JP2014199206A - マイクロチップ及びマイクロチップの製造方法 - Google Patents

マイクロチップ及びマイクロチップの製造方法 Download PDF

Info

Publication number
JP2014199206A
JP2014199206A JP2013074628A JP2013074628A JP2014199206A JP 2014199206 A JP2014199206 A JP 2014199206A JP 2013074628 A JP2013074628 A JP 2013074628A JP 2013074628 A JP2013074628 A JP 2013074628A JP 2014199206 A JP2014199206 A JP 2014199206A
Authority
JP
Japan
Prior art keywords
flow path
liquid
analysis
microchip
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074628A
Other languages
English (en)
Other versions
JP6003772B2 (ja
JP2014199206A5 (ja
Inventor
直久 坂本
Naohisa Sakamoto
直久 坂本
真寛 松本
Masahiro Matsumoto
真寛 松本
英俊 渡辺
Hidetoshi Watanabe
英俊 渡辺
大西 通博
Michihiro Onishi
通博 大西
加藤 義明
Yoshiaki Kato
義明 加藤
渡辺 俊夫
Toshio Watanabe
俊夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013074628A priority Critical patent/JP6003772B2/ja
Priority to CN201410087830.2A priority patent/CN104069903A/zh
Priority to US14/223,497 priority patent/US20140311910A1/en
Publication of JP2014199206A publication Critical patent/JP2014199206A/ja
Publication of JP2014199206A5 publication Critical patent/JP2014199206A5/ja
Application granted granted Critical
Publication of JP6003772B2 publication Critical patent/JP6003772B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8827Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Dispersion Chemistry (AREA)

Abstract

【課題】液体の充填が完了する時間のばらつきを抑制可能なマイクロチップの提供。
【解決手段】液体が注入される導入部と、前記液体が供給される複数の分析領域と、前記液体が前記導入部から前記複数の分析領域のそれぞれに同じタイミングで供給されるように形成された流路と、を備えるマイクロチップを提供する。このマイクロチップでは、導入部に液体が注入されると、その液体が流路を通流し、複数の分析領域のそれぞれに同じタイミングで到達する。
【選択図】図1

Description

本技術は、マイクロチップ及びマイクロチップの製造方法に関する。より詳しくは、複数の分析領域へ同じタイミングで液体が供給されるように形成された流路を備えるマイクロチップに関する。
近年、半導体産業における微細加工技術を応用し、シリコンやガラス製の基板上に化学的及び生物学的分析を行うためのウェルや流路を設けたマイクロチップが開発されている。
このようなマイクロチップを用いた分析システムは、μ−TAS(Micro−Total−Analysis−System)やラボ・オン・チップ、バイオチップ等と称され、化学的及び生物学的分析の高速化や高効率化、集積化又は分析装置の小型化を可能にする技術として注目されている。
μ−TASは、少量の試料で分析が可能であることや、マイクロチップのディスポーザブルユーズ(使い捨て)が可能であることから、貴重な微量試料や多数の検体を扱う生物学的分析への応用が期待されている。
μ−TASの応用例として、マイクロチップ上に配設された複数の領域内に物質を導入し、該物質を光学的に検出する光学検出装置がある。このような光学検出装置としては、マイクロチップ上の流路内で複数の物質を電気泳動により分離し、分離された核物質を光学的に検出する電気泳動装置や、マイクロチップ上のウェル内で複数の物質間の反応を進行させ、生成する物質を光学的に検出する反応装置(例えば、リアルタイムPCR装置)等がある。
例えば、特許文献1には、試料を導入する試料導入部と、その試料を収容する複数の収容部と、それぞれの収容部に接続された複数の排気部とを備えるマイクロ基板が開示されている。具体的には、このマイクロ基板は、試料導入部と各収容部とが、主流路と、その主流路から分岐した複数の支流路とを介して連通されている流路構造を有する。
特開2009−284769号公報
マイクロチップにおいて、試料溶液の導入部に流路を介して接続された、試料の収容領域(分析領域)が複数存在する場合、一般的に、その流路構造によって、導入部に近い側の分析領域から順に試料溶液が充填される。そのため、各分析領域間において溶液の充填完了時間にばらつきが生じる可能性がある。これにより、分析領域において反応を生じさせて分析対象物が生成される場合、分析領域間で反応のばらつきが生じる可能性がある。
そこで、本技術は、複数の分析領域において、液体の充填が完了する時間のばらつきを抑制することが可能なマイクロチップを提供することを主な目的とする。
本技術は、液体が注入される導入部と、前記液体が供給される複数の分析領域と、前記液体が前記導入部から前記複数の分析領域のそれぞれに同じタイミングで供給されるように形成された流路と、を備えるマイクロチップを提供する。
本技術に係るマイクロチップは、液体が導入部から複数の分析領域のそれぞれに同じタイミングで供給されるように形成された流路を備えるため、導入部に液体が注入されると、その液体が各分析領域に同じタイミングで到達する。
前記流路は、前記導入部から各分析領域までの流路抵抗が略同一となるように形成されていることで、前記液体を各分析領域に同じタイミングで供給することができる。
前記流路は、前記導入部に接続された主流路と、該主流路から分岐されて各分析領域に接続する複数の分岐流路と、を有する構成とすることができる。
前記主流路の前記液体の流れ方向に対する垂直断面の面積が、前記複数の分岐流路の前記液体の流れ方向に対する垂直断面の面積の合計よりも大きいことが好ましい。
前記流路は、前記複数の分析領域のうち前記導入部に最も近い位置の第1分析領域に接続する第1分岐流路の流路抵抗と、前記主流路における前記第1分岐流路の接続点から前記第1分析領域以外の他の分析領域までの流路抵抗とが、略同一となるように形成されていることが好ましい。
前記主流路を複数備え、前記導入部から、該導入部に最も近い位置の分析領域までの各主流路の流路抵抗が略同一に形成されている、マイクロチップとすることもできる。
前記分析領域から前記液体が流出する第二の流路と、該第二の流路を介して各分析領域に接続された、各分析領域への液体の供給状況を提示する表示領域と、を備える、マイクロチップであってもよい。
前記第二の流路は、前記各分析領域に接続する複数の第二の分岐流路と、該複数の第二の分岐流路のそれぞれが接続する第二の主流路と、を有していてもよい。
前記第二の主流路は、該第二の主流路における前記液体の流れ方向に対する垂直断面の幅及び/又は深さの寸法が前記表示領域側に向かって漸次又は段階的に大きくなるように形成されていてもよい。
前記第二の流路の所定箇所に前記液体の逆流防止用の収容部を有していてもよい。
前記導入部と前記分析領域との間に、前記分析領域とは別に試薬収容領域を備えるマイクロチップであってもよい。
導入部から各分析領域までの流路抵抗が略同一となるように形成された構成について、前記流路抵抗は、前記液体の粘度、前記流路の長さ、及び前記流路の前記液体の流れ方向に対する垂直断面のサイズ、を含む抵抗要素から導くことかできる。
例えば、前記流路の前記液体の流れ方向に対する垂直断面の形状が長方形状である場合、この流路の流路抵抗は、下記式(I)より算出されることとしてもよい。
Figure 2014199206
前記分岐流路を備える構成について、前記分岐流路に狭窄部を有し、該狭窄部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された、マイクロチップであってもよい。
前記分岐流路内に、前記液体の流れに対する抵抗部を有し、該抵抗部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された、マイクロチップであってもよい。
本技術はまた、液体が注入される導入部から、複数の分析領域のそれぞれに、同じタイミングで前記液体を供給可能な流路を基板に形成するマイクロチップの製造方法を提供する。
本技術により、複数の分析領域における液体の充填が完了する時間のばらつきを抑制することが可能なマイクロチップが提供される。
本技術に係る第1実施形態のマイクロチップの上面模式図である。 第1実施形態のマイクロチップの断面模式図であり、図2Aは、図1のA−A断面、図2Bは、図1のB−B断面の模式図である。 図3Aは図2Bにおける領域Sの拡大図であり、図3B〜Fは、流路の断面形状の変形例を説明するための図3Aに対応する図である。 本技術に係る第2実施形態のマイクロチップの上面模式図である。 本技術に係る第2実施形態の第1変形例のマイクロチップの上面模式図である。 本技術に係る第2実施形態の第2変形例のマイクロチップの上面模式図である。 本技術に係る第3実施形態のマイクロチップの上面模式図である。 本技術に係る第4実施形態のマイクロチップの上面模式図である。 本技術に係る第4実施形態の第1変形例のマイクロチップの上面模式図である。 本技術に係る第4実施形態の第2変形例のマイクロチップの上面模式図である。 本技術に係る第5実施形態によるマイクロチップを説明するための図であり、そのマイクロチップの上面を部分的に表した模式図である。 本技術に係る第5実施形態の変形例によるマイクロチップを説明するための図であり、そのマイクロチップの上面を部分的に表した模式図である。 第5実施形態の変形例によるマイクロチップにおける分岐流路の製造例を説明するための図である。 第5実施形態の変形例によるマイクロチップにおける分岐流路の別の製造例を説明するための図である。 本技術に係る第6実施形態によるマイクロチップを説明するための図である。 実施例で用いたマイクロチップを説明するための図である。 実施例及び比較例による試験結果を示す図である。
以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。また、以下に説明する各実施形態で共通する構成については、同一の符号を付して説明を省略することがある。
説明は以下の順序で行う。
1.第1実施形態
(導入部から各分析領域までの流路抵抗が略同一とされた構成例)
2.第2実施形態
(導入部から各分析領域までの流路の長さ等が略同一とされた構成例)
3.第3実施形態
(複数の分岐流路を有する主流路を複数備える構成例)
4.第4実施形態
(分析領域から液体が流出する第二の流路を備える構成例)
5.第5実施形態
(流路に狭窄部や抵抗部を備える構成例)
6.第6実施形態
(導入部と分析領域との間に試薬収容領域を備える構成例)
<第1実施形態>
図1は、本技術に係る第1実施形態のマイクロチップ11の上面模式図である。図2は、マイクロチップ11の断面模式図であり、図2Aは図1におけるA−A断面の模式図、図2Bは図1におけるB−B断面の模式図である。また、図3Aは図2Bにおける領域Sの拡大図であり、図3B〜Fは、後述する流路の断面形状の変形例を説明するための、図3A相当の図である。
図1に示すように、本実施形態のマイクロチップ11は、液体が注入される導入部12と、複数の分析領域13と、導入部12及び各分析領域13に接続して導入部12から各分析領域13に液体を供給する流路14と、を備えている。そして、この流路14は、液体が導入部12から複数の分析領域13のそれぞれに同じタイミングで供給されるように形成されている。
[基板]
導入部12、分析領域13、及び流路14は、マイクロチップ11を構成する基板110内に空間として形成されている。マイクロチップ11をなす基板110の構成は、特に限定されるものではない。例えば、基板は複数の基板層から構成することができ、図2においては2つの基板層111、112が例示されているが、三層以上であってもよい。また、図2においては、基板層112に導入部12等が形成されている構成が例示されている。
基板110の材質としては、ガラス、樹脂材(ポリプロピレン、ポリカーボネート、及びポリメチルメタクリレート等)、並びに各種エラストマー材(天然ゴム、ポリジメチルシロキサン等の合成ゴム、及び熱可塑性エラストマー等)が用いられる。例えば、導入部12、分析領域13及び流路14を樹脂製基板層にて形成し、その上に導入部12等を閉塞するエラストマー製基板層を重ねて、マイクロチップ11を構成することができる。
分析領域13内の分析対象物を光学的に分析する場合においては、基板110の材質は、光透過性を有し、自家蛍光が少なく波長分散が小さいことで光学誤差の少ない材料を選択することが好ましい。
基板110への導入部12、分析領域13及び流路14等の成形は、例えばガラス製基板層のウェットエッチング若しくはドライエッチングによって、又は樹脂製基板層のナノインプリント、射出成形若しくは切削加工等の方法にて行うことができる。基板110の貼り合わせには、例えば、接着剤、粘着剤、熱融着、陽極接合、又は超音波融着等の方法を用いることができる。また、基板110の表面を酸素プラズマ処理や真空紫外光処理により活性化して貼り合わせることも可能である。
[導入部]
導入部12は、マイクロチップ11による解析に用いる液体が注入される部分である。導入部は液体が注入される部分であるという点で、流路の一部(例えば流路における流路長の端付近)であってもよい。
導入部12に注入された液体は、導入部12からマイクロチップ11内に流入される。
導入部12への液体の注入方式は特に限定されず、例えば、注入部(不図示)を外部と連通するように開口させ、そこからシリンジで注入することができる。また例えば、導入部12を一つの基板層111で閉塞しておき、その基板層111にシリンジを接続した針等の穿刺部材を穿刺して、導入部12へ液体を注入してもよい。導入部12を閉塞する基板層111から穿刺注入する場合、穿刺される基板層111としては、ポリウレタン系エラストマー、及びポリジメチルシロキサンなどの自己封止性を備える基板層が好適に用いられる。
本技術に係るマイクロチップに導入される液体としては、典型的には、分析対象物、又は他の物質と反応して分析対象物を生成する物質を含む溶液が挙げられる。分析対象物としては、DNA及びRNA等の核酸、並びにペプチド及び抗体等を含めたタンパク質などを挙げることができる。また、血液等の前記分析対象物を含んだ生体試料自体又はその希釈溶液を本技術に係るマイクロチップに導入する液体としてもよい。
[分析領域]
分析領域13は、導入部12に注入された液体が、後述する流路14を介して供給される領域である。分析領域13では、分析対象物として、液体に含まれる物質、又はその物質が他の物質として反応して生成される反応生成物の検出、分析が行われる。このように、分析領域13において、分析対象物が反応により生成される場合があることから、分析領域13は反応領域13とも称されることがある。
マイクロチップを用いる分析手法には、例えば、温度サイクルを実施する従来のPCR法、及び温度サイクルを伴わない各種等温増幅法等の核酸増幅反応を利用した分析手法が含まれる。等温増幅法としては、例えば、LAMP法、SMAP法、及びNASBA法等の公知の種々の手法が挙げられる。また、核酸増幅反応には、リアルタイムPCR(RT−PCR)法やRT−RAMP法などの増幅核酸鎖の定量を伴う反応も含まれる。本技術に係るマイクロチップは、核酸増幅反応を利用した分析装置に好適に用いられ、核酸増幅反応用マイクロチップとして好適である。
分析領域13には、分析に必要な物質の一部が予め収容されていてもよい。例えば、核酸増幅反応の場合、分析領域13には、増幅産物を得るために必要な試薬を収容しておくことができる。この試薬としては、例えば、オリゴヌクレオチドプライマー、酵素、核酸モノマー(dNTP)、及び反応緩衝液溶質からなる群から選択される1種又は2種以上を用いることができる。分析領域にオリゴヌクレオチドプライマー等の試薬を収容しておくことで、マイクロチップの導入部に、上記液体として核酸を含むサンプル液を注入するのみで、簡単に核酸増幅反応を開始することができる。
本実施形態では、各分析領域13は、一列に平行に配置されており、また、各分析領域13間の距離が同一となるように均等に配置されている。このように各分析領域13が均等間隔で配置されていることで、マイクロチップ11の平面面積に対して、分析領域13をより多く設けることが可能となる。
[流路]
流路14は、導入部12及び各分析領域13に接続し、導入部12に注入された液体を各分析領域13に供給するものである。
本実施形態では、流路14は、導入部12に接続された主流路15と、その主流路15から分岐して各分析領域13に接続する複数の分岐流路16とを有する。主流路15は、導入部12から第5分岐流路165との接続点P15までの長さを有している。各分岐流路16は、主流路15から、主流路15における液体の流れ方向(図1の矢印F参照)に対して所定の角度(図1のθ参照)を有して斜めに分岐されて、各分析領域13に接続されている。
そして、流路14は、液体が導入部12から複数の分析領域13のそれぞれに同じタイミングで供給されるように形成されている。具体的には、導入部12から各分析領域13までの流路抵抗が略同一となるように形成されている。この構成により、導入部12に液体が注入されると、その液体が、複数の分析領域13のそれぞれに同じタイミングで供給されることとなる。
ここで、「同じタイミング」とは、液体が各分析領域に同時に供給される場合のほか、一の分析領域で液体の充填が完了するときに、他の分析領域においてすでに50%以上の充填状態、好適にはその充填が完了しつつある状態にある場合を含むものである。
また、「流路抵抗」とは、流路における液体の流れ難さ(流れ易さ)を示すものである。流路抵抗は、例えば、流路の長さ、幅、深さ、形状、及び流路内壁面の性質、並びに流路内を流れる液体の粘度等を含む抵抗要素に基づいている。
前述のとおり、本実施形態のマイクロチップ11における流路14は、導入部12から各分析領域13までの主流路15及び分岐流路16における流路抵抗が、各分析領域13間で略同一となるように形成されている。例えば、分岐流路16の幅及び深さや、分岐流路16の主流路15との角度θを調整することによる分岐流路16の長さ等を分岐流路16毎に変えることで、各流路抵抗を略同一となるように形成することが可能である。
以下、この流路構造についてより具体的に説明する。
本実施形態では、導入部12から、導入部12に最も近い位置にある分析領域(第1分析領域)131に接続する分岐流路(第1分岐流路)161の接続点(第1接続点)P11までの主流路15は、各分析領域13で共通している。このことから、導入部12から第1接続点P11までの流路抵抗は、各分析領域13間で等しい。
そのため、第1分岐流路161の流路抵抗と、主流路15における第1接続点P11から第1分析領域131以外の他の分析領域132、133、134、135までのそれぞれの流路14における流路抵抗とが、略同一とされている。
より具体的には、第1分岐流路161の流路抵抗と、第1接続点P11から第2接続点P12までの主流路15、及び第2分析領域132に接続する第2分岐流路162の合計の流路抵抗と、が略同一とされている。
同様に、第1分岐流路161の流路抵抗と、第1接続点P11から第3接続点P13までの主流路15及び第3分岐流路163の合計の流路抵抗とは、略同一とされている。
第1接続点P11から第4接続点P14までの主流路15及び第4分岐流路164の合計の流路抵抗、並びに第1接続点P11から第5接続点P15までの主流路15及び第5分岐流路165の合計の流路抵抗についても同様である。
このように、マイクロチップ11は、導入部12から各分析領域13までの流路抵抗が略同一となるように形成された流路14を備えるため、導入部12に注入された液体を複数の分析領域13のそれぞれに同じタイミングで供給することができる。
前述の流路抵抗は、流路14を流れる液体の粘度、導入部12から各分析領域13までの流路14の長さ、並びに流路14の液体の流れ方向(図1のF参照)に対する垂直断面(以下、単に「垂直断面」という。)の形状及び寸法を含む抵抗要素から導かれる。
具体的には、図3Aの主流路15の垂直断面の模式図で示すように、流路14(主流路15及び分岐流路16)は、垂直断面の形状が長方形状とされており、その流路抵抗は、下記式(I)により算出することができる。
Figure 2014199206
ここで、上記式(I)において、Rは流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lは流路の長さ[mm]、hは流路の深さ[mm]、wは流路の幅[mm]を表す。
上記流路抵抗は、寸法の異なる流路14ごとに、主流路15及び各分岐流路16のそれぞれにおいて計算される。主流路15の流路抵抗を算出する場合は、上記式(I)において、Rはその主流路15の流路抵抗、Lは主流路15の長さであり、また、h及びwはそれぞれ主流路15の深さ及び幅である(図3A参照)。また、分岐流路16の流路抵抗を算出する場合は、上記式(I)において、Rはその分岐流路16の流路抵抗であり、L、h及びwはそれぞれ、算出しようとする分岐流路の長さ、深さ及び幅である。
より具体的には、例えば、導入部12から第1分析領域131までの流路抵抗は、導入部12から第1接続点P11までの主流路15の流路抵抗と、第1分岐流路161の流路抵抗との合計によって求められる。
このように、導入部12から各分析領域13までの流路抵抗は、導入部12から各分析領域13に接続する分岐流路16の接続点(P11〜P15)までの各主流路15における流路抵抗と、各分岐流路16の流路抵抗とを合計して求められる。
上述のとおり、本実施形態のマイクロチップにおける流路構造は、導入部12から各分析領域13までの流路抵抗が、各分析領域13間(導入部12から各分析領域13までの各流路14間)において、略同一となるように形成されている。
ここで、本技術において、流路抵抗が「略同一」であるとは、算出される各流路抵抗の値が、実質的に同じ範囲内にあることをいう。例えば、導入部12から各分析領域13までの各流路抵抗のうちの最大値と最小値との差が、各流路抵抗の平均値に対して5%以内、好適には2%以内、より好適には1%以内にある場合、各流路抵抗は略同一である。
また、本実施形態のマイクロチップ11では、主流路15の垂直断面の面積が、各分岐流路16の垂直断面の面積の合計よりも大きく形成されている。これにより、主流路15から分岐する複数の分岐流路16のそれぞれに十分な流量で液体を供給することが可能となる。
流路14の垂直断面については、導入部12から各分析領域13までの流路抵抗を揃える上で、分岐流路16の垂直断面における幅及び/又は深さの寸法を分岐流路毎に変えることができる。
例えば、複数の分岐流路16の垂直断面における幅及び/又は深さの寸法を、下流側の分岐流路16ほど(導入部12から遠い位置にある分岐流路16ほど)、大きくすることができる。具体的には、下流側に位置する分岐流路16(例えば第5分岐流路165)の垂直断面の幅及び/又は深さを、上流側に位置する分岐流路16(例えば第1分岐流路161)の垂直断面の幅及び/又は深さよりも大きくすることができる。
このように、導入部12から遠い位置ほど、液体が流れ易い(抵抗を受け難い)分岐流路16とすることで、導入部12から各分析領域13までの各流路抵抗を揃えることが可能となる。この場合、上流側から下流側にいくにつれて、分岐流路16の流路抵抗を小さくすることが好適である。
なお、流路14の垂直断面の形状は、長方形状のほか、正方形状、円形状、楕円形状、三角形状、及び放物線形状(放物線を有する形状)等であってもよい(図3A〜F参照)。流路14の垂直断面の形状が長方形状以外であっても、前述の抵抗要素から、流路形状に合った流路抵抗を算出することが可能である。
流路の垂直断面の形状が、正方形状である場合、その流路抵抗は下記式(II)により算出することが可能である(図3B参照)。
Figure 2014199206
上記式(II)において、Rは垂直断面が正方形状である場合の流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lはその流路の長さ[mm]、hは垂直断面における流路の深さ及び幅[mm]を表す。
流路の垂直断面の形状が、円形状である場合、その流路抵抗は下記式(III)により算出することが可能である(図3C参照)。
Figure 2014199206
上記式(III)において、Rは垂直断面が円形状である場合の流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lはその流路の長さ[mm]、aは垂直断面における流路の半径[mm]を表す。
流路の垂直断面の形状が、楕円形状である場合、その流路抵抗は下記式(IV)により算出することが可能である(図3D参照)。
Figure 2014199206
上記式(IV)において、Rは垂直断面が楕円形状である場合の流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lはその流路の長さ[mm]を示す。また、a及びbは、それぞれ垂直断面における流路の長半径(長軸半径)[mm]及び短半径(短軸半径)[mm]を表す。
流路の垂直断面の形状が、正三角形状である場合、その流路抵抗は下記式(V)により算出することが可能である(図3E参照)。
Figure 2014199206
上記式(V)において、Rは垂直断面が正三角形状である場合の流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lはその流路の長さ[mm]、aは流路の垂直断面における一辺の長さ[mm]を表す。
流路の垂直断面の形状が、放物線形状である場合、その流路抵抗は下記式(VI)により算出することが可能である(図3F参照)。
Figure 2014199206
上記式(VI)において、Rは垂直断面が放物線形状である場合の流路の流路抵抗[Pa・s/mm]、ηは液体の動的粘度[Pa・s]、Lはその流路の長さ[mm]を表す。また、hは垂直断面における放物線の長さ[mm]、wは垂直断面における直線部分の長さ[mm]を表す。
以上詳述した第1実施形態のマイクロチップ11では、導入部12から各分析領域13までの流路抵抗が略同一に形成されていることで、導入部12に注入される液体を複数の分析領域13のそれぞれに同じタイミングで供給することができる。よって、分析領域13間で液体の充填完了時間のばらつきを抑制することができる。
これにより、分析領域13における分析対象物が、液体の供給により化学反応を伴い生成される物質である場合、各分析領域13において、その反応開始条件を揃えることが可能となり、反応のばらつきを低減することができる。例えば、分析領域13に予め試薬が収容されており、分析領域13に供給される液体によりその試薬を溶解させて反応を生じさせる場合に、その溶解時間を揃えることが可能となり、反応のばらつきを低減することができる。
ところで、各分析領域に同じタイミングで液体が供給される流路構造を有さない、従来のマイクロチップでは、各分析領域間で液体の充填完了時間がばらつくことがあり、分析領域間でのコンタミネーションや液量のばらつきを生じることがある。また、分析領域に予め試薬が収容され、液体によりその試薬を溶解させて反応を生じさせる場合では、先に試薬が溶解した分析領域において、試薬同士が非特異反応(プライマーダイマー等)を起こす可能性がある。
このような問題を、本技術に係るマイクロチップは、導入部から各分析領域までの流路抵抗が略同一に形成されている流路構造を有することで、解消することが可能となる。
また、本実施形態のマイクロチップ11では、主流路15の垂直断面の面積が、複数の分岐流路16の垂直断面の面積の合計よりも大きく形成されていることで、複数の分岐流路16のそれぞれに十分な流量で液体を供給することができる。これにより、複数の分析領域13のそれぞれに対する液体の同時供給をより実現し易いマイクロチップ11が得られる。
さらに、マイクロチップ11では、導入部12から各分析領域13までの各流路長が異なるが、各流路抵抗が略同一とされた流路構造を有することで、導入部から各分析領域までの距離が等距離とされた構成に比べて、流路群が省スペースに納められる。そのため、本実施形態のマイクロチップ11は、高密度、多数の分析領域の配置が可能となる。
<第2実施形態>
図4は、本技術に係る第2実施形態のマイクロチップ21の上面模式図である。
第2実施形態のマイクロチップ21は、第1実施形態と同様、導入部22と、複数の分析領域23と、導入部22及び分析領域23に接続する流路24とを備える。
なお、導入部22及び分析領域23については、配置位置及び配置数以外は、第1実施形態で述べた説明と同様であるため、以下の実施形態及び変形例において重複説明を省略する。
本実施形態のマイクロチップ21は、第1実施形態のマイクロチップ11と同様、導入部22から複数の分析領域23のそれぞれに同じタイミングで供給されるように形成された流路24を有する。また、このマイクロチップ21における流路24は、マイクロチップ11の流路14と同様、導入部22から各分析領域23までの流路抵抗が略同一となるように形成されている。
しかしながら、本実施形態のマイクロチップ21では、導入部22から各分析領域23までの流路24の長さが、分析領域23間で略同一となるように形成されている点が、第1実施形態のマイクロチップ11における流路構造とは異なる。
図4に示すように、マイクロチップ21は、主流路25と、その主流路25から分岐された複数の分岐流路26とを有し、この主流路25を複数備えている。
そして、各主流路25から分岐され、導入部22に最も近い列の各第1分析領域231に接続する各第1分岐流路261は、平面視蛇腹状に形成されている。また、各主流路25から分岐され、中間列に位置する各第2分析領域232に接続する各第2分岐流路262は、第1分岐流路261より折り返し回数が少ない平面視蛇腹状に形成されている。さらに、各主流路25から、導入部22に最も遠い列の各第3分析領域233に接続する各第3分岐流路263は、各主流路25から斜めに直線状に形成されている。
各主流路251、252、253は、導入部22から各第1分岐流路261までの長さが略同一となるような形状にて形成されている。ここで、各主流路25は、それぞれ導入部22から第3分岐流路263が分岐される位置までの長さを有する流路である。
そして、各第1分岐流路261の長さはそれぞれ略同一に形成されている。また、各第2分岐流路262の長さもそれぞれ略同一に、各第3分岐流路263の長さもそれぞれ略同一に形成されている。
上述のとおり、本実施形態のマイクロチップ21は、各主流路25及び各分岐流路26の平面視形状の相違によって、導入部22から各分析領域23までの流路24の長さが略同一となるように形成されている。
また、このマイクロチップ21は、導入部22から各分析領域23までの流路24の長さのほか、流路24の垂直断面の幅及び深さも同一に形成されている。このようにして、マイクロチップ21における流路24は、導入部22から各分析領域23までの流路抵抗が略同一となるように形成されている。
なお、図4では、図面の明瞭さのために、主流路251に連通する分析領域23(231、232、233)のみに符号を付したが、主流路252、253に連通する分析領域も同様の符号が付されるものである。また、図4では、図面の明瞭さのために、主流路253から分岐する分岐流路26(261、262、263)のみに符号を付したが、主流路251、252のそれぞれから分岐する分岐流路も同様の符号が付されるものである。
以上詳述した本実施形態のマイクロチップ21では、導入部22から各分析領域23までの流路24の長さ、幅、及び深さが略同一に形成されていることで、導入部22から各分析領域までの流路抵抗が略同一とされている。これにより、導入部22に注入される液体を複数の分析領域23のそれぞれに同じタイミングで供給することが可能となる。
本実施形態のマイクロチップ21では、導入部22から各分析領域23に繋がる流路24の長さ、幅、及び深さ等の流路に基づく抵抗要素が、各分析領域23間において同一となるように形成される。そのため、このマイクロチップ21によれば、複数の主流路25及び分岐流路26のそれぞれの抵抗要素を精密にコントロールすることなく、各分析領域23間における液体の充填完了時間のばらつきを抑制することができる。また、分析領域23で化学反応を生じさせる場合においては、各分析領域23間における反応のばらつきを低減することが可能となる。
[第2実施形態の変形例]
図5及び図6は、第2実施形態の変形例として、導入部から各分析領域までの流路の長さが、分析領域間で略同一となるように形成されているマイクロチップの構成例を説明するための図である。
図5に示す第1変形例のマイクロチップ21Aでは、導入部22aから放射状に設けられた複数の流路24aを介して、複数の分析領域23aが設けられている。そして、各流路24aの長さ、幅及び深さが、略同一に形成されている。
また、図6に示す第2変形例のマイクロチップ21Bでは、導入部22bに接続された主流路25bにおいて、導入部22bから所定の距離を置いた接続点P21から放射状に各分析領域23bに繋がる分岐流路26bが形成されている。そして、このマイクロチップ21Bでは、接続点P21から各分析領域23bまでの長さが同一に形成されていることで、導入部22bから各分析領域23bまでの流路24bの長さが同一に形成されている。
以上のように図5及び図6に示すマイクロチップ21A、21Bによっても、第2実施形態のマイクロチップ21と同様の効果が奏される。
<第3実施形態>
図7は、本技術に係る第3実施形態のマイクロチップ31の上面模式図である。
第3実施形態のマイクロチップ31は、第1実施形態における流路構造と、第2実施形態における流路構造とを組み合わせたような構成をとる。
第3実施形態のマイクロチップ31は、第1実施形態のマイクロチップ11と同様に、導入部32に接続された主流路35と、主流路35から分岐して各分析領域33に接続する複数の分岐流路36とを有する。そして、本実施形態のマイクロチップ31は、複数の分岐流路36を備える主流路35が複数設けられている。なお、図7では、5つの主流路351、352、353、354、355と、各主流路35から分岐された、それぞれ5つずつの分岐流路361、362、363、364、365とを有する流路構造例が示されている。
導入部32から、一の主流路35において導入部32に最も近い位置の第1分岐流路361の第1接続点P31までの主流路35の流路抵抗は、各主流路351、352、353、354、355において、略同一に形成されている。具体的には、導入部32から第1接続点P31までの主流路35の長さ、並びに当該主流路35の垂直断面の幅及び深さが、各主流路351、352、353、354、355で、略同一に形成されている。
また、第1実施形態と同様に、一の主流路35において導入部32に最も近い位置にある第1分岐流路361の流路抵抗と、第1接続点P31から第1分析領域331以外の他の分析領域33までの各流路抵抗とが略同一となるように流路34が形成されている。第1分岐流路361の流路抵抗、及び第1接続点P31から第2〜第5分析領域332、333、334、335までの各流路抵抗は、流路の垂直断面の形状に応じて、上記式(I)〜(VI)の何れかによって算出することが可能である。
以上のように、本実施形態のマイクロチップ31では、導入部32から第1接続点P31までの主流路35については、当該部分の各主流路35の長さ、幅及び深さが略同一に形成されている。なおかつ、その第1接続点P31から第2〜第5分析領域332〜335までの各流路34は、流路34の形状及び流路を通流する際の液体の動的粘度に基づく抵抗要素から算出される流路抵抗が略同一となるように形成されている。この構成により、本実施形態のマイクロチップ31は、同じ平面面積においても、第2実施形態のマイクロチップ21に比べて、導入部32から液体が同じタイミングで供給される分析領域33を高密度かつ多数配置することが可能となる。そのため、本実施形態のマイクロチップ31は、一回の液体の供給による分析数を多くとることが可能となり、分析効率を高めることが可能となる。なお、本実施形態のマイクロチップ31は、第1実施形態のマイクロチップ11が奏する効果と同様の効果も奏する。
<第4実施形態>
本技術に係るマイクロチップは、導入部から分析領域へ液体を供給する流路とは別に、分析領域から液体が流出する第二の流路を備えていてもよい。当該第二の流路を備える構成例として、本技術に係る第4実施形態のマイクロチップの上面模式図を図8に示す。
図8に示すように、本実施形態のマイクロチップ41は、第1実施形態のマイクロチップ11に、表示領域43及び第二の流路44の構成を付加している点が、第1実施形態と異なる。なお、本実施形態において、第1実施形態と共通する構成は、同一の符号を付し、説明を省略する。
本実施形態のマイクロチップ41は、第二の流路44と、この第二の流路44を介して各分析領域13に接続された表示領域43とを備え、各分析領域13を経た液体が第二の流路44を通流して表示領域43に流れ込む構成とされている。
また、第二の流路44は、第二の主流路45と、複数の第二の分岐流路46(461、462、463、464、465)とを有する。第二の流路44は、各分析領域13から液体が流出する第二の分岐流路46を分析領域13ごとに有しており、複数の第二の分岐流路46のそれぞれが第二の主流路45に接続して合流し、第二の主流路45を介して表示領域43に接続されている。
[表示領域]
表示領域43は、各分析領域13(131、132、133、134、135)への液体の供給状況を提示するものであり、分析領域13等と同様に、マイクロチップを構成する基板内に空間として形成されるものである。
表示領域43は、表示領域43に液体が到達したことをユーザが視認可能となるように構成されている。表示領域43への液体の到達は、第二の流路44と接続する分析領域13への液体の充填が完了した後となる。そのため、表示領域43に液体が到達すれば、分析領域13への液体の充填の完了が提示されることとなる。逆に、表示領域43に液体が到達していなければ、分析領域13への液体の充填の未完了が提示されていることとなる。
表示領域43による分析領域13への液体の供給状況の提示は、表示領域43に予め設けられる、色素材料又は凹凸構造によって実現可能である。なお、ユーザがマイクロチップ41の外面から、表示領域43による液体の供給状況を視認するためには、マイクロチップ41を構成する基板層に、光透過性を有する材料を選択することが好ましい。
なお、表示領域43に液体が到達したことの確認は、ユーザが目視する代わりに、受光器等の検出器を用いて検出してもよい。
表示領域43に予め収容される上記色素材料は、導入部12に注入される液体と接触することで、発色又は変色等を起こし、ユーザに視認され易くなる色素を含む材料である。これにより、表示領域43は、液体が表示領域43に到達したことを、液体と接触したことで起こる色素材料の発色又は変色等の変化によって提示する。
表示領域43内に予め設けられる上記凹凸構造は、その凹凸構造に反射する光を利用して、表示領域43への液体の到達を提示するものである。
なお、本実施形態のマイクロチップ41では、上記表示領域43に替えて、液体を導入部から加圧注入する場合における液体の排出口や、分析領域13中に液体を完全に満たすためのオーバーフロー用収容領域に変更することも可能である。排出口を設けることで、コンタミネーションを生じ難くすることが可能であり、また、オーバーフロー用収容領域を設けることで、各分析領域13中に液体を満たし易くすることが可能である。
第4実施形態のマイクロチップ41では、分析領域13よりも下流側に第二の流路44と表示領域43とが設けられていることで、分析領域13が液体の流れ込む末端部分とならない。この構成は、液体が複数の分析領域13に同じタイミングで供給される流路構造を有する本技術において意義を有する。すなわち、各分析領域131〜135に液体が略同じタイミングで供給された際に、同時に液体が逆流することを防止できる。
上記逆流を防止する観点からは、第二の主流路45は、その垂直断面の幅及び/又は深さの寸法が前記表示領域43側に向かって、漸次又は段階的に大きくなるように形成されていることが好ましい。なお、図8では、分析領域134に接続された第二の分岐流路464が接続している箇所で第二の主流路45の幅が大きく形成されており、その幅で第二の主流路45が表示領域43まで続いている構成が示されている。また、図示しないが、逆流防止の観点から、第二の流路44内の一部に逆流防止弁となる空間を配置してもよい。
本実施形態のマイクロチップ41では、「第二(第二群)の分岐流路46の流路抵抗≧第一(第一群)の分岐流路16の流路抵抗」の関係を満たす流路構造とすることが好ましい。この関係を満たす流路構造により、「分析領域13に流入する液量>分析領域13から流出する液量」とすることが可能である。そのため、導入部12から各分析領域13への液体の供給タイミングに万が一乱れが生じた場合にも、各分析領域13間の液体のコンタミネーション又は流出による不均一化を防止することが可能となる。よって、より高品質なマイクロチップの提供が可能となる。
[第4実施形態の変形例]
本実施形態のマイクロチップ41は、上記の表示領域43及び第二の流路44等を有する構成について、次のように変更することもできる。
図9及び図10は、それぞれ、第4実施形態の第1変形例及び第2変形例のマイクロチップの上面模式図である。
第1変形例のマイクロチップ41Aは、各分析領域13から液体が流出する第二の流路44aを分析領域13毎に備えると共に、その第二の分岐流路44a毎に表示領域43aを備える。このように、分析領域13毎に表示領域43aを設けることで、導入部12から各分析領域13への液体の供給タイミングの乱れによる異常をいち早く検知することが可能となる。
第2変形例のマイクロチップ41Bは、第二の主流路45bと、複数の第二の分岐流路46bを有する第二の流路44b、及び第二の主流路45bに接続された表示領域43を備える。また、各第二の分岐流路46bには、分析領域13と第二の主流路45bとの間に、逆流防止用の収容領域43bを備えている。第2変形例のマイクロチップ41Bによっても、液体の逆流を防止することが可能となる。
<第5実施形態>
図11は、本技術に係る第5実施形態によるマイクロチップを説明するための図であり、そのマイクロチップの上面を部分的に表した模式図である。
第5実施形態によるマイクロチップは、第1実施形態と同様に、液体が注入される導入部と、複数の分析領域13と、導入部から複数の分析領域13に液体を供給する流路とを有する。また、第1実施形態と同様に、この流路は、導入部に接続された主流路55と、その主流路55から分岐されて各分析領域13に接続された複数の分岐流路561、562とを有する。しかし、分岐流路561、562の構成が第1実施形態における分岐流路16の構成とは異なる。
本実施形態では、各分岐流路561、562に、その流路が部分的に狭く形成された狭窄部561a、562aを有する。また、本実施形態では、狭窄部561a、562bにより、導入部から各分析領域13までの流路抵抗が調整され、その各流路抵抗が略同一となるように形成された流路を有する。
この構成により、本実施形態によるマイクロチップは、液体を導入部から複数の分析領域13のそれぞれに同じタイミングで供給することが可能である。なお、狭窄部561a、562bは、分岐流路561、562のそれぞれの液体の流れ方向(図11の矢印Fb1、Fb2参照)に対する垂直断面の幅及び/又は深さの寸法を小さくすることで形成される。
各分岐流路561、562における狭窄部561a、562aの位置は、特に限定されないが、上記流路抵抗をコントロールし易いことから、主流路55側よりも、分析領域13側の方が好ましい。狭窄部561a、562aは、分析領域13に隣接する位置に設けられていることがより好ましい。
本実施形態によるマイクロチップでは、複数の分岐流路561、562の長さは略同一としておき、導入部に近い上流側に位置する分析領域13ほど、狭窄部561aを長くとり、導入部から遠い下流側に位置する分析領域13ほど狭窄部562aを短くとることができる。この構成により、各分析領域13への液体の略同時供給を可能としながら、各分析領域13を均等かつ高密度に設け易いものとなっている。
上述のとおり、分岐流路561、562に狭窄部561a、562aを設ける場合、導入部から分析領域13までの流路の距離が短い分析領域13ほど、狭窄部561aを狭くする、及び/又は狭窄部561aを長くすることで、液体の体積流量を制限する。
体積流量は、流路を通流する液体の流速と流路の断面積との積で求められる。流速は一定であることから、流路の断面積を変えることで、体積流量をコントロールすることができる。体積流量のコントロールに関して、分析領域までの流路の長さが異なる2つの簡単な系を考える。
その2つの系における流路の断面積をそれぞれS1及びS2、長さをそれぞれL1及びL2(ここで、L2=α×L1である)とし、それらの流路を流れる液体の流速をそれぞれV1及びV2とする。ある一定時間後に、各系における分析領域に液体が同時に充填されたと仮定すると、Q1=V1×S1×L1、Q2=V2×S2×L2となり、V1=V2、L2=α×L1、及びQ1=Q2より、S1=α×S2が導かれる。
よって、流路の長さに応じて、流路の断面積を変えることで、液体の分析領域への供給タイミングを揃えることが可能である。
[第5実施形態の変形例]
第5実施形態の変形例によるマイクロチップでは、図12に示すように、分岐流路563、564内に、液体の流れに対して抵抗する作用を有する抵抗部563a、564aを設けてもよい。この抵抗部563a、564aにより、導入部から各分析領域13までの流路抵抗を略同一とすることが可能である。なお、抵抗部563a、564aは、それぞれの分岐流路563、564に単独で用いてもよく、図12に示すように狭窄部563b、564bと併用してもよい。
上記抵抗部563a、564aとしては、分岐流路563、564内に設けられる、マイクロ(μm)オーダー又はナノ(nm)オーダーのピラー、及びマイクロオーダー又はナノオーダーの粒子を用いることができる。また、上記抵抗部563a、564aとしては、分岐流路563、564内の表面の性質を疎水性に処理したものも含まれる。流路内を疎水性とすると体積流量は減少し、逆に流路内を親水性にすると体積流量は増加する。このように分岐流路563、564の内側表面を親水性又は疎水性に処理して、導入部から各分析領域13への液体の供給タイミングを揃えることも可能である。
分岐流路563、564内に、抵抗部563a、564aとしてピラーを設ける場合、当該ピラーの分岐流路563、564内への配置は、例えば図13に示すような、紫外線(UV)フォトリソグラフィーの工程にて行うことが可能である。この工程を以下に簡単に説明する。
まず、ピラーを形成する基材B1に、スパッタリング等の手法にて、Ti/Au等の導電性金属薄膜M1を形成し(工程S51)、その金属薄膜M1の上にフォトレジストrを塗工する(工程S52)。フォトレジストrとしては、マイクロチップを構成する基板にピラーパターンを直接作り込む場合は、露光された部分の現像液に対する溶解性が低下するネガレジストを用いるのが好適である。この場合、ピラーの凸パターンが形成される。また、ピラーパターンを形成したものを鋳型として基板を成形する場合は、露光された部分の現像液に対する溶解性が増大するポジレジストを用いる。図13は、このポジレジストを用いた工程例を示している。
次に、フォトレジストrの上に、流路及びピラーパターンが設けられたマスクmを配置し、その上からUVを照射することで(工程S53)、露光されたレジストr部分が除去される(工程S54)。そして、導電性金属薄膜M1に電解メッキ等によりNiメッキM2を設けた後(工程S55)、残りのレジストrを除去し(工程S56)、異方性ドライエッチングを行う(工程S57)。このとき、NiメッキM2部分は、NiメッキM2によりエッチングされ難いことから残留し、NiメッキM2部分以外の部分がエッチングされる。その後、NiメッキM2及び導電性金属薄膜M1を除去し、微細な凸パターンが形成された基材B1が得られる(工程S58)。最後にこの基材B1を鋳型にして、ピラー構造を有する基板B2を成形することが可能となる(工程S59)。
なお、上述の工程では、ピラーパターンを形成したものを鋳型として用いて、基板B2を成形する例を示したが、基板B2に直接ピラーを形成することも可能である。
流路内にピラーを形成することは、ピラー間隔等によって空隙率をコントロールできるため、流路抵抗を制御し易いと考えられる。
マイクロチップの流路内に形成したピラーは、その表面を化学修飾することで疎水性表面を作ることも可能であり、この場合、逆相クロマトグラフィーの機能を持たせることが可能となる。また、ピラーには、ナノオーダーの微小孔を設けておくこともできる。マイクロチップに導入される液体が、分岐流路における当該微小孔を有するピラーを通流する際に、相互作用により、液体中の不要物を取り除く機能を付与することも可能である。
分岐流路563、564内に、抵抗部563a、564aとして粒子を設ける場合、当該粒子の分岐流路563、564内への配置は、例えば図14に示すような工程にて行うことが可能である。この工程を以下に簡単に説明する。
まず、マイクロチップを構成する基板層B3において、凹設された分析領域W3の前(上流側)にリブ部B31を形成しておく。このリブ部B31を粒子Pのたまり場として、リブ部B31の前(上流側)に所定量の粒子Pを含む溶液Dを滴下する(図14A参照)。この際、粒子Pを水又は水/アルコール混合液に分散させれば、滴下後は蒸発し、粒子Pのみが流路に残るようになる(図14B参照)。その後、リブ部B41を有する基板層B4で蓋をすることにより、所望の箇所に所定量の粒子Pを設けることが可能となる(図14C)。このとき、粒子Pは流路C3の上流側及び下流側で両リブ部B31、B41に挟まれることから、両リブ部B31、B41の幅よりも大きい粒径の粒子Pを用いることで、粒子Pが他の場所に流れ込むことを防止できる。
なお、粒子Pを分散させた溶液Dを流路C3の所定位置に滴下する場合、その所定位置を表面処理し、周囲よりも親水性にすることが好適である。この場合の表面処理としては、例えば、酸素又は不活性ガス(Ar等)の雰囲気中でプラズマ照射することが挙げられる。目的の場所のみを親水処理する場合は、パターンが形成されたマスク等を用いてプラズマ照射すればよい。
分岐流路563、564内に設けられる抵抗部563a、564aとして、粒子を設ける場合、流路抵抗を大きくしたい箇所には、粒子の充填量を多くし、流路抵抗を小さくしたい箇所には粒子の充填量を少なくする。これによって、導入部から各分析領域13への液体の供給タイミングの制御が可能となる。
また、抵抗部563a、564aに用いる粒子として、適切な化学修飾を有する粒子を用いることで、マイクロチップに導入される液体が当該粒子を有する分岐流路563、564を通流する際に、不純物の捕捉や反応液の調整などを行うことも可能である。
<第6実施形態>
本技術では、本技術に係る上記各実施形態のマイクロチップについて、導入部と、分析領域との間に、分析領域とは別の試薬収容領域を備えることもできる。
図15Aは、主流路65aと分岐流路66aとを有し、導入部(図示せず)と分析領域63aとの間の分岐流路66aに、試薬が収容される試薬収容領域67aを備える構成を表す模式図である。また、図15Bは、主流路65bと分岐流路66bとを有し、導入部(図示せず)と分析領域63bとの間の分岐流路66bに2つの試薬収容領域67b、67cを備える構成を表す模式図である。
試薬収容領域67a〜cは、図15に示すように分析領域63a、63bに隣接せず、かつ分析領域63a、63bよりも上流側に配置されていてもよいし、分析領域63a、63bに隣接する位置に配置されていてもよい。試薬収容領域67a〜cの形状としては、液体の流れに滞りが生じないような円弧形状等が好ましい。
分析領域63aにおいて、反応に必要な試薬が2種以上ある場合、例えば、1種(例えばプライマー等)の試薬R1を試薬収容領域67aに収容しておき、もう1種(例えば酵素等)の試薬R2を分析領域63aに収容しておくことができる(図15A参照)。
また、分析領域63bよりも上流側に2か所、試薬収容領域67b、67cを設けることもできる(図15B参照)。この場合、1種(例えばプライマー等)の試薬R1を上流側(主流路65b側)の試薬収容領域67bに収容しておき、もう1種(例えば酵素等)の試薬R2を下流側(分析領域63b側)の試薬収容領域67cに収容しておくことができる(図15B参照)。
上述のとおり、分析領域63a〜bや試薬収容領域67a〜cに予め反応に必要な試薬を収容しておくことで、マイクロチップに液体が導入されるまでは、試薬同士の混合を防止することが可能となる。そのため、分析領域における非特異反応(プライマーダイマー、オリゴマー等)を抑制することが可能となる。この非特異反応の抑制効果は、本実施形態によるマイクロチップが、導入部から各分析領域に同じタイミングで液体を供給可能な流路構造を有することで、より高められると考えられる。
また、本実施形態によるマイクロチップでは、分析領域63a〜bや試薬収容領域67a〜cへの試薬の収容は、それらの領域へ試薬を含む溶液を滴下して乾燥させ、固着化する手法により行われるのが好適である。異なる試薬を異なる場所に固着化させることで、固着化時に試薬の混合が生じず、非特異反応が抑制される。
試薬を含む溶液を試薬収容領域67a〜c等に滴下して乾燥させ、固着化させる場合、試薬収容領域67a〜cに滴下した溶液が流路(65a、66a、65a、66b)に流れ込まないようにする必要がある。その方法の一つとして、表面特性の制御が挙げられる。例えばこれらの流路内を疎水性にしておくことで、試薬を含む溶液を試薬収容領域67a〜cに滴下するときに、当該溶液がそれらの流路に流入することを防止できると考えられる。この観点から、マイクロチップを構成する基板の材質としては、疎水性を示すプラスチック、及びポリジメチルシロキサン等を用いるのが好適である。
マイクロチップ61A、61Bを構成する基板の材質として、表面が親水性を示す材料を用いる場合、疎水処理を施すことが好ましく、例えば、ガラス等の無機材料の疎水処理としては、シランカップリング及びフッ素コート等が挙げられる。
また、凍結乾燥等で固化した試薬を試薬収容領域67a〜cに収容する場合、固化した試薬の大きさが試薬収容領域67a〜cの直径よりも小さいことが望ましい。凍結乾燥法を用いる場合、固化試薬の大きさは凍結時の大きさに依存する。そのため、試薬を凍結させる際の容器の直径が試薬収容領域67a〜cの直径よりも小さいことが望ましい。造粒等によって粉体化した試薬を打錠等で圧縮固化する場合も、固化した試薬の直径は、試薬収容領域67a〜cの直径よりも小さいことが望ましい。
試薬収容領域67a〜cが分析領域63a〜bの上流側にある場合、液体が試薬収容領域67a〜cに供給された際に流れが生じることで溶解性が向上することが考えられる。また、溶解した試薬が分析領域63a〜bに流れ込むことで試薬が均一に混合すると考えられる。
分析領域63a〜bの容量が大きい場合、その分析領域63a〜b内で試薬を溶解させても拡散し難いため、試薬濃度が均一に分布しない場合がある。しかし、試薬収容領域67a〜cで予め溶解した試薬溶液が、分析領域63a〜bに流れ込むことで試薬濃度は均一になると考えられる。
また、本実施形態では、次のように構成することも可能である。
すなわち、分析領域の上流側に複数の試薬収容領域を設け、その試薬収容領域に上流側から番号を付ける。どの試薬をどの番号の試薬収容領域に入れるかを決めておけば、試薬が収容されている場所から、どのような試薬が封入されているかを確認することができる。これは、マイクロチップの製造時の確認にも繋がる。
例えば、各分析領域の上流側に5つの試薬収容領域を設ける構成の場合、各分析領域には全反応に共通の酵素が含まれた試薬を封入すると共に、1番目〜5番目の試薬収容領域には、それぞれ順にA〜Eを検出するプライマーを含む試薬を封入する。このようにマイクロチップを製造する際には、画像等での自動認識も可能であり、製造時における試薬投入ミスの防止に繋がる。
<実施形態の組み合わせ等>
本技術では、上記各実施形態で述べた構成は、本技術の目的を損なわない範囲で、他の実施形態で述べた構成と適宜組み合わせて、本技術に係るマイクロチップを構成することが可能である。例えば第1、第3及び第4実施形態のマイクロチップにおける一部の分岐流路を、第5実施形態で述べた狭窄部や抵抗部を備える分岐流路としてもよい。また、例えば、第2及び第3実施形態のマイクロチップの一部又は全部の分析領域に、第4実施形態で述べた第二の流路や表示領域等を設けてもよい。さらに例えば、第3実施形態のマイクロチップにおける複数の主流路のうちの一部の主流路について、第2実施形態で述べたように、導入部から、その一部の主流路に接続された複数の分析領域までの各流路の長さ、幅及び深さ等を略同一に形成してもよい。
また、上述の実施形態では、一つの導入部を備える構成を例示したが、マイクロチップにおける導入部の数は、2以上であってもよい。この場合、一の導入部に流路を介して接続された複数の分析領域について、一の導入部からそれに接続する複数の分析領域のそれぞれに液体が同じタイミングで供給される。
<マイクロチップの製造方法>
上記各実施形態で述べたような本技術に係るマイクロチップは、導入部から複数の分析領域のそれぞれに同じタイミングで液体を供給可能な流路を基板に形成することで製造される。この場合、基板への流路の形成は、流路の長さ、幅、及び深さ等の流路に基づく抵抗要素を考慮して設計された上で行うのが好適である。基板への流路の形成方法は、第1実施形態における基板の説明で述べたように、例えば、エッチング、ナノインプリント、射出成形、又は切削加工等の手法にて行うことが可能である。
本技術は、以下のような構成もとることができる。
(1)液体が注入される導入部と、前記液体が供給される複数の分析領域と、前記液体が前記導入部から前記複数の分析領域のそれぞれに同じタイミングで供給されるように形成された流路と、を備えるマイクロチップ。
(2)前記流路は、前記導入部から各分析領域までの流路抵抗が略同一となるように形成されている上記(1)に記載のマイクロチップ。
(3)前記流路は、前記導入部に接続された主流路と、該主流路から分岐されて各分析領域に接続する複数の分岐流路と、を有する上記(1)又は(2)に記載のマイクロチップ。
(4)前記主流路の前記液体の流れ方向に対する垂直断面の面積が、前記複数の分岐流路の前記液体の流れ方向に対する垂直断面の面積の合計よりも大きい上記(3)に記載のマイクロチップ。
(5)前記流路は、前記複数の分析領域のうち前記導入部に最も近い位置の第1分析領域に接続する第1分岐流路の流路抵抗と、前記主流路における前記第1分岐流路の接続点から前記第1分析領域以外の他の分析領域までの流路抵抗とが、略同一となるように形成されている上記(3)又は(4)に記載のマイクロチップ。
(6)前記主流路を複数備え、前記導入部から、該導入部に最も近い位置の分析領域までの各主流路の流路抵抗が略同一に形成されている上記(3)〜(5)の何れかに記載のマイクロチップ。
(7)前記分析領域から前記液体が流出する第二の流路と、該第二の流路を介して各分析領域に接続された、各分析領域への液体の供給状況を提示する表示領域と、を備える上記(1)〜(6)の何れかに記載のマイクロチップ。
(8)前記第二の流路は、前記各分析領域に接続する複数の第二の分岐流路と、該複数の第二の分岐流路のそれぞれが接続する第二の主流路と、を有する上記(7)に記載のマイクロチップ。
(9)前記第二の主流路は、該第二の主流路における前記液体の流れ方向に対する垂直断面の幅及び/又は深さの寸法が前記表示領域側に向かって漸次又は段階的に大きくなるように形成されている上記(7)又は(8)に記載のマイクロチップ。
(10)前記第二の流路の所定箇所に前記液体の逆流防止用の収容部を有する上記(7)〜(9)の何れかに記載のマイクロチップ。
(11)前記導入部と前記分析領域との間に、前記分析領域とは別に試薬収容領域を備える上記(1)〜(10)の何れかに記載のマイクロチップ。
(12)前記流路は、前記導入部から各分析領域までの流路抵抗が略同一となるように形成され、その流路抵抗は、前記液体の粘度、前記流路の長さ、及び前記流路の前記液体の流れ方向に対する垂直断面のサイズ、を含む抵抗要素から導かれる上記(1)〜(11)の何れかに記載のマイクロチップ。
(13)前記流路の前記液体の流れ方向に対する垂直断面の形状が長方形状であり、前記流路の流路抵抗は、下記式(I)より算出される上記(12)記載のマイクロチップ。
Figure 2014199206
(14)前記分岐流路に狭窄部を有し、該狭窄部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された上記(3)〜(6)の何れかに記載のマイクロチップ。
(15)前記分岐流路内に、前記液体の流れに対する抵抗部を有し、該抵抗部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された上記(3)〜(6)の何れかに記載のマイクロチップ。
(16)液体が注入される導入部から、複数の分析領域のそれぞれに、同じタイミングで前記液体を供給可能な流路を基板に形成するマイクロチップの製造方法。
以下に実施例を挙げて、本技術に係るマイクロチップの効果について具体的に説明する。
本実施例では、ガラスカバーを支持体として、インレット(導入部)、複数のウェル(分析領域)、及び流路パターンをポリジメチルシロキサン(PDMS)製の基板層に形成した、ガラスカバー−PDMS−ガラスカバーの三層構造の基板を用いた。基板層へのインレット、ウェル及び流路パターンの形成は、フォトリソグラフィーにより流路パターン等を形成したSU−8モールドを作製し、そのモールド(鋳型)を用いてPDMSを成形することで行った。これにより、流路パターン等が転写されたPDMS製基板層を得た。
このようにして作成したマイクロチップ71の上面模式図を図16に示す。
このマイクロチップ71は、サンプル溶液(液体)が注入されるインレット72と、5つのウェル73(731、732、733、734、735)と、インレット72から各ウェル73に接続する流路74とを備える。そして、流路74は、主流路75と、その主流路75から分岐して各ウェル73に接続する5つの分岐流路76(761、762、763、764、765)とを有する。
マイクロチップ71を製造する際に、インレット72から各ウェル73までの流路抵抗が略同一となるように、主流路75及び分岐流路76の長さ、垂直断面の形状に係る寸法(幅及び深さ)を表1に示すとおりとした。なお、流路抵抗は、第1実施形態で述べた上記式(I)により算出したものである。また、インレット72から、インレット72に最も近い位置にあるウェル731までの主流路75については、各分析領域において共通するため、表1においては、この共通する主流路75部分を省略した寸法で示した。
Figure 2014199206
このマイクロチップ71のインレット72に、サンプル溶液として、Cy3−DNA水溶液100μM(配列:[Cy3]CGCGATGTGGGAAAGATTCT)を真空注入した。そして、各ウェル73へのサンプル溶液の注入の様子を8.8shot/秒で撮影し、撮影した連結画像ファイルを画像解析ソフトにより、各ウェル内の蛍光強度平均値を時間に対してプロットした。その結果を、各ウェル73へのサンプル溶液の供給タイミングを表すのに適した画像とあわせて、図17Aに示す。
なお、上記試験と同様に行った比較例の結果もあわせて図17Bに示す。この比較例では、インレット及びウェルの位置及び寸法等は実施例と同じであるが、インレットから各ウェルまでの流路抵抗が略同一となるように形成されていないマイクロチップを用いた。
図17Bに示すとおり、比較例のマイクロチップでは、サンプル溶液がインレットに近い側から順にウェルへ供給されていることがわかった。そして、インレットに最も近いウェルでサンプル溶液の充填が完了した際に、第3〜第5列にあるウェルはまだ50%未満の充填量であった。また、各ウェルにおいて、蛍光強度にばらつきが生じていることが確認された。
これに対して、実施例のマイクロチップ71では、図17Aに示すとおり、サンプル溶液が各ウェル73で概ね同じタイミングで供給されていることが確認された。また、各ウェル73での蛍光強度も一致する傾向にあることが確認された。よって、本実施例のマイクロチップ71によれば、サンプル溶液のウェル73への充填完了時間のずれによるウェル73での反応のばらつきを低減することが可能である。
11、21、31、41:マイクロチップ、12、22、32:導入部、13、23、33:分析領域、14、24、34:流路、15、25、35:主流路、16、26、36:分岐流路、43:表示領域、44:第二の流路、45:第二の主流路、46:第二の分岐流路

Claims (16)

  1. 液体が注入される導入部と、
    前記液体が供給される複数の分析領域と、
    前記液体が前記導入部から前記複数の分析領域のそれぞれに同じタイミングで供給されるように形成された流路と、
    を備えるマイクロチップ。
  2. 前記流路は、前記導入部から各分析領域までの流路抵抗が略同一となるように形成されている請求項1記載のマイクロチップ。
  3. 前記流路は、
    前記導入部に接続された主流路と、
    該主流路から分岐されて各分析領域に接続する複数の分岐流路と、
    を有する請求項2記載のマイクロチップ。
  4. 前記主流路の前記液体の流れ方向に対する垂直断面の面積が、前記複数の分岐流路の前記液体の流れ方向に対する垂直断面の面積の合計よりも大きい請求項3記載のマイクロチップ。
  5. 前記流路は、
    前記複数の分析領域のうち前記導入部に最も近い位置の第1分析領域に接続する第1分岐流路の流路抵抗と、前記主流路における前記第1分岐流路の接続点から前記第1分析領域以外の他の分析領域までの流路抵抗とが、略同一となるように形成されている請求項4記載のマイクロチップ。
  6. 前記主流路を複数備え、
    前記導入部から、該導入部に最も近い位置の分析領域までの各主流路の流路抵抗が略同一に形成されている請求項5記載のマイクロチップ。
  7. 前記分析領域から前記液体が流出する第二の流路と、
    該第二の流路を介して各分析領域に接続された、各分析領域への液体の供給状況を提示する表示領域と、
    を備える請求項6記載のマイクロチップ。
  8. 前記第二の流路は、
    前記各分析領域に接続する複数の第二の分岐流路と、
    該複数の第二の分岐流路のそれぞれが接続する第二の主流路と、
    を有する請求項7記載のマイクロチップ。
  9. 前記第二の主流路は、該第二の主流路における前記液体の流れ方向に対する垂直断面の幅及び/又は深さの寸法が前記表示領域側に向かって漸次又は段階的に大きくなるように形成されている請求項8記載のマイクロチップ。
  10. 前記第二の流路の所定箇所に前記液体の逆流防止用の収容部を有する請求項9記載のマイクロチップ。
  11. 前記導入部と前記分析領域との間に、前記分析領域とは別に試薬収容領域を備える請求項1記載のマイクロチップ。
  12. 前記流路抵抗は、前記液体の粘度、前記流路の長さ、及び前記流路の前記液体の流れ方向に対する垂直断面のサイズ、を含む抵抗要素から導かれる請求項2記載のマイクロチップ。
  13. 前記流路の前記液体の流れ方向に対する垂直断面の形状が長方形状であり、
    前記流路の流路抵抗は、下記式(I)より算出される請求項12記載のマイクロチップ。
    Figure 2014199206
  14. 前記分岐流路に狭窄部を有し、
    該狭窄部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された請求項3記載のマイクロチップ。
  15. 前記分岐流路内に、前記液体の流れに対する抵抗部を有し、
    該抵抗部により、前記導入部から各分析領域までの流路抵抗が略同一となるように形成された請求項3記載のマイクロチップ。
  16. 液体が注入される導入部から、複数の分析領域のそれぞれに、同じタイミングで前記液体を供給可能な流路を基板に形成するマイクロチップの製造方法。
JP2013074628A 2013-03-29 2013-03-29 マイクロチップ及びマイクロチップの製造方法 Active JP6003772B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013074628A JP6003772B2 (ja) 2013-03-29 2013-03-29 マイクロチップ及びマイクロチップの製造方法
CN201410087830.2A CN104069903A (zh) 2013-03-29 2014-03-11 微芯片和制造微芯片的方法
US14/223,497 US20140311910A1 (en) 2013-03-29 2014-03-24 Microchip and method of manufacturing microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074628A JP6003772B2 (ja) 2013-03-29 2013-03-29 マイクロチップ及びマイクロチップの製造方法

Publications (3)

Publication Number Publication Date
JP2014199206A true JP2014199206A (ja) 2014-10-23
JP2014199206A5 JP2014199206A5 (ja) 2015-03-26
JP6003772B2 JP6003772B2 (ja) 2016-10-05

Family

ID=51591740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074628A Active JP6003772B2 (ja) 2013-03-29 2013-03-29 マイクロチップ及びマイクロチップの製造方法

Country Status (3)

Country Link
US (1) US20140311910A1 (ja)
JP (1) JP6003772B2 (ja)
CN (1) CN104069903A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211871A (ja) * 2015-04-30 2016-12-15 栄研化学株式会社 マイクロチップ
WO2018235524A1 (ja) * 2017-06-19 2018-12-27 積水化学工業株式会社 マイクロ流体デバイス
WO2020039860A1 (ja) * 2018-08-24 2020-02-27 キヤノン株式会社 流路を有する構造体、およびその製造方法
JP2020032406A (ja) * 2018-08-24 2020-03-05 キヤノン株式会社 流路を有する構造体、およびその製造方法
WO2020144920A1 (ja) * 2019-01-09 2020-07-16 株式会社フコク マイクロ流路チップ
JP2021527562A (ja) * 2018-06-21 2021-10-14 バテル・メモリアル・インスティテュートBattelle Memorial Institute 向上されたマイクロチャンネルデバイスまたはメソチャンネルデバイス、及びその添加製造方法
WO2023199631A1 (ja) * 2022-04-15 2023-10-19 凸版印刷株式会社 マイクロ流路チップおよびマイクロ流路チップの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916827B (zh) * 2021-01-25 2023-03-10 惠州市田宇中南铝合金新材料科技有限公司 一种压铸一模多个的浇注系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777525A (ja) * 1993-07-15 1995-03-20 Boehringer Mannheim Gmbh 複数の分析物の同時測定方法ならびに装置
JP2002505946A (ja) * 1998-03-11 2002-02-26 マイクロパーツ ゲゼルシャフト フィー ミクロシュトルクチューテクニク エムベーハー 試料担体
US20020185184A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Microfluidic synthesis devices and methods
US6637463B1 (en) * 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
WO2007013562A1 (ja) * 2005-07-29 2007-02-01 Arkray, Inc. 分析用具
US20070280856A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
US20080254468A1 (en) * 2007-03-30 2008-10-16 Roche Molecular Systems, Inc. Micro-Fluidic Temperature Driven Valve
WO2009078107A1 (ja) * 2007-12-19 2009-06-25 Shimadzu Corporation 分注デバイス
WO2009139311A1 (ja) * 2008-05-16 2009-11-19 コニカミノルタエムジー株式会社 検査装置
JP2009285769A (ja) * 2008-05-28 2009-12-10 Disco Abrasive Syst Ltd 切削装置
JP2012159337A (ja) * 2011-01-31 2012-08-23 Sony Corp サンプル液供給治具、サンプル液供給治具セット及びマイクロチップセット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062261A (en) * 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
US7150994B2 (en) * 1999-03-03 2006-12-19 Symyx Technologies, Inc. Parallel flow process optimization reactor
US6190919B1 (en) * 1999-04-21 2001-02-20 The United States Of America As Represented By The Secretary Of The Navy System for controlling deglycerolization of red blood cells
US7429354B2 (en) * 2001-03-19 2008-09-30 Gyros Patent Ab Structural units that define fluidic functions
JP5052996B2 (ja) * 2007-08-22 2012-10-17 アイダエンジニアリング株式会社 電気泳動用マイクロ流路チップ及び電気泳動方法
TW200951061A (en) * 2008-03-19 2009-12-16 Oncnosis Pharma Aie Method and apparatus for separating particles in a fluid
JP2009284769A (ja) * 2008-05-27 2009-12-10 Sony Corp マイクロ基板
US8828715B2 (en) * 2009-03-06 2014-09-09 Cfd Research Corporation Particle adhesion assay for microfluidic bifurcations
JP5786295B2 (ja) * 2010-06-22 2015-09-30 ソニー株式会社 核酸等温増幅反応用マイクロチップ及びその製造方法並びに核酸等温増幅方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777525A (ja) * 1993-07-15 1995-03-20 Boehringer Mannheim Gmbh 複数の分析物の同時測定方法ならびに装置
JP2002505946A (ja) * 1998-03-11 2002-02-26 マイクロパーツ ゲゼルシャフト フィー ミクロシュトルクチューテクニク エムベーハー 試料担体
US6637463B1 (en) * 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US20020185184A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Microfluidic synthesis devices and methods
WO2007013562A1 (ja) * 2005-07-29 2007-02-01 Arkray, Inc. 分析用具
US20070280856A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
US20080254468A1 (en) * 2007-03-30 2008-10-16 Roche Molecular Systems, Inc. Micro-Fluidic Temperature Driven Valve
WO2009078107A1 (ja) * 2007-12-19 2009-06-25 Shimadzu Corporation 分注デバイス
WO2009139311A1 (ja) * 2008-05-16 2009-11-19 コニカミノルタエムジー株式会社 検査装置
JP2009285769A (ja) * 2008-05-28 2009-12-10 Disco Abrasive Syst Ltd 切削装置
JP2012159337A (ja) * 2011-01-31 2012-08-23 Sony Corp サンプル液供給治具、サンプル液供給治具セット及びマイクロチップセット

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211871A (ja) * 2015-04-30 2016-12-15 栄研化学株式会社 マイクロチップ
WO2018235524A1 (ja) * 2017-06-19 2018-12-27 積水化学工業株式会社 マイクロ流体デバイス
JP2021527562A (ja) * 2018-06-21 2021-10-14 バテル・メモリアル・インスティテュートBattelle Memorial Institute 向上されたマイクロチャンネルデバイスまたはメソチャンネルデバイス、及びその添加製造方法
WO2020039860A1 (ja) * 2018-08-24 2020-02-27 キヤノン株式会社 流路を有する構造体、およびその製造方法
JP2020032406A (ja) * 2018-08-24 2020-03-05 キヤノン株式会社 流路を有する構造体、およびその製造方法
JP7446731B2 (ja) 2018-08-24 2024-03-11 キヤノン株式会社 流路を有する構造体、およびその製造方法
WO2020144920A1 (ja) * 2019-01-09 2020-07-16 株式会社フコク マイクロ流路チップ
JP2020112383A (ja) * 2019-01-09 2020-07-27 株式会社フコク マイクロ流路チップ
JP7219093B2 (ja) 2019-01-09 2023-02-07 株式会社フコク マイクロ流路チップ
WO2023199631A1 (ja) * 2022-04-15 2023-10-19 凸版印刷株式会社 マイクロ流路チップおよびマイクロ流路チップの製造方法

Also Published As

Publication number Publication date
JP6003772B2 (ja) 2016-10-05
CN104069903A (zh) 2014-10-01
US20140311910A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6003772B2 (ja) マイクロチップ及びマイクロチップの製造方法
Narayanamurthy et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis
Li et al. One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing
Culbertson et al. Micro total analysis systems: fundamental advances and biological applications
RU2579311C2 (ru) Получение тонких слоев текучей среды, содержащей клетки для анализа
Arora et al. Latest developments in micro total analysis systems
US20080317632A1 (en) Microchannel and Microfluid Chip
JP4252545B2 (ja) マイクロ流路及びマイクロ流体チップ
JP4682874B2 (ja) マイクロリアクタ
ES2881221T3 (es) Chip microfluídico, método de fabricación del mismo y dispositivo de análisis que usa el mismo
Hu et al. Versatile microfluidic droplets array for bioanalysis
US20090155125A1 (en) Microchip
JP4141494B2 (ja) マイクロ分析測定装置及びそれを用いたマイクロ分析測定方法
WO2009131677A1 (en) Flow control in microfluidic systems
JP2007285792A (ja) マイクロチップ
JP2006266923A (ja) マイクロ総合分析システム
JP6406973B2 (ja) マイクロ流路チップ、その製造方法および分析用デバイス
JPWO2005022169A1 (ja) チップ
JP2007163459A (ja) 分析用マイクロチップ
JP2009284769A (ja) マイクロ基板
JP2007136379A (ja) マイクロリアクタおよびその製造方法
WO2016170345A1 (en) Mifrofluidic apparatus and method for producing an emulsion, use of the apparatus, method for making a microfluidic apparatus and a surfactant
Destgeer et al. Engineering design of concentric amphiphilic microparticles for spontaneous formation of picoliter to nanoliter droplet volumes
Pompano et al. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip
Park et al. Aspiration-mediated hydrogel micropatterning using rail-based open microfluidic devices for high-throughput 3D cell culture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250