EP2510294A1 - Verfahren und einheit zur trennung von luft durch kryogene destillation - Google Patents
Verfahren und einheit zur trennung von luft durch kryogene destillationInfo
- Publication number
- EP2510294A1 EP2510294A1 EP10776785A EP10776785A EP2510294A1 EP 2510294 A1 EP2510294 A1 EP 2510294A1 EP 10776785 A EP10776785 A EP 10776785A EP 10776785 A EP10776785 A EP 10776785A EP 2510294 A1 EP2510294 A1 EP 2510294A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure column
- enclosure
- low pressure
- oxygen
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04454—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04066—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/42—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/46—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
Definitions
- the present invention relates to a method and apparatus for air separation by cryogenic distillation.
- An object of the invention is to reduce the separation energy to produce impure oxygen, especially in the case where there is no co-production of nitrogen.
- Another object of the invention is to reduce the cost of at least some elements of the apparatus.
- the invention involves the use of a cold compressor for compressing an oxygen-rich gas from an enclosure operating at a pressure below that of the low pressure column, the gas being intended for the tank of a column low pressure. This makes it possible to decouple the medium pressure column vessel pressure with the top of the low pressure column.
- the invention is particularly interesting for the case where air partially condenses in the condenser of the chamber operating at lower pressure than the low pressure column.
- the airflow separates into a nitrogen enriched flow and an oxygen enriched flow rate
- part of the nitrogen enriched flow is sent to a low pressure column iv) at least a portion of the oxygen enriched flow is sent to the low pressure column
- a flow rich in oxygen is withdrawn from the tank of the low pressure column and sent to an enclosure containing at least one condenser-vaporizer
- a gas flow from the chamber is withdrawn returned to the first low pressure column, preferably in the tank
- step ii) a part of the nitrogen enriched flow of step ii) is condensed at least partially in a condenser supplied with a bottom liquid from the low pressure column and is sent to the medium pressure column and / or the low pressure column
- the oxygen-rich flow rate withdrawn from the low pressure column tank is expanded upstream of the chamber and the gaseous flow rate of the chamber upstream of the first low pressure column is pressurized.
- the flow of gas coming from the chamber is compressed in a compressor having an inlet temperature lower than -50 ° C., preferably no heating step takes place between the enclosure and the compressor;
- the oxygen-rich flow rate withdrawn from the low-pressure column is depressurized at a pressure at most 1 bar below the tank pressure of the low-pressure column, preferably at most 0.5 bar, or even at most 0.2 bar; below this pressure and / or compressing the gas flow from the chamber to increase its pressure by at most 1 bar, preferably at most 0.5 bar, or even at most 0.2 bar upstream of the column low pressure ;
- the enclosure does not contain mass exchange means, or contains neither liners nor distillation trays; -
- the enclosure is a second low pressure column and contains mass exchange means, such as packings or distillation trays, placed at least above the condenser.
- an air separation apparatus comprising a medium pressure column, a low pressure column, an enclosure, an exchanger, a bottom condenser of the low pressure column and a condenser placed in a the enclosure, a pipe for sending compressed air, purified and cooled from the exchanger to the medium pressure column, a pipe for sending a heat transfer gas to the condenser placed in the enclosure, a pipe for sending a gas enriched in nitrogen from the medium pressure column to the condenser of the low pressure column, a conduit for sending an oxygen enriched flow from the tank of the medium pressure column to the low pressure column, a pipe for sending oxygen-rich liquid from the reactor vessel to the low-pressure column to the enclosure, a pipe for withdrawing from the enclosure a fluid richer in oxygen than that sent to the enclosure, a pipe for returning a gas from the enclosure to the colon at low pressure, a line for withdrawing a gas at the top of the low pressure column, characterized in that it comprises an expansion means for expanding the oxygen-
- the enclosure comprises means for exchanging material above the condenser
- the enclosure does not include any material exchange means above the condenser
- the apparatus comprises a turbine and a pipe for sending a nitrogen-rich gas from the medium-pressure column to the turbine;
- the apparatus comprises a pump for pressurizing a flow of liquid oxygen from the low pressure column and / or the chamber upstream of the exchanger.
- the air 1 is compressed between 3 and 5 bar in a compressor 3, purified in a purification unit 5 and divided into two.
- a part 9 cools in the exchanger 13 and is sent to the tank condenser 15 of a chamber 141 where it partially condenses before being sent to the medium pressure column 39 of a double column.
- the double column comprises the medium pressure column 39 and a low pressure column 41 which overcomes it, the thermal link between the two columns being provided by a condenser 25 in the tank of the low pressure column 41.
- the other part of the air 7 is compressed in a compressor 1 1, cooled in the exchanger 1 3 and used to vaporize liquid oxygen under pressure. As the oxygen is vaporized at a low pressure, the vaporization takes place in an external vaporizer 27, distinct from the exchanger 13.
- the liquefied air thus formed is sent to the medium pressure column 39 after expansion in a valve 1 9. L liquid air can also be sent to the low pressure column.
- An oxygen enriched liquid 17 is withdrawn in the vat from the medium pressure column 39, cooled in the exchanger 43, expanded in a valve and sent to the low pressure column 41.
- a liquid 49 having substantially the composition of the air is withdrawn at an intermediate level of the medium pressure column 39, cooled in the exchanger 43, expanded in a valve and sent to the low pressure column 41.
- a nitrogen-enriched liquid 47 is withdrawn at the top of the medium pressure column 39, cooled in the exchanger 43, expanded in a vacuum and sent to the top of the low-pressure column 41.
- a gas 45 rich in nitrogen is withdrawn at the top of the low pressure column, heated in the exchanger 43 and then in the exchanger 13. Part of this gas can be compressed in the compressor 35 to form the flow 37 which participates in the regeneration of the purification unit 5.
- a medium pressure nitrogen flow 33 is withdrawn at the top of the medium pressure column 39, heated in the exchanger 13, expanded in the turbine 23 and again heated in the exchanger 13 before serving for the regeneration of the purification unit 5.
- a flow rich in oxygen 53 containing between 45 and 75% of oxygen is withdrawn from the tank of the low pressure column 41, expanded in a valve 51 and sent to the top of the chamber 141 which in this variant is a distillation column With a tank condenser 15. Above the condenser there are means for heat and mass exchange 143, for example packings, structured or not, or trays.
- the valve 51 only lowers the liquid pressure by about 0.15 bar.
- the liquid 53 is separated in the chamber to form a richer oxygen-rich liquid 29 in the tank. It is this liquid 29 which is sent to the vaporizer 27 after pressurization in the pump 63.
- a purge liquid 61 is withdrawn from the vaporizer 27.
- an oxygen-rich gas can be withdrawn from the chamber 141.
- a top gas 145 is withdrawn from the chamber, compressed at the withdrawal temperature in a compressor 21 which increases its pressure by at most 0.15. bars.
- the product gas is reinjected into the vessel of the low pressure column at the outlet pressure of the compressor 21.
- the apparatus of FIG. 2 differs from that of FIG. 1 in that enclosure 141 does not contain packings or trays. There is also the ascending partial condensation in the vaporizer 15. Thus the difference in composition between the liquid 53 sent to the chamber and the liquid 29 withdrawn from the chamber is very small even if the liquid 29 is still richer.
- the gas 145 is the gas produced by partial vaporization of the liquid 53 in the chamber 141 by heat exchange with the air 9.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0958880A FR2953915B1 (fr) | 2009-12-11 | 2009-12-11 | Procede et appareil de separation d'air par distillation cryogenique |
PCT/FR2010/052099 WO2011070257A1 (fr) | 2009-12-11 | 2010-10-05 | Procede et appareil de separation d'air par distillation cryogenique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2510294A1 true EP2510294A1 (de) | 2012-10-17 |
EP2510294B1 EP2510294B1 (de) | 2014-04-30 |
Family
ID=42313889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10776785.7A Not-in-force EP2510294B1 (de) | 2009-12-11 | 2010-10-05 | Verfahren und einheit zur trennung von luft durch kryogene destillation |
Country Status (10)
Country | Link |
---|---|
US (1) | US20120285197A1 (de) |
EP (1) | EP2510294B1 (de) |
JP (1) | JP5694363B2 (de) |
CN (1) | CN102652247B (de) |
AU (1) | AU2010329766B2 (de) |
CA (1) | CA2782958A1 (de) |
ES (1) | ES2486260T3 (de) |
FR (1) | FR2953915B1 (de) |
WO (1) | WO2011070257A1 (de) |
ZA (1) | ZA201203625B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4071428A1 (de) | 2014-05-30 | 2022-10-12 | Highview Enterprises Limited | Verbesserungen an luftreinigungseinheiten |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2990500A1 (fr) * | 2012-05-11 | 2013-11-15 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
EP3026380A1 (de) * | 2014-11-27 | 2016-06-01 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zum Ausschleusen schwerer als Sauer- stoff flüchtiger Komponenten aus einer Luftzerlegungsanlage |
EP3290843A3 (de) * | 2016-07-12 | 2018-06-13 | Linde Aktiengesellschaft | Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft |
CN106440660A (zh) * | 2016-10-10 | 2017-02-22 | 浙江海天气体有限公司 | 一种具有高压换热供氧的空分装置 |
FR3074274B1 (fr) * | 2017-11-29 | 2020-01-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede et appareil de separation d'air par distillation cryogenique |
FR3090082B1 (fr) * | 2018-12-13 | 2021-01-29 | Air Liquide | Appareil de séparation ou de liquéfaction d’un gaz opérant à des températures cryogéniques. |
US12061045B2 (en) * | 2018-12-19 | 2024-08-13 | L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for starting up a cryogenic air separation unit and associated air separation unit |
FR3090831B1 (fr) * | 2018-12-21 | 2022-06-03 | L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude | Appareil et procédé de séparation d’air par distillation cryogénique |
CN113202588A (zh) * | 2021-06-09 | 2021-08-03 | 中国科学院理化技术研究所 | 液态空气储能发电系统 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617036A (en) * | 1985-10-29 | 1986-10-14 | Air Products And Chemicals, Inc. | Tonnage nitrogen air separation with side reboiler condenser |
CN1025067C (zh) * | 1989-02-23 | 1994-06-15 | 琳德股份公司 | 精馏分离空气的方法及装置 |
DE4126945A1 (de) * | 1991-08-14 | 1993-02-18 | Linde Ag | Verfahren zur luftzerlegung durch rektifikation |
JP2966999B2 (ja) * | 1992-04-13 | 1999-10-25 | 日本エア・リキード株式会社 | 超高純度窒素・酸素製造装置 |
DE19537913A1 (de) * | 1995-10-11 | 1997-04-17 | Linde Ag | Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft |
EP0793069A1 (de) * | 1996-03-01 | 1997-09-03 | Air Products And Chemicals, Inc. | Mit einem Aufkochkompressor versehener Generator für Sauerstoff von zwei Reinheitsgraden |
US5664438A (en) * | 1996-08-13 | 1997-09-09 | Praxair Technology, Inc. | Cryogenic side column rectification system for producing low purity oxygen and high purity nitrogen |
GB9711258D0 (en) * | 1997-05-30 | 1997-07-30 | Boc Group Plc | Air separation |
US5934104A (en) * | 1998-06-02 | 1999-08-10 | Air Products And Chemicals, Inc. | Multiple column nitrogen generators with oxygen coproduction |
JP2003014373A (ja) * | 2001-07-02 | 2003-01-15 | Hitachi Ltd | 空気分離装置 |
FR2844039B1 (fr) * | 2002-09-04 | 2005-04-29 | Air Liquide | Procede et installation de production d'oxygene et de gaz rares par distillation cryogenique d'air |
US6622520B1 (en) * | 2002-12-11 | 2003-09-23 | Praxair Technology, Inc. | Cryogenic rectification system for producing low purity oxygen using shelf vapor turboexpansion |
JP4230213B2 (ja) * | 2002-12-24 | 2009-02-25 | 大陽日酸株式会社 | 空気液化分離装置及び方法 |
FR2854683B1 (fr) * | 2003-05-05 | 2006-09-29 | Air Liquide | Procede et installation de production de gaz de l'air sous pression par distillation cryogenique d'air |
US20070251267A1 (en) | 2006-04-26 | 2007-11-01 | Bao Ha | Cryogenic Air Separation Process |
US20090241595A1 (en) * | 2008-03-27 | 2009-10-01 | Praxair Technology, Inc. | Distillation method and apparatus |
FR2930327A1 (fr) * | 2008-04-22 | 2009-10-23 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
WO2009136077A2 (fr) * | 2008-04-22 | 2009-11-12 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede et appareil de separation d'air par distillation cryogenique |
-
2009
- 2009-12-11 FR FR0958880A patent/FR2953915B1/fr not_active Expired - Fee Related
-
2010
- 2010-10-05 AU AU2010329766A patent/AU2010329766B2/en not_active Ceased
- 2010-10-05 JP JP2012542592A patent/JP5694363B2/ja not_active Expired - Fee Related
- 2010-10-05 WO PCT/FR2010/052099 patent/WO2011070257A1/fr active Application Filing
- 2010-10-05 CA CA2782958A patent/CA2782958A1/fr not_active Abandoned
- 2010-10-05 ES ES10776785.7T patent/ES2486260T3/es active Active
- 2010-10-05 EP EP10776785.7A patent/EP2510294B1/de not_active Not-in-force
- 2010-10-05 CN CN201080055693.4A patent/CN102652247B/zh not_active Expired - Fee Related
- 2010-10-05 US US13/515,059 patent/US20120285197A1/en not_active Abandoned
-
2012
- 2012-05-17 ZA ZA2012/03625A patent/ZA201203625B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2011070257A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4071428A1 (de) | 2014-05-30 | 2022-10-12 | Highview Enterprises Limited | Verbesserungen an luftreinigungseinheiten |
Also Published As
Publication number | Publication date |
---|---|
JP2013513775A (ja) | 2013-04-22 |
ZA201203625B (en) | 2013-01-30 |
AU2010329766B2 (en) | 2014-06-12 |
AU2010329766A1 (en) | 2012-07-05 |
ES2486260T3 (es) | 2014-08-18 |
JP5694363B2 (ja) | 2015-04-01 |
EP2510294B1 (de) | 2014-04-30 |
CN102652247B (zh) | 2014-09-24 |
US20120285197A1 (en) | 2012-11-15 |
FR2953915A1 (fr) | 2011-06-17 |
CA2782958A1 (fr) | 2011-06-16 |
WO2011070257A1 (fr) | 2011-06-16 |
CN102652247A (zh) | 2012-08-29 |
FR2953915B1 (fr) | 2011-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2510294B1 (de) | Verfahren und einheit zur trennung von luft durch kryogene destillation | |
EP2268990A2 (de) | Verfahren und vorrichtung zur herstellung von sauerstoff durch lufttrennung mittels kryogener destillation | |
EP2959243B1 (de) | Trennung eines gasgemisches mit kohlendioxid und einem leichteren schadstoffes bei niedriger umgebungstemperatur | |
FR3066809A1 (fr) | Procede et appareil pour la separation de l'air par distillation cryogenique | |
WO2015071578A2 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
EP2694898B1 (de) | Verfahren und vorrichtung zur luftzerlegung durch kryogene destillation | |
EP3058297B1 (de) | Verfahren und vorrichtung zur trennung von luft durch kryogene destillation | |
FR2814229A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
FR2831249A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
EP2569584A2 (de) | Verfahren und vorrichtung zur lufttrennung durch kryogene destillation | |
WO2014041274A1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique. | |
FR2973485A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
WO2018020091A1 (fr) | Procédé et appareil de lavage à température cryogénique pour la production d'un mélange d'hydrogène et d'azote | |
FR2830928A1 (fr) | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede | |
FR2930328A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR2837564A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur | |
FR2972794A1 (fr) | Appareil et procede de separation d'air par distillation cryogenique | |
FR2945111A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR3110685A1 (fr) | Procédé et appareil de séparation d’air par distillation cryogénique | |
FR3135134A1 (fr) | Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air | |
FR3057942A1 (fr) | Procede et appareil de separation cryogenique d’un gaz de synthese par condensation partielle | |
FR2968749A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR2974890A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique. | |
FR3014180A1 (fr) | Procede et appareil de separation d’air par distillation a basse temperature | |
FR2825453A1 (fr) | Procede et installation de separation par distillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130405 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 665420 Country of ref document: AT Kind code of ref document: T Effective date: 20140515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010015669 Country of ref document: DE Effective date: 20140612 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2486260 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140818 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 665420 Country of ref document: AT Kind code of ref document: T Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140731 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010015669 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
26N | No opposition filed |
Effective date: 20150202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010015669 Country of ref document: DE Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141005 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101005 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20181019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181023 Year of fee payment: 9 Ref country code: ES Payment date: 20181123 Year of fee payment: 9 Ref country code: GB Payment date: 20181019 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010015669 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191005 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191006 |