EP2697639A1 - Sélection et enrichissement d'un analyte par voie magnétophorétique - Google Patents

Sélection et enrichissement d'un analyte par voie magnétophorétique

Info

Publication number
EP2697639A1
EP2697639A1 EP12724097.6A EP12724097A EP2697639A1 EP 2697639 A1 EP2697639 A1 EP 2697639A1 EP 12724097 A EP12724097 A EP 12724097A EP 2697639 A1 EP2697639 A1 EP 2697639A1
Authority
EP
European Patent Office
Prior art keywords
channel
sub
section
flow
enrichment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12724097.6A
Other languages
German (de)
English (en)
Inventor
Oliver Hayden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2697639A1 publication Critical patent/EP2697639A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
    • G01N27/745Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids for detecting magnetic beads used in biochemical assays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications

Definitions

  • the device according to the invention for magnetophoretic analyte selection and enrichment comprises a flow channel, a first magnetic unit for enrichment and a second magnetic unit for aligning magnetically labeled analytes.
  • the enrichment and orientation of the analytes is provided in a first channel section.
  • the first channel section comprises the magnetic units.
  • the separation takes place.
  • the flow channel splits at least two subchannels in the second channel section.
  • a first of these sub-channels runs. This has a smaller cross-sectional area than the flow channel in the first channel section.
  • the first sub-channel runs in the third channel section in the same Direction as the flow channel in the first channel section. This means that no kinking of the flow direction takes place for the sample to be selected. Only the part of the sample volume which is not to be selected is deflected out of this original direction of the first channel section. This arrangement in turn has advantages regarding the flow behavior.
  • the third channel section may still be provided a channel feed to the first sub-channel.
  • a channel feed to the channel section of the analyte separation has the advantage that a second mark can be fed to the analyte via it.
  • other markers can be supplied to the analyte via the Kanalzu ⁇ guide and are connected via, for example, antibodies.
  • Such a channel feed is of particular advantage if the first subchannel b
  • the enrichment and guiding the magnetically labeled analytes by the nature of the magnetic marker can be influenced and / or by the für Wegschwindig ⁇ ness which is established in the apparatus.
  • the flow rate in turn, can be adjusted by the microfluidic dimensioning.
  • the Anreiche ⁇ tion and management can be optimized in that the magnetically tophoretician guides tung with respect to their magnetic permeability and with regard to the angle to Flussrich-, in which they are arranged, so that a stringent alignment of magnetically labeled analyte he follows.
  • the magnetic gradient field which is generated by the first magnetic means, in particular ⁇ sondere a further screw for optimization of enrichment of a particular Analytsorte, including a particular cell type.
  • a flow of a sample with magnetically-labeled analytes is generated, the magnetically-labeled analytes of this sample are dynamically enriched and aligned in a magnetic gradient field, so that the magnetically labeled analytes are concentrated in a partial volume of the sample, this partial volume is separated dynamically from the üb ⁇ membered volume of the sample.
  • a dynamic enrichment and above all concentration of the analytes in a sample which is in particular a Zellsus ⁇ pension, has the advantage over previous methods that the analyte, so in particular the cells, stress can be concentrated so high without mechanical stress, that they can be quantified and measured.
  • the selected analog LYTEN be in the process, which are in particular cells, other markers supplied ⁇ leads.
  • the additional markers have antibodies which can bind to characteristic isotopes on the cell surface.
  • This step has the advantage that the cells magnetically marked for selection can be provided with further markers, which are necessary, for example, for a further cell measurement.
  • the thus ⁇ additionally labeled cells are fed directly to a further cell measurement.
  • the enrichment and Ausrich ⁇ tion and the subsequent selection by a device according to the invention takes place by a cell sample is injected into this.
  • the described dynamic enrichment has the great Before ⁇ part that the cells can be stress-free, in particular by mechanical ⁇ specific load, a secondary analysis supplied. For example, after the selection, a fluorescence labeling can be carried out and a microscopy or flow cytometry can be carried out with low marker consumption.
  • FIG. 1 shows a cross section through a channel 10, which is traversed from left to right by a suspension 15, for example a blood sample.
  • the flow direction is indicated by an arrow 40, that is, on the left side of the channel 10 there is at least one inlet for the sample 15 and on the right side of the channel 10 is located to ⁇ least one outlet.
  • the suspension 15 contains at least one sort of cells 16 which carry magnetic markers. These magnetically marked cells 16 are first deflected in the left portion of the channel 10 by a permanent magnet 20, which is mounted below the channel bottom, to the channel bottom and thereby enriched at the channel bottom. These Ab ⁇ section of the channel 10 with the permanent magnet 20 is also called enrichment route 11. This enrichment route serves further to align the magnetically labeled cells 16.
  • ferromagnetic strips 21 are suitable, which can only be seen in cross section in FIG. 1, as guide lines. The strips 21 run into the plane of the drawing, so to speak.
  • the separation of the magnetically marked cells 16 follows from the remaining suspension 15.
  • this selection region 12 there are, so to speak, several outflow directions 40, which can be better seen in the plan view in FIG.
  • the cross-section in FIG. 1 illustrates is that the channel 10 at the end of the separation section 12 tapers to form a microfluidic channel 13 through which essentially only the magnetically marked cells 16 flow in a small sample volume 15.
  • a detection device 30 is schematically shown which, for example, uses microscopy or flow cytometry.
  • Zel ⁇ len 16th 2 shows a plan view of the channel 10 with its three sections, the alignment and accumulation section 11, the separating section 12 and the Mikrofluidikumble 13.
  • the ferromagnetic guide lines 21 arranged in a herringbone pattern, which lead the magnetically marked cells 16 to the channel center. This concentration thus happens in the plane.
  • the magnetically marked cells 16 are approximated to the channel bottom by the permanent magnet 20, which is not visible in the drawing and is mounted below the channel 10, which covers the third dimension in the enrichment.
  • enriched and aligned cells 16 then flow in the region of the separation section 12 into the microfluidic channel 101.
  • the cell sample 15 can also flow to the left and to the right thereof, which is indicated by the three flow directions with arrows 40.
  • the sections 101 run left and right of the Microfluidic channel 100 y-shaped away from the central flow ⁇ direction.
  • the entire volume of channel 15 and the Kanalgeo ⁇ geometry is designed so that it can not come to turbulence in the flow 40 especially in the area of the separation 12, which could interfere with the magnetic enrichment and orientation.
  • the drainage regions 101 must include a sufficiently large sample volume 15, so that the taper on the microfluidic channel 100 can be compensated.
  • the marking of the three areas of the enrichment path with A, the microfluidic path with B and the lateral discharge routes with C is chosen such that the front view in FIG. 3 is understandable.
  • FIG. 3 This front view of Figure 3 illustrates non-yardstick according to the different cross sections of the Anreiche ⁇ approximate flow channel A, microfluidics 13, 3 and the Ab ⁇ flow stretch C left and right of the microfluidic B.
  • the schematic representation is to illustrate that the
  • Microfluidic channel 100 is closely chosen such that the magnetically-labeled cells can 16 a large part of the channel volume 15 take a ⁇ , that are highly concentrated and thus, coupled to these microfluidic channel 100 Analytikvorrich ⁇ tung 30 ensures a substantially highly reliable Einzelzellde- tetation.
  • Figure 4 shows a plan view of the through ⁇ flow channel 10.
  • the partial channels 101 extend perpendicularly away from the flow channel 10. These in turn have a much higher pulp ⁇ te than the sub-channel 100.
  • the channel 100 is part insbeson ⁇ particular a microfluidic channel.
  • this embodiment shows yet another change from the y-shaped flow channel 10 in Figure 2, namely the channel feeders 31, which meet on both sides of the sub-channel 100.
  • the channel feeders 31 which meet on both sides of the sub-channel 100.
  • These are designed in particular for supplying additional markers 19.
  • the magnetically marked cells 16 After the magnetically marked cells 16 have been introduced into the sub-channel 100 by the enrichment at the channel bottom and by the magnetophoretic alignment along the magnetic guide lines 21, they are thus provided with further markers 19, which prepare the cells 16 for a further cell measurement 30.
  • the dual-labeled cells 18 are directed into a cell measuring device 30.
  • the additional markers 19 may be fluorescent markers and, correspondingly, the cell measuring device 30 may be a fluorescence detector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Electrochemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

L'invention concerne un dispositif et un procédé de sélection et d'enrichissement d'un analyte par voie magnétophorétique. Des analytes, notamment des cellules (16), marqués par voie magnétique sont isolés d'un échantillon de manière dynamique dans le flux de façon à présenter une concentration élevée dans un volume d'échantillon réduit. La sélection de l'analyte peut notamment être suivie d'une analyse chimique (30).
EP12724097.6A 2011-05-18 2012-05-11 Sélection et enrichissement d'un analyte par voie magnétophorétique Withdrawn EP2697639A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076051A DE102011076051A1 (de) 2011-05-18 2011-05-18 Magnetophoretische Analytselektion und -anreicherung
PCT/EP2012/058814 WO2012156324A1 (fr) 2011-05-18 2012-05-11 Sélection et enrichissement d'un analyte par voie magnétophorétique

Publications (1)

Publication Number Publication Date
EP2697639A1 true EP2697639A1 (fr) 2014-02-19

Family

ID=46177402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724097.6A Withdrawn EP2697639A1 (fr) 2011-05-18 2012-05-11 Sélection et enrichissement d'un analyte par voie magnétophorétique

Country Status (5)

Country Link
US (1) US9400236B2 (fr)
EP (1) EP2697639A1 (fr)
CN (1) CN103688165A (fr)
DE (1) DE102011076051A1 (fr)
WO (1) WO2012156324A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200927A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Verfahren zum Anreichern und Vereinzeln von Zellen mit Konzentrationen über mehrere logarithmische Stufen
DE102014206444A1 (de) * 2014-04-03 2015-10-08 Siemens Aktiengesellschaft Verfahren für die Molekulardiagnostik zum Anreichern einer Nukleinsäure aus einer biologischen Probe
US10976227B2 (en) 2015-02-19 2021-04-13 Indian Institute Of Technology Delhi Magnetic enrichment of magnetically marked analytes
CN104774761B (zh) * 2015-03-04 2016-09-14 江苏大学 微流控芯片内细胞直线运动的磁珠驱动方法与装置
US20210109094A1 (en) * 2019-10-11 2021-04-15 Case Western Reserve University Detection of disease components using magnetic particles and microfluidics

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0925494T3 (da) * 1996-09-04 2002-07-01 Scandinavian Micro Biodevices Mikrostrømningssystem til partikelseparation og analyse
JP2004503775A (ja) * 2000-06-14 2004-02-05 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム 検体混合物の組み合わせた磁気泳動および誘電泳動の操作のための方法および装置
EP1270073B1 (fr) * 2001-06-28 2005-02-16 Agilent Technologies, Inc. (a Delaware corporation) Système microfluidique avec régulateur
US20030175980A1 (en) 2002-03-14 2003-09-18 Hayenga Jon W. Ribbon flow cytometry and cell sorting
US7223371B2 (en) 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
DE10320869A1 (de) * 2003-05-09 2004-12-16 Evotec Technologies Gmbh Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel
CN2699836Y (zh) * 2003-10-22 2005-05-18 中国人民解放军军事医学科学院野战输血研究所 磁靶向定位富集仪
DE102004062534B4 (de) * 2004-12-24 2007-05-10 Forschungszentrum Karlsruhe Gmbh Mikroreaktor
JP2009511001A (ja) * 2005-09-15 2009-03-19 アルテミス ヘルス,インク. 細胞及びその他の粒子を磁気濃縮するためのデバイス並びに方法
US7807454B2 (en) * 2006-10-18 2010-10-05 The Regents Of The University Of California Microfluidic magnetophoretic device and methods for using the same
US20080302732A1 (en) * 2007-05-24 2008-12-11 Hyongsok Soh Integrated fluidics devices with magnetic sorting
DE102009005925B4 (de) * 2009-01-23 2013-04-04 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung und Verfahren zur Handhabung von Biomolekülen
US9625454B2 (en) * 2009-09-04 2017-04-18 The Research Foundation For The State University Of New York Rapid and continuous analyte processing in droplet microfluidic devices
DE102009047801B4 (de) * 2009-09-30 2014-06-12 Siemens Aktiengesellschaft Durchflusskammer mit Zellleiteinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012156324A1 *

Also Published As

Publication number Publication date
CN103688165A (zh) 2014-03-26
US20140087414A1 (en) 2014-03-27
DE102011076051A1 (de) 2012-11-22
WO2012156324A1 (fr) 2012-11-22
US9400236B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
DE102009047801B4 (de) Durchflusskammer mit Zellleiteinrichtung
DE69709377T2 (de) Mikrofliesssystem für die teilchenanalyse und trennung
EP1335198B1 (fr) Composant microfluidique et procédure pour le triage de particules dans un fluide
WO2012156324A1 (fr) Sélection et enrichissement d'un analyte par voie magnétophorétique
DE102009012108B4 (de) Vorrichtung und Verfahren zur Anreicherung und Erfassung von Zellen in strömenden Medien
EP2212673A1 (fr) Dispositif de détection magnétique de particules individuelles dans un canal microfluidique
US10520419B2 (en) Cartridge for a magnetic flow cytometer, a magnetic flow cytometer, and method for analysing a sample with such a cartridge
DE102018116918A1 (de) Fluidik-Detektionssystem
DE102011077905A1 (de) Hintergrundfreie magnetische Durchflusszytometrie
DE102011080012B4 (de) Strömungsmechanische Zellführung für Durchflusszytometrie
EP2932233A1 (fr) Procédé d'enrichissement et d'individualisation de cellules avec des concentrations couvrant plusieurs grandeurs logarithmiques
DE102012210457B4 (de) Verfahren und Anordnung zur partiellen Markierung und anschließenden Quantifizierung von Zellen einer Zellsuspension
EP2641087B1 (fr) Cytométrie de flux magnétique pour haut débit de passage d'échantillons
DE102017008946A1 (de) Verfahren zum Verformen von deformierbaren Körpern und Vorrichtungen dazu
EP2668500B1 (fr) Cytométrie de flux magnétique miniaturisée
EP2839262A1 (fr) Dispositif de quantification de cellules d'une suspension cellulaire
DE102009030688A1 (de) Mikroskopische Detektion von Objekten in einem Fluidstrom
DE102009055800B4 (de) System und ein Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen
DE102011080947B3 (de) Einzelanalyterfassung mittels magnetischer Durchflussmessung
WO2015044027A1 (fr) Procédé multiplex pour une cytométrie de flux magnétique
DE3420018A1 (de) Vorrichtung zur messung bestimmter eigenschaften in einem traegermedium suspendierter partikel
DE102014205949A1 (de) Durchflusskammer für einen Durchflusszytometer sowie Durchflusszytometer
DE102004017482A1 (de) Mikrofluidisches System mit einer Elektrodenanordnung und zugehöriges Ansteuerungsverfahren
WO2012052392A1 (fr) Cytométrie en flux magnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171201