EP2694898B1 - Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation - Google Patents

Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation Download PDF

Info

Publication number
EP2694898B1
EP2694898B1 EP12720248.9A EP12720248A EP2694898B1 EP 2694898 B1 EP2694898 B1 EP 2694898B1 EP 12720248 A EP12720248 A EP 12720248A EP 2694898 B1 EP2694898 B1 EP 2694898B1
Authority
EP
European Patent Office
Prior art keywords
column
oxygen
pressure
air
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12720248.9A
Other languages
English (en)
French (fr)
Other versions
EP2694898A2 (de
Inventor
Benoit Davidian
Richard Dubettier-Grenier
Loïc JOLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2694898A2 publication Critical patent/EP2694898A2/de
Application granted granted Critical
Publication of EP2694898B1 publication Critical patent/EP2694898B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the present invention relates to a method and an apparatus for separating air by cryogenic distillation.
  • the invention provides in particular a method for producing pure oxygen using a double vaporizer air separation unit.
  • the method according to the invention allows the production of pure liquid oxygen (containing at least 99% mol., Or even at least 99.6% mol. Of oxygen) on an apparatus producing impure gaseous oxygen (less than 97 % mol., or even 96% mol.) at low pressure, for example in the context of a device for oxy-fuel combustion.
  • the air separation unit (ASU) diagrams producing oxygen intended for an oxycombustion coal-fired power plant generally include two vaporizers (or even three) located between the medium pressure column (MP column) and the low pressure column (BP column).
  • MP column medium pressure column
  • BP column low pressure column
  • the installation of these two vaporizers makes it possible to reduce the pressure of the MP column up to a value of the order of 3 bar absolute, which makes it possible to minimize the energy consumption of the ASU.
  • the purity of the oxygen produced by this type of plant is typically between 95 and 97 mol%. O 2 .
  • the vaporization of oxygen is ensured in a dedicated vaporizer. Liquid oxygen vaporization frigories are used to condense gaseous air. A process of this kind is known from US-A-4936099 and of EP-A-0547946 .
  • the production of pure oxygen (> 99.6%) has a greater impact on the process; in fact, the purity of the liquid produced is much higher than that of the gaseous oxygen delivered to the oxycombustion plant. It is therefore necessary to install an additional small column, recovering a fraction of the liquid flow collected in the LP column (in tank or at an intermediate plate), distilling it, which makes it possible to recover at the bottom of this additional small column the pure oxygen intended for the trade by trucks.
  • the gas return from the pure LOX column is then carried out at the same level as the liquid tapping into the LP column.
  • the pressure of the MP column is so low that it is not possible to use one of the gas flow rates entering or leaving the MP column or the LP column to condense in the tank vaporizer of the column. Additional pure LOX (their condensation temperature is too low).
  • the invention described here proposes to use as condensing fluid, a fraction of the gaseous air leaving the exchange line and which will subsequently enter the dedicated exchanger ensuring the vaporization of the production of pure oxygen. (which is designated by the term HP air).
  • HP air which is designated by the term HP air.
  • This air flow is compressed upstream of the main exchange line by the unit's booster (BAC).
  • the pressure of this flow rate is of the order of 4.5 bar abs, greater than that of the column MP, and such that its bubble temperature is greater than the equilibrium temperature of pure liquid oxygen.
  • the temperature difference between the air flow considered and pure oxygen is of the order of 2 to 3 ° C, a fairly high value, which makes it possible to install a small vaporizer.
  • the production of pure liquid oxygen is free in terms of separation energy and does not affect the separation energy from the production of impure oxygen gas. You just have to pay for the liquefaction energy.
  • the refrigeration top-up can be carried out by a liquefaction system independent of the ASU.
  • the invention provides a method for producing pure oxygen (Purity> 99.6%) on an air separation unit with double vaporizer, typically used for oxy-fuel combustion, in which the majority of the oxygen is produced. at a purity of the order of 95 to 97%.
  • Air separation units (ASU) with a single vaporizer are frequently found, where a small column producing ultra-pure oxygen is added to the bottom of the LP column.
  • the pressure of the MP column is of the order of 5 to 6 bars and the reboiling of the ultra pure LOX column is ensured by a fraction of the flow of gaseous air supplying the MP column.
  • EP-A-0793069 describes a process according to the preamble of claim 1. According to this process, air at a first pressure is used to vaporize oxygen in a vaporizer and air at a second pressure, higher than the first, is used for reboiling a column of pure oxygen.
  • US-A-5916262 describes a process for the production of oxygen with two purities, using an oxygen purification column heated in the tank by air. Liquid oxygen pressurized by a pump is also vaporized in the main exchange line by heat exchange with compressed air.
  • the present invention proposes to produce pure oxygen on a double vaporizer scheme by installing an additional pure oxygen column, the pressure of which is equal to the pressure of the LP column.
  • medium pressure and low pressure simply mean that the medium pressure column operates at a higher pressure than the low pressure column. These terms are common in the art and clear to those skilled in the art.
  • the vaporizer is not part of a distillation or exhaustion column.
  • the apparatus may include means for sending cryogenic liquid to the low pressure column from an outside source.
  • the apparatus may include a line for sending the compressed air flow from the bottom reboiler of the pure oxygen column to the vaporizer and a line for sending air from the vaporizer to the medium pressure column and / or to the low column pressure.
  • the apparatus comprises a pipe for sending the flow of compressed air from the tank reboiler of the pure oxygen column directly to the medium pressure column and / or to the low pressure column.
  • the main innovative characteristic of the invention presented here is that the reboiling of the column of pure oxygen is carried out by a fraction of the flow of gaseous air leaving the main exchange line, compressed by a booster at the pressure required for the vaporization of oxygen in the vaporizer (HP air). This fraction of HP air partially or totally condenses in the condenser of the pure oxygen column.
  • the flow of partially condensed compressed air is then sent to the product vaporizer where it finishes condensing completely.
  • the partial condensation of the pressurized air allows, with a quasi-nominal production flow of GOX and the same pressure, to operate the vaporizer in a pure column tank, then that of the vaporizer produced. Reboiling the pure liquid oxygen column is therefore free compared to the energy required to vaporize the production.
  • the pressure of this air flow is greater than the pressure of the MP column (typically of the order of 4.5 bar abs. Versus 3.2 bar abs.).
  • the impure gas reflux from the pure oxygen column is mixed with the gas flow from the produced vaporizer, the two flows constituting the nominal production flow rate of the impure GOX.
  • the pure liquid is taken from the bottom of the column of pure oxygen. It also serves as a deconcentration purge of the entire device.
  • Addition of frigories can be provided by an independent liquefier, for example by production of liquid nitrogen, from pure nitrogen (from a minaret), which would then be added in liquid form in the device. If there is no production of pure liquid nitrogen, it is possible to envisage liquefying residual nitrogen in an independent liquefier.
  • the air is separated in an ASU comprising a double air separation column, comprising a medium pressure column 23 and a low pressure column 25.
  • Refrigerants for the separation are supplied by expansion of medium pressure nitrogen in a turbine 47
  • the device includes a column of pure liquid oxygen 49, a pump 57, a vaporizer 51 and an exchange line 63.
  • the air 1 is pressurized by a compressor 3 at a pressure between 2.5 and 4.5 bar abs.
  • the air is then purified in a purification unit 5 by adsorption.
  • the purified air 7 is divided into two parts. Part 9 is overpressed in a booster 13 to a pressure of between 4. and 20 bar abs and then cooled in the exchange line 63 until the cold end.
  • the air 9 is divided into two fractions 15, 17.
  • a fraction 15 is sent to the vaporizer 51 where it is used to partially vaporize liquid oxygen comprising at most 97% mol. oxygen, to produce gaseous oxygen 59 which heats up in the exchange line 63.
  • This gas 59 is sent to an oxy-fuel unit.
  • An oxygen-rich liquid 53 is withdrawn from the vaporizer 51 as a purge.
  • the air is condensed.
  • the other fraction of the air 17 is sent to the tank reboiler 61 of the pure oxygen column 49.
  • This column comprises the tank reboiler and means for exchanging heat and material above this reboiler.
  • Liquid oxygen 65 comprising at most 97 mol%. oxygen is sent to the top of the column 49 and is enriched to form the liquid product 71 withdrawn from the tank and containing at least 98% mol. oxygen.
  • the gaseous oxygen 67 at the head of the column 49 is sent to the bottom of the low pressure column 25.
  • the condensed air 17 mixes with the condensed air coming from the vaporizer 51 and, after expansion in a valve 21, is sent to the MP 23 column, which operates at between 2.5 and 4.5 bar abs.
  • Another part 11 of the air is cooled in the exchange line 63, is sent to the tank reboiler 35 of the LP column 25, at least partially condenses there and is sent to the tank of the MP column 23, in below the liquid air inlet point 19.
  • Liquid enriched in oxygen 27 is withdrawn from the tank of the MP column 23, cooled in the sub-cooler 33, expanded and sent to the column BP 25.
  • Liquid 29 is withdrawn from the column MP 23, cooled in the sub- cooler 33, expanded and sent to the LP column 25.
  • Liquid rich in nitrogen 31 is withdrawn from the head of the MP column 23, cooled in the sub-cooler 33, expanded and sent to the head of the BP column 25.
  • Low pressure nitrogen 39 is drawn off at the head of the LP column, heated in the sub-cooler 33 and heated in the exchange line 63.
  • Medium pressure nitrogen 41 is divided into two to form a part 43 and a part 45.
  • Part 43 is used to heat the intermediate reboiler 37 of the low pressure column 25.
  • Part 45 heats up in the exchange line 63 , is expanded in the turbine 47 and is returned to the exchange line 63.
  • Liquid oxygen is withdrawn from the tank of the LP column and divided into two.
  • Part 55 is pressurized in the pump 57 upstream of the vaporizer 51 and the rest 65 is sent to the head of the column of pure oxygen 49 without having been pressurized.
  • the head of the pure oxygen column 49 is therefore at the same pressure as the tank of the low pressure column 25. All or part of the purge liquid 53 can also supply the head of the column 49.
  • a flow of cryogenic liquid 69 for example liquid nitrogen, is sent to the head of the LP column to keep the process cool.
  • the process of Figure 1 bis differs from that of the Figure 1 in that the column 49 is supplied at the head exclusively by the purge 53 of the vaporizer 51, following an expansion step in a valve.
  • the tank reboiler 61 of the column 49 is always heated by the supercharged air 17, the air thus condensed being mixed with the supercharged air 15 which served to heat the vaporizer 51. It is also possible to supply the column with purge liquid 53 and liquid oxygen 65 coming from the tank of the low pressure column 25.
  • the process of Figure 2 differs from that of the Figure 1 in that the air flow 9 is sent first to the tank vaporizer 61 of the pure oxygen column 49 and then to the vaporizer 51 where it condenses.
  • the air thus formed is expanded in the valve 21 and sent to the medium pressure column 23.
  • the air fraction 11 cools in the exchange line 11 and is sent to the tank of the medium pressure column 23 without having been expanded or compressed downstream of the compressor 3.
  • the intermediate reboiler 37 is always heated by medium pressure nitrogen 43 but another part of the medium pressure nitrogen 73 is compressed in a cold booster 71 from a cryogenic temperature and sent to the tank reboiler 35.
  • the condensed nitrogen is expanded in a valve 36 and sent to the head of the MP 23 column.
  • the tank oxygen 55 of the low pressure column is entirely pressurized in the pump 57 sent to the vaporizer 51 where it partially vaporizes.
  • the vaporized gas constitutes the oxygen product gaseous 59 containing less than 97 mol%. oxygen.
  • the non-vaporized liquid 53 feeds the head of the column 49.
  • the gaseous oxygen 67 at the head of the column 49 is mixed with the gaseous oxygen 59.
  • the liquid oxygen 71 constitutes the liquid product. In this case, the pure oxygen column 49 does not operate at the same pressure as the BP column 25.
  • the process of Figure 1 or 1 bis can use nitrogen to heat the tank reboiler 35 and the process of Figure 2 can use air to heat the tank reboiler 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (11)

  1. Verfahren zur Luftabscheidung durch kryogene Destillation in einer Zerlegungseinheit, umfassend eine Mitteldruckkolonne (23) und eine Niederdruckkolonne (25), die thermisch miteinander verbunden sind, wobei die Niederdruckkolonne einen Sumpfverdampfer (35) und einen Zwischenverdampfer (37) und eine Reinsauerstoffkolonne (49) umfasst, wobei
    i. man gasförmige Luft, die gereinigt und dann abgekühlt wird, mit einem ersten Druck in einer Austauschleitung in die Mitteldruckkolonne schickt,
    ii. man eine mit Sauerstoff angereicherte Flüssigkeit und eine mit Stickstoff angereicherte Flüssigkeit von der Mitteldruckkolonne in die Niederdruckkolonne schickt,
    iii. man ein stickstoffreiches Gas von der Niederdruckkolonne entnimmt,
    iv. man eine sauerstoffreiche Flüssigkeit, die höchstens 97 Mol-% Sauerstoff enthält, im Sumpf der Niederdruckkolonne entnimmt,
    v. man einen ersten Durchsatz sauerstoffreicher Flüssigkeit in einen Verdampfer (51) schickt und man so gebildeten, gasförmigen Sauerstoff in die Austauschleitung schickt,
    vi. man einen zweiten Durchsatz sauerstoffreicher Flüssigkeit in den Kopf der Reinsauerstoffkolonne schickt, die einen Sumpfverdampfer (61) aufweist, wo sie gereinigt wird, um eine Sumpfflüssigkeit zu bilden, die wenigstens 98 Mol-% Sauerstoff enthält,
    vii. man einen Durchsatz von Luft, die auf einen zweiten Druck verdichtet wird, der höher ist als der erste Druck, in den Sumpfverdampfer der Reinsauerstoffkolonne schickt,
    viii. man ein stickstoffreiches Gas im Kopf der Mitteldruckkolonne entnimmt, man es in den Zwischenverdampfer der Niederdruckkolonne schickt und man das kondensierte Gas in den Kopf der Mitteldruckkolonne schickt, und
    ix. man ein stickstoffreiches Gas oder Luft in den Sumpfverdampfer der Niederdruckkolonne schickt und man die Flüssigkeit, die dort kondensiert, in die Mitteldruckkolonne schickt,
    dadurch gekennzeichnet, dass man Flüssigkeit vom Sumpf der Reinsauerstoffkolonne als Produkt entnimmt, man Luft, die auf den zweiten Druck verdichtet wird, in den Verdampfer schickt, um den ersten Durchsatz sauerstoffreicher Flüssigkeit zu verdampfen, und der erste Durchsatz sauerstoffreicher Flüssigkeit weniger reich an Sauerstoff ist als der zweite Durchsatz sauerstoffreicher Flüssigkeit.
  2. Verfahren nach Anspruch 1, wobei man den ersten Durchsatz sauerstoffreicher Flüssigkeit stromaufwärts von dem Verdampfer (51) druckbeaufschlagt.
  3. Verfahren nach Anspruch 1 oder 2, wobei der erste Durchsatz sauerstoffreicher Flüssigkeit teilweise im Verdampfer (51) verdampft, wobei die gebildete Flüssigkeit den zweiten Durchsatz sauerstoffreicher Flüssigkeit darstellt.
  4. Verfahren nach Anspruch 3, wobei der Durchsatz von Luft, die auf den zweiten Druck verdichtet wird, zuerst den Sumpfverdampfer (61) der Reinsauerstoffkolonne (49) und danach den Verdampfer (51) erhitzt.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei eine kryogene Flüssigkeit (69) von einer Hilfsquelle in die Doppelkolonne geschickt wird.
  6. Einrichtung zur Luftabscheidung durch kryogene Destillation, umfassend eine Mitteldruckkolonne (23) und eine Niederdruckkolonne (25), die thermisch miteinander verbunden sind, wobei die Niederdruckkolonne einen Sumpfverdampfer (35) und einen Zwischenverdampfer (37) und eine Reinsauerstoffkolonne (49) umfasst, eine Austauschleitung (63), einen Verdampfer (51), Mittel, um gasförmige Luft, die gereinigt und dann abgekühlt wird, mit einem ersten Druck von der Austauschleitung in die Mitteldruckkolonne zu schicken, Mittel, um eine mit Sauerstoff angereicherte Flüssigkeit und eine mit Stickstoff angereicherte Flüssigkeit von der Mitteldruckkolonne in die Niederdruckkolonne zu schicken, Mittel, um ein stickstoffreiches Gas von der Niederdruckkolonne zu entnehmen, Mittel, um eine sauerstoffreiche Flüssigkeit, die höchstens 97 Mol-% Sauerstoff enthält, im Sumpf der Niederdruckkolonne zu entnehmen, Mittel, um einen ersten Durchsatz sauerstoffreicher Flüssigkeit in den Verdampfer zu schicken, eine Leitung, um den so gebildeten, gasförmigen Sauerstoff in die Austauschleitung zu schicken, Mittel, um einen zweiten Durchsatz sauerstoffreicher Flüssigkeit in den Kopf der Reinsauerstoffkolonne zu schicken, die einen Sumpfverdampfer (61) aufweist, wo sie gereinigt wird, um eine Sumpfflüssigkeit zu bilden, die wenigstens 98 Mol-% Sauerstoff enthält, einen Verdichter (13), eine Leitung, um einen Durchsatz von Luft (17), die in dem Verdichter auf einen zweiten Druck verdichtet wird, der höher ist als der erste Druck, in den Sumpfverdampfer der Reinsauerstoffkolonne zu schicken, Leitungen, um ein stickstoffreiches Gas im Kopf der Mitteldruckkolonne zu entnehmen, um es in den Zwischenverdampfer der Niederdruckkolonne zu schicken und um das kondensierte Gas in den Kopf der Mitteldruckkolonne zu schicken, und Leitungen, um ein stickstoffreiches Gas oder Luft in den Sumpfverdampfer der Niederdruckkolonne zu schicken und um die Flüssigkeit, die dort kondensiert, in die Mitteldruckkolonne zu schicken, dadurch gekennzeichnet, dass sie eine Leitung, um Flüssigkeit vom Sumpf (71) der Reinsauerstoffkolonne als Produkt zu entnehmen, Mittel, um Luft (15), die auf den zweiten Druck verdichtet wird, von dem Verdichter in den Verdampfer zu schicken, und eine Leitung umfasst, um eine Flüssigkeit (53) von dem Verdampfer (51) in den Kopf der Reinsauerstoffkolonne (49) zu schicken.
  7. Einrichtung nach Anspruch 6, umfassend: eine Leitung, um eine Sumpfflüssigkeit (65) von der Niederdruckkolonne (25) in den Kopf der Reinsauerstoffkolonne (49) zu schicken.
  8. Einrichtung nach Anspruch 7, wobei die Mittel, um die verdichtete Luft von dem Verdichter (3) in den Verdampfer (51) zu schicken, mit dem Sumpfverdampfer (61) der Reinsauerstoffkolonne (49) verbunden sind, sodass die Luft, die für den Verdampfer bestimmt ist, durch den Sumpfverdampfer der Reinsauerstoffkolonne hindurchläuft.
  9. Einrichtung nach Anspruch 7, wobei die Mittel, um einen zweiten Durchsatz sauerstoffreicher Flüssigkeit in den Kopf der Reinsauerstoffkolonne zu schicken, von der Leitung, um eine Sumpfflüssigkeit von der Niederdruckkolonne (65) in den Kopf der Reinsauerstoffkolonne (49) zu schicken, gebildet werden.
  10. Einrichtung nach Anspruch 6, 7 oder 8, umfassend Mittel, um die Luft, die auf den zweiten Druck verdichtet wird, in zwei Teile zu teilen, wobei die Mittel, um die Luft, die auf den zweiten Druck verdichtet wird, von dem Verdichter (3) in den Verdampfer (51) zu schicken, und die Leitung, um einen Durchsatz von Luft, die auf den zweiten Druck verdichtet wird, in den Sumpfverdampfer (61) der Reinsauerstoffkolonne (49) zu schicken, verbunden sind, sodass ein Teil verdichteter Luft (17) in den Sumpfverdampfer der Reinsauerstoffkolonne geschickt wird und ein anderer Teil verdichteter Luft (15) in den Verdampfer geschickt wird.
  11. Einrichtung nach einem der Ansprüche 6 bis 10, umfassend Mittel (69), um eine kryogene Flüssigkeit in die Niederdruckkolonne von einer externen Quelle zu schicken.
EP12720248.9A 2011-04-08 2012-04-05 Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation Active EP2694898B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153070A FR2973865B1 (fr) 2011-04-08 2011-04-08 Procede et appareil de separation d'air par distillation cryogenique
PCT/FR2012/050742 WO2012136939A2 (fr) 2011-04-08 2012-04-05 Procede et appareil de separation d'air par distillation cryogenique

Publications (2)

Publication Number Publication Date
EP2694898A2 EP2694898A2 (de) 2014-02-12
EP2694898B1 true EP2694898B1 (de) 2020-06-17

Family

ID=46052816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12720248.9A Active EP2694898B1 (de) 2011-04-08 2012-04-05 Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation

Country Status (7)

Country Link
US (1) US9696087B2 (de)
EP (1) EP2694898B1 (de)
CN (1) CN103842753B (de)
AU (1) AU2012238460B2 (de)
CA (1) CA2830826C (de)
FR (1) FR2973865B1 (de)
WO (1) WO2012136939A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251599A (zh) * 2014-07-12 2014-12-31 孙竟成 超低压空分设备工艺流程
FR3044747B1 (fr) * 2015-12-07 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de liquefaction de gaz naturel et d'azote
WO2018005540A1 (en) 2016-06-27 2018-01-04 Texas Tech Universtiy System Apparatus and method for separating liquid oxygen from liquified air
US11709018B2 (en) * 2017-12-25 2023-07-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Single packaged air separation apparatus with reverse main heat exchanger
CN112781321B (zh) * 2020-12-31 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 一种具有氮液化器的空气分离装置和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936099A (en) 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
FR2685459B1 (fr) 1991-12-18 1994-02-11 Air Liquide Procede et installation de production d'oxygene impur.
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
EP0793069A1 (de) * 1996-03-01 1997-09-03 Air Products And Chemicals, Inc. Mit einem Aufkochkompressor versehener Generator für Sauerstoff von zwei Reinheitsgraden
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
EP0908689A3 (de) * 1997-08-20 1999-06-23 AIR LIQUIDE Japan, Ltd. Verfahren und Vorrichtung zur Luftdestillierung
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
US5916262A (en) * 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
FR2787561A1 (fr) * 1998-12-22 2000-06-23 Air Liquide Procede de separation d'air par distillation cryogenique
FR2930330B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2943772A1 (fr) * 2009-03-27 2010-10-01 Air Liquide Appareil et procede de separation d'air par distillation cryogenique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2830826C (fr) 2018-10-16
AU2012238460A1 (en) 2013-10-31
AU2012238460B2 (en) 2016-12-22
US9696087B2 (en) 2017-07-04
US20140053601A1 (en) 2014-02-27
CN103842753B (zh) 2016-12-07
WO2012136939A2 (fr) 2012-10-11
CN103842753A (zh) 2014-06-04
FR2973865B1 (fr) 2015-11-06
FR2973865A1 (fr) 2012-10-12
WO2012136939A3 (fr) 2015-01-22
EP2694898A2 (de) 2014-02-12
CA2830826A1 (fr) 2012-10-11

Similar Documents

Publication Publication Date Title
EP2694898B1 (de) Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation
EP2847060B1 (de) Verfahren zur lufttrennung durch kryogene destillation
EP2510294A1 (de) Verfahren und einheit zur trennung von luft durch kryogene destillation
WO2018215716A1 (fr) Procédé et appareil pour la séparation de l'air par distillation cryogénique
FR2844039A1 (fr) Procede et installation de production d'oxygene et de gaz rares par distillation cryogenique d'air
EP3058297B1 (de) Verfahren und vorrichtung zur trennung von luft durch kryogene destillation
WO2015071578A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2831249A1 (fr) Procede et installation de separation d'air par distillation cryogenique
EP2686628B1 (de) Vorrichtung und verfahren zur abscheidung von luft durch kryogene destillation
JP3934390B2 (ja) 気体酸素の製造方法及び装置
EP2938414B1 (de) Verfahren und vorrichtung zur abscheidung eines kohlendioxidreichen gases
FR2930328A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP2531794B1 (de) Verfahren und anwendung zur lufttrennung durch kryogene destillation
EP1132700A1 (de) Verfahren und Vorrichtung zur kryogenischen Luftzerlegung
FR3102548A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
WO2009136077A2 (fr) Procede et appareil de separation d'air par distillation cryogenique
WO2009136076A2 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2795496A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR3135134A1 (fr) Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air
FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR2974890A1 (fr) Procede et appareil de separation d'air par distillation cryogenique.
WO2019106250A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2825454A3 (fr) Procede et appareil de separation d'air par distillation cryogenique
WO2009130430A2 (fr) Procede et appareil de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20150122

17P Request for examination filed

Effective date: 20150722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012070727

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281804

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1281804

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012070727

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120405

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 12

Ref country code: DE

Payment date: 20230420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617