EP2698207B1 - Mehrbereichs-Zweiwellen-Schneidsystem - Google Patents

Mehrbereichs-Zweiwellen-Schneidsystem Download PDF

Info

Publication number
EP2698207B1
EP2698207B1 EP12005918.3A EP12005918A EP2698207B1 EP 2698207 B1 EP2698207 B1 EP 2698207B1 EP 12005918 A EP12005918 A EP 12005918A EP 2698207 B1 EP2698207 B1 EP 2698207B1
Authority
EP
European Patent Office
Prior art keywords
shaft
elements
severing
counter
cutting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12005918.3A
Other languages
English (en)
French (fr)
Other versions
EP2698207A1 (de
Inventor
Stefan Seiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LINDNER-RECYCLINGTECH GmbH
Original Assignee
Lindner-Recyclingtech GmbH
LINDNER RECYCLINGTECH GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lindner-Recyclingtech GmbH, LINDNER RECYCLINGTECH GmbH filed Critical Lindner-Recyclingtech GmbH
Priority to PL12005918T priority Critical patent/PL2698207T3/pl
Priority to EP12005918.3A priority patent/EP2698207B1/de
Priority to ES12005918T priority patent/ES2710622T3/es
Priority to PCT/EP2013/066682 priority patent/WO2014026916A1/de
Priority to BR112015003405-5A priority patent/BR112015003405B1/pt
Priority to US14/421,937 priority patent/US10799878B2/en
Publication of EP2698207A1 publication Critical patent/EP2698207A1/de
Application granted granted Critical
Publication of EP2698207B1 publication Critical patent/EP2698207B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • B02C18/142Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers with two or more inter-engaging rotatable cutter assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/0084Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating garbage, waste or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/18Knives; Mountings thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/18Knives; Mountings thereof
    • B02C18/182Disc-shaped knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/22Feed or discharge means
    • B02C18/2216Discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/24Drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C2018/162Shape or inner surface of shredder-housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2201/00Codes relating to disintegrating devices adapted for specific materials
    • B02C2201/06Codes relating to disintegrating devices adapted for specific materials for garbage, waste or sewage

Definitions

  • the present invention relates to a multi-range twin-shaft cutting system for comminuting material, especially in the form of waste products.
  • the material to be crushed is conveyed for example by means of intake elements in the separation region of the waves and processed there.
  • the EP 0 529 221 B1 describes a twin-shaft shredding system with counter-driven crusher rolls.
  • the US 5 048 764 A discloses a device for shredding and shredding solid waste material, in particular used tires.
  • the DE 94 15 955 U1 discloses a shredder for waste or waste mixtures with particular reference to the lowest possible energy consumption.
  • the DE 28 31 953 A1 discloses a ripper for paper and thin, sheet-like materials.
  • the invention provides a multi-section twin-shaft cutting system for crushing material, comprising: two substantially parallel, counter-rotating shafts, each shaft being surrounded by a roller body; a plurality of support elements, each support element being mounted substantially radially around the roller body, wherein preferably each support element has a radially, wavy, rounded or angular or edged circumferential line; a plurality of separating elements, which are disc-and / or plate-like, which are each mounted substantially tangentially on the peripheral region of the support elements; wherein the support elements are arranged spaced around the roller body such that in each case a separating element engages on a support element of a shaft between two immediately adjacent support elements of the other shaft; wherein for each shaft between each two adjacent support elements of this wave on the roller body of the shaft counterparts are attached, which are mounted correspondingly to the separating elements of the other shaft, that the separating elements of the other shaft in opposite engagement in the space of the two immediately adjacent support members cutting and / or fract
  • the two oppositely driven shafts are typically arranged in parallel at a distance, so that the separating elements of a shaft can engage between two directly adjacent support elements of the other shaft. This creates a gap between the two shafts, in which the comminution of the material to be shredded happens. It is understood that the respective separating elements of a shaft do not reach the outer surface of the roller body.
  • the roll body can also have a different geometry, such as a polygonal geometry, such as hexagonal or octagonal. It is further understood that in the opposite intervention and at least the outer regions of each of a separating element of a wave in the space between engage two immediately adjacent support elements of the other shaft.
  • the support elements are typically formed like a disk.
  • the opposite drive direction of the two waves defines, for example, a catchment area of the system approximately above an imaginary plane, which is laid by the two longitudinal axes of the waves and a discharge area below this level, these areas approximately upwards by the beginning of the counter-engagement, downwards approximately be limited by the end of the opposing engagement between the two waves.
  • the separating elements of a shaft tangentially arranged on the support elements can be effectively supported, in particular in their function, by counterpart separation elements, which are arranged correspondingly arranged on the roller body of the other shaft.
  • a separating element can work against a counterpart separating element.
  • the term work is intended to mean that comminuted material, in particular cut between the separator and the corresponding counterpart separating element.
  • the term corresponding arrangement is intended to mean that the arrangement of said elements, ie separating elements, counter separating element, supporting elements, it allows that in opposite rotation of the waves, these elements come so close that material is crushed between these elements.
  • the counterpart separating element can be made in one piece, but it is also possible for the counterpart separating element to be composed of several pieces. It is understood that a plurality of separating elements can typically be mounted symmetrically on the peripheral region of the support elements.
  • the typically disk-shaped, circumferentially wave-like shape of the support elements promotes better circulation of the material to be shredded and at the same time facilitates or optimizes the intake of the material.
  • the support elements may preferably have a wavy or rosette-shaped circumferential or circumferential region. As a result, the circulation and the collection can be further improved enormously. At the same time, this reduces the energy required for shredding.
  • the number of maxima of the waveshape of the support elements can be denoted by n, where n is a natural number.
  • the separating elements can be attached to all or at least some of these maxima.
  • the separating elements are typically symmetrical, but also unsystematic, mounted around the supporting element. This also applies to support elements that, for example, have no waveform on the circumference.
  • the symmetry n will typically be the same for all supporting elements, but may also be chosen differently.
  • the separators of one shaft are disposed corresponding to the separators of the other shaft so that, when the separators of the shafts engage in opposite directions, a separator of one shaft will break against an immediately adjacent separator of the other shaft.
  • the dividing elements are typically fastened to the supporting elements in such a way that the dividing element is fastened approximately at its center to the supporting element which is perpendicular thereto.
  • a separator of a shaft is thus tangential, approximately centrally attached to the support member.
  • a separator of a shaft for simplicity's sake referred to as the first separator, can engage between two adjacent support members of the other shaft.
  • the partition members of one shaft may each have, at least at their leading edges with respect to the counterpart members of the other shaft, a cutting portion which is bevelled, for example.
  • the disc-like and / or plate-like and / or knife-like separating elements may have a rectangular, parallelogram-like or quadrangular shape. It is understood that the separating elements are typically fastened to the support elements such that the separating element is fastened approximately at its center to the support element which is perpendicular thereto.
  • the front edge region of the separating elements referred to briefly as the leading edge, which points towards the gap when the waves rotate counter to one another, can exert a higher pressure on a smaller area by means of a cutting region, so that the efficiency of the working process, ie the cutting by cutting against the counterpart separating element, is increased can.
  • the dividing elements of the shaft may be formed in width so that the width is slightly smaller than the respective distance between the two opposing support elements, so that in opposite engagement elements, the waves in the opposing support elements, a separating element of a shaft against two immediately adjacent support members of the other wave breaking and / or cutting sideways works.
  • the separating elements of one shaft may be arranged corresponding to the separating elements of the other shaft such that, when the separating elements of the shafts engage in opposite directions, a separating element of the one shaft opposes a corresponding separating element of the other shaft is working cutting, in particular, the front edge of the separating element of the one shaft working against the front edge of the other separating element facing away from edge.
  • a partition member of one shaft which is referred to as a first partition member for convenience, can be engaged between two adjacent support members of the other shaft.
  • These adjacent supporting elements of the other shaft in turn carry separating elements which move in the opposite direction to the first separating element.
  • the separating elements of the other shaft may be arranged corresponding to the first separating element of a shaft such that the front edge of the first separating element can perform a crushing operation against the edge facing away from the leading edge of the other separating element of the other shaft, ie the rear edge.
  • the separating elements of one shaft may be arranged corresponding to the separating elements of the other shaft and the counter-separating elements of the other shaft, that within a single opposite rotation of both waves in opposite directions of the separating elements of the waves, first a separating element a shaft against a directly adjacent pair of support members of the other shaft cutting and / or breaking works, then the separating element of a shaft against the separating element corresponding to this separating elements of the other shaft cutting works and then the separating element of a shaft against the separating element of the other shaft which is mounted corresponding to this separating element, against which the front edge of the other separating element facing away edge, cutting works.
  • the arrangement of the separating elements of a shaft corresponding to the separating elements of the other shaft and corresponding to the counterpart separating elements of the other shaft thus allows four separation processes / comminution processes with respect to the material to be comminuted within a single opposite rotation of the two waves.
  • the first separation process consists, for example, in that the material is drawn, broken and torn between a separating element of one shaft, which for reasons of simplicity is referred to as a first separating element, and a separating element of the other shaft, which is referred to as a second separating element for the sake of simplicity.
  • the first separation process typically occurs in the catchment area of the two support elements of the other shaft.
  • the separating element of one shaft is inserted between the two supporting elements of the other shaft.
  • the separating elements only slightly smaller in width than the distance between the support elements of the other shaft, it comes between the separating element and the corrugated side edges of the support element to a second predominantly refractive, but also a cutting and tearing second crushing process.
  • This second separation or comminution process typically still takes place in the catchment area of the two support elements.
  • the material between the first separating element and a corresponding counterpart separating element of the other shaft comminuted, separated, cut.
  • This third separation process typically also takes place in a region between the two support elements of the other shaft.
  • the material between the first separator of the one shaft and the separator of the other wave again crushed, cut approximately.
  • the front edge of the separating element of the one shaft works against the edge facing away from the front edge of the other separating element.
  • This fourth separation process typically occurs in the discharge area of the system.
  • each separator of one shaft may correspond to two counterparts of two immediately adjacent support members of the other shaft, the two counterparts being spaced axially between the two support members.
  • the counterpart dividing members may be provided directly on the support members on the roll body.
  • the countertraction elements can be formed virtually directly on the support elements or be suitably fastened or welded to the support elements. It goes without saying that the radial height of the counterparts is typically less than the radial height of the support elements.
  • the counterpart dividing elements can be cuboidal or rectangular in shape and, in particular, can be provided perpendicular to the support elements in the axial direction.
  • the counterpart dividers may each have, at their leading edges facing the other shaft, a cutting area which is bevelled, for example.
  • the counterparts may be formed cuboid or like a block, whereby an anvil-like action against the corresponding separating elements can be achieved.
  • the counterpart separating elements in turn may have, at their leading edges facing the other shaft, a cutting area which is bevelled, for example, so that in each case the cutting area of the counterpart separating element and of the corresponding separating element can achieve a cutting action.
  • the leading edges of the divider elements may be disposed substantially in the axial direction parallel to the longitudinal axis of the shaft or the leading edges of the divider elements may be inclined at an angle ⁇ to the longitudinal axis of the shaft, where 0 ° ⁇ ⁇ 90 ° °, preferably 0 ° ⁇ ⁇ 45 °.
  • the separating elements Due to the slope of the leading edges of the separating elements, the separating elements can be adapted to specific comminution tasks.
  • the divisional elements of the other shaft corresponding to the partition members of one shaft may be arranged in accordance with the slope of the corresponding partition members.
  • the counterpart dividing elements are typically arranged according to the slope of the separating elements in order to produce the highest possible efficiency. If the slope is 0 °, i. the leading edges of the separating elements are substantially parallel to the longitudinal axis of the shaft in the axial direction, for example, the slope of the separating elements is also 0 °.
  • the multi-range twin-shaft cutting system may further include a plurality of catch elements that may be attached to at least some of the support members at its outer periphery substantially radially to the longitudinal axis of the shaft, wherein the catch elements are typically bent like a hook, so that they predominantly on the other Wave show.
  • the catch elements can be provided, for example, on every second or third support element. It may be provided on all or at least some of the separating elements for a support element with catch elements, the catch elements. In this case, the catching elements may be present approximately at the position of the separating elements in the middle of the separating elements. It is understood that the catch elements are formed so that they do not touch the surface of the roller body of the other shaft upon rotation of the waves. The catch elements improve the feeding of uncut material into the catchment area of the two shafts.
  • the support elements may each have a protective element or other suitable wear protection at their smallest distance to the shaft center point, which point in each case to the other shaft.
  • the protective element, wear protection or special wear element on the support elements is typically attached to the mid-point closest to the wavy narrow side of the support elements and serves, for example, to protect this point, since this point is most heavily stressed by the comminution process .
  • the two shafts can be driven synchronously or asynchronously, with each of the shafts being interchangeable.
  • each of the two shafts can be driven via a transmission hydraulically or mechanically or by a direct drive.
  • a gearbox or a direct drive can ensure the corresponding power transmission hydraulically or mechanically.
  • the invention further provides a shredder for shredding material, comprising: a housing; a hopper device for filling the material; a multi-range twin-shaft cutting system as described above; a motor drive, in particular a servo motor or a torque motor, in particular an electric or diesel engine, for driving the shafts and a discharge for discharging the crushed material, wherein preferably the discharge is designed as a conveyor belt, slide, flap or scrape conveyor.
  • the FIG. 1 shows a multi-range twin-shaft cutting system 100 according to the present invention.
  • the multi-range twin-shaft cutting system 100 according to FIG. 1 shows two separate shafts 1 and 3, which are surrounded by a cylindrical roller body. It is understood that the shape of the roll body around the shaft can also have a different geometric shape, for example, hexagonal or octagonal.
  • connection elements / couplings 5 and 7 are shown. In the illustrated arrangement of the cutting system 100 in FIG FIG. 1 the connection element / the coupling 5 for the left shaft 1 and the connection element / the coupling 7 for the right shaft 3 are shown.
  • the two shafts 1 and 3 are arranged substantially parallel. The two shafts 1 and 3 are driven in opposite directions. For FIG.
  • FIG. 1 shows for the cutting system 100 further support members 9 and 11, which are provided axially to the longitudinal axis of the shaft. It should be the in FIG. 1 shown number of eight support elements 9 or 11 per shaft to be understood as purely exemplary.
  • the support elements 9 and 11 are provided spaced apart in the axial direction. In the present example, the distances in the axial direction are substantially uniform.
  • the support members 9 and 11 of the shafts are typically formed to have a wavy or rosette-shaped circumferential or circumferential region.
  • the undulating peripheral line promotes a better circulation of the material to be shredded and facilitates or optimizes at the same time the collection.
  • the optimized circulation and the improved intake can reduce the energy required for shredding.
  • the waveform is typically uniform, that is symmetrical about the circumference, and an unbalanced arrangement can be provided to improve the pull-in behavior.
  • n The number of maxima of the waveshape of the support elements is denoted by n, for example, where n is a natural number.
  • the FIG. 1 further shows cap-like protective elements 27 and 29, which are attached to the support elements 9, 11 of the left shaft 1 and the right shaft 3, respectively.
  • the protective elements 27 and 29 are in FIG. 1 by way of example in the region of the smallest distance of the waveform to the center of the support elements 9 and 11 is provided.
  • the protective elements 27 and 29 may be plugged or suitably fastened to the support elements 9, 11, as may also be provided instead of the protective elements 27 and 29, another suitable wear protection, such as, for example, build-up welding.
  • the width of the distance between two adjacent support elements 9 of the shaft 1 or two adjacent support elements 11 of the shaft 3 is as follows and will be explained from the perspective of the shaft 1, so the left shaft.
  • separating elements 17 are provided on the support elements 9 separating elements 17 are provided.
  • the partition members 17 are provided so that they can engage in the opposite rotation of the shafts 1 and 3 in the space between two adjacent support members 11 of the other shaft.
  • the gap between two adjacent support elements 9 ,.11 is thus at least as wide as the width of the separating elements 17 and 19.
  • a separator 17 of the left shaft, in FIG. 1 is provided on the first support member 9 of the shaft 1, in the space between the first and second support member 11, that is, immediately adjacent support members, the right shaft 3 engage.
  • the intervention happens during the opposite driving of the waves 1 and 3.
  • the support elements 9, 11 of the right and left shaft each have a six-symmetry. This six-symmetry, for example, when looking at the connection elements / couplings 5 and 7 in FIG. 1 clear.
  • the six-symmetry is also shown by the number of maximums of the waveform of the peripheral line of the support members 9, 11, as described above.
  • the separating elements 17 and 19 are each mounted substantially tangentially on the peripheral region of the support elements 9 and 11. In FIG.
  • each of the six separating elements 17, 19 which in FIG. 1 are each mounted on a support member 9, 11, can engage in the corresponding space between two immediately adjacent support members 11, 9 of the respective other shaft.
  • each separating element 17, which is mounted on the connection element / from the coupling 5 of the left shaft 1 forth first support member 9, in the space between the first and second support member 11 of the right shaft 3, from the connection element / from the coupling 7 seen, can intervene. It is understood that corresponding correspondences apply to all other support elements 9, 11 and dividing elements 17, 19 of the respective left and right shaft 1, 3.
  • n 6
  • n 4 or another number.
  • the separators of the left shaft are designated by the reference numeral 17.
  • the separating elements of the right shaft are designated by the reference numeral 19.
  • catch elements for example in the form of knives or fishing hooks are provided, which are designated by the reference numeral 13 are. Accordingly, catch elements are provided on the support elements 11 of the right shaft 3, which are designated by the reference numeral 15. In the axial direction are in FIG. 1 the catch elements 13 and 15 are provided only on some of the support elements 9, 11. It is understood, however, that catch elements 13, 15 can be provided both on some and on all support elements 9, 11. Purely by way of example are in FIG. 1 only on every third support element 9, 11, the catch elements 13, 15 are provided. The catch elements 13 and 15, respectively, improve the intake of material into the multi-shaft cutting system 100.
  • the catch elements 13 and 15 can be provided on every second separation element of a support element 9, 11.
  • the catch elements 13, 15 separately or it may be provided there a special separator, which results in a combination of catch element and separating element.
  • the catch elements 13 and 15 are for example hook-like, knife-like or sickle-shaped, based on the normal direction of rotation.
  • the arrangement of some catch elements 13 and 15 against the normal direction of rotation can be provided so that in a blockage of the waves 1 and 3 and required reverse run, the feed material, which has led to the blockage, can be loosened. This should be understood that in the FIG.
  • the left shaft 1 in the clockwise direction and the right shaft 3 rotates counterclockwise thereto.
  • the material to be crushed is then supplied to the cutting system 100 in accordance with the direction of rotation of the shafts 1, 3 above the two shafts.
  • a pull-in or inlet region is thus defined, for example, by an imaginary plane through both longitudinal axes of the two shafts 1, 3.
  • the area above this imaginary plane is to be referred to as a catchment area.
  • the hook-like, knife-like or sickle-like shape of the catch elements 11, 15 improves the entry into the catchment area.
  • an outlet region is provided relative to the direction of rotation of the shafts 1, 3.
  • the FIG. 1 further shows counterparts 21 of the left shaft 1 and 23 of the right shaft 3.
  • the divisional elements 21 and 23, respectively, also correspond to those in FIG FIG. 1 shown six-symmetry.
  • the divisional elements 21, 23 are arranged such that they correspond to the separating elements 17, 19 of the support elements 9, 11 of the respective other shaft.
  • the counterparts 21 of the left shaft correspond to the dividers 19 of the right shaft.
  • the counterparts 23 of the right shaft correspond to the dividers 17 of the left shaft.
  • a separate separating element 21, 23 can therefore be interrupted within the intermediate space in the axial direction. You can also call such a separating element as two or more parts. It is important, however, that the separate separating element 21, 23, in one-part or multi-part form corresponds in each case to the corresponding separating element 17, 19 of the respective other shaft.
  • the dividing elements 17 and 19 may be chamfered at their leading edge, ie the edge, which, with respect to the direction of rotation, is substantially first in contact with the material to be comminuted, as in the following Figures 3A-3C shown. Likewise, the front edge of the respective separating elements 17, 19 have an angle against the longitudinal direction of the shaft 1, 3.
  • This angle can be between 0 ° and 90 °, preferably between 0 ° and 45 °.
  • the support elements 9 respectively 11 of the left and the right shaft 1, 3 are each offset by a few degrees against each other. This arrangement is also clear in the following figures. As a result, the intake and crushing movement of the shaft 1, 3 is further supported.
  • FIG. 2 shows in three sub-figures 2A, 2B, 2C views and sections of the cutting system 100 as in FIG. 1 shown.
  • FIG. 2A is shown in a plan view of the cutting system 100 with the waves 1 and 3.
  • FIG. 2B is exemplified eight sections perpendicular (transverse) to the longitudinal axis of both shafts 1 and 3, which are designated AA, BB, ..., HH, shown individually.
  • catch elements / teeth 13 of the left shaft 1 and catch elements 15 of the right shaft 3 are provided on support elements 9 of the left shaft and support elements 11 of the right shaft.
  • HH is in each case a shown support member 11 of the right shaft 3 in front of a shown support member 9 of the left shaft.
  • a total of 12 catch elements 13 and 15 are shown.
  • the Figure 2C shows a view in the longitudinal direction of the shafts 1 and 3 with a view of the connecting elements / couplings 5 and 7. In this case the arrangement of the knife 19 and catch elements 15 of the right shaft 3 and the arrangement of the knife 17 and catch elements 13 of the left shaft 1 is clearly visible.
  • FIGS. 3A to 3C show the within one revolution solely by the arrangement of the support member 9, 11, the dividing elements 17, 19 and the counterparts 21, 23 resulting correspondences and their respective effects.
  • the catch elements 13, 15 have been omitted.
  • a support element 9 of the left shaft 1 is behind a support member 11 of the right shaft.
  • the outer circumference of the support element 9 of the left shaft 1 engages in the intermediate space between the support element 11 of the right shaft 3 and a support element 11 of the same shaft 3 immediately adjacent thereto.
  • the dividing elements 17 and 19 show a beveled, knife-like or cutting-like region 17S or 19S.
  • FIG. 3A is a catchment area of the cutting system 100 denoted by I.
  • the support members 9 of the left shaft 1 and the support members 11 of the right shaft 3 engage in the opposite driving into each other.
  • Two dividers 19R and 17L are designated. From the element 19R is also shown the front beveled portion 19S of the separator. It is understood that the support member 9 engages directly between the support member 11 and a directly behind the support member 11 lying further support member of the right shaft.
  • the opposite movement of the two shafts 1, 3 causes the material to be shredded between the separating element 19R of the right shaft 3 and the separating element 17L of the left shaft 1 retracted, cracked and / or broken.
  • This comminution thus takes place in the sectional view substantially in the axial direction.
  • the wave-shaped circumferential line of the support elements 9, 11 supports this comminution process.
  • the left shaft 1 continues to rotate in the clockwise direction and the right shaft 3 counterclockwise. As a result, the left support member 9 and the right support member 11 are also rotated further.
  • FIG. 3B is pointed to the area II on the right separating element 19R and the corresponding left counterpart separating element 21. These come so close within the revolution that the material to be shredded is separated and / or cut between the separating element 19R of the right shaft 3 and the separating element 21 of the left shaft 1.
  • the counterpart separating element 21 is shown in the shape of an aisle in the form shown here.
  • an anvil shape may also be a cutting-like shape be chosen to ensure the separation in a cutting form of the material.
  • the correspondence between the separating element 19, 17 and the separate separating element 21, 23 is shown here only by way of example for a separating element 19R of the right shaft 3 and corresponding separating element 21 of the left shaft 1.
  • FIG. 3C shows within the same revolution corresponding to the arrangement of the separating elements 19R and 17L, another crushing operation which follows in the sequence of the second and the third crushing operation.
  • the separating element 19R is the same separating element as in FIG FIG. 3B shown.
  • the separating element 19R of the support element 11 of the right shaft can here work against the rear side of the separating element of the left shaft 17L, so that the material to be comminuted is again comminuted and / or cut. This repeated crushing happens in the outlet area III of the cutting system.
  • a very uniform and almost overgrained final product is produced.
  • the cutting system 100 may be provided within a crusher (not shown here).
  • a crusher may have a funnel-like attachment, funnel, into which the material to be shredded is added.
  • This funnel-like attachment may typically be provided above the catchment area of the cutting system 100.
  • the fangs 13 and 15 act supportive. It is possible to provide push-pull systems which press the material to be comminuted into the hopper and thus into the comminution unit.
  • a system may be provided below the cutting system 100 (not shown), a system may be provided to retain the oversized grain contained in the shredded material and to discharge it accordingly and move it away from the cutting system 100 via a conveyor belt for further use, for example.
  • the cutting system 100 can be provided in a mobile, semi-mobile or stationary crusher.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Mehrbereichs-Zweiwellen-Schneidsystem zur Zerkleinerung von Material insbesondere in Form von Abfallprodukten.
  • Stand der Technik
  • Gewerbeabfall, Industrieabfall, Hausabfall, Produktionsabfälle wie z.B. (Hart-) Kunststoff, Textilien, Verbundstoffe, Gummi, Holz, Althölzer (wie Paletten und Spanplatten), Biomasse, Strauchwerk, Haus- und Baumischabfall etc. bedürfen vor ihrer endgültigen Entsorgung oder insbesondere vor der Rückführung in den Wertstoffkreislauf und für die Energiegewinnung, der Zerkleinerung. Zur Zerkleinerung sind in dem Stand der Technik Ein- oder Mehrwellenzerkleinerer bekannt, welche beispielsweise durch Radlader, Gabelstapler oder Förderbänder über einen Trichter zur Materialaufgabe beschickt werden.
  • Das zu zerkleinernde Material wird beispielsweise mittels Einzugselementen in den Trennbereich der Wellen gefördert und dort bearbeitet.
  • Die EP 0 529 221 B1 beschreibt ein Zweiwellenzerkleinerungssystem mit gegenläufig angetriebenen Brecherwalzen.
  • Die US 5 048 764 A offenbart eine Vorrichtung zum Zerkleinern und Shreddern von festem Abfallmaterial, insbesondere von Altreifen.
  • Die DE 94 15 955 U1 offenbart eine Zerkleinerungsvorrichtung für Abfälle oder Abfallgemische unter besonderem Hinweis auf möglichst geringen Energieaufwand.
  • Die DE 28 31 953 A1 offenbart eine Zerreißvorrichtung für Papier und dünne, blattartige Materialien.
  • Aufgrund von brechenden Werkzeugen entsteht bei der Zerkleinerung nach dem Stand der Technik ein hoher, heute nicht mehr zeitgemäßer Energiebedarf / Energieaufwand. Weiterhin folgt aufgrund eines groben, undefiniertem Zerkleinern im Endprodukt einen hohen Anteil an unerwünschtem Überkorn. Dieses erschwert die weitere Verarbeitung und eine Vermarktung des Zerkleinerungsgutes.
  • Weiterhin gibt es nach dem Stand der Technik schneidende Zerkleinerungssysteme auch im Zweiwellenprinzip. Diese haben jedoch das Problem, dass sich der Durchsatz enorm verringert, da die Werkzeuge enger gebaut werden müssen, um einen hohen Anteil an Ausreißern, also unerwünschten Überkorn, zu vermeiden.
  • Ferner gibt es das Problem, dass der Verschleiß innerhalb einer Zerkleinerungseinheit durch blockierendes, schleifendes Material drastisch erhöht, die Standzeit hierdurch stark reduziert wird.
  • All diese Systeme haben lediglich 1 - 2 Trennebenen oder Trennvorgänge innerhalb eines Durchgangs, also einer Umdrehung der Zerkleinerungswerkzeuge, und sind somit häufig nicht wirtschaftlich genug.
  • Es ist Aufgabe des neuen Mehrbereichs-Zweiwellen-Zerkleinerungssystems, angesichts der oben diskutierten Probleme des Standes der Technik, ein Mehrbereichs-Zweiwellen-Zerkleinerungssystem, ein wirtschaftlicheres und effizienteres, insbesondere Energieeffizienteres Zerkleinerungssystem bereitzustellen, worin die Effizienz der Zerkleinerung eines Durchgangs, also in einer Umdrehung der Zerkleinerungswerkzeuge, erhöht wird. Ferner soll bei dem System der Verschleiß an dem Zerkleinerungssystem und den Zerkleinerungswerkzeugen gegenüber dem Stand der Technik vermindert werden.
  • Beschreibung
  • Die obige Aufgabe wird mit einem Mehrbereichs-Zweiwellen-Schneidsystem gemäß Anspruch 1 gelöst.
  • Die Erfindung stellt ein Mehrbereichs-Zweiwellen-Schneidsystem zum Zerkleinern von Material bereit, umfassend: zwei im Wesentlichen parallel angeordnete, gegenläufig angetriebene Wellen, wobei jede Welle jeweils von einem Walzenkörper umgeben ist; eine Vielzahl von Tragelementen, wobei jedes Tragelement im Wesentlichen radial um den Walzenkörper angebracht ist, wobei vorzugsweise jedes Tragelement eine radial, wellenförmig, gerundet oder eckig bzw. kantig ausgebildete Umfangslinie aufweist; eine Vielzahl von Trennelementen, die scheiben- und / oder plattenartig ausgebildet sind, die jeweils im Wesentlichen tangential am Umfangsbereich der Tragelemente angebracht sind; wobei die Tragelemente um die Walzenkörper derart beabstandet angeordnet sind, dass jeweils ein Trennelement an einem Tragelement der einen Welle zwischen zwei unmittelbar benachbarten Tragelementen der anderen Welle eingreift; wobei für jede Welle jeweils zwischen zwei unmittelbar benachbarten Tragelementen dieser Welle auf dem Walzenkörper der Welle Gegentrennelemente angebracht sind, die zu den Trennelementen der anderen Welle derart korrespondierend angebracht sind, dass die Trennelemente der anderen Welle bei gegenläufigem Eingreifen in den Zwischenraum der beiden unmittelbar benachbarter Tragelemente der einen Welle gegen die korrespondierenden Gegentrennelemente schneidend und / oder brechend arbeiten, so dass das Material zerkleinert wird; wobei jeweils die Trennelemente der einen Welle derart korrespondierend zu den Trennelementen der anderen Welle angeordnet sind, dass bei gegenläufigem Eingreifen der Trennelemente der Wellen ein Trennelement der einen Welle gegen ein korrespondierendes Trennelement der anderen Welle schneidend arbeitet, wobei die Vorderkante des Trennelementes der einen Welle gegen die der Vorderkante des anderen Trennelements der anderen Welle abgewandten Kante arbeitet. Die beiden gegenläufig angetriebenen Wellen sind typischerweise parallel in einem Abstand angeordnet, so dass die Trennelemente der einen Welle zwischen zwei unmittelbar benachbarte Tragelemente der anderen Welle eingreifen können. Zwischen den beiden Wellen entsteht dadurch ein Spalt, in dem die Zerkleinerung des zu zerkleinernden Materials geschieht. Es versteht sich, dass die jeweiligen Trennelemente der einen Welle die äußere Oberfläche des Walzenkörpers dabei nicht erreichen. Der Walzenkörper kann dabei auch eine andere Geometrie aufweisen, etwa eine polygonale Geometrie, beispielsweise sechseckig oder achteckig. Es versteht sich ferner, dass beim gegenläufigen Eingreifen auch zumindest die äußeren Bereiche jeweils eines Trennelements der einen Welle in den Zwischenraum zwischen zwei unmittelbar benachbarte Tragelemente der anderen Welle eingreifen. Die Tragelemente sind typischerweise scheibenartig ausgebildet. Die gegenläufige Antriebsrichtung der beiden Wellen definiert beispielsweise einen Einzugsbereich des Systems etwa oberhalb einer gedachten Ebene, die durch die beiden Längsachsen der Wellen gelegt wird und einen Auslaufbereich unterhalb dieser Ebene, wobei diese Bereiche etwa nach oben durch den Beginn des gegenläufigen Eingreifens, nach unten etwa durch das Ende des gegenläufigen Eingreifens zwischen den beiden Wellen begrenzt werden.
  • Die tangential an den Tragelementen angeordneten Trennelemente der einen Welle können insbesondere in ihrer Funktion wirkungsvoll unterstützt werden durch Gegentrennelemente, die sich korrespondierend angeordnet auf dem Walzenkörper der anderen Welle befinden. So kann ein Trennelement gegen ein Gegentrennelement arbeiten. Dabei soll der Begriff arbeiten bedeuten, dass zwischen dem Trennelement und dem korrespondierenden Gegentrennelement Material zerkleinert, insbesondere geschnitten wird. Dabei soll der Begriff korrespondierende Anordnung bedeuten, dass die Anordnung der genannten Elemente, d.h. Trennelemente, Gegentrennelement, Tragelemente, es ermöglicht, dass bei gegenläufiger Drehung der Wellen sich diese Elemente derart nahe kommen, dass Material zwischen diesen Elementen zerkleinert wird. Dabei gibt es typischerweise für jedes Trennelement ein entsprechendes Gegentrennelement. Es versteht sich dabei, dass das Gegentrennelement aus einem Stück gefertigt sein kann, es aber auch möglich ist, dass Gegentrennelement aus mehreren Stücken zusammengesetzt auszubilden. Es versteht sich, dass eine Mehrzahl von Trennelementen typischerweise symmetrisch am Umfangsbereich der Tragelemente angebracht sein kann. Die typischerweise scheiben-, umlaufend wellenartige Form der Tragelemente begünstigt eine bessere Umwälzung des zu zerkleinernden Materials und erleichtert oder optimiert gleichzeitig den Einzug des Materials. Die Tragelemente können vorzugsweise eine wellenförmige oder rosettenförmige Umfangslinie oder Umfangsbereich aufweisen. Hierdurch kann die Umwälzung und der Einzug weiter enorm verbessert werden. Gleichzeitig wird dadurch der Energieaufwand zum Zerkleinern gesenkt. Die Zahl der Maxima der Wellenform der Tragelemente kann mit n bezeichnet werden, wobei n eine natürliche Zahl ist. Die Trennelemente können an allen oder wenigstens einigen dieser Maxima angebracht werden. Die Anzahl der Trennelemente kann beispielsweise n=4 oder n=6 entsprechend der Zahl der Maxima betragen. Es ist aber auch eine andere Zahl von Trennelementen denkbar. Die Trennelemente sind typischerweise symmetrisch, aber auch unsystematisch, um das Tragelement angebracht. Das gilt auch für Tragelemente, die beispielsweise keine Wellenform am Umfang aufweisen. Die Symmetrie n wird typischerweise für alle Tragelemente gleich sein., kann aber auch unterschiedlich gewählt werden.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem sind die Trennelemente der einen Welle derart korrespondierend zu den Trennelementen der anderen Welle angeordnet, dass bei gegenläufigem Eingreifen der Trennelemente der Wellen ein Trennelement der einen Welle gegen ein unmittelbar benachbartes Trennelement der anderen Welle brechend arbeitet. Die Trennelemente sind, wie oben beschrieben typischerweise derart an den Tragelementen befestigt, dass das Trennelement etwa in seiner Mitte an dem Tragelement, das dazu senkrecht steht, befestigt ist. Ein Trennelement der einen Welle ist also tangential, etwa mittig an dem Tragelement befestigt. Ein Trennelement der einen Welle, der Einfachheit halber als erstes Trennelement bezeichnet, kann zwischen zwei benachbarte Tragelemente der anderen Welle eingreifen. Diese benachbarten Tragelemente der anderen Welle tragen wiederum Trennelemente, die sich in entgegen gesetzter Richtung zu dem ersten Trennelement bewegen. Dadurch kann zwischen dem ersten Trennelement und einem benachbarten Trennelement der anderen Welle zu zerkleinerndes Material geschnitten, gerissen bzw. gebrochen werden. Diese Zerkleinerung findet typischerweise im Einzugsbereich statt. Dadurch kann das zu zerkleinernde Material bereits sehr früh gebrochen und / oder geschnitten und gerissen werden. In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Trennelemente der einen Welle jeweils wenigstens an ihren Vorderkanten bezogen auf die Gegentrennelemente der anderen Welle einen Schneidbereich aufweisen, der beispielsweise abgeschrägt ist.
  • Die scheibenartigen und / oder plattenartigen und / oder messerartigen Trennelemente können eine rechteckige, parallelogrammartige oder viereckige Form aufweisen. Es versteht sich, dass die Trennelemente typischerweise derart an den Tragelementen befestigt sind, dass das Trennelement etwa in seiner Mitte an dem Tragelement, das dazu senkrecht steht, befestigt ist. Der bei gegenläufiger Drehung der Wellen zum Spalt zeigende vordere Kantenbereich der Trennelemente, kurz als Vorderkante bezeichnet, kann durch einen Schneidbereich geeignet einen höheren Druck auf eine kleinere Fläche ausüben, so dass die Effizienz des Arbeitsvorgangs, also des Zerkleinerns durch Schneiden gegen das Gegentrennelement erhöht werden kann.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Trennelemente der Welle in der Breite so ausgebildet sein, dass die Breite geringfügig kleiner als der jeweilige Abstand zwischen den beiden gegenüberliegenden Tragelementen ist, so dass beim gegenläufigem Eingreifen der Trennelemente der Wellen in die gegenüber befindlichen Tragelemente, ein Trennelement der einen Welle gegen zwei unmittelbar benachbarte Tragelemente der anderen Welle brechend und / oder schneidend seitlich arbeitet. In dem Mehrbereichs-Zweiwellen-Schneidsystem können jeweils die Trennelemente der einen Welle derart korrespondierend zu den Trennelementen der anderen Welle angeordnet sein, dass bei gegenläufigem Eingreifen der Trennelemente der Wellen ein Trennelement der einen Welle gegen ein korrespondierendes Trennelement der anderen Welle schneidend arbeitet, wobei insbesondere die Vorderkante des Trennelementes der einen Welle gegen die der Vorderkante des anderen Trennelements abgewandte Kante arbeitet.
  • Wie oben beschrieben kann ein Trennelement der einen Welle, der Einfachheit halber als erstes Trennelement bezeichnet, zwischen zwei benachbarte Tragelemente der anderen Welle eingreifen. Diese benachbarten Tragelemente der anderen Welle tragen wiederum Trennelemente, die sich in entgegen gesetzter Richtung zu dem ersten Trennelement bewegen. Die Trennelemente der anderen Welle können derart korrespondierend zum ersten Trennelement der einen Welle angeordnet sein, dass die Vorderkante des ersten Trennelements einen Zerkleinerungsvorgang gegen die der Vorderkante des anderen Trennelements der anderen Welle abgewandte Kante, also die rückseitige Kante, ausführen kann. Dabei kommt es typischerweise zu einer Überlappung in axialer Richtung zwischen der Vorderkante des ersten Trennelements und der rückseitigen Kante des korrespondierenden Trennelements. Dies geschieht typischerweise im Auslaufbereich des Systems. Dadurch wird Material abermals zerkleinert.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können jeweils die Trennelemente der einen Welle derart korrespondierend zu den Trennelementen der anderen Welle und den Gegentrennelementen der anderen Welle angeordnet sein, dass innerhalb einer einzigen gegenläufigen Umdrehung beider Wellen bei gegenläufigem Eingreifen der Trennelemente der Wellen zunächst ein Trennelement der einen Welle gegen ein unmittelbar benachbartes Paar der Tragelemente der anderen Welle schneidend und / oder brechend arbeitet, danach das Trennelement der einen Welle gegen die zu diesem Trennelement korrespondierenden Gegentrennelemente der anderen Welle schneidend arbeitet und danach das Trennelement der einen Welle gegen das Trennelement der anderen Welle das zu diesem Trennelement korrespondierend angebracht ist, gegen die der Vorderkante des anderen Trennelements abgewandte Kante, schneidend arbeitet.
  • Die Anordnung der Trennelemente der einen Welle korrespondierend zu den Trennelementen der anderen Welle und korrespondierend zu den Gegentrennelementen der anderen Welle ermöglicht also innerhalb einer einzigen gegenläufigen Umdrehung der beiden Wellen vier Trennvorgänge / Zerkleinerungsvorgänge bezüglich des zu zerkleinernden Materials. Der erste Trennvorgang besteht beispielsweise darin, dass das Material zwischen einem Trennelement der einen Welle, der Einfachheit halber als erstes Trennelement bezeichnet, und einem Trennelement der anderen Welle, der Einfachheit halber als zweites Trennelement bezeichnet, eingezogen, gebrochen und gerissen werden. Der erste Trennvorgang geschieht typischerweise im Einzugsbereich der beiden Tragelementen der anderen Welle.
  • Unmittelbar danach wird das Trennelement der einen Welle, zwischen die beiden Tragelemente der anderen Welle eingeführt. Dadurch dass das Trennelemente nur geringfügig in der Breite kleiner ist, als der Abstand zwischen den Tragelementen der anderen Welle, kommt es zwischen dem Trennelement und den wellförmig ausgebildeten seitlichen Kanten des Tragelementes zu einem zweiten überwiegend brechenden, aber auch einem schneidenden und reißenden zweiten Zerkleinerungsvorgang. Dieser zweite Trenn- bzw. Zerkleinerungsvorgang erfolgt typischerweise noch im Einzugsbereich der beiden Tragelemente. Danach wird beispielsweise bei derselben gegenläufigen Umdrehung der beiden Wellen das Material zwischen dem ersten Trennelement und einem korrespondierenden Gegentrennelement der anderen Welle zerkleinert, getrennt, geschnitten. Dieser dritte Trennvorgang geschieht typischerweise auch in einem Bereich zwischen den beiden Tragelementen der anderen Welle. Danach wird beispielsweise bei derselben gegenläufigen Umdrehung der beiden Wellen das Material zwischen dem ersten Trennelement der einen Welle und dem Trennelement der anderen Welle abermals zerkleinert, etwa geschnitten. Wobei insbesondere die Vorderkante des Trennelementes der einen Welle gegen die der Vorderkante des anderen Trennelements abgewandten Kante arbeitet. Dieser vierte Trennvorgang geschieht typischerweise im Auslaufbereich des Systems. Durch die Kombination der vier Trennvorgänge kann das Material besonders effektiv und gleichmäßig zerkleinert werden. Es entsteht ein in der Körnung gleichmäßiges Endprodukt, das nahezu frei von unerwünschten Überkorn ist. Das Zerkleinerungsgut kann praktisch zur direkten Vermarktung gelangen ohne weitere komplizierte nachfolgende Technik, etwa Siebtechnik, bemühen zu müssen. Ferner wird der Energiebedarf zum Zerkleinern aufgrund des gleichmäßigen Einzugs des zu zerkleinernden Materials und der wellenartigen Form der Tragelemente stark reduziert. Ein Trennen auf vier Ebenen, also in vier Abschnitten während nur eines Durchlaufes bzw. Umdrehung der Wellen, wie oben beschrieben, reduziert den Energiebedarf, den Verschleiß und optimiert die Gleichmäßigkeit des ausgegebenen zerkleinerten Materials.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem kann jedes Trennelement der einen Welle jeweils mit zwei Gegentrennelementen zweier unmittelbar benachbarter Tragelemente der anderen Welle korrespondieren, wobei die beiden Gegentrennelemente zwischen den beiden Trageelementen in axialer Richtung beabstandet sind.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Gegentrennelemente unmittelbar an den Tragelementen auf dem Walzenkörper vorgesehen sein.
  • Die Gegentrennelemente können praktisch direkt an den Tragelementen angeformt sein oder an den Tragelementen geeignet befestigt oder angeschweißt sein. Es versteht sich, dass die radiale Höhe der Gegentrennelemente typischerweise geringer als die radiale Höhe der Tragelemente ist.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Gegentrennelemente quaderförmig oder rechteckig ausgebildet sein und insbesondere in axialer Richtung senkrecht zu den Tragelementen vorgesehen sein.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Gegentrennelemente jeweils an ihren Vorderkanten, die zur anderen Welle zeigen, einen Schneidbereich aufweisen, der beispielsweise abgeschrägt ist.
  • Die Gegentrennelemente können quaderförmig oder klötzchenartig ausgebildet sein, wodurch eine ambossartige Wirkung gegen die korrespondierenden Trennelemente erzielbar ist. Ebenso können die Gegentrennelemente ihrerseits an ihren Vorderkanten, die zur anderen Welle zeigen, einen Schneidbereich aufweisen, der beispielsweise abgeschrägt ist, so dass jeweils der Schneidbereich des Gegentrennelements und des korrespondierenden Trennelements eine Schneidwirkung erzielen können.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Vorderkanten der Trennelemente im Wesentlichen in axialer Richtung parallel zur Längsachse der Welle angeordnet sein oder die Vorderkanten der Trennelemente mit einer Schräge unter einem Winkel α zur Längsachse der Welle angeordnet sein, wobei 0°< α < 90°, bevorzugt 0°< α < 45° ist.
  • Durch die Schräge der Vorderkanten der Trennelemente können die Trennelemente spezifischen Zerkleinerungsaufgaben angepasst werden.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die zu den Trennelementen der einen Welle korrespondierenden Gegentrennelemente der anderen Welle entsprechend der Schräge der korrespondierenden Trennelemente angeordnet sein.
  • Die Gegentrennelemente sind typischerweise entsprechend der Schräge der Trennelemente angeordnet, um eine möglichst hohe Effizienz zu erzeugen. Ist die Schräge 0°, d.h. die Vorderkanten der Trennelemente sind im Wesentlichen in axialer Richtung parallel zur Längsachse der Welle, so ist beispielsweise die Schräge der Gegentrennelemente ebenfalls 0°.
  • Das Mehrbereichs-Zweiwellen-Schneidsystem kann ferner eine Vielzahl von Fangelementen umfassen, die an wenigstens einigen der Tragelemente an deren Außenumfang im Wesentlichen radial zur Längsachse der Welle angebracht sein können, wobei die Fangelemente typischerweise hakenartig gebogen sind, so dass sie überwiegend auf die jeweils andere Welle zeigen.
  • Die Fangelemente können beispielsweise an jedem zweiten oder dritten Tragelement vorgesehen werden. Es können für ein Tragelement mit Fangelementen die Fangelemente an allen oder wenigstens an einigen der Trennelemente vorgesehen sein. Dabei können die Fangelemente etwa an der Position der Trennelemente mittig zu den Trennelementen vorhanden sein. Es versteht sich, dass die Fangelemente so ausgebildet sind, dass sie die Oberfläche des Walzenkörpers der anderen Welle bei Drehung der Wellen nicht berühren. Die Fangelemente verbessern das Einziehen von unzerkleinertem Material in den Einzugsbereich der beiden Wellen.
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die Tragelemente jeweils an ihrem zum Wellenmittelpunkt kleinsten Abstand ein Schutzelement oder einen sonstigen geeigneten Verschleißschutz aufweisen, die jeweils zur anderen Welle zeigen.
  • Das Schutzelement, Verschleißschutz oder spezielles Verschleißelement an den Tragelementen ist typischerweise an dem Mittelpunkt am nächsten kommenden Punkt angebracht, und zwar an der wellenförmig ausgebildeten Schmalseite der Tragelemente und dient beispielsweise dazu, diesen Punkt zu schützen, da dieser Punkt am stärksten durch den Zerkleinerungsvorgang beansprucht wird,
  • In dem Mehrbereichs-Zweiwellen-Schneidsystem können die beiden Wellen synchron oder asynchron angetrieben werden, wobei jede der Wellen auswechselbar ist.
  • Dabei ist hier besonders die Breite der Trag- und Trennelemente für den Asynchronlauf entscheidend. In dem Mehrbereichs-Zweiwellen-Schneidsystem kann jede der beiden Wellen über ein Getriebe hydraulisch oder mechanisch oder durch einen Direktantrieb angetrieben werden.
  • Durch das synchrone oder asynchrone Antreiben kann den verschiedenen Lasten, die auf die Wellen bei der Umdrehung wirken, Rechnung getragen werden. Ein Getriebe oder ein Direktantrieb kann die entsprechende Kraftübertragung hydraulisch oder mechanisch gewährleisten.
  • Die Erfindung stellt ferner eine Zerkleinerungsvorrichtung zum Zerkleinern von Material bereit, umfassend: ein Gehäuse; eine Trichtervorrichtung zum Einfüllen des Materials; ein Mehrbereichs-Zweiwellen-Schneidsystem wie oben beschrieben; einen motorischen Antrieb, insbesondere einen Stellmotor oder einen Torquemotor, insbesondere einen Elektro- oder Dieselmotor, zum Antreiben der Wellen und einen Austragbereich zum Austragen des zerkleinerten Materials, wobei vorzugsweise der Austragsbereich als Förderband, Schieber, Klappe oder Kratzförderer ausgeführt ist.
  • Es gilt also: In dem neuen Mehrbereichs-Zweiwellen-Zerkleinerungssystem ergeben sich aufgrund der Geometrie und der Trennelemente Anordnungen, 4 Trennvorgänge / Trennebenen innerhalb eines Durchgangs, also bei einer Umdrehung der gegenläufigen Wellen, wodurch der Zerkleinerungsvorgang deutlich effizienter wird.
  • Weitere Merkmale und beispielhafte Ausführungsformen der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.
    • Figur 1 stellt eine Prinzipskizze für ein Mehrbereichs-Zweiwellen-Schneidsystem gemäß der vorliegenden Erfindung dar.
    • Figur 2A stellt eine schematische Draufsicht auf das Mehrbereichs-Zweiwellen-Schneidsystem gemäß Figur 1 dar.
    • Figur 2B stellt schematische Schnitte quer zur Längsrichtung durch das Schneidsystem aus Figur 2A dar.
    • Figur 2C stellt einen Blick in Längrichtung der Wellen des Schneidsystems aus Figur 2A dar.
    • Figuren 3A - 3C zeigen schematisch die spezifische Anordnung von Trageelementen, Trennelementen und Gegentrennelementen im Hinblick auf die Zerkleinerung von Material.
  • Die Figur 1 zeigt ein Mehrbereichs-Zweiwellen-Schneidsystem 100 gemäß der vorliegenden Erfindung. Das Mehrbereichs-Zweiwellen-Schneidsystem 100 gemäß Figur 1 zeigt zwei separate Wellen 1 und 3, die mit einem zylindrischen Walzenkörper umgeben sind. Es versteht sich, dass die Form des Walzenkörpers um die Welle auch eine andere geometrische Form besitzen kann, beispielsweise sechseckig oder achteckig. Es sind exemplarisch Anschlusselemente / Kupplungen 5 und 7 gezeigt. In der gezeigten Anordnung des Schneidsystems 100 in Figur 1 ist das Anschlusselement / die Kupplung 5 für die linke Welle 1 und das Anschlusselement / die Kupplung 7 für die rechte Welle 3 gezeigt. Die beiden Wellen 1 und 3 sind im Wesentlichen parallel angeordnet. Die beiden Wellen 1 und 3 sind gegenläufig angetrieben. Für Figur 1 bedeutet das, dass die linke Welle 1 sich im Uhrzeigersinn dreht. Die rechte Welle 3 dreht sich entsprechend gegen den Uhrzeigersinn. Die beiden Wellen 1 und 3 können sich synchron oder asynchron bewegen. Insbesondere können sich die Wellen auch in dem entsprechend anderen Drehsinn drehen, d. h. die Welle 1 dreht sich gegen den Uhrzeigersinn und die Welle 3 dreht sich im Uhrzeigersinn. Diese Möglichkeit kann insbesondere für Wartungszwecke von Vorteil sein oder, wenn eine Störsituation, beispielsweise durch ein Verklemmen der Wellen bzw. der Trennelemente, vorliegt. Die Figur 1 zeigt für das Schneidsystem 100 ferner Tragelemente 9 und 11, die axial zur Längsachse der Welle vorgesehen sind. Dabei soll die in Figur 1 gezeigte Zahl von acht Tragelementen 9 oder 11 pro Welle als rein beispielhaft verstanden sein. Es ist ebenso möglich eine größere oder geringere Zahl von Tragelementen pro Welle im Schneidsystem vorzusehen. Die Tragelemente 9 und 11 sind in axialer Richtung beabstandet vorgesehen. Im vorliegenden Beispiel sind die Abstände in axialer Richtung im Wesentlichen gleichmäßig. Die Tragelemente 9 und 11 der Wellen sind typischerweise derart ausgebildet, dass sie eine wellenförmige oder rosettenförmige Umfanglinie oder Umfangsbereich aufweisen. Die wellenförmige Umfanglinie begünstigt eine bessere Umwälzung des zu zerkleinernden Materials und erleichtert oder optimiert gleichzeitig den Einzug. Die optimierte Umwälzung und der verbesserte Einzug können den Energieaufwand zum Zerkleinern senken. Die Wellenform ist typischerweise gleichmäßig, also symmetrisch um den Umfang wobei auch ein unsymmetrische Anordnung zur Verbesserung des Einzugsverhalten vorgesehen werden kann. Die Zahl der Maxima der Wellenform der Tragelemente wird beispielsweise mit n bezeichnet, wobei n eine natürliche Zahl ist. Figur 1 zeigt eine Wellenform mit n=6. Es versteht sich aber, dass ebenso andere Zahlen der Maxima und damit auch der Minima möglich sind, zum Beispiel n=4 oder n=8.
  • Die Figur 1 zeigt weiterhin kappenartige Schutzelemente 27 und 29, die an den Tragelementen 9, 11 der linken Welle 1 beziehungsweise der rechten Welle 3 angebracht sind. Die Schutzelemente 27 und 29 sind in Figur 1 beispielhaft im Bereich des kleinsten Abstandes der Wellenform zum Mittelpunkt der Tragelemente 9 und 11 vorgesehen. Die Schutzelemente 27 und 29 können auf die Tragelemente 9, 11 aufgesteckt oder geeignet befestigt sein, wie auch anstatt der Schutzelemente 27 und 29, ein sonstiger geeigneter Verschleißschutz, wie zum Beispiel durch Auftragsschweißung, vorgesehen werden kann.
  • Die Breite des Abstandes zwischen zwei benachbarten Tragelementen 9 der Welle 1 oder zwei benachbarten Tragelementen 11 der Welle 3 ist wie folgt und wird aus der Sicht der Welle 1, also der linken Welle erläutert. An den Tragelementen 9 sind Trennelemente 17 vorgesehen. Die Trennelemente 17 sind derart vorgesehen, dass sie beim gegenläufigen Antreiben der Wellen 1 und 3 in den Zwischenraum zwischen zwei benachbarten Tragelementen 11 der anderen Welle eingreifen können. Der Zwischenraum zwischen zwei benachbarten Tragelementen 9 bzw.11 ist also mindestens so breit wie die Breite der Trennelemente 17 und 19. Bei Ausbildung der Trennelemente 17 und 19 in geringfügig kleinerer Breite, die dem Abstand zwischen den beiden Tragelementen 9 bzw. 11 entspricht, erfolgt auch eine seitliche Zerkleinerung zwischen den Trag- und Trennelementen. Dies gilt umgekehrt auch für Trennelemente 19, die von den Tragelementen 11 der Welle 3 getragen werden. Beispielsweise kann also ein Trennelement 17 der linken Welle, das in Figur 1 am ersten Tragelement 9 der Welle 1 vorgesehen ist, in den Zwischenraum zwischen dem ersten und zweiten Tragelement 11, d.h. unmittelbar benachbarten Tragelementen, der rechten Welle 3 eingreifen. Das Eingreifen geschieht während des gegenläufigen Antreibens der Wellen 1 und 3. In der Figur 1 haben die Tragelemente 9, 11 der rechten und der linken Welle jeweils eine Sechser-Symmetrie. Diese Sechser-Symmetrie wird beispielsweise beim Betrachten der Anschlusselemente / Kupplungen 5 und 7 in Figur 1 deutlich. Die Sechser-Symmetrie wird auch durch die Zahl der Maxima der Wellenform der Umfanglinie der Tragelemente 9, 11 gezeigt, wie oben beschrieben. Die Trennelemente 17 und 19 sind jeweils im Wesentlichen tangential am Umfangbereich der Tragelemente 9 und 11 angebracht. In Figur 1 sind entsprechend der Sechser-Symmetrie der Tragelemente 9 und 11 sechs Trennelemente mit Bezugszeichen 17 und 19 am Tragelement 9 respektive 11 in Umfangrichtung angebracht. Diese sind im Wesentlichen symmetrisch aber auch unsymmetrisch verteilt am Umfangsbereich angebracht. Die Wellen sind synchron angetrieben.
  • Weiterhin bringt es beim Einzug des zu zerkleinernde Material in das Mehrbereichs-Zweiwellen-Schneidsystem 100 einen Vorteil, wenn es auch zwischen den ansonsten im gleichen Winkelabstand angeordneten Trennelementen 17 und 19, durch einen größeren Winkelabstand eine größere Lücke, oder mehrere große Lücken gibt.
  • Das heißt, dass der Winkelabstand zwischen zwei oder mehreren Trennelementen 17 an den Tragelementen 9 bezogen auf den Umfang der Welle 1, größer als bei den anderen Trennelementen 17 ist.
  • Ebenso ist der Winkelabstand der jeweils zur Welle 1 korrespondierenden Trennelemente 19 der Tragelemente 11 der Welle 3, jeweils bezogen auf den Umfang der Welle 3, größer als der Winkelabstand der anderen im gleichen Winkelabstand angeordneten Trennelemente 19 der Welle 3.
  • Es ist selbstverständlich, dass die jeweiligen Gegentrennelemente 21 und 23 der Wellen 1 und 3 in dem gleichen korrespondierenden Winkelabstand der Trennelementen 17 und 19 der Wellen 1 und 3 angeordnet werden.
  • Der Abstand beträgt also in diesem Beispiel in etwa 60°. Jedes der sechs Trennelemente 17, 19 die in Figur 1 jeweils an einem Tragelement 9, 11 angebracht sind, können in den korrespondierenden Zwischenraum zwischen zwei unmittelbar benachbarten Tragelementen 11, 9 der jeweils anderen Welle eingreifen. Erneut bedeutet das für das in Figur 1 gezeigte Beispiel, dass jedes Trennelement 17, das am vom Anschlusselement / von der Kupplung 5 der linken Welle 1 her gesehenen ersten Tragelement 9 angebracht ist, in den Zwischenraum zwischen dem ersten und zweiten Tragelement 11 der rechten Welle 3, vom Anschlusselement / von der Kupplung 7 her gesehen, eingreifen kann. Es versteht sich, dass entsprechende Korrespondenzen für alle übrigen Tragelemente 9, 11 und Trennelemente 17, 19 der jeweils linken und rechten Welle 1, 3 gelten. Nochmals sei darauf hingewiesen, dass die Sechser-Symmetrie, d. h. die Zahl n der Trennelemente an einem Tragelement beträgt n=6, wobei n eine natürliche Zahl ist, rein beispielhaft gewählt ist und diese Zahl ebenso n=4 oder eine andere Zahl sein kann. Die Trennelemente der linken Welle sind mit dem Bezugszeichen 17 bezeichnet. Die Trennelemente der rechten Welle sind mit dem Bezugszeichen 19 bezeichnet.
  • An den Tragelementen 9 der linken Welle 1 sind außerdem Fangelemente, beispielsweise in Form von Messern oder Fanghaken, vorgesehen, die mit dem Bezugszeichen 13 bezeichnet sind. Entsprechend sind an den Tragelementen 11 der rechten Welle 3 Fangelemente vorgesehen, die mit dem Bezugszeichen 15 bezeichnet sind. In axialer Richtung sind in Figur 1 die Fangelemente 13 bzw. 15 lediglich an einigen der Tragelemente 9, 11 vorgesehen. Es versteht sich aber, dass Fangelemente 13, 15 sowohl an einigen als auch an allen Tragelement 9, 11 vorgesehen sein können. Rein beispielhaft sind in Figur 1 lediglich an jedem dritten Tragelement 9, 11 die Fangelemente 13, 15 vorgesehen. Die Fangelemente 13 respektive 15 verbessern den Einzug von Material in das Mehrwellenschneidsystem 100. Bezogen auf die Umfangrichtung eines Tragelements 9 respektive 11 können die Fangelemente 13 bzw. 15 beispielsweise an jedem zweiten Trennelement eines Tragelements 9, 11 vorgesehen sein. Dabei können die Fangelemente 13, 15 separat oder es kann dort ein spezielles Trennelement vorgesehen sein, das eine Kombination aus Fangelement und Trennelement ergibt. Die Fangelemente 13 bzw. 15 sind beispielsweise hakenartig, messerartig oder sichelartig gebogen, bezogen auf die normale Drehrichtung. Auch die Anordnung einiger Fangelemente 13 bzw. 15 gegen die normale Drehrichtung kann vorgesehen werden, damit bei einer Blockade der Wellen 1 und 3 und erforderlichen Rückwärtslauf, das Aufgabematerial, welches zur Blockade geführt hat, aufgelockert werden kann. Damit soll verstanden sein, dass sich in der Figur 1 typischerweise die linke Welle 1 im Uhrzeigersinn und die rechte Welle 3 dazu gegen den Uhrzeigersinn dreht. Das zu zerkleinernde Material wird dann entsprechend der Drehrichtung der Wellen 1, 3 oberhalb der beiden Wellen dem Schneidsystem 100 zugeführt. Ein Einzugs- oder Einlassbereich wird so beispielsweise durch eine gedachte Ebene durch beide Längsachsen der beiden Wellen 1, 3 definiert. Dabei ist der Bereich oberhalb dieser gedachten Ebene als Einzugsbereich zu bezeichnen. Die hakenartige, messerartige oder sichelartige Form der Fangelemente 11, 15 verbessert den Einzug in den Einzugsbereich. Unterhalb dieser gedachten Ebene ist ein Auslassbereich bezogen auf die Drehrichtung der Wellen 1, 3 vorgesehen. In diesem Auslassbereich wird das zerkleinerte Material aus dem Schneidsystem 100 beispielsweise heraustransportiert oder fällt durch die Schwerkraft selbstständig heraus. Die Figur 1 zeigt weiterhin Gegentrennelemente 21 der linken Welle 1 und 23 der rechten Welle 3. Die Gegentrennelemente 21 respektive 23 entsprechen ebenfalls der in Figur 1 gezeigten Sechser-Symmetrie. Damit sind sechs Gegentrennelemente 21, 23 beispielsweise unmittelbar links und rechts benachbart von einem Tragelement 9, 11 auf der Oberfläche des Walzenkörpers der Wellen angeordnet. Die Gegentrennelemente 21, 23 sind derart angeordnet, dass sie zu den Trennelementen 17, 19 der Tragelemente 9, 11 der jeweils anderen Welle korrespondieren. Es entsprechen also zum Beispiel die Gegentrennelemente 21 der linken Welle den Trennelementen 19 der rechten Welle. Ebenso entsprechen die Gegentrennelemente 23 der rechten Welle den Trennelementen 17 der linken Welle. Diese Entsprechung oder Korrespondenz führt dazu, dass beim gegenläufigen Antreiben der beiden Wellen 1, 3 jeweils ein Trennelement 17, 19 der einen Welle 1, 3 gegen ein korrespondierendes Gegentrennelement 21, 23 der anderen Welle 3, 1 arbeiten kann. Insbesondere kann dadurch vorteilhaft Material zwischen dem Trennelement 17, 19 und dem korrespondierenden Gegentrennelement 21, 23 zerkleinert werden. Die Gegentrennelemente 21 und 23 sind im Wesentlichen senkrecht zu den Tragelementen 9 bzw. 11 vorgesehen. Die Gegentrennelemente 21, 23 sind in Figur 1 derart dargestellt, dass sie nicht den gesamten Zwischenraum zwischen zwei Tragelementen 9, 11 einer Welle 1, 3 in Bezug auf die axiale Richtung ausfüllen. Es versteht sich, dass die Gegentrennelemente 21 und 23 jeweils zwischen zwei Tragelementen 9, 11 sowohl durchgehend als auch unterbrochen ausgeführt sein können. Ein Gegentrennelement 21, 23 kann also innerhalb des Zwischenraums in axialer Richtung unterbrochen sein. Man kann ein derartiges Gegentrennelement auch als zwei- oder mehrteilig bezeichnen. Wichtig ist jedoch, dass das Gegentrennelement 21, 23, in einteiliger oder mehrteiliger Form jeweils dem korrespondierenden Trennelement 17, 19 der jeweils anderen Welle entspricht. Die Trennelemente 17 und 19 können an ihrer Vorderkante, d. h. der Kante, die bezogen auf die Drehrichtung mit dem zu Zerkleinernden Material im Wesentlichen als erstes in Kontakt kommt, abgeschrägt sein, wie in den folgenden Figuren 3A-3C dargestellt. Ebenso kann die Vorderkante der jeweiligen Trennelemente 17, 19 einen Winkel gegen die Längsrichtung der Welle 1, 3 aufweisen. Dieser Winkel kann zwischen 0° und 90° betragen, bevorzugt zwischen 0° und 45°. Ebenso ist aus Figur 1 ersichtlich, dass die Tragelemente 9 respektive 11 der linken und der rechten Welle 1, 3 jeweils um einige Grad versetzt gegeneinander angeordnet sind. Diese Anordnung wird auch in den folgenden Figuren deutlich. Dadurch wird die Einzugs- und Zerkleinerungsbewegung der Welle 1, 3 weiterhin unterstützt.
  • Die Figur 2 zeigt in drei Teilfiguren 2A, 2B, 2C Ansichten und Schnitte des Schneidsystems 100 wie in Figur 1 gezeigt. In der Figur 2A wird in eine Draufsicht auf das Schneidsystem 100 mit den Wellen 1 und 3 gezeigt. In dieser Ansicht ist deutlich zu sehen, wie die Tragelemente der linken Welle 1 und der rechten Welle 3 im Hinblick auf das Eingreifen / Ineinandergreifen angeordnet sind. In der Figur 2B sind beispielhaft acht Schnitte senkrecht (quer) zur Längsachse beider Wellen 1 und 3 gezeigt, die mit A-A, B-B, ..., H-H bezeichnet sind, einzeln dargestellt. Es ist in den Schnitten deutlich zu sehen, dass Fangelemente / -zähne 13 der linken Welle 1 und Fangelemente 15 der rechten Welle 3 an Tragelementen 9 der linken Welle und Tragelementen 11 der rechten Welle vorgesehen sind. In den Schnitten A-A, B-B, ..., H-H liegt jeweils ein gezeigtes Tragelement 11 der rechten Welle 3 vor einem gezeigten Tragelement 9 der linken Welle. In den Schnitten A-A, B-B, ... H-H sind insgesamt 12 Fangelemente 13 und 15 gezeigt. Wie oben bereits erwähnt versteht es sich, dass auch eine andere Anzahl von Fangelementen möglich ist. Die Figur 2C zeigt eine Ansicht in Längsrichtung der Wellen 1 und 3 mit Aufsicht auf die Anschlusselemente / Kupplungen 5 und 7. Dabei ist die Anordnung der Messer 19 und Fangelemente 15 der rechten Welle 3 sowie die Anordnung der Messer 17 und Fangelemente 13 der linken Welle 1 deutlich zu sehen.
  • Die Figuren 3A bis 3C zeigen die innerhalb von einer Umdrehung allein durch die Anordnung der Tragelement 9, 11, der Trennelemente 17, 19 und der Gegentrennelemente 21, 23 entstehenden Korrespondenzen und ihre jeweiligen Effekte. Dabei sind in den Figuren 3A bis 3C der Übersichtlichkeit halber die Fangelemente 13, 15 weggelassen worden.
  • In den Schnittansichten der Figuren 3A bis 3C wird zunächst deutlich, dass beispielhaft ein Tragelement 9 der linken Welle 1 hinter einem Tragelement 11 der rechten Welle liegt. Dadurch greift der Außenumfang des Tragelements 9 der linken Welle 1 in den Zwischenraum zwischen dem Tragelement 11 der rechten Welle 3 und einem unmittelbar dahinter benachbarten Tragelement 11 derselben Welle 3 ein. Ferner zu sehen sind die Trennelemente 17 der linken Welle 1 und 19 der rechten Welle 3. Die Trennelemente 17 und 19 zeigen einen abgeschrägten, messerartigen oder schneideartigen Bereich 17S bzw. 19S.
  • In der Figur 3A wird ein Einzugsbereich des Schneidsystems 100 mit I bezeichnet. Die Tragelemente 9 der linken Welle 1 sowie die Tragelemente 11 der rechten Welle 3 greifen beim gegenläufigen Antreiben ineinander. In den Schnittansichten der Figuren 3A bis 3C bedeutet dies beispielhaft, dass das Tragelement 11 in der Schnittansicht vor dem Tragelement 9 liegt. Es sind zwei Trennelemente 19R und 17L bezeichnet. Von dem Element 19R ist auch der vordere abgeschrägte Bereich 19S des Trennelements gezeigt. Es versteht sich, dass das Tragelement 9 unmittelbar zwischen das Tragelement 11 und ein unmittelbar hinter dem Tragelement 11 liegendes weiteres Tragelement der rechten Welle eingreift. Im Einzugsbereich I führt die gegenläufige Bewegung der beiden Wellen 1, 3 dazu, dass das zu zerkleinernde Material zwischen dem Trennelement 19R der rechten Welle 3 und dem Trennelement 17L der linken Welle 1 eingezogen, gerissen und / oder gebrochen wird. Dieses Zerkleinern findet also in der Schnittzeichnung gesehen im Wesentlichen in axialer Richtung statt. Die wellenförmige Umfangslinie der Tragelemente 9, 11 unterstützt diesen Zerkleinerungsvorgang. Innerhalb derselben Umdrehung drehen die linke Welle 1 im Uhrzeigersinn und die rechte Welle 3 gegen den Uhrzeigersinn weiter. Dadurch werden das linke Tragelement 9 und das rechte Tragelement 11 ebenfalls weiter gedreht.
  • In Figur 3B wird mit dem Bereich II auf das rechte Trennelement 19R und das korrespondierende linke Gegentrennelement 21 hingewiesen. Diese kommen sich innerhalb der Umdrehung so nahe, dass das zu zerkleinernde Material zwischen dem Trennelement 19R der rechten Welle 3 und dem Gegentrennelement 21 der linken Welle 1 getrennt und / oder geschnitten wird. Dabei ist das Gegentrennelement 21 in der hier gezeigten Form ambossförmig dargestellt. Anstelle einer Ambossform kann jedoch ebenfalls eine schneidenartige Form gewählt werden, um die Trennung in schneidender Form des Materials zu gewährleisten. Es versteht sich erneut, dass die Korrespondenz zwischen Trennelement 19, 17 und Gegentrennelement 21, 23 hier nur exemplarisch für ein Trennelement 19R der rechten Welle 3 und korrespondierendes Gegentrennelement 21 der linken Welle 1 gezeigt ist. Umgekehrt gibt es eine entsprechende Korrespondenz ebenso zwischen Trennelementen 17 der linken Welle 1 und Gegentrennelementen 23 der rechten Welle 3. Die Figur 3C zeigt innerhalb derselben Umdrehung entsprechend der Anordnung der Trennelemente 19R und 17L, einen weiteren Zerkleinerungsvorgang der sich in der Sequenz an den zweiten und den dritten Zerkleinerungsvorgang anschließt. Dabei ist das Trennelement 19R dasselbe Trennelement wie in Figur 3B gezeigt. Das Trennelement 19R des Tragelementes 11 der rechten Welle kann hier gegen die Rückseite des Trennelements der linken Welle 17L arbeiten, so dass das zu zerkleinernde Material abermals zerkleinert und / oder geschnitten wird. Dieses abermalige Zerkleinern geschieht im Auslaufbereich III des Schneidsystems. Somit entsteht bei geringerem Energieaufwand ein sehr gleichmäßiges und nahezu überkornfreies Endprodukt. Dieses kann der weiteren direkten Vermarktung unmittelbar zugeführt werden. Innerhalb einer Umdrehung der beiden Wellen 1, 3 wird somit aufgrund der Anordnung der Tragelemente 9, 11, der Trennelemente 17, 19, der Gegentrennelemente 21, 23 sequentiell Material einmal durch die Trennelemente 17, 19 zwischen den Trennelementen 9,11 und in den drei Bereichen I, II, III zerkleinert. Man kann deswegen auch von vierfachen Schnitt oder Zerkleinerungswirkung sprechen, der / die durch die Anordnung der Tragelemente, Trennelement und Gegentrennelemente an den Wellen bedingt wird.
  • Es versteht sich, dass das Schneidsystem 100 gemäß Figur 1, das anhand der Figuren 2A, 2B, 2C, 3A, 3B3C näher erläutert wurde, innerhalb eines Zerkleinerers vorgesehen sein kann (hier nicht gezeigt). Ein derartiger Zerkleinerer kann einen trichterartigen Aufsatz, Trichter, aufweisen, in den das zu zerkleinernde Material hineingegeben wird. Dieser trichterartige Aufsatz kann typischerweise oberhalb des Einzugsbereichs des Schneidsystems 100 vorgesehen sein. Durch die gegenläufige Rotation der Wellen wird das Material in den Einzugsbereich hineingezogen. Die Fangzähne 13 und 15 wirken dabei unterstützend. Es ist möglich, Nachdrücksysteme vorzusehen, die zu zerkleinerndes Material entsprechend in den Trichter und damit in die Zerkleinerungseinheit nachdrücken. Unterhalb des Schneidsystems 100 (hier nicht gezeigt) kann ein System vorgesehen sein, dass das im zerkleinerten Material enthaltene Überkorn zurück zu halten in der Lage ist und entsprechend austrägt und beispielsweise über ein Förderband zur weiteren Verwendung von dem Schneidsystem 100 wegbewegt. Damit kann das Schneidsystem 100 in einem mobilen, semimobilen oder stationären Zerkleinerer vorgesehen werden.

Claims (16)

  1. Mehrbereichs-Zweiwellen-Schneidsystem (100) zum Zerkleinern von Material, umfassend:
    zwei im Wesentlichen parallel angeordnete, gegenläufig angetriebene Wellen (1, 3), wobei jede Welle (1, 3) jeweils von einem Walzenkörper umgeben ist;
    eine Vielzahl von Tragelementen (9, 11), wobei jedes Tragelement (9, 11) im Wesentlichen radial um den Walzenkörper angebracht ist, wobei vorzugsweise jedes Tragelement (9, 11) eine radial, wellenförmig, gerundet oder eckig bzw. kantig ausgebildete Umfangslinie aufweist;
    eine Vielzahl von Trennelementen (17, 19), die scheiben- und / oder plattenartig ausgebildet sind, die jeweils im Wesentlichen tangential am Umfangsbereich der Tragelemente (9, 11) angebracht sind;
    wobei die Tragelemente (9, 11) um die Walzenkörper derart beabstandet angeordnet sind, dass jeweils ein Trennelement (17, 19) an einem Tragelement (9, 11) der einen Welle (1, 3) zwischen zwei unmittelbar benachbarten Tragelementen (11, 9) der anderen Welle (3, 1) eingreift;
    wobei für jede Welle (1, 3) jeweils zwischen zwei unmittelbar benachbarten Tragelementen (9, 11) dieser Welle (1, 3) auf dem Walzenkörper der Welle (1, 3) Gegentrennelemente (21, 23) angebracht sind, die zu den Trennelementen (17, 19) der anderen Welle (3, 1) derart korrespondierend angebracht sind, dass die Trennelemente (17, 19) der anderen Welle (3, 1) bei gegenläufigem Eingreifen in den Zwischenraum der beiden unmittelbar benachbarter Tragelemente (9, 11) der einen Welle (1, 3) gegen die korrespondierenden Gegentrennelemente (21, 23) schneidend und / oder brechend arbeiten, so dass das Material zerkleinert wird: dadurch gekennzeichnet dass jeweils die Trennelemente (17, 19) der einen Welle (1, 3) derart korrespondierend zu den Trennelementen (19, 17) der anderen Welle (3, 1) angeordnet sind, dass bei gegenläufigem Eingreifen der Trennelemente (17, 19) der Wellen (1, 3) ein Trennelement (17, 19) der einen Welle (1, 3) gegen ein korrespondierendes Trennelement (19, 17) der anderen Welle (1, 3) schneidend arbeitet, wobei die Vorderkante des Trennelementes (17, 19) der einen Welle (1, 3) gegen die der Vorderkante des anderen Trennelements (19, 17) der anderen Welle (1,3) abgewandten Kante arbeitet.
  2. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß Anspruch 1, wobei die Trennelemente (17, 19) der einen Welle (1, 3) jeweils wenigstens an ihren Vorderkanten bezogen auf die Gegentrennelemente (21, 23) der anderen Welle (3, 1) einen Schneidbereich (17S, 19S) aufweisen, der beispielsweise abgeschrägt ist.
  3. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 2. wobei die Trennelemente (17, 19) der Welle (1, 3) in der Breite so ausgebildet werden, dass die Breite geringfügig kleiner als der jeweilige Abstand zwischen den beiden gegenüberliegenden Tragelementen (9, 11) ist, so dass beim gegenläufigem Eingreifen der Trennelemente (17, 19) der Wellen (1, 3), in die gegenüber befindlichen Tragelemente (9, 11), ein Trennelement (17, 19) der einen Welle (1, 3) gegen zwei unmittelbar benachbarte Tragelemente (9, 11) der anderen Welle (3, 1) brechend und / oder schneidend seitlich arbeitet.
  4. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 3, wobei jeweils die Trennelemente (17, 19) der einen Welle (1, 3) derart korrespondierend zu den Trennelementen (19, 17) der anderen Welle (3, 1) angeordnet sind, dass bei gegenläufigem Eingreifen der Trennelemente (17, 19) der Wellen (1, 3) ein Trennelement (17, 19) der einen Welle (1, 3) gegen ein unmittelbar benachbartes Trennelement (19, 17) der anderen Welle (3, 1) brechend arbeitet.
  5. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 4,
    wobei jeweils die Trennelemente (17, 19) der einen Welle (1, 3) derart korrespondierend zu den Trennelementen (19, 17) der anderen Welle (3, 1) und den Gegentrennelementen (23, 21) der anderen Welle (3, 1) angeordnet sind, dass innerhalb einer einzigen gegenläufigen Umdrehung beider Wellen (1, 3) bei gegenläufigem Eingreifen der Trennelemente (17, 19) der Wellen (1, 3) zunächst ein Trennelement (17, 19) der einen Welle (1, 3) gegen ein unmittelbar benachbartes Paar der Trennelemente (17, 19) der anderen Welle (3) arbeitet;
    wobei bei der gleichen Umdrehung der beiden Wellen (1, 3) bei gegenläufigen Eingreifen der Trennelemente (17, 19) der Wellen (1, 3) zunächst ein Trennelement (17, 19) der einen Welle (1, 3) gegen ein unmittelbar benachbartes Paar der Tragelemente (9, 11) der anderen Welle (3, 1) schneidend und / oder brechend seitlich arbeitet, danach das Trennelement (17, 19) der einen Welle (1, 3) gegen die zu diesem Trennelement (17, 19) korrespondierenden Gegentrennelemente (23, 21) der anderen Welle (3, 1) schneidend arbeitet und danach das Trennelement (17, 19) der einen Welle (1, 3) gegen das Trennelement (19, 17) der anderen Welle (3, 1), das zu diesem Trennelement (17, 19) korrespondierend angebracht ist, gegen die der Vorderkante des anderen Trennelements (19, 17) abgewandte Kante, schneidend arbeitet.
  6. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 5, wobei jedes Trennelement (17, 19) der einen Welle (1, 3) jeweils mit zwei Gegentrennelementen (23, 21) zweier unmittelbar benachbarter Tragelemente (11, 9) der anderen Welle (3, 1) korrespondiert, wobei die beiden Gegentrennelemente (23, 21) zwischen den beiden Trageelementen (11, 9) in axialer Richtung beabstandet sind.
  7. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 6, wobei die Gegentrennelemente (21, 23) unmittelbar an den Tragelementen (9, 11) auf dem Walzenkörper vorgesehen sind.
  8. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 7, wobei die Gegentrennelemente (21, 23) quaderförmig oder rechteckig ausgebildet sind und insbesondere in axialer Richtung senkrecht zu den Tragelementen (9, 11) vorgesehen sind.
  9. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 8, wobei die Gegentrennelemente (21, 23) jeweils an ihren Vorderkanten, die zur anderen Welle zeigen, einen Schneidbereich aufweisen, der beispielsweise abgeschrägt ist.
  10. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 9, wobei die Tragelemente (9, 11) jeweils an ihrem zum Wellenmittpunkt kleinsten Abstand ein Schutzelement oder ein sonstiger geeigneter Verschleißschutz (27, 29) vorgesehen sind, die jeweils zur anderen Welle zeigen.
  11. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 10, wobei die Vorderkanten der Trennelemente (17, 19) im Wesentlichen in axialer Richtung parallel zur Längsachse der Welle (1, 3) angeordnet sind oder wobei die Vorderkanten der Trennelemente (17, 19) mit einer Schräge unter einem Winkel α zur Längsachse der Welle (1, 3) angeordnet sind, wobei 0°< α < 90°, bevorzugt 0°< α < 45° ist.
  12. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß Anspruch 11, wobei die zu den Trennelementen (17, 19) der einen Welle (1, 3) korrespondierenden Gegentrennelemente (21, 23) der anderen Welle (3, 1) entsprechend der Schräge der korrespondierenden Trennelemente (17, 19) angeordnet sind.
  13. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 12, ferner mit einer Vielzahl von Fangelementen (13, 15), die an wenigstens einigen der Tragelemente (9, 11) an deren Außenumfang im Wesentlichen radial zur Längsachse der Welle (1, 3) angebracht sind, wobei die Fangelemente (13, 15) typischerweise hakenartig gebogen sind, so dass sie überwiegend auf die jeweils andere Welle (1, 3) zeigen.
  14. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 13, wobei die beiden Wellen (1, 3) synchron oder asynchron angetrieben sind; wobei jede der Wellen (1, 3) teilweise auswechselbar ist.
  15. Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1 - 14, wobei jede der beiden Wellen (1, 3) über ein Getriebe oder mit einem Direktantrieb hydraulisch oder mechanisch angetrieben wird.
  16. Zerkleinerungsvorrichtung zum Zerkleinern von Material, umfassend:
    ein Gehäuse;
    eine Trichtervorrichtung zum Einfüllen des Materials;
    ein Mehrbereichs-Zweiwellen-Schneidsystem (100) gemäß wenigstens einem der Ansprüche 1-15;
    einen motorischen Antrieb, insbesondere einem Stellmotor oder einem Torquemotor, insbesondere einen Elektro- oder Dieselmotor, zum Antreiben der Wellen und einen Austragbereich zum Austragen und des Zurückhaltens eines Überkorns des zerkleinerten Materials, wobei vorzugsweise der Austragsbereich als Förderband, Schieber, Klappe oder Kratzförderer ausgeführt ist.
EP12005918.3A 2012-08-16 2012-08-16 Mehrbereichs-Zweiwellen-Schneidsystem Active EP2698207B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL12005918T PL2698207T3 (pl) 2012-08-16 2012-08-16 Wieloobszarowy dwuwałowy system tnący
EP12005918.3A EP2698207B1 (de) 2012-08-16 2012-08-16 Mehrbereichs-Zweiwellen-Schneidsystem
ES12005918T ES2710622T3 (es) 2012-08-16 2012-08-16 Sistema de corte de doble árbol de varios niveles
PCT/EP2013/066682 WO2014026916A1 (de) 2012-08-16 2013-08-09 Mehrbereichs-zweiwellen-schneidsystem
BR112015003405-5A BR112015003405B1 (pt) 2012-08-16 2013-08-09 sistema de corte de eixo duplo de regiões múltiplas e dispositivo de trituração
US14/421,937 US10799878B2 (en) 2012-08-16 2013-08-09 Multi-region twin-shaft cutting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12005918.3A EP2698207B1 (de) 2012-08-16 2012-08-16 Mehrbereichs-Zweiwellen-Schneidsystem

Publications (2)

Publication Number Publication Date
EP2698207A1 EP2698207A1 (de) 2014-02-19
EP2698207B1 true EP2698207B1 (de) 2018-11-14

Family

ID=46799961

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12005918.3A Active EP2698207B1 (de) 2012-08-16 2012-08-16 Mehrbereichs-Zweiwellen-Schneidsystem

Country Status (6)

Country Link
US (1) US10799878B2 (de)
EP (1) EP2698207B1 (de)
BR (1) BR112015003405B1 (de)
ES (1) ES2710622T3 (de)
PL (1) PL2698207T3 (de)
WO (1) WO2014026916A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105521862B (zh) * 2016-01-06 2018-10-26 河北华明木塑制品有限公司 一种双齿辊破碎机
EP3248687B1 (de) 2016-05-23 2019-09-11 Manuel Lindner Zweiwellenzerkleinerer mit schnellwechselvorrichtung
US11065624B2 (en) * 2019-07-03 2021-07-20 Scott Equipment Company Carton reducer/bag opener device
CN111346714B (zh) * 2020-03-16 2021-11-26 杭州齐协科技有限公司 一种自保护的破碎装置
KR102652168B1 (ko) * 2023-12-12 2024-03-29 주식회사 아리예스코리아 폐기물 파쇄기

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US39835A (en) * 1863-09-08 Improvement in coal-breaking rolls
US1435330A (en) * 1921-12-30 1922-11-14 Pardee Frank Coal breaker
US2472188A (en) * 1946-02-07 1949-06-07 Gifford Wood Co Ice breaker
US3027106A (en) * 1959-02-19 1962-03-27 Hoe & Co R Rotary saw break-up head
US3261384A (en) * 1965-05-19 1966-07-19 George A Henderson Circular saw
JPS5376465A (en) * 1976-12-17 1978-07-06 Kobe Steel Ltd Crusher
JPS54178287U (de) 1978-06-07 1979-12-17
US4765217A (en) * 1985-08-30 1988-08-23 Ludwig Andre M Insertable saw tooth
DE3711228A1 (de) * 1987-04-03 1988-10-20 Wagner Maschf Gustav Schneidezahn sowie mit solchen schneidezaehnen versehene metallsaegen, insbesondere kreissaegeblaetter
US5048764A (en) * 1989-11-06 1991-09-17 Flament Gregory J Apparatus for comminuting solid waste
DE9110457U1 (de) 1991-08-23 1991-12-19 Hammel, Norbert, 6301 Reiskirchen, De
US6092753A (en) * 1993-06-01 2000-07-25 Koenig; Larry E. Material processing apparatus
US5481952A (en) * 1994-01-27 1996-01-09 Maclennan; Charles D. Slasher saw blade assembly
US5511729A (en) * 1994-08-15 1996-04-30 Yeomans Chicago Corporation Waste comminutor and cutter elements therefor
DE9415955U1 (de) * 1994-10-04 1994-11-24 Mock Gerhard Dipl Ing Zerkleinerungsvorrichtung
US5676321A (en) * 1995-04-03 1997-10-14 Fellowes Mfg. Co. Cutting disk
US5904305A (en) * 1997-05-14 1999-05-18 Kaczmarek; Win F. Rubber reducing and recycling system
US6357680B1 (en) * 1999-06-16 2002-03-19 Jere F. Irwin Self-feeding comminuting apparatus having improved drive motor features
US6644570B1 (en) * 1999-10-15 2003-11-11 Jere F. Irwin Downstream pneumatic recirculation comminuting apparatus
US6513740B2 (en) * 2001-01-24 2003-02-04 Ming-Hui Ho Blade of a paper shredder
AUPR274701A0 (en) * 2001-01-29 2001-02-22 Parke, Terrence James Self-cleaning shredding device having movable cleaning rings
EP1334771B1 (de) * 2002-02-06 2016-12-07 Hermann Schwelling Aktenvernichter
CN2636985Y (zh) * 2003-06-30 2004-09-01 罗贤俐 多刃型的碎纸机刀具
OA13321A (en) * 2003-11-08 2007-04-13 Mmd Design & Consult A drum contruction for a mineral breaker.
US7533839B2 (en) * 2006-11-20 2009-05-19 Michilin Prosperity Co., Ltd Cutting blade and rotary cutting assembly for shredders
US7644881B2 (en) * 2003-11-26 2010-01-12 Michilin Prosperity Co., Ltd. Round undulating blade, blade module, and rotary assembly for shredder
US20050263633A1 (en) * 2004-05-25 2005-12-01 Vantrease Dale L Serrated scissor ring, comminuting apparatus, and method
CN2751888Y (zh) * 2004-11-17 2006-01-18 白淑惠 碎纸机刀片
DE102005026816B4 (de) 2005-06-09 2007-09-27 Vecoplan Maschinenfabrik Gmbh & Co. Kg Zerkleinerungsvorrichtung
CN2838753Y (zh) * 2005-09-20 2006-11-22 牛玉文 碎纸机的刀片
US20070181721A1 (en) * 2005-11-09 2007-08-09 Ko Joseph Y Devices and methods for shredding media into different sizes
CN2877858Y (zh) * 2005-12-02 2007-03-14 上海震旦办公设备有限公司 碎纸机刀具结构
CN2877859Y (zh) * 2006-01-05 2007-03-14 上海震旦办公设备有限公司 碎纸机的圆形刀片及刀片模块
US7641135B1 (en) * 2006-02-28 2010-01-05 Emily Lo Combinative cutting wheel of a rotary cutter of paper shredder
US7328867B1 (en) * 2006-02-28 2008-02-12 Emily Lo Blade for a paper shredder cutting tool
DE202007007982U1 (de) 2006-11-29 2007-10-11 Bauernfeind, André Zerkleinerungsvorrichtung
USD594040S1 (en) * 2007-03-21 2009-06-09 Steven N Cadwallader Turbo pump dispersion blade
DE102009038984B4 (de) 2009-08-20 2013-07-11 HAAS Holzzerkleinerungs- und Fördertechnik GmbH Vorrichtung zum Zerkleinern von Stückgut
JP2011230117A (ja) * 2010-04-06 2011-11-17 Kokuyo Co Ltd シュレッダ用ローラーカッター及びシュレッダ
US8418947B2 (en) * 2011-02-24 2013-04-16 Stephen Kwok Ki Chan Shredding mechanism for paper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112015003405A2 (pt) 2017-07-04
EP2698207A1 (de) 2014-02-19
US10799878B2 (en) 2020-10-13
PL2698207T3 (pl) 2019-05-31
WO2014026916A1 (de) 2014-02-20
US20190151856A1 (en) 2019-05-23
BR112015003405B1 (pt) 2021-05-25
ES2710622T3 (es) 2019-04-26

Similar Documents

Publication Publication Date Title
DE102005026816B4 (de) Zerkleinerungsvorrichtung
EP2698207B1 (de) Mehrbereichs-Zweiwellen-Schneidsystem
EP2679309B1 (de) Zerkleinerungsvorrichtung umfassend einen Zerkleinerungsrotor mit durchgehender Schneide
EP2711081A1 (de) Zerkleinerungsvorrichtung
CH616604A5 (de)
EP2065092B1 (de) Vorrichtung und Verfahren zum Auflösen des Verbundes von im Verbund vorliegendem Aufgabegut
EP1497032B1 (de) Zerkleinerungsvorrichtung
EP2537588B1 (de) Shredder mit Mehrschneiden-Messern
CH659405A5 (de) Zerkleinerungsvorrichtung fuer abfall.
DE102005039200B4 (de) Zerkleinerungsvorrichtung mit mehreren, im Wesentlichen parallel verlaufenden, motorisch angetriebenen, rotierenden oder oszillierenden Wellen
EP0022537B1 (de) Maschine zum Zerkleinern von stückigen Gegenständen
DE112015004361T5 (de) Perforierter Rotationsschneider
DE3910115C2 (de)
DE102009038984B4 (de) Vorrichtung zum Zerkleinern von Stückgut
EP0486872B1 (de) Rotorenschere zum Zerkleinern von Abfall
DE202012007852U1 (de) Mehrbereichs-Zweiwellen-Schneidsystem
DE10113953C1 (de) Vorrichtung zum Zerkleinern von Kunststoffgebilden mit geringer Materialstärke
EP2549892B1 (de) Messerbett für eine vorrichtung zum zerkleinern von organischen substanzen
DE7818838U1 (de) Maschine zum zerkleinern von abfallstoffen
DE10048886C2 (de) Vorrichtung zum Zerkleinern von Aufgabegut mit einem um eine Drehachse rotierenden Zerkleinerungssystem
DE10234763A1 (de) Verfahren und Vorrichtung zum Zerkleinern von Schüttgut
AT406354B (de) Zerkleinerungsvorrichtung
DE2827544A1 (de) Zerkleinerungsanlage
WO2014173384A1 (de) Vorrichtung zur zerkleinerung von stückigen reststoffen der palmölgewinnung
EP3766583B1 (de) Zerkleinerungsvorrichtung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140819

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDNER-RECYCLINGTECH GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDNER-RECYCLINGTECH GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1064190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013800

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2710622

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013800

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1064190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120816

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 12

Ref country code: IE

Payment date: 20230823

Year of fee payment: 12

Ref country code: GB

Payment date: 20230824

Year of fee payment: 12

Ref country code: FI

Payment date: 20230824

Year of fee payment: 12

Ref country code: ES

Payment date: 20230901

Year of fee payment: 12

Ref country code: CH

Payment date: 20230902

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230731

Year of fee payment: 12

Ref country code: FR

Payment date: 20230824

Year of fee payment: 12

Ref country code: DE

Payment date: 20230830

Year of fee payment: 12