30 du dispositif microfluidique 1 que l'on souhaite obtenir. Il comporte également une zone creuse 1 'b entourant la protubérance Va, zone dans laquelle ladite première paroi latérale 3 du dispositif microfluidique 1 est destinée à être formée. Le support 2' peut également être réalisé en PDMS et présente un profil plan.
La membrane microporeuse 5 est préalablement disposée sur le support 2', puis le timbre V est pressé contre le support 2'. Le timbre 1 ' coince ainsi la membrane 5 contre le support 2' par l'intermédiaire de la protubérance l 'a.
Ensuite, on remplit le volume situé entre le timbre V et le support 2' en quantité appropriée, notamment dans la zone creuse 1 'b du timbre 1 ' et dans la fente réalisée dans la protubérance l 'a, par exemple avec de la résine photoréticulable et/ou photopolymérisable sous forme liquide RL. Ce remplissage ne modifie pas la position de la membrane microporeuse 5, car cette dernière est coincée entre le timbre 1 ' et le support 2'.
La résine photoréticulable et/ou photopolymérisable est une solution ou une dispersion à base de monomères et/ou de pré-polymères. On utilise dans le procédé de l'invention des résines photoréticulables et/ou photopolymérisables habituellement utilisées comme adhésifs, colles ou revêtements de surface.
Avantageusement, on choisit des adhésifs, colles ou revêtements de surface habituellement employés dans le domaine optique. De telles résines, lorsqu'elles ont été irradiées et photoréticulées et/ou photopolymérisées, deviennent solides. De préférence, le solide ainsi formé est transparent, dépourvu de bulles ou de toute autre irrégularité.
De telles résines sont généralement à base de monomères/comonomères/pré-polymères de type époxy, époxysilane, acrylate, méthacrylate, acide acrylique, acide méthacrylique, mais on peut encore citer des résines thiolène, polyuréthane, uréthane-acrylate. Les résines peuvent être remplacées par des gels aqueux photoréticulables comme des gels de polyacrylamide et elles sont choisies pour être liquides à la température ambiante. Les résines peuvent également être remplacées par du polydiméthylsiloxane (PDMS). Parmi les résines photoréticulables utilisables dans la présente invention, on peut citer les produits commercialisés par la société Norland Optics sous la marque NOA® Norland Optical Adhesives, comme par exemple les produits NOA81 et NOA60, les produits commercialisés par la société Dymax dans la gamme « Dymax Adhesive and light curing Systems », les produits commercialisés par la société Bohle dans la gamme « UV adhesives », les produits commercialisés par la société Sartomer sous les références commerciales SR492 et SR499.
La polymérisation et/ou la réticulation de ces résines s'effectue par photoactivation à l'aide de tout moyen approprié, tel qu'une irradiation par des rayonnements U.V., visible, I.R.
On choisit préférentiellement une résine qui, une fois polymérisée et/ou réticulée, est rigide et non souple, car les résines élastomériques ont tendance à se déformer lorsque l'on fait circuler des fluides sous pression dans le dispositif microfluidique 1 . Toutefois, pour certaines applications, comme l'étude de l'élasticité de cellules vivantes, l'utilisation de résines photoréticulables élastomériques n'est pas exclue.
Après le remplissage du volume situé entre le timbre 1 ' et le support 2' avec de la résine liquide RL, on applique alors une pression P au timbre 1 ' pour chasser d'éventuels excès de résine. Sur la figure 2, les parties saillantes et notamment la protubérance 1 'a du timbre 1 ' en élastomère sont au contact du support 2'. La résine liquide prend la forme des zones creuses du timbre V.
La structure obtenue à l'issue de l'étape (b) est représentée sur la figure 3(b).
Lors de l'étape (b), l'irradiation de la résine est faite dans l'axe perpendiculaire à la base du dispositif, au travers du timbre 1 '. L'irradiation doit être dosée de façon, si on le souhaite, à laisser sur la superficie de la première paroi latérale 3 et de la paroi centrale 30 en résines, des sites de polymérisation et/ou de réticulation actifs. Puis, le timbre V est ôté du dispositif. Sur la figure 3(b), on observe la première paroi latérale 3 en résine photo-polymérisée et/ou photo-réticulée, de profil complémentaire de celui des zones creuses du timbre 1 '. Sur cette même figure, on observe également la paroi centrale 30, qui permet de séparer les canaux microfluidiques 4, 40.
L'impression à l'aide d'un timbre Y en élastomère dans une résine à l'état liquide permet d'obtenir des structures de très petites tailles avec une très bonne résolution.
On fixe alors, lors de l'étape (c), le couvercle 2 comportant des orifices pour la circulation de fluide dans les canaux microfluidiques 4, 40, du côté de ladite première paroi latérale 3 précédemment en contact avec le timbre Y. Le support 2' peut alors être retiré. La structure obtenue à l'issue de l'étape (c) est représentée sur la figure 3(c), sans les orifices du couvercle, qui sont situés dans un autre plan.
Le retrait du support 2' s'effectue sans que la membrane microporeuse ne se décolle de la résine photo-polymérisée et/ou photoréticulée, et sans qu'elle soit arrachée ou partiellement déchirée.
Le couvercle 2 peut être réalisé avec du verre, du silicium, un film de polymère solide, un métal, un alliage conducteur ou semi-conducteur, une céramique, du quartz, du saphir, un élastomère.
De préférence, on choisit une lamelle de verre, un film de polymère ou une lamelle de silicium. Les matériaux utilisés pour former le couvercle 2 sont choisis en fonction de l'application qui sera faite du dispositif microfluidique 1.
Ainsi, un couvercle 2 en matériau optiquement transparent, comme le verre, est plus approprié pour faciliter l'observation, la détection optique (transparence). Un autre atout du verre est sa très bonne conductivité thermique qui permet d'effectuer un chauffage homogène des dispositifs.
Il convient de noter que la disposition de la membrane microporeuse 5 en partie inférieure du canal microfluidique 4 rend son utilisation compatible avec les protocoles standards de culture de cellules vivantes. En effet, il est alors envisageable que la base 6 soit une lamelle de verre sur laquelle s'effectue une culture de cellules vivantes, cette lamelle étant ensuite fixée sur la structure obtenue à l'issue de l'étape (c) pour former la chambre 8 (chambre de culture), comme cela est expliqué dans la suite de la description.
Il convient de noter que le procédé de fabrication décrit précédemment peut permettre la fabrication d'ouvertures dont les dimensions atteignent 5μΐη, avec un pas (distance entre les centres respectifs de deux ouvertures voisines) entre deux ouvertures voisines pouvant être aussi faible que ΙΟμΐη, et donc notamment compris entre 10μΐτι et des valeurs inférieures à 300μ!ΎΊ, comme cela est mentionné dans l'article de Smith &. al. En particulier, le pas peut être compris entre 10μΐη et 250μΐη.
L'ensemble comprenant une base 6 et deux deuxièmes parois latérales 7a, 7b peut être réalisé à partir des étapes de procédé suivantes : (e-ι) utiliser un moule 3' ouvert en matériau élastomérique présentant une face de support 3'a et une cavité 3'b destinée à recevoir une résine liquide RL photodurcissable et/ou thermodurcissable ;
(β2) disposer la base 6 sur la face de support 3'a du moule 3' ;
(e3) disposer un masque 4' sur la base 6, puis photo-irradier ou chauffer pour former lesdites deuxièmes parois latérales 7a, 7b.
La structure obtenue à l'issue des étapes (e-ι) à (e3) est représentée sur la figure 4(a), dans le cas où l'étape (e3) consiste en une photo-irradiation de la résine liquide.
Le moule 3', comme le timbre 1 ' et le support 2', peut être réalisé en un élastomère tel que le PDMS.
La résine liquide photodurcissable et/ou thermodurcissable utilisée pour ces étapes peut être choisie parmi les possibilités déjà décrites pour la résine liquide employée lors de l'étape (a). De préférence, les résines liquides employées pour les étapes (a) et (e-ι) à (e3) sont les mêmes. En variante, on pourrait utiliser des gels aqueux photoréticulables tels que ceux décrits précédemment ou du polydiméthylsiloxane (PDMS).
La base 6 peut être choisie parmi les matériaux employés pour le couvercle. Avantageusement, on pourra utiliser un matériau optiquement transparent pour faciliter la visualisation optique par un dispositif dédié. Ce matériau optiquement transparent peut notamment être du verre, la base 6 formant ainsi un couvercle de verre usuellement utilisé pour la culture de cellules vivantes (CV). L'utilisation du verre permet par ailleurs de profiter des traitements de surfaces chimiques et biologiques existant pour ce substrat.
Le masque 4' peut présenter des orifices 4'a, 4'b permettant de photo-irradier des zones précises de la résine liquide afin de former lesdites deuxièmes parois latérales 7a, 7b du dispositif microfluidique.
Une fois l'étape (β3) terminée, il ne reste plus qu'à retirer le masque 4' et le moule 3' lors d'une étape (e ) pour ne laisser que l'ensemble formé par lesdites deuxièmes parois latérales 7a, 7b et la base 6. Cet ensemble est représenté sur la figure 4(b).
Généralement, une étape (es) est alors effectuée, celle-ci consistant à rincer ledit ensemble, par exemple par un mélange éthanol/acétone dans des proportions volumiques 90/10. Ce rinçage permet de retirer toute la résine non photo-irradiée ou non chauffée susceptible de rester sur la base 6.
Puis, on effectue une culture de cellules vivantes (CV) avant que cet ensemble ne soit disposé avec la structure obtenue à l'issue de l'étape (c) et avant de commencer l'étape (d).
Pour cela, cet ensemble doit être biocompatible.
A cet effet, on peut photo-irradier fortement cet ensemble, par exemple par UV, puis effectuer un rinçage énergique dans une solution neutre, telle que l'eau pendant plusieurs heures.
En variante, il est possible de fabriquer les chambres, ou plus généralement les différents éléments du dispositif, avec des matériaux biocompatibles.
Enfin, une culture de cellules vivantes peut alors être effectuée sur la face supérieure 61 de la base 6, comme représenté sur la figure 4(c). Cette culture s'effectue dans des conditions standards. En particulier, cette culture peut s'effectuer sur une base 6 se présentant sous la forme d'une lamelle de verre classique.
Une fois cette culture terminée, l'étape (d) peut être réalisée.
L'opération effectuée lors de l'étape (d) est représentée sur la figure 3(d).
Une fois l'étape (d) réalisée, le dispositif microfluidique 1 est prêt à l'emploi. Il comprend notamment des cellules vivantes sur la face supérieure 61 de la base 6, laquelle est opposée à la membrane microporeuse 5 au sein de la chambre 8 (chambre de culture).
Pour faire fonctionner le dispositif microfluidique 1 , celui-ci est associé, au sein d'un système microfluidique, à au moins un moyen pour alimenter au moins l'un des canaux microfluidiques 4, 40 avec un fluide comprenant des molécules susceptibles de stimuler une cible, telles que des cellules vivantes.
Par exemple, on peut prévoir deux réservoirs de fluide indépendants, l'un pour alimenter le canal microfluidique 4 avec un fluide Fi comprenant des molécules de stimulation pour la cible, l'autre pour alimenter le deuxième canal microfluidique 40 avec un fluide neutre F2.
Un exemple de canaux microfluidiques 4, 40 susceptibles d'être utilisés avec ces réservoirs est schématisé sur la figure 5(a), selon une vue de dessus.
Le fluide F1 est introduit dans le canal microfluidique 4 par l'entrée E4, et ressort de ce canal 4 par la sortie S4. Le fluide F2 est quant à lui introduit dans le canal microfluidique 40 par l'entrée E40, et ressort de ce canal 40 par la sortie S40. Les deux canaux microfluidiques 4, 40 sont bien entendus séparés par la paroi centrale 30 du dispositif microfluidique 1.
La séparation effectuée par la paroi centrale 30 permet de recycler les fluides circulant dans chacun des canaux microfluidiques 4, 40, car aucun mélange ne peut s'effectuer entre ces fluides. De plus, grâce à cette séparation, les vitesses d'écoulement des fluides peuvent s'étendre dans une large gamme de valeurs, par exemple entre ΙΟΟ μΐτι/s et 10 000 μΓπ/ε, voire plus, sans risquer un mélange hydrodynamique des deux fluides sous l'effet de forces de cisaillement. En outre, une différence de vitesse de circulation des fluides entre les différents canaux est envisageable sans que cela engendre un quelconque problème de fonctionnement du dispositif.
Les fluides F-i , F2 diffèrent seulement par la présence, dans l'un des deux fluides et en faible concentration, de molécules de stimulation pour les cellules cibles.
Il convient de noter que les entrées E4, E4o sont à rapprocher des orifices d'entrées 21 , 22 de la figure 2.
La figure 5(b) schématise l'écoulement des fluides F-i , F2 dans les différentes parties du dispositif microfluidique, lequel est schématisé selon une vue de coupe verticale.
Chaque fluide F-i , F2 est donc destiné à s'écouler dans l'un des canaux microfluidiques 4, 40 du dispositif microfluidique 1 , tous deux au contact de la membrane microporeuse 5, mais pas dans la chambre 8 (chambre de culture). La carte de concentration de ces molécules dans les canaux 4, 40 est représenté par le courbe C1 , en escalier.
Le transport des molécules (contenues dans le fluide F-t ) susceptibles de stimuler les cellules vivantes, entre le canal microfluidique 4 et lesdites cellules installées sur la base 6 de la chambre 8, s'effectue alors par diffusion dans la chambre 8, à travers la membrane microporeuse 5.
Plus précisément, le transport de ces molécules s'effectue d'abord par diffusion à travers la membrane microporeuse 5, puis par diffusion à travers la chambre 8, pour enfin atteindre la face supérieure 61 de la base 6 de la chambre 8, face 61 sur laquelle les cellules vivantes sont situées.
La carte de concentration doit alors se stabiliser dans la chambre 8. En particulier, au niveau de la base 6 de la chambre 8, le temps de stabilisation tstab est de l'ordre de h'2/D où h' est la hauteur de la chambre 8 et D le coefficient de diffusion des molécules destinées à stimuler les cellules cibles dans la chambre 8. Il convient de noter que pour éviter des temps de stabilisation trop élevés, la hauteur de la chambre sera généralement limitée à 500 μΐη.
La carte de concentration ainsi stabilisée dans la chambre 8 est représentée par la courbe C2, laquelle présente la forme d'une courbe représentative d'une fonction de type « erf ». Avec cette alimentation des canaux microfluidiques, il est donc possible d'obtenir une carte de concentration bien particulière à la base de la chambre 8 et par suite, sur les cellules vivantes qu'on cherche à stimuler.
L'alimentation décrite ci-dessus à l'appui des figures 5(a) et 5(b) n'est qu'un exemple donné à titre illustratif. Ainsi, l'alimentation en fluide des canaux microfluidiques pourrait être effectuée différemment afin d'obtenir d'autres types de cartes de concentration sur les cellules cibles.
Ainsi, selon un autre exemple, on pourrait prévoir un moyen d'alimentation permettant d'alimenter chacun des deux canaux microfluidiques 4, 40 avec les fluides Fi et F2, afin d'obtenir des cartes de concentration plus complexes dans la chambre 8.
La chambre 8, fermée, peut être remplacée par un canal microfluidique comprenant des orifices, avantageusement latéraux, bien qu'aucun fluide n'est alors destiné à s'écouler dans ce canal microfluidique lorsqu'un test est en cours. Toutefois, on peut connecter des canaux aux orifices latéraux pour récupérer les sécrétions des cellules vivantes, dans le but de les analyser chimiquement. Par ailleurs, entre deux tests, on peut alors envisager un rinçage rapide ou un changement de milieu de culture.
Par ailleurs, il convient de noter qu'on pourrait également disposer les cellules cibles non pas sur la base de la chambre 8 ou du canal microfluidique, mais sur la membrane microporeuse 5 elle-même. Dans un tel cas, la carte de concentration obtenue au niveau des cellules cibles correspond à la carte de concentration générée dans les canaux microfluidiques 4, 40. En effet, dans ce cas, les cellules cibles sont situées du côté de la membrane 5, qui est opposé au côté en contact avec les fluides qui s'écoulent dans les canaux microfluidiques 4, 40. Par ailleurs, on peut même fabriquer un dispositif microfluidique 1 sans chambre ou sans canal microfluidique, les cellules cibles étant placées directement sur la membrane microporeuse 5. Dans ce cas, on comprend que les étapes (e-ι) à (β3) décrites précédemment ne sont pas requises pour la fabrication du dispositif.
Nous allons maintenant décrire un autre dispositif microfluidique conforme à l'invention à l'appui des figures 6 et 8 ainsi qu'un procédé de fabrication de ce dispositif à l'appui des figures 7(a), 7(b), 7'(a), 7'(b) et 7(c) à 7(f).
Le dispositif microfluidique 101 représenté sur la figure 6 comprend plusieurs canaux microfluidiques 401 , 402 comprenant chacun plusieurs ouvertures 401 ', 402' d'une part et 403', 404' d'autre part qui débouchent sur la membrane microporeuse 500. En l'occurrence, il est prévu deux canaux microfluidiques alimentant pour l'un 401 , les six ouvertures représentées en blanc sur la figure 8 et pour l'autre 402, les six ouvertures représentées en noir sur cette figure 8. Ces ouvertures 401 ', 402', 403', 404' sont agencées dans un même plan P, de sorte à former un réseau d'ouvertures qui est à deux dimensions dans ce plan. Le plan P est représenté sur la figure 6 ainsi que sur la figure 8, cette dernière représentant lesdites ouvertures en vue de dessous au niveau de ce plan P.
La membrane microporeuse 500 s'étend transversalement par rapport aux parois latérales des différents canaux microfluidiques pour recouvrir les différents canaux dans leurs parties inférieures et donc recouvrir les différentes ouvertures.
Avantageusement, la membrane microporeuse 500 recouvre l'ensemble desdites ouvertures 401 ', 402', 403', 404' des canaux microfluidiques 401 , 402. Cela permet de recouvrir les différentes ouvertures avec une seule membrane, ce qui est particulièrement pratique lorsque le réseau d'ouvertures est dense. Typiquement, le procédé selon l'invention peut permettre de fabriquer des ouvertures de 5μΐτι, séparées l'une de l'autre d'un pas de 10 μηη. Le pas est ici défini comme la distance séparant les centres respectifs de deux ouvertures voisines.
La membrane microporeuse 500 est munie de pores. Les caractéristiques de cette membrane 500 peuvent être les mêmes que la membrane 5 du dispositif microfluidique 1 décrit précédemment à l'appui des figures 2, 3(a) à 3(d) et 4(a) à 4(c).
Le dispositif microfluidique 101 comprend également un couvercle 200 pour les canaux microfluidiques. Ce couvercle 200 peut être réalisé en un matériau choisi parmi : du verre ou du silicium, un polymère photoréticulé non élastomérique, un métal, un alliage conducteur électrique ou semi-conducteur, une céramique, du quartz, du saphir, un élastomère.
Les orifices d'entrée et de sortie pour les fluides destinés à circuler dans les canaux microfluidiques 401 , 402 peuvent être formés dans ce couvercle 200 (non représentés).
Le diamètre hydraulique des pores de la membrane microporeuse 500 empêche les fluides s'écoulant dans les canaux microfluidiques 401 , 402 de traverser cette membrane 500, seules les molécules susceptibles de stimuler la cible la traversant. A cet égard, il convient de se reporter aux relations (R1 ) à (R3) fournies précédemment et au choix de la vitesse limite en dessous de laquelle on considère que la membrane ne laisse pas passer le fluide s'écoulant dans les canaux microfluidiques 401 , 402.
La carte de concentration de ces molécules de stimulation est alors générée par le choix de l'alimentation en fluide de chacun des différents canaux microfluidiques 401 , 402. Comme cela peut être constaté sur la représentation de la figure 8 (la membrane microporeuse 500 n'est pas représentée), les ouvertures 401 ', 402', 403', 404' débouchant sur la membrane microporeuse 500 forment des zones de diffusion pour les molécules de stimulation, que l'on peut assimiler à des pixels fournissant une information chimique à la cible. Le dispositif microfluidique 101 prévoit avantageusement une chambre de culture 8, fermée, pour ladite cible. Cette chambre est ainsi disposée du côté de la membrane microporeuse 500 qui est opposé aux premiers canaux microfluidiques 401 , 402. La chambre présente des caractéristiques similaires à celles de la chambre 8 du dispositif microfluidique 1 décrit précédemment, ses dimensions devant cependant être adaptées.
Ainsi, la membrane microporeuse 500 s'étend transversalement entre les parois latérales de la chambre pour fermer ladite chambre dans sa partie supérieure.
La cible peut être disposée sur la base 61 de la chambre 8, base 61 qui est disposée de l'autre côté de la chambre 8, par rapport à la membrane microporeuse 500.
En variante, il est tout à fait envisageable de disposer la cible dans la chambre 8, directement sur la membrane microporeuse 500, voire même de disposer la cible directement sur la membrane microporeuse, en l'absence de toute chambre.
Là encore, la chambre de culture 8 peut être remplacée par un canal microfluidique comprenant des orifices, avantageusement latéraux, aucun fluide n'étant cependant destiné à s'écouler dans ce canal.
Un moyen de visualisation optique tel que le moyen 18 décrit précédemment et représenté sur la figure 2, peut également être associé au dispositif microfluidique 101 , en particulier si la base de la chambre 8 ou du canal microfluidique est optiquement transparente.
Le procédé de fabrication du dispositif microfluidique 101 s'appuie sur des étapes similaires aux étapes (a) à (d) décrites précédemment pour le dispositif microfluidique représenté sur la figure 2, en l'adaptant.
Les étapes (a) et (b) sont ainsi mises en oeuvre pour réaliser la structure 200 représentée sur la figure 7(b). Lors de l'étape (a), on utilise donc le timbre 10' en un matériau élastomérique pour imprimer un liquide RL photodurcissable et/ou thermodurcissable placé sur un support 20' muni de la membrane microporeuse 500 (fig. 7(a)). Puis, lors de l'étape (b), on réalise une photo-irradiation et/ou un chauffage du liquide pour former plusieurs parois avec la membrane microporeuse 500.
De manière analogue, les étapes (a) et (b) sont mises en œuvre pour réaliser une autre structure 200' représentée sur la figure 7'(b). Plus précisément, on utilise lors de l'étape (a) le timbre 10" en un matériau élastomérique pour imprimer un liquide RL photodurcissable et/ou thermodurcissable placé sur un support 20", en l'absence de toute membrane microporeuse (fig. 7'(a)). Puis, lors de l'étape (b), on réalise une photoirradiation et/ou un chauffage du liquide pour former plusieurs parois.
Ensuite, les structures 200', 200" qui ont été réalisées indépendamment l'une de l'autre sont assemblées l'une à l'autre, par le biais d'une nouvelle photo-irradiation ou d'un nouveau chauffage. Ceci permet de créer une liaison permanente entre les résines liquides des structures 200' et 200" (Fig. 7(c)).
Une fois l'assemblage réalisé, on retire l'un 20" des supports 20', 20" pour faire apparaître une nouvelle structure 200" formé par l'assemblage des structures 200, 200'. Puis, on effectue une étape reprenant l'étape (c) décrite précédemment. En d'autres termes, on colle ainsi un couvercle 200 muni d'orifices (non représentés) sur les différentes parois 3', 30' de la structure 200", du côté opposé à la membrane microporeuse 500, pour former les canaux microfluidiques 401 , 402.
On retire ensuite le support 20' au contact de la membrane microporeuse 500 (Fig. 7(e)). Sur cette figure 7(e), les canaux microfluidiques 401 , 402 apparaissent. On note que le canal microfluidique 401 d'une part, et le canal microfluidique 402 d'autre part, ont des profondeurs différentes ce qui permet de superposer les canaux dans un plan, comme cela peut être visualisé sur la figure 9.
Puis, on colle sur la membrane 500, conformément à l'étape (d) décrite précédemment, un ensemble comprenant au moins la base 6 et lesdites au moins deux deuxièmes parois latérales 7a, 7b en résine photodurcie et/ou thermodurcie pour former la chambre 8. Cet ensemble est quant à lui fabriqué avec un procédé reprenant les étapes (e-ι) à (β3) décrites précédemment à l'appui des figures 4(a) à 4(c).
Il convient de noter que les parois des canaux microfluidiques 401 , 402 du dispositif microfluidique 101 ainsi obtenu, ainsi que les parois de la chambre 8 de ce dispositif peuvent être réalisées avec des résines telles que décrites précédemment ou, en variante, avec des gels aqueux photoréticulables, comme des gels de polyacrylamide, choisis pour être liquides à la température ambiante. Les résines peuvent également être remplacées par du polydiméthylsiloxane (PDMS).
Pour faire fonctionner le dispositif microfluidique 101 de la figure 6, celui-ci est associé, au sein d'un système microfluidique, à au moins un moyen pour alimenter au moins l'un des canaux microfluidiques 401 , 402 avec un fluide comprenant des molécules susceptibles de stimuler une cible, telles que des cellules vivantes.
Par exemple, on peut prévoir un moyen d'alimentation (non représenté) propre tel qu'un réservoir de fluide pour chaque canal microfluidique 401 , 402. La connexion entre le réservoir et le canal microfluidique associé peut s'effectuer par un capillaire.
Les canaux microfluidiques 401 , 402 sont schématisés sur la figure 9, selon une vue en perspective partielle qui ne représente que les canaux 401 , 402 alimentant les ouvertures 401 ', 402', 403', 404' selon la vue de coupe A-A de la figure 8, coupe qui correspond également à la vue choisie pour décrire le procédé de fabrication à l'appui des figures 7(a) à 7(f), 7'(a) et 7'(b).
L'agencement représenté sur la figure 9 permet de paralléliser les expériences avec un nombre réduit de connectiques, dans la mesure où une alimentation va permettre d'alimenter plusieurs ouvertures. Toutefois, l'agencement des canaux microfluidiques peut être différent, en conservant un réseau d'ouvertures à deux dimensions tel que celui qui est représenté sur la figure 8.
Ainsi, on peut envisager que chaque canal ne comporte qu'une seule ouverture, si bien qu'il existe autant de canaux que d'ouvertures. Un tel cas est représenté sur la figure 10, laquelle ne représente que quatre canaux 4010, 4020, 4030, 4040 (associés respectivement à une ouverture 40 0', 4020', 4030', 4040') sur les douze canaux microfluidiques associés aux douze ouvertures de la figure 8. Sur cette figure 10, chaque canal microfluidique peut être alimenté par un fluide dédié, pouvant notamment comporter des molécules pour stimuler la cible.
L'alimentation de chaque canal est ainsi indépendante. Par ailleurs, elle peut alors être modulée en entrée par des vannes permettant de faire passer au moins deux fluides successivement dans le canal.
Le dispositif microfluidique ainsi formé est donc un dispositif comparable au dispositif décrit à l'appui de la figure 2. Il comporte cependant plus de deux canaux microfluidiques.
Dans ces conditions, on comprend que le procédé de fabrication d'un tel dispositif reprendra les étapes de fabrication décrites à l'appui des figures 3(a) à 3(c) et, le cas échéant, l'étape décrite à l'appui des figures 3(d), 4(a) à 4(c) pour former une chambre ou un autre canal microfluidique.
A cet effet, il faut cependant modifier la forme du timbre V afin que la protubérance l 'a comprenne, à la place de la fente verticale l 'c, une zone creuse en forme de grille apte à former les parois séparant les canaux microfluidiques les uns des autres, pour finalement obtenir le réseau d'ouvertures de la figure 8. On a représenté, sur la figure 11 , le timbre 11 ' ainsi modifié comportant cette zone creuse en forme de grille 'c sur la protubérance avec le support 2", lors de l'étape correspondant à l'étape représentée sur la figure 3(a).
Ceci offre de nombreuses possibilités. En effet, il est possible de choisir les canaux microfluidiques à alimenter en fluide, en fonction de la carte souhaitée de concentration en molécules susceptibles de stimuler la cible.
Il est également possible d'alimenter des canaux microfluidiques avec différents types de molécules stimulant la cible. Par ce biais, on peut effectuer un contrôle précis et varié dans l'espace de la culture de cellules vivantes.
Par exemple, il est possible d'alimenter un canal microfluidique avec un fluide comportant des molécules de stimulation et un autre canal microfluidique, par exemple immédiatement attenant au premier canal microfluidique, avec un fluide comportant une solution neutre. Les fluides se mélangent alors dans la chambre 8 pour former une carte de concentration bien particulière au niveau de la base de la chambre, lorsque les cellules cibles sont situées sur cette base.
Il est également possible de stimuler la cible par l'ouverture 401 ', 402', 403', 404' souhaitée avec un décalage dans le temps d'un canal microfluidique 401 , 402, 403, 404 à l'autre. Les autres ouvertures représentées sur la figure 8 peuvent alors être alimentées de la même façon.
Un autre agencement envisageable des canaux microfluidiques est le suivant.
Il est en effet possible de ne prévoir qu'un seul canal microfluidique dans lequel circule un fluide comportant des molécules de stimulation pour la cible, ce canal comportant plusieurs ouvertures.
Par exemple, on peut souhaiter fabriquer un dispositif comportant un canal avec quatre ouvertures, le canal microfluidique alimente donc en fluide ces quatre ouvertures.
Un procédé de fabrication d'un tel dispositif est présenté à l'appui des figures 12(a) à 12(d), dans le cas où une chambre 8 est par ailleurs prévue (figure 12(d)).
Le timbre 101 ' peut être réalisé en matériau élastomère tel que le PDMS. Il comporte un profil utilisé comme moule complémentaire de celui du dispositif microfluidique que l'on veut produire. Le timbre 101 ' comporte ainsi une protubérance 101 'a munie de plusieurs fentes verticales 101 'c pour former les différentes parois 301 ' du dispositif microfluidique. Il comporte également une zone creuse 101 'b entourant la protubérance 101 'a, zone dans laquelle la paroi latérale 300' du dispositif microfluidique est destinée à être formée. Le support 201' peut également être réalisé en PDMS et présente un profil plan.
La membrane microporeuse 500' est préalablement disposée sur le support 201 ', puis le timbre 101 ' est pressé contre le support 201 '.
Ensuite, on remplit le volume situé entre le timbre 101 ' et le support 201 ' en quantité appropriée, par exemple avec de la résine photoréticulable et/ou photopolymérisable sous forme liquide RL. Après le remplissage du volume situé entre le timbre 101 ' et le support 201 ' avec de la résine liquide RL, on applique alors une pression P au timbre 101 ' pour chasser d'éventuels excès de résine.
La structure obtenue à l'issue de l'étape (b) est représentée sur la figure 3(b).
La résine est irradiée au travers du timbre 101 '. Puis, le timbre 101 ' est ôté du dispositif. Sur la figure 12(b), on observe les parois 300', 301 ' en résine photo-polymérisée et/ou photo-réticulée, de profils complémentaires aux zones creuses du timbre 101 '.
On fixe alors le couvercle 200', du côté de ladite première paroi latérale 300' précédemment en contact avec le timbre 101 '. Le support 201' peut alors être retiré. La structure obtenue à l'issue de cette étape est représentée sur la figure 12(c).
La chambre 8 est fabriquée selon le procédé précédemment décrit à l'appui des figures 4(a) à 4(c), puis assemblé avec la structure représentée sur la figure 12(c). Cette opération d'assemblage est représentée sur la figure 12(d). Le sens du parcours du fluide dans le canal est noté F sur la figure 12(d). On note qu'il alimente successivement les différentes ouvertures débouchant sur la membrane 500'.
Là encore, les différents matériaux déjà présentés précédemment peuvent être envisagés. La présence de la chambre 8 n'est pas obligatoire, un canal pouvant notamment être prévu à la place de cette chambre 8. La membrane 500' présentera les mêmes caractéristiques que les membranes 5, 500 décrites précédemment.
L'invention met ainsi en uvre une membrane dont le diamètre hydraulique des pores est judicieusement choisi pour éviter le passage du fluide depuis les canaux microfluidiques vers le côté opposé de la membrane, comprenant par exemple la chambre ou un autre canal microfluidique. Le diamètre hydraulique des pores peut par ailleurs s'étendre dans une large gamme.
L'invention ne nécessite donc aucun milieu de culture sous forme de gel pour éviter le passage de fluide depuis les canaux microfluidiques vers la chambre ou cet autre canal microfluidique.
La diffusion dans la chambre de culture s'effectue donc dans un milieu de culture liquide, tel que l'eau. Cette diffusion dans la chambre est donc plus rapide que dans un milieu de culture réalisée avec un gel. Ceci permet d'effectuer un test plus rapidement et d'enchaîner également différents tests plus rapidement.
Par ailleurs, la précision avec laquelle des molécules de stimulation atteigne une cible obtenue avec le dispositif selon l'invention est excellente, et bien meilleure qu'avec les dispositifs connus.
Ceci est notamment lié à l'absence de gel dans la chambre, ce qui limite la diffusion multidirectionnelle des molécules de stimulation constatée avec ce gel.
De plus, le procédé selon l'invention permet de fabriquer un réseau d'ouvertures de faibles dimensions, avec une densité surfacique élevée. Typiquement, la dimension des ouvertures peut atteindre 5μηη et la distance entre les centres respectifs de deux ouvertures voisines peut atteindre 10μΐη.
Enfin, le dimensionnement des ouvertures est totalement indépendant du diamètre hydraulique des pores de la membrane microporeuse. Ainsi, il est possible de fabriquer un dispositif microfluidique avec de petites ouvertures (taille de 30 microns ou moins par exemple), associées à une membrane microporeuse présentant de grands pores (3 microns par exemple). Il est également possible de fabriquer un dispositif microfluidique avec de grandes ouvertures (taille de 2000 microns par exemple), associées à une membrane microporeuse 500 présentant de petits pores (0,2 micron par exemple).
Cela laisse une grande liberté de choix dans le dimensionnement du dispositif microfluidique, en fonction de l'application envisagée.
L'invention trouve en particulier application dans le domaine de la biologie, pour la culture, l'observation et l'étude de cellules vivantes. En particulier, on peut déterminer la réponse chimiotactique de cellules nerveuses à certaines molécules, par exemple afin d'élaborer des réseaux neuronaux. En particulier également, on peut mesurer la réponse de cellules cancéreuses à des molécules employées pour la chimiothérapie. On peut également utiliser le système microfluidique pour la fabrication de biopuces ou pour la stimulation de tissus, notamment pour la réalisation de tissus artificiels.
Les avantages liés à l'invention peuvent être intéressants pour d'autres domaines d'application, par exemple pour déterminer des seuils de toxicité de certaines molécules en cosmétologie.

Claims

REVENDICATIONS
1. Système microfluidique pour contrôler une carte de concentration de molécules susceptibles de stimuler une cible, par exemple formée par un ensemble de cellules vivantes, caractérisé en ce que le système comprend :
un dispositif microfluidique (1 , 101) comportant :
• nc≥ 1 canal(aux) microfluidique(s) (4, 40, 401 , 402, 4010, 4020, 4030, 4040), le ou chaque canal étant muni d'au moins un orifice d'entrée pour au moins un fluide et d'au moins un orifice de sortie pour ce fluide ;
• n0≥ 2 ouvertures (47, 470, 401 ', 402', 403', 404', 4010', 4020', 4030', 4040') formées dans le canal microfluidique ou réparties dans les différents canaux microfluidiques, lesdites ouvertures étant agencées dans un même plan de sorte qu'elles forment un réseau dans ce plan,
les nombres nc de canal(ux) microfluidique(s) et n0 d'ouvertures étant reliés par la relation n0 = Σ^ Πο/c. avec 1 < i < nc et n0/c. le nombre d'ouvertures pour le canal Q ;
• une chambre (8) ou un autre canal microfluidique comportant une base (6) destinée à recevoir la cible ;
• au moins une membrane microporeuse (5, 500, 500') recouvrant le réseau d'ouvertures, la base (6) destinée à recevoir la cible étant disposée de l'autre côté de la chambre (8) ou de l'autre canal microfluidique, par rapport à la membrane microporeuse; un ou plusieurs moyen(s) d'alimentation en fluides (Fi, F2) pour alimenter le ou chaque canal microfluidique en fluide, l'un au moins de ces fluides comportant des molécules pour stimuler la cible ;
de sorte que lorsque le moyen d'alimentation fournit au canal microfluidique ou à chaque canal microfluidique (4, 40, 401 , 402, 4010, 4020, 4030, 4040) l'un au moins de ces fluides (F-ι, F2), les molécules susceptibles de stimuler la cible diffusent alors, après avoir traversé la membrane microporeuse (5, 500, 500'), à travers la chambre (8) ou ledit un autre canal microfluidique, afin de contrôler la carte de concentration des molécules susceptibles de stimuler la cible dans cette chambre (8) ou cet autre canal microfluidique.
2. Système microfluidique selon l'une des revendications précédentes, dans lequel la membrane microporeuse (5, 500, 500') est munie de pores dont le diamètre hydraulique est compris entre 0,05μηι et 12μΐτι, de préférence entre 0,05μΐη et 3μΐη.
3. Système microfluidique selon la revendication précédente, dans lequel la densité surfacique des pores de la membrane microporeuse (5, 500, 500') est comprise entre 103 et 1010 pores/cm2.
4. Système microfluidique selon l'une des revendications précédentes, dans lequel la membrane microporeuse (5, 500, 500') est réalisée en un matériau choisi parmi : le verre, le polycarbonate, le polyester, le polyéthylène téréphtalate, le quartz, le silicium, la silice ou le carbure de silicium.
5. Système microfluidique selon l'une des revendications précédentes, dans lequel il est prévu un couvercle (2, 200) pour les canaux microfluidiques, ledit couvercle étant réalisé en un matériau choisi parmi : du verre ou du silicium, un polymère photoréticulé non élastomérique, un métal, un alliage conducteur électrique ou semiconducteur, une céramique, du quartz, du saphir, un élastomère.
6. Système microfluidique selon la revendication précédente, dans lequel ledit au moins un orifice d'entrée et ledit au moins un orifice de sortie pour les fluides sont formés dans le couvercle.
7. Système microfluidique selon l'une des revendications précédentes, dans lequel les canaux microfluidiques comprennent chacun au moins une paroi en résine photodurcie et/ou thermodurcie.
8. Système microfluidique selon la revendication précédente, dans lequel la base (6) de la chambre (8) ou de l'autre canal microfluidique comprend est réalisée en un matériau optiquement transparent.
9. Système microfluidique selon l'une des revendications 8 ou 9, dans lequel la chambre ou le canal microfluidique comprend des parois latérales en résine photodurcie et/ou thermodurcie.
10. Système microfluidique selon l'une des revendications précédentes, dans lequel il est prévu une pluralité de moyens pour alimenter les canaux microfluidiques, chacun de ces moyens d'alimentation alimentant l'un des canaux microfluidiques.
11. Système microfluidique selon l'une des revendications précédentes, dans lequel il est prévu un moyen de visualisation optique (18).
12. Système microfluidique selon la revendication précédente, dans lequel le moyen de visualisation optique (18) met en œuvre une technique de microscopie de localisation par photoactivation ou une technique de microscopie de déplétion par émission stimulée.
13. Système microfluidique selon l'une des revendications précédentes, dans lequel les ouvertures (47', 470', 401 ', 402', 403', 404') forment un réseau à deux dimensions dans le plan auquel elles appartiennent.
14. Système microfluidique selon l'une des revendications précédentes, dans lequel les centres respectifs de deux ouvertures voisines sont séparés d'une distance comprise entre 10μΐη et 250μΐη.
EP12720642.3A 2011-04-22 2012-04-20 Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible. Withdrawn EP2699353A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153496A FR2974360B1 (fr) 2011-04-22 2011-04-22 Systeme microfluidique pour controler une carte de concentration de molecules susceptibles de stimuler une cible
PCT/IB2012/052009 WO2012143908A1 (fr) 2011-04-22 2012-04-20 Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible.

Publications (1)

Publication Number Publication Date
EP2699353A1 true EP2699353A1 (fr) 2014-02-26

Family

ID=46062672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12720642.3A Withdrawn EP2699353A1 (fr) 2011-04-22 2012-04-20 Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible.

Country Status (11)

Country Link
US (1) US9164083B2 (fr)
EP (1) EP2699353A1 (fr)
JP (1) JP6140684B2 (fr)
KR (1) KR20140063521A (fr)
CN (1) CN103842084B (fr)
AU (1) AU2012245910B2 (fr)
CA (1) CA2833857A1 (fr)
FR (1) FR2974360B1 (fr)
MX (1) MX2013012365A (fr)
RU (1) RU2603473C2 (fr)
WO (1) WO2012143908A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870823B2 (en) * 2014-06-12 2020-12-22 Lehigh University Biomimetic device
US10797567B2 (en) 2015-07-23 2020-10-06 Life Technologies Corporation Rotor assembly including a housing for a sensor array component and methods for using same
EP3365106A1 (fr) * 2015-10-23 2018-08-29 Centre National De La Recherche Scientifique (Cnrs) Dispositif microfluidique pour contrôler la géométrie de corps vivants
CN108223814B (zh) * 2016-12-21 2019-10-15 无锡源清天木生物科技有限公司 一种用于微流控制的液体流量控制装置和微流控制方法
AU2017382375B2 (en) * 2016-12-23 2020-07-16 Biomerieux, Inc. Test card with well shelf
US11560305B1 (en) * 2017-07-17 2023-01-24 Gregory Nordin Microfluidic microchips by 3D printing
USD889683S1 (en) 2017-12-22 2020-07-07 Biomerieux, Inc. Test card
MX2021002156A (es) 2018-08-24 2021-04-28 Zoetis Services Llc Metodos para la fabricacion de un dispositivo de rotor microfluidico.
BR112021003285A2 (pt) 2018-08-24 2021-05-18 Zoetis Services Llc dispositivo de rotor microfluídico
BR112021003345A2 (pt) * 2018-08-24 2021-05-11 Zoetis Services Llc dispositivo de rotor microfluídico
AU2019326534B2 (en) 2018-08-24 2024-10-17 Zoetis Services Llc Microfluidic rotor device
CN112553072B (zh) 2020-12-10 2022-04-08 上海艾众生物科技有限公司 用于生物反应器罐外循环的微流道动力设备
KR20240020381A (ko) * 2022-08-08 2024-02-15 충북대학교 산학협력단 약물의 지속적인 항암 활성 및 약물의 나노입자제형의 epr 효과를 확인할 수 있는 미세유체 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374906B2 (en) * 2000-11-08 2008-05-20 Surface Logix, Inc. Biological assays using gradients formed in microfluidic systems
US20060199260A1 (en) * 2002-05-01 2006-09-07 Zhiyu Zhang Microbioreactor for continuous cell culture
EP2402089A1 (fr) * 2003-07-31 2012-01-04 Handylab, Inc. Traitement d'échantillons contenant des particules
GB0323043D0 (en) * 2003-09-24 2003-11-05 Lux Biotechnology Ltd Biochip
US20050148064A1 (en) * 2003-12-29 2005-07-07 Intel Corporation Microfluid molecular-flow fractionator and bioreactor with integrated active/passive diffusion barrier
WO2006116616A2 (fr) * 2005-04-26 2006-11-02 Applera Corporation Systemes et procedes de detection multiple d'analytes
WO2007106451A2 (fr) * 2006-03-10 2007-09-20 Massachusetts Institute Of Technology appareil et procede pour le contrôle d'oxygene dissous dans une matrice de bioreacteur integre parallele
CN101479041B (zh) * 2006-06-28 2012-10-03 微溶解有限公司 促进结晶的装置及方法
FR2903679B1 (fr) 2006-07-17 2014-07-04 Centre Nat Rech Scient Fabrication de dispositifs microfluidiques polymeriques par impression photo-assistee.
WO2008028241A1 (fr) * 2006-09-06 2008-03-13 The University Of Queensland Microbioréacteur
WO2008032106A2 (fr) * 2006-09-14 2008-03-20 Oxford Gene Technology Ip Limited Imagerie de zones
US8568668B2 (en) * 2007-12-10 2013-10-29 Shimadzu Corporation Micro droplet operation device and reaction processing method using the same
GB0814035D0 (en) * 2008-07-31 2008-09-10 Univ Heriot Watt Apparatus and method for biological sample culture or testing
RU2380418C1 (ru) * 2008-10-01 2010-01-27 Учреждение Российской академии наук Институт молекулярной биологии им. В.А. Энгельгардта РАН Сменный микрофлюидный модуль для автоматизированного выделения и очистки нуклеиновых кислот из биологических образцов и способ выделения и очистки нуклеиновых кислот с его использованием
JP5594658B2 (ja) * 2010-01-21 2014-09-24 一般財団法人生産技術研究奨励会 物質分布制御方法、デバイス、細胞培養方法、細胞分化制御方法
US20130068310A1 (en) * 2011-09-15 2013-03-21 University Of Washington Through Its Center Of Commercialization Method and Apparatus for a Microfluidic Device
US9678007B2 (en) * 2011-10-14 2017-06-13 Northwestern University Biological tissue analysis by inverse spectroscopic optical coherence tomography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012143908A1 *

Also Published As

Publication number Publication date
FR2974360A1 (fr) 2012-10-26
AU2012245910A1 (en) 2013-11-07
CN103842084A (zh) 2014-06-04
CA2833857A1 (fr) 2012-10-26
US20140113366A1 (en) 2014-04-24
US9164083B2 (en) 2015-10-20
FR2974360B1 (fr) 2014-09-12
KR20140063521A (ko) 2014-05-27
CN103842084B (zh) 2016-05-04
AU2012245910A8 (en) 2013-12-12
MX2013012365A (es) 2015-03-23
AU2012245910B2 (en) 2015-12-10
JP2014518509A (ja) 2014-07-31
WO2012143908A1 (fr) 2012-10-26
RU2603473C2 (ru) 2016-11-27
JP6140684B2 (ja) 2017-05-31
RU2013151882A (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
EP2699353A1 (fr) Système microfluidique pour contrôler la concentration de molécules de stimulation d&#39;une cible.
EP2680971A1 (fr) Systeme microfluidique pour controler un profil de concentration de molecules susceptibles de stimuler une cible
EP2903738B1 (fr) Procédé microfluidique de traitement et d&#39;analyse d&#39;une solution contenant un matériel biologique, et circuit microfluidique correspondant
EP2609993B1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
EP2119503B1 (fr) Système microfluidique et procédé pour le tri d&#39;amas de cellules et pour leur encapsulation en continu suite à leur tri
Bi et al. Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes
EP3347128A1 (fr) Substrat de support d&#39;échantillon liquide, ensemble comportant un tel substrat et son utilisation
FR2903679A1 (fr) Fabrication de dispositifs microfluidiques polymeriques par impression photo-assistee.
EP2442902B1 (fr) Systeme microfluidique et procede pour le transfert d&#39;elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2576229B1 (fr) Fabrication de structures en relief par procédés d&#39;impression
Korman et al. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions
JP2014199206A (ja) マイクロチップ及びマイクロチップの製造方法
WO2020193927A1 (fr) Procédé d&#39;impression additive tridimensionnelle
EP3053652B1 (fr) Dispositif microfluidique et procédé de réalisation d&#39;un dispositif microfluidique
FR2901489A1 (fr) Dispositif microfluidique avec materiau de volume variable
FR2890975A1 (fr) Plaque de tests a puits.
Singh et al. Composite Norland Optical Adhesive (NOA)/silicon flow focusing devices for colloidal particle manipulation and synthesis
Kalde et al. Surface Charge Affecting Fluid–Fluid Displacement at Pore Scale
EP3365426A1 (fr) Dimensionnement d&#39;un dispositif microfluidique pour confiner un échantillon
EP3838409A1 (fr) Dispositif micro-fluidique réalisé par embossage d&#39;un substrat à base de papier
FR2944713A1 (fr) Substrats poreux microstructures, leur procede de preparation et leurs utilisations.
FR2836072A1 (fr) Composant utilisant un materiau composite et destine a un microsysteme d&#39;analyse biologique ou biochimique
FR3120126A1 (fr) Cartouche d’analyse et dispositif d’analyse d’un liquide
FR3110568A1 (fr) Puce microfluidique tridimensionnelle, procede de fabrication d’une telle puce et utilisation pour la separation de particules dans des solutions colloïdales
FR3065528A1 (fr) Procede de preparation d&#39;un echantillon de bacteries en vue d&#39;une analyse par spectrometrie raman

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GALAS, JEAN-CHRISTOPHE

Inventor name: BARTOLO, DENIS

Inventor name: DAHAN, MAXIME

Inventor name: MOREL, MATHIEU

Inventor name: STUDER, VINCENT

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190507

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190918