EP2697639A1 - Sélection et enrichissement d'un analyte par voie magnétophorétique - Google Patents
Sélection et enrichissement d'un analyte par voie magnétophorétiqueInfo
- Publication number
- EP2697639A1 EP2697639A1 EP12724097.6A EP12724097A EP2697639A1 EP 2697639 A1 EP2697639 A1 EP 2697639A1 EP 12724097 A EP12724097 A EP 12724097A EP 2697639 A1 EP2697639 A1 EP 2697639A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- sub
- section
- flow
- enrichment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012491 analyte Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000005291 magnetic effect Effects 0.000 claims description 34
- 238000005259 measurement Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 abstract description 4
- 230000004907 flux Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 55
- 230000008901 benefit Effects 0.000 description 10
- 238000000926 separation method Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 238000000838 magnetophoresis Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 2
- 240000002834 Paulownia tomentosa Species 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/28—Magnetic plugs and dipsticks
- B03C1/286—Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/28—Magnetic plugs and dipsticks
- B03C1/288—Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/74—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
- G01N27/745—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids for detecting magnetic beads used in biochemical assays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
- B01L2200/0652—Sorting or classification of particles or molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
- B01L2400/086—Passive control of flow resistance using baffles or other fixed flow obstructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/18—Magnetic separation whereby the particles are suspended in a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/26—Details of magnetic or electrostatic separation for use in medical or biological applications
Definitions
- the device according to the invention for magnetophoretic analyte selection and enrichment comprises a flow channel, a first magnetic unit for enrichment and a second magnetic unit for aligning magnetically labeled analytes.
- the enrichment and orientation of the analytes is provided in a first channel section.
- the first channel section comprises the magnetic units.
- the separation takes place.
- the flow channel splits at least two subchannels in the second channel section.
- a first of these sub-channels runs. This has a smaller cross-sectional area than the flow channel in the first channel section.
- the first sub-channel runs in the third channel section in the same Direction as the flow channel in the first channel section. This means that no kinking of the flow direction takes place for the sample to be selected. Only the part of the sample volume which is not to be selected is deflected out of this original direction of the first channel section. This arrangement in turn has advantages regarding the flow behavior.
- the third channel section may still be provided a channel feed to the first sub-channel.
- a channel feed to the channel section of the analyte separation has the advantage that a second mark can be fed to the analyte via it.
- other markers can be supplied to the analyte via the Kanalzu ⁇ guide and are connected via, for example, antibodies.
- Such a channel feed is of particular advantage if the first subchannel b
- the enrichment and guiding the magnetically labeled analytes by the nature of the magnetic marker can be influenced and / or by the für Wegschwindig ⁇ ness which is established in the apparatus.
- the flow rate in turn, can be adjusted by the microfluidic dimensioning.
- the Anreiche ⁇ tion and management can be optimized in that the magnetically tophoretician guides tung with respect to their magnetic permeability and with regard to the angle to Flussrich-, in which they are arranged, so that a stringent alignment of magnetically labeled analyte he follows.
- the magnetic gradient field which is generated by the first magnetic means, in particular ⁇ sondere a further screw for optimization of enrichment of a particular Analytsorte, including a particular cell type.
- a flow of a sample with magnetically-labeled analytes is generated, the magnetically-labeled analytes of this sample are dynamically enriched and aligned in a magnetic gradient field, so that the magnetically labeled analytes are concentrated in a partial volume of the sample, this partial volume is separated dynamically from the üb ⁇ membered volume of the sample.
- a dynamic enrichment and above all concentration of the analytes in a sample which is in particular a Zellsus ⁇ pension, has the advantage over previous methods that the analyte, so in particular the cells, stress can be concentrated so high without mechanical stress, that they can be quantified and measured.
- the selected analog LYTEN be in the process, which are in particular cells, other markers supplied ⁇ leads.
- the additional markers have antibodies which can bind to characteristic isotopes on the cell surface.
- This step has the advantage that the cells magnetically marked for selection can be provided with further markers, which are necessary, for example, for a further cell measurement.
- the thus ⁇ additionally labeled cells are fed directly to a further cell measurement.
- the enrichment and Ausrich ⁇ tion and the subsequent selection by a device according to the invention takes place by a cell sample is injected into this.
- the described dynamic enrichment has the great Before ⁇ part that the cells can be stress-free, in particular by mechanical ⁇ specific load, a secondary analysis supplied. For example, after the selection, a fluorescence labeling can be carried out and a microscopy or flow cytometry can be carried out with low marker consumption.
- FIG. 1 shows a cross section through a channel 10, which is traversed from left to right by a suspension 15, for example a blood sample.
- the flow direction is indicated by an arrow 40, that is, on the left side of the channel 10 there is at least one inlet for the sample 15 and on the right side of the channel 10 is located to ⁇ least one outlet.
- the suspension 15 contains at least one sort of cells 16 which carry magnetic markers. These magnetically marked cells 16 are first deflected in the left portion of the channel 10 by a permanent magnet 20, which is mounted below the channel bottom, to the channel bottom and thereby enriched at the channel bottom. These Ab ⁇ section of the channel 10 with the permanent magnet 20 is also called enrichment route 11. This enrichment route serves further to align the magnetically labeled cells 16.
- ferromagnetic strips 21 are suitable, which can only be seen in cross section in FIG. 1, as guide lines. The strips 21 run into the plane of the drawing, so to speak.
- the separation of the magnetically marked cells 16 follows from the remaining suspension 15.
- this selection region 12 there are, so to speak, several outflow directions 40, which can be better seen in the plan view in FIG.
- the cross-section in FIG. 1 illustrates is that the channel 10 at the end of the separation section 12 tapers to form a microfluidic channel 13 through which essentially only the magnetically marked cells 16 flow in a small sample volume 15.
- a detection device 30 is schematically shown which, for example, uses microscopy or flow cytometry.
- Zel ⁇ len 16th 2 shows a plan view of the channel 10 with its three sections, the alignment and accumulation section 11, the separating section 12 and the Mikrofluidikumble 13.
- the ferromagnetic guide lines 21 arranged in a herringbone pattern, which lead the magnetically marked cells 16 to the channel center. This concentration thus happens in the plane.
- the magnetically marked cells 16 are approximated to the channel bottom by the permanent magnet 20, which is not visible in the drawing and is mounted below the channel 10, which covers the third dimension in the enrichment.
- enriched and aligned cells 16 then flow in the region of the separation section 12 into the microfluidic channel 101.
- the cell sample 15 can also flow to the left and to the right thereof, which is indicated by the three flow directions with arrows 40.
- the sections 101 run left and right of the Microfluidic channel 100 y-shaped away from the central flow ⁇ direction.
- the entire volume of channel 15 and the Kanalgeo ⁇ geometry is designed so that it can not come to turbulence in the flow 40 especially in the area of the separation 12, which could interfere with the magnetic enrichment and orientation.
- the drainage regions 101 must include a sufficiently large sample volume 15, so that the taper on the microfluidic channel 100 can be compensated.
- the marking of the three areas of the enrichment path with A, the microfluidic path with B and the lateral discharge routes with C is chosen such that the front view in FIG. 3 is understandable.
- FIG. 3 This front view of Figure 3 illustrates non-yardstick according to the different cross sections of the Anreiche ⁇ approximate flow channel A, microfluidics 13, 3 and the Ab ⁇ flow stretch C left and right of the microfluidic B.
- the schematic representation is to illustrate that the
- Microfluidic channel 100 is closely chosen such that the magnetically-labeled cells can 16 a large part of the channel volume 15 take a ⁇ , that are highly concentrated and thus, coupled to these microfluidic channel 100 Analytikvorrich ⁇ tung 30 ensures a substantially highly reliable Einzelzellde- tetation.
- Figure 4 shows a plan view of the through ⁇ flow channel 10.
- the partial channels 101 extend perpendicularly away from the flow channel 10. These in turn have a much higher pulp ⁇ te than the sub-channel 100.
- the channel 100 is part insbeson ⁇ particular a microfluidic channel.
- this embodiment shows yet another change from the y-shaped flow channel 10 in Figure 2, namely the channel feeders 31, which meet on both sides of the sub-channel 100.
- the channel feeders 31 which meet on both sides of the sub-channel 100.
- These are designed in particular for supplying additional markers 19.
- the magnetically marked cells 16 After the magnetically marked cells 16 have been introduced into the sub-channel 100 by the enrichment at the channel bottom and by the magnetophoretic alignment along the magnetic guide lines 21, they are thus provided with further markers 19, which prepare the cells 16 for a further cell measurement 30.
- the dual-labeled cells 18 are directed into a cell measuring device 30.
- the additional markers 19 may be fluorescent markers and, correspondingly, the cell measuring device 30 may be a fluorescence detector.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Electrochemistry (AREA)
- Optical Measuring Cells (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
L'invention concerne un dispositif et un procédé de sélection et d'enrichissement d'un analyte par voie magnétophorétique. Des analytes, notamment des cellules (16), marqués par voie magnétique sont isolés d'un échantillon de manière dynamique dans le flux de façon à présenter une concentration élevée dans un volume d'échantillon réduit. La sélection de l'analyte peut notamment être suivie d'une analyse chimique (30).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011076051A DE102011076051A1 (de) | 2011-05-18 | 2011-05-18 | Magnetophoretische Analytselektion und -anreicherung |
PCT/EP2012/058814 WO2012156324A1 (fr) | 2011-05-18 | 2012-05-11 | Sélection et enrichissement d'un analyte par voie magnétophorétique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2697639A1 true EP2697639A1 (fr) | 2014-02-19 |
Family
ID=46177402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12724097.6A Withdrawn EP2697639A1 (fr) | 2011-05-18 | 2012-05-11 | Sélection et enrichissement d'un analyte par voie magnétophorétique |
Country Status (5)
Country | Link |
---|---|
US (1) | US9400236B2 (fr) |
EP (1) | EP2697639A1 (fr) |
CN (1) | CN103688165A (fr) |
DE (1) | DE102011076051A1 (fr) |
WO (1) | WO2012156324A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013200927A1 (de) * | 2013-01-22 | 2014-07-24 | Siemens Aktiengesellschaft | Verfahren zum Anreichern und Vereinzeln von Zellen mit Konzentrationen über mehrere logarithmische Stufen |
DE102014206444A1 (de) * | 2014-04-03 | 2015-10-08 | Siemens Aktiengesellschaft | Verfahren für die Molekulardiagnostik zum Anreichern einer Nukleinsäure aus einer biologischen Probe |
US10976227B2 (en) | 2015-02-19 | 2021-04-13 | Indian Institute Of Technology Delhi | Magnetic enrichment of magnetically marked analytes |
CN104774761B (zh) * | 2015-03-04 | 2016-09-14 | 江苏大学 | 微流控芯片内细胞直线运动的磁珠驱动方法与装置 |
US20210109094A1 (en) * | 2019-10-11 | 2021-04-15 | Case Western Reserve University | Detection of disease components using magnetic particles and microfluidics |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0925494T3 (da) * | 1996-09-04 | 2002-07-01 | Scandinavian Micro Biodevices | Mikrostrømningssystem til partikelseparation og analyse |
JP2004503775A (ja) * | 2000-06-14 | 2004-02-05 | ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム | 検体混合物の組み合わせた磁気泳動および誘電泳動の操作のための方法および装置 |
EP1270073B1 (fr) * | 2001-06-28 | 2005-02-16 | Agilent Technologies, Inc. (a Delaware corporation) | Système microfluidique avec régulateur |
US20030175980A1 (en) | 2002-03-14 | 2003-09-18 | Hayenga Jon W. | Ribbon flow cytometry and cell sorting |
US7223371B2 (en) | 2002-03-14 | 2007-05-29 | Micronics, Inc. | Microfluidic channel network device |
DE10320869A1 (de) * | 2003-05-09 | 2004-12-16 | Evotec Technologies Gmbh | Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel |
CN2699836Y (zh) * | 2003-10-22 | 2005-05-18 | 中国人民解放军军事医学科学院野战输血研究所 | 磁靶向定位富集仪 |
DE102004062534B4 (de) * | 2004-12-24 | 2007-05-10 | Forschungszentrum Karlsruhe Gmbh | Mikroreaktor |
JP2009511001A (ja) * | 2005-09-15 | 2009-03-19 | アルテミス ヘルス,インク. | 細胞及びその他の粒子を磁気濃縮するためのデバイス並びに方法 |
US7807454B2 (en) * | 2006-10-18 | 2010-10-05 | The Regents Of The University Of California | Microfluidic magnetophoretic device and methods for using the same |
US20080302732A1 (en) * | 2007-05-24 | 2008-12-11 | Hyongsok Soh | Integrated fluidics devices with magnetic sorting |
DE102009005925B4 (de) * | 2009-01-23 | 2013-04-04 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Vorrichtung und Verfahren zur Handhabung von Biomolekülen |
US9625454B2 (en) * | 2009-09-04 | 2017-04-18 | The Research Foundation For The State University Of New York | Rapid and continuous analyte processing in droplet microfluidic devices |
DE102009047801B4 (de) * | 2009-09-30 | 2014-06-12 | Siemens Aktiengesellschaft | Durchflusskammer mit Zellleiteinrichtung |
-
2011
- 2011-05-18 DE DE102011076051A patent/DE102011076051A1/de not_active Withdrawn
-
2012
- 2012-05-11 EP EP12724097.6A patent/EP2697639A1/fr not_active Withdrawn
- 2012-05-11 WO PCT/EP2012/058814 patent/WO2012156324A1/fr active Application Filing
- 2012-05-11 CN CN201280035286.6A patent/CN103688165A/zh active Pending
- 2012-05-11 US US14/118,175 patent/US9400236B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2012156324A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN103688165A (zh) | 2014-03-26 |
US20140087414A1 (en) | 2014-03-27 |
DE102011076051A1 (de) | 2012-11-22 |
WO2012156324A1 (fr) | 2012-11-22 |
US9400236B2 (en) | 2016-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009047801B4 (de) | Durchflusskammer mit Zellleiteinrichtung | |
DE69709377T2 (de) | Mikrofliesssystem für die teilchenanalyse und trennung | |
EP1335198B1 (fr) | Composant microfluidique et procédure pour le triage de particules dans un fluide | |
WO2012156324A1 (fr) | Sélection et enrichissement d'un analyte par voie magnétophorétique | |
DE102009012108B4 (de) | Vorrichtung und Verfahren zur Anreicherung und Erfassung von Zellen in strömenden Medien | |
EP2212673A1 (fr) | Dispositif de détection magnétique de particules individuelles dans un canal microfluidique | |
US10520419B2 (en) | Cartridge for a magnetic flow cytometer, a magnetic flow cytometer, and method for analysing a sample with such a cartridge | |
DE102018116918A1 (de) | Fluidik-Detektionssystem | |
DE102011077905A1 (de) | Hintergrundfreie magnetische Durchflusszytometrie | |
DE102011080012B4 (de) | Strömungsmechanische Zellführung für Durchflusszytometrie | |
EP2932233A1 (fr) | Procédé d'enrichissement et d'individualisation de cellules avec des concentrations couvrant plusieurs grandeurs logarithmiques | |
DE102012210457B4 (de) | Verfahren und Anordnung zur partiellen Markierung und anschließenden Quantifizierung von Zellen einer Zellsuspension | |
EP2641087B1 (fr) | Cytométrie de flux magnétique pour haut débit de passage d'échantillons | |
DE102017008946A1 (de) | Verfahren zum Verformen von deformierbaren Körpern und Vorrichtungen dazu | |
EP2668500B1 (fr) | Cytométrie de flux magnétique miniaturisée | |
EP2839262A1 (fr) | Dispositif de quantification de cellules d'une suspension cellulaire | |
DE102009030688A1 (de) | Mikroskopische Detektion von Objekten in einem Fluidstrom | |
DE102009055800B4 (de) | System und ein Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen | |
DE102011080947B3 (de) | Einzelanalyterfassung mittels magnetischer Durchflussmessung | |
WO2015044027A1 (fr) | Procédé multiplex pour une cytométrie de flux magnétique | |
DE3420018A1 (de) | Vorrichtung zur messung bestimmter eigenschaften in einem traegermedium suspendierter partikel | |
DE102014205949A1 (de) | Durchflusskammer für einen Durchflusszytometer sowie Durchflusszytometer | |
DE102004017482A1 (de) | Mikrofluidisches System mit einer Elektrodenanordnung und zugehöriges Ansteuerungsverfahren | |
WO2012052392A1 (fr) | Cytométrie en flux magnétique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171201 |