WO2012136939A2 - Procede et appareil de separation d'air par distillation cryogenique - Google Patents

Procede et appareil de separation d'air par distillation cryogenique Download PDF

Info

Publication number
WO2012136939A2
WO2012136939A2 PCT/FR2012/050742 FR2012050742W WO2012136939A2 WO 2012136939 A2 WO2012136939 A2 WO 2012136939A2 FR 2012050742 W FR2012050742 W FR 2012050742W WO 2012136939 A2 WO2012136939 A2 WO 2012136939A2
Authority
WO
WIPO (PCT)
Prior art keywords
column
oxygen
liquid
air
vaporizer
Prior art date
Application number
PCT/FR2012/050742
Other languages
English (en)
Other versions
WO2012136939A3 (fr
Inventor
Benoit Davidian
Richard Dubettier-Grenier
Loïc JOLY
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US14/110,356 priority Critical patent/US9696087B2/en
Priority to EP12720248.9A priority patent/EP2694898B1/fr
Priority to AU2012238460A priority patent/AU2012238460B2/en
Priority to CA2830826A priority patent/CA2830826C/fr
Priority to CN201280027982.2A priority patent/CN103842753B/zh
Publication of WO2012136939A2 publication Critical patent/WO2012136939A2/fr
Publication of WO2012136939A3 publication Critical patent/WO2012136939A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the present invention relates to a method and apparatus for air separation by cryogenic distillation.
  • the invention particularly provides a method of producing pure oxygen using a dual vaporizer air separation unit.
  • the method according to the invention allows the production of pure liquid oxygen (containing at least 99 mol%, or even at least 99.6 mol% of oxygen) on an apparatus producing impure oxygen gas (less than 97 mol%, or even 96 mol%) at low pressure, for example in the context of an apparatus for oxycombustion.
  • the oxygen-generating air separation (ASU) schemes for an oxy-fuel coal plant generally comprise two (or three) vaporizers located between the medium pressure column (MP column) and the low pressure column. (BP column).
  • MP column medium pressure column
  • BP column low pressure column
  • the purity of the oxygen produced by this type of plant is typically between 95 and 97 mol%. O 2 .
  • the vaporisation of the oxygen is ensured in a dedicated vaporizer.
  • the vaporization frigories of liquid oxygen are used to condense gaseous air.
  • a method of this kind is known from US-A-4936099 and EP-A-0547946.
  • the pressure of the column MP is so low that it is not possible to use one of the gaseous flows entering or leaving the column MP or the column LP to condense in the bottom vaporizer of the column of Additional pure LOX (their condensing temperature is too low).
  • the invention described here proposes to use as condensing fluid, a fraction of the gaseous air leaving the exchange line and which will subsequently enter the dedicated exchanger ensuring the vaporization of pure oxygen production. (which is referred to as HP air).
  • HP air a fraction of the gaseous air leaving the exchange line and which will subsequently enter the dedicated exchanger ensuring the vaporization of pure oxygen production.
  • This air flow is compressed upstream of the main exchange line by the blower (BAC) of the unit.
  • the pressure of this flow rate is of the order of 4.5 bar abs, higher than that of the MP column, and such that its bubble temperature is higher than the equilibrium temperature of the pure liquid oxygen.
  • the temperature difference between the air flow rate considered and the pure oxygen is of the order of 2 to 3 ° C, a fairly high value, which makes it possible to install a small vaporizer.
  • the production of pure liquid oxygen is free in terms of separation energy and does not play on the separation energy of the production of impure oxygen gas. You just have to pay for the liquefaction energy.
  • the additional refrigeration can be carried out by a liquefaction system independent of the ASU.
  • the invention provides a method for producing pure oxygen (Purity> 99.6%) on a dual vaporizer air separation unit, typically used for oxy-fuel combustion, the majority of which is oxygen produced. at a purity of the order of 95 to 97%. Indeed, on this type of process, apart from HP air, there is no fluid available at sufficiently high condensation temperature to achieve the reboiling of the pure oxygen column.
  • Air separation units are frequently found in a single vaporizer, where a small column producing ultra-pure oxygen is added to the bottom of the LP column.
  • the pressure of the MP column is of the order of 5 to 6 bar and the reboiling of the ultra pure LOX column is provided by a fraction of the flow of gaseous air supplying the MP column.
  • EP-A-0793069 discloses a method according to the preamble of claim 1.
  • air at a first pressure is used to vaporize oxygen in a vaporizer and air at a second pressure, higher than the first one, is used for reboiling a column of pure oxygen.
  • US-A-5916262 discloses a dual purity oxygen production process using an oxygen scrubber heated in tank by air. Pump-pressurized liquid oxygen is also vaporized in the main exchange line by heat exchange with pressurized air.
  • the present invention proposes to produce pure oxygen in a double vaporizer scheme by installing an additional pure oxygen column, the pressure of which is equal to the pressure of the LP column.
  • a method for separating air by cryogenic distillation in a separation unit comprising a medium pressure column and a low pressure column, thermally connected to each other, the low pressure column comprising a reboiler vessel and an intermediate reboiler, and a pure oxygen column in which
  • purified air gas is sent and then cooled to a first pressure in an exchange line at the medium pressure column, ii) an oxygen-enriched liquid and a nitrogen-enriched liquid are sent from the medium-pressure column to the low-pressure column,
  • a second flow of oxygen-rich liquid is fed to the top of the pure oxygen column, having a bottom reboiler, where it purifies to form a bottom liquid containing at least 98 mol%. oxygen
  • a nitrogen rich gas is withdrawn at the top of the medium pressure column, it is sent to the intermediate reboiler of the low pressure column and the condensed gas is sent to the head of the medium pressure column, and
  • vessel liquid is withdrawn from the pure oxygen column as product and superpressed air is supplied to the second vaporizer pressure to vaporize the first oxygen-rich liquid flow.
  • the first flow of oxygen-rich liquid is pressurized upstream of the vaporizer.
  • the first flow of oxygen-rich liquid and the second flow of oxygen-rich liquid have the same purity.
  • air pressure is divided at the second pressure in two parts, a first portion of superpressed air is sent at the second pressure to the reboiler of the pure oxygen column and a second part of compressed air is sent to the second pressure to the vaporizer.
  • air is sent at the first pressure to the bottom reboiler of the low pressure column to heat it. all the air is divided into a flow at the first pressure and a flow at the second pressure upstream of the exchange line.
  • the first flow of oxygen-rich liquid is less oxygen-rich than the second oxygen-rich flow of oxygen.
  • the first flow of oxygen-rich liquid is vaporized partially in the vaporizer, the formed liquid constituting the second flow of oxygen-rich liquid.
  • the compressed air flow at the second pressure first heats the bottom reboiler of the pure oxygen column and then the vaporizer.
  • Air at the first pressure cools in the exchange line and is sent in gaseous form to the medium pressure column.
  • a cryogenic liquid from an auxiliary source is sent to the double column.
  • medium pressure and low pressure simply mean that the medium pressure column operates at a higher pressure than the low pressure column. These terms are common in the art and clear to those skilled in the art.
  • a cryogenic distillation air separation apparatus comprising a medium pressure column and a low pressure column, thermally connected to each other, the low pressure column comprising a bottom reboiler and a reboiler intermediate, and a pure oxygen column, an exchange line, a vaporizer, means for sending purified air gas and then cooled at a first pressure of the exchange line to the medium pressure column, means for supplying an oxygen enriched liquid and a nitrogen enriched liquid from the medium pressure column to the low pressure column, means for withdrawing a nitrogen rich gas from the low pressure column, means for withdrawing an oxygen rich liquid containing at most 97 mol% of oxygen in the tank of the low pressure column, means for sending a first flow of oxygen-rich liquid to the vaporizer, a pipe for sending the gaseous oxygen thus formed to the exchange line, means for sending a second flow of oxygen-rich liquid at the top of the pure oxygen column, having a bottom reboiler, where it purifies to form a
  • a booster a line for sending a superpressed air flow at a second pressure higher than the first pressure to the reboiler of the pure oxygen column, lines for withdrawing a nitrogen-rich gas at the top of the medium pressure column , to send it to the intermediate reboiler of the low pressure column and to send the condensed gas to the head of the medium pressure column and lines to send a nitrogen-rich gas or air to the bottom column reboiler pressure and to send the liquid which condenses thereon to the medium pressure column characterized in that it comprises a pipe for drawing liquid from the column of the pure oxygen column as product and means for sending compressed air at the second pressure of the booster to the vaporizer.
  • the apparatus comprises:
  • the means for sending the supercharged air from the booster to the vaporizer are connected to the bottom reboiler of the pure oxygen column so that the air for the vaporizer passes through the bottom reboiler of the pure oxygen column.
  • the means for sending a second flow of oxygen-rich liquid at the top of the pure oxygen column are constituted by the conduit for sending a bottom liquid from the low pressure column to the top of the pure oxygen column.
  • the vaporizer is not part of a distillation or exhaustion column.
  • a method for separating air by cryogenic distillation in a separation unit comprising a medium pressure column and a low pressure column, thermally connected to each other, the low pressure column comprising a reboiler vessel and an intermediate reboiler and a column of pure oxygen in which
  • a second flow of oxygen rich liquid is fed to the top of the pure oxygen column, having a bottom reboiler, where it purifies to form a bottom liquid containing at least 98 mol%,
  • a nitrogen rich gas is withdrawn at the top of the medium pressure column, it is sent to the intermediate reboiler of the low pressure column and the condensed gas is sent to the head of the medium pressure column, and
  • a nitrogen-rich gas or air is sent to the bottom reboiler of the low-pressure column and the liquid which condenses therein is sent to the medium-pressure column, characterized in that the liquid from the bottom of the vessel is withdrawn. pure oxygen column as product and in that the first flow of oxygen-rich liquid is less oxygen-rich than the second flow of oxygen-rich liquid.
  • the first flow of oxygen-rich liquid is pressurized upstream of the vaporizer.
  • a second superpressed air flow is sent at the second pressure to the vaporizer.
  • the first flow of oxygen-rich liquid partially vaporizes in the vaporizer, the formed liquid constituting the second flow of oxygen-rich liquid.
  • the supercharged air flow first heats the vessel reboiler of the pure oxygen column and then the vaporizer.
  • a cryogenic liquid from an auxiliary source is sent to the double column.
  • the medium pressure column operates at between 2.5 and 4.5 bar abs.
  • a cryogenic distillation air separation apparatus comprising a medium pressure column and a low pressure column, thermally connected to each other, the low pressure column comprising a bottom reboiler and a reboiler intermediate and a pure oxygen column, an exchange line, a vaporizer, means for sending purified air gas and then cooled to a first pressure of the exchange line to the medium pressure column, means for sending an oxygen enriched liquid and a nitrogen enriched liquid from the medium pressure column to the low pressure column, means for withdrawing a nitrogen rich gas from the low pressure column, means for withdrawing an oxygen rich liquid containing at most 97 % mol.
  • a booster a line for sending a superpressed air flow at a second pressure higher than the first tank reboiler pressure of the pure oxygen column, lines for drawing a nitrogen-rich gas at the top of the the medium pressure column, to send it to the intermediate reboiler of the low pressure column and to send the condensed gas to the head of the medium pressure column and lines to send a nitrogen-rich gas or air to the reboiler of the low pressure column and to send the liquid that is condensed in the medium pressure column characterized in that it comprises a pipe for withdrawing liquid from the column of the pure oxygen column as product and a pipe for sending a liquid (53) of the vaporizer (51) at the top pure oxygen column (49).
  • the apparatus may also include a conduit for supplying a bottom liquid from the low pressure column to the top of the pure oxygen column.
  • the means for supplying the blower pressurized air to the vaporizer can be connected to the bottom reboiler of the pure oxygen column so that the air for the vaporizer passes through the bottom reboiler of the pure oxygen column.
  • the means for sending a second flow of oxygen-rich liquid to the top of the pure oxygen column may be constituted by the conduit for sending a bottom liquid from the low pressure column to the top of the pure oxygen column.
  • the apparatus may comprise means for dividing the supercharged air at the second pressure into two parts, the means for supplying superpressed air at the second pressure of the booster to the vaporizer and the duct for sending a pressurized air flow to the booster.
  • the second tank reboiler pressure of the pure oxygen column being connected so that a portion of pressurized air is sent to the bottom reboiler of the pure oxygen column and another portion of pressurized air is sent to the vaporizer.
  • the apparatus may include means for supplying a cryogenic liquid to the low pressure column of an external source.
  • the apparatus may include a conduit for supplying the pressurized air flow from the reboiler of the pure oxygen column to the vaporizer and a conduit for supplying the air from the vaporizer to the medium pressure column and / or the lower column. pressure.
  • the apparatus comprises a pipe for sending the supercharged air flow of the tank reboiler of the pure oxygen column directly to the medium pressure column and / or the low pressure column.
  • the main innovative feature of the invention presented here is that the reboiling of the pure oxygen column is achieved by a fraction of the flow of gaseous air leaving the main exchange line, compressed by a booster at the pressure required for the vaporization of oxygen in the vaporizer (HP air). This fraction of air HP condenses partially or totally in the condenser of the pure oxygen column.
  • the partially condensed compressed air flow possibly after having separated the condensed part (which is then sent into the MP column), is then sent into the product vaporizer where it finishes to condense completely.
  • the partial condensation of the supercharged air allows, with a quasi-nominal flow of GOX production and the same pressure, to operate the vaporizer in pure column vat, then that of the vaporizer produced.
  • the reboiling of the pure liquid oxygen column is therefore free compared to the energy required to vaporize the production.
  • the pressure of this air flow is greater than the pressure of the MP column (typically of the order of 4.5 bar abs against 3.2 bar abs.).
  • Part of the impure liquid is removed from the vaporizer produced (at the same level and instead of the purge of the evaporator), and the pure liquid is sent to the column of oxygen which is a distillation column which is substantially distilled off. same pressure as the vaporizer produces ..
  • the impure gas reflux from the pure oxygen column is mixed with the gas stream from the product vaporizer, the two flows constituting the nominal output flow of the impure GOX.
  • the pure liquid is taken from the vat of the pure oxygen column. It also serves as a purge of deconcentration of the entire device.
  • the addition of frigories can be provided by an independent liquefier, for example by producing liquid nitrogen, from pure nitrogen (from a minaret), which would then be added in liquid form in the apparatus. If there is no pure nitrogen production, it is possible to liquefy residual nitrogen in an independent liquefier.
  • FIG. 1 illustrate air separation methods according to the invention.
  • the air is separated in an ASU comprising a double air separation column, comprising a medium pressure column 23 and a low pressure column 25. Frigories for the separation are provided by expansion of medium pressure nitrogen. in a turbine 47.
  • the apparatus comprises a column of pure liquid oxygen 49, a pump 57, a vaporizer 51 and an exchange line 63.
  • Air 1 is pressurized by a compressor 3 at a pressure between 2.5 and 4.5 bar abs.
  • the air is then purified in a purification unit 5 by adsorption.
  • the air fresh 7 is divided into two parts.
  • Part 9 is overpressed in a booster 13 to a pressure of between 4 and 20 bar abs and then cooled in the exchange line 63 to the cold end.
  • the air 9 is divided into two fractions 15, 17.
  • a fraction 1 5 is sent to the vaporizer 51 where it serves to partially vaporize liquid oxygen comprising at most 97 mol%. oxygen, to produce gaseous oxygen 59 which is heated in the exchange line 63. This gas 59 is sent to an oxyfuel unit.
  • An oxygen-rich liquid 53 is withdrawn from the vaporizer 51 as a purge.
  • the air is condensed.
  • the other fraction of the air 17 is sent to the reboiler 61 of the pure oxygen column 49.
  • This column comprises the reboiler vessel and means for exchanging heat and material above the reboiler.
  • Liquid oxygen 65 comprising at most 97 mol%. oxygen is sent to the top of the column 49 and is enriched to form the liquid product 71 withdrawn into the tank and containing at least 98 mol%. oxygen.
  • the gaseous oxygen at the top of the column 49 is sent to the bottom of the low pressure column 25.
  • the condensed air 17 mixes with the condensed air coming from the vaporizer 51 and, after expansion in a valve 21, is sent to the MP 23 column, which operates at between 2.5 and 4.5 bar abs.
  • Another part 1 1 of the air is cooled in the exchange line 63, is sent to the bottom reboiler 35 of the column BP 25, condenses at least partially and is sent to the bottom of the column MP 23, below the point of arrival of liquid air 19.
  • Oxygen-enriched liquid 27 is withdrawn from the tank of the MP column
  • Low pressure nitrogen 39 is withdrawn at the top of the LP column, reheated in the subcooler 33 and reheated in the exchange line 63.
  • Medium pressure nitrogen 41 is divided in two to form a part
  • the portion 43 serves to heat the intermediate reboiler 37 of the low pressure column 25.
  • the portion 45 is heated in the exchange line 63, is expanded in the turbine 47 and is returned to the line of exchange 63.
  • Liquid oxygen is withdrawn from the tank of the LP column and divided in two.
  • a portion 55 is pressurized in the pump 57 upstream of the vaporizer 51 and the remainder 65 is sent to the top of the pure oxygen column 49 without having been pressurized.
  • the head of the pure oxygen column 49 is therefore at the same pressure as the tank of the low pressure column 25. All or part of the purge liquid 53 can also feed the head of the column 49.
  • a flow of cryogenic liquid 69 for example liquid nitrogen, is sent to the top of the LP column to keep the process cold.
  • the method of FIG. 1 bis differs from that of FIG. 1 in that the column 49 is fed exclusively at the top by the purge 53 of the vaporizer 51, following a step of expansion in a valve.
  • the reboiler 61 of the column 49 is still heated by the pressurized air 17, the air thus condensed being mixed with the pressurized air 15 which was used to heat the vaporizer 51. It is also possible to feed the column with purge liquid 53 and liquid oxygen 65 from the bottom of the low pressure column 25.
  • the method of Figure 2 differs from that of Figure 1 in that the air flow 9 is first sent to the vessel vaporizer 61 of the pure oxygen column 49 and then to the vaporizer 51 where it condenses.
  • the air thus formed is expanded in the valve 21 and sent to the medium pressure column 23.
  • the air fraction 1 1 cools in the exchange line January 1 and is sent to the tank of the medium pressure column 23 without have been relaxed or compressed downstream of the compressor 3.
  • Intermediate reboiler 37 is still heated by medium pressure nitrogen 43 but another part of medium pressure nitrogen 73 is compressed in a cold booster 71 from a cryogenic temperature and sent
  • the condensed nitrogen is expanded in a valve 36 and sent to the top of the MP column 23.
  • the vessel oxygen 55 of the low pressure column is fully pressurized in the pump 57 sent to the vaporizer 51 where it partially vaporizes.
  • the vaporized gas is the gaseous oxygen product 59 containing less than 97 mol%. oxygen.
  • the non-vaporized liquid 53 feeds the top of the column 49.
  • the gaseous oxygen 67 at the top of the column 49 is mixed with the oxygen gas 59.
  • the liquid oxygen 71 constitutes the liquid product. In this case, the pure oxygen column 49 does not operate at the same pressure as the BP column 25.
  • the process of Figure 1 or 1a may use nitrogen to heat the bottom reboiler 35 and the method of Figure 2 may use air to heat the bottom reboiler 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un procédé de séparation d'air par distillation cryogénique dans une unité de séparation comprenant une colonne moyenne pression (23) et une colonne basse pression (25), on envoie un débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve (61), où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène et on soutire du liquide de cuve comme produit,on envoie un débit d'air surpressé à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur et à un vaporiseur d'oxygène liquide (51),on soutire un gaz riche en azote en tête de la colonne moyenne pression, on l'envoie à un rebouilleur intermédiaire de la colonne basse pression et on envoie le gaz condensé à la tête de la colonne moyenne pression, et on envoie un gaz riche en azote ou de l'air à un rebouilleur de cuve (36) de la colonne basse pression et on envoie le liquide qui s'y condense à la colonne moyenne pression.

Description

PROCEDE ET APPAREIL DE SEPARATION D'AIR
PAR DISTILLATION CRYOGENIQUE La présente invention est relative à un procédé et à un appareil de séparation d'air par distillation cryogénique.
L'invention propose en particulier une méthode de production d'oxygène pur utilisant une unité de séparation d'air à double vaporiseur.
Le procédé selon l'invention permet la production d'oxygène liquide pur (contenant au moins 99% mol., voire au moins 99,6% mol. d'oxygène) sur un appareil produisant de l'oxygène gazeux impur (inférieur à 97% mol., voire à 96% mol.) à faible pression, par exemple dans le cadre d'un appareil pour l'oxycombustion.
Les schémas d'un ités de séparation d'air (ASU) produisant l'oxygène destiné à une centrale à charbon à oxycombustion comprennent en général deux vaporiseurs (voire trois) situés entre la colonne moyenne pression (colonne MP) et la colonne basse pression (colonne BP). L'installation de ces deux vaporiseurs permet de réduire la pression de la colonne MP jusqu'à une valeur de l'ordre de 3 bar absolus, ce qui permet de minimiser la consommation énergétique de l'ASU.
La pureté de l'oxygène produit par ce type de centrale est typiquement comprise entre 95 et 97% mol. O2. La vaporisation de l'oxygène est assurée dans un vaporiseur dédié. Les frigories de vaporisation de l'oxygène liquide sont utilisées pour condenser de l'air gazeux. Un procédé de ce genre est connu de US-A-4936099 et de EP-A-0547946.
Par ailleurs, on peut tenter de profiter de l'installation d'un tel ASU pour produire de l'azote liquide pur et de l'oxygène pur (pureté de l'ordre de 99,6%), stockés puis destinés au commerce liquide par camions.
La production d'azote liquide ne pose pas de difficulté majeure, car il suffit de rajouter des plateaux en haut de la colonne MP pour atteindre la pureté désirée, sans impact sur le reste du procédé de l'ASU, à part le coût de l'énergie de liquéfaction.
En revanche, la production d'oxygène pur (> 99,6%) induit un impact plus important sur le procédé ; en effet, la pureté du liquide produit est nettement supérieure à celle de l'oxygène gazeux livré à la centrale à oxycombustion. Il est donc nécessaire d'installer une petite colonne supplémentaire, récupérant une fraction du débit liquide recueilli dans la colonne BP (en cuve ou à un plateau intermédiaire), le distillant, ce qui permet de récupérer en bas de cette petite colonne additionnelle l'oxygène pur destiné au commerce par camions. Le retour gazeux depuis la colonne de LOX pur s'effectue alors au même niveau que le piquage de liquide dans la colonne BP.
Néanmoins, la pression de la colonne MP est tellement basse qu'il n'est pas possible d'utiliser un des débits gazeux entrant ou sortant de la colonne MP ni de la colonne BP pour se condenser dans le vaporiseur de cuve de la colonne de LOX pure additionnelle (leur température de condensation est trop basse).
L'invention décrite ici propose d'utiliser comme fluide se condensant, une fraction de l'air gazeux sortant de la ligne d'échange et qui va par la suite entrer dans l'échangeur dédié assurant la vaporisation de la production d'oxygène pur (qu'on désigne par le terme d'air HP). Ce débit d'air est comprimé en amont de la ligne d'échange principale par le surpresseur (BAC) de l'unité.
La pression de ce débit est de l'ordre de 4,5 bars abs, supérieure à celle de la colonne MP, et telle que sa température de bulle soit supérieure à la température d'équilibre de l'oxygène liquide pur.
L'écart de température entre le débit d'air considéré et l'oxygène pur est de l'ordre de 2 à 3°C, valeur assez élevée, ce qui permet d'installer un vaporiseur de petite taille.
Dans l'invention, selon la variante de la Figure 1 , la production d'oxygène liquide pur est gratuite en termes d'énergie de séparation et ne joue pas sur l'énergie de séparation de la production de l'oxygène gazeux impur. Il faut juste payer l'énergie de liquéfaction. L'appoint frigorifique peut être effectué par un système de liquéfaction indépendant de l'ASU.
L'invention propose une méthode permettant de produire de l'oxygène pur (Pureté > 99,6%) sur une unité de séparation d'air à double vaporiseur, typiquement utilisée pour l'oxycombustion, dont la majorité de l'oxygène est produite à une pureté de l'ordre de 95 à 97%. En effet, sur ce type de procédé, hormis l'air HP, il n'existe pas de fluide disponible à température de condensation suffisamment haute pour réaliser le rebouillage de la colonne d'oxygène pur.
A l'heure actuelle, il n'existe pas de solution référencée pour produire de l'oxygène pur sur une unité de séparation d'air à double vaporiseur.
On pourrait utiliser, dans ce but, un débit soutiré à un niveau intermédiaire (et donc à température plus élevée) dans la ligne d'échange principale, mais ceci complexifierait le procédé. Ce serait également moins efficace car il s'agirait d'utiliser de la chaleur sensible contre de la chaleur latente.
On trouve fréquemment des unités de séparation d'air (ASU) à un seul vaporiseur, où une petite colonne produisant de production l'oxygène ultra-pur est rajoutée en cuve de la colonne BP. Dans ce cas, la pression de la colonne MP est de l'ordre de 5 à 6 bars et le rebouillage de la colonne de LOX ultra pur est assuré par une fraction du débit d'air gazeux alimentant la colonne MP.
EP-A-0793069 décrit un procédé selon le préambule de la revendication 1 .
Selon ce procédé, de l'air à une première pression est utilisé pour vaporiser de l'oxygène dans un vaporiseur et de l'air à une deuxième pression, plus élevée que la première, est utilisée pour le rebouillage d'une colonne d'oxygène pur.
US-A-5916262 décrit un procédé de production d'oxygène à deux puretés, utilisant une colonne d'épuration d'oxygène chauffé en cuve par de l'air. De l'oxygène liquide pressurisé par pompe est également vaporisé dans la ligne d'échange principale par échange de chaleur avec de l'air surpressé.
La présente invention propose de produire de l'oxygène pur sur un schéma à double vaporiseur en installant une colonne d'oxygène pur supplémentaire, dont la pression est égale à la pression de la colonne BP.
Selon un objet de l'invention, il est prévu, un procédé de séparation d'air par distillation cryogénique dans une unité de séparation comprenant une colonne moyenne pression et une colonne basse pression, reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve et un rebouilleur intermédiaire, et une colonne d'oxygène pur dans lequel
i) on envoie de l'air gazeux épuré puis refroidi à une première pression dans une ligne d'échange à la colonne moyenne pression, ii) on envoie un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression,
iii) on soutire un gaz riche en azote de la colonne basse pression, iv) on soutire un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression,
v) on envoie un premier débit de liquide riche en oxygène à un vaporiseur et on envoie l'oxygène gazeux ainsi formé à la ligne d'échange,
vi) on envoie un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve , où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène,
vii) on envoie un débit d'air surpressé à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur,
viii) on soutire un gaz riche en azote en tête de la colonne moyenne pression, on l'envoie au rebouilleur intermédiaire de la colonne basse pression et on envoie le gaz condensé à la tête de la colonne moyenne pression, et
ix) on envoie un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et on envoie le liquide qui s'y condense à la colonne moyenne pression
caractérisé en ce que l'on soutire du liquide de cuve de la colonne d'oxygène pur comme produit et en ce que l'on envoie de l'air surpressé à la deuxième pression au vaporiseur pour vaporiser le premier débit de liquide riche en oxygène.
Selon d'autres aspects facultatifs de l'invention :
on pressurise le premier débit de liquide riche en oxygène en amont du vaporiseur.
le premier débit de liquide riche en oxygène et le deuxième débit de liquide riche en oxygène ont la même pureté.
on divise de l'air surpressé à la deuxième pression en deux parties, on envoie une première partie d'air surpressé à la deuxième pression au rebouilleur de cuve de la colonne d'oxygène pur et on envoie une deuxième partie d'air surpressé à la deuxième pression au vaporiseur.
on envoie de l'air à la première pression au rebouilleur de cuve de la colonne basse pression pour le chauffer. tout l'air est divisé en un débit à la première pression et un débit à la deuxième pression en amont de la ligne d'échange.
le premier débit de liquide riche en oxygène est moins riche en oxygène que le deuxième débit de liquide riche en oxygène.
- le premier débit de liquide riche en oxygène se vaporise partiellement dans le vaporiseur, le liquide formé constituant le deuxième débit de liquide riche en oxygène.
le débit d'air surpressé à la deuxième pression chauffe d'abord le rebouilleur de cuve de la colonne d'oxygène pur et ensuite le vaporiseur.
- de l'air à la première pression se refroidit dans la ligne d'échange et est envoyé sous forme gazeuse à la colonne moyenne pression.
un liquide cryogénique d'une source auxiliaire est envoyé à la double colonne.
Les termes « moyenne pression » et « basse pression » désignent simplement que la colonne moyenne pression opère à une pression plus élevée que la colonne basse pression. Ces termes sont communs dans l'art et clairs pour l'homme de l'art.
Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant une colonne moyenne pression et une colonne basse pression, reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve et un rebouilleur intermédiaire, et une colonne d'oxygène pur, une ligne d'échange , un vaporiseur , des moyens pour envoyer de l'air gazeux épuré puis refroidi à une première pression de la ligne d'échange à la colonne moyenne pression, des moyens pour envoyer un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression, des moyens pour soutirer un gaz riche en azote de la colonne basse pression, des moyens pour soutirer un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression, des moyens pour envoyer un premier débit de liquide riche en oxygène au vaporiseur, une conduite pour envoyer l'oxygène gazeux ainsi formé à la ligne d'échange, des moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve, où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène, un surpresseur, une conduite pour envoyer un débit d'air surpressé à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur, des conduites pour soutirer un gaz riche en azote en tête de la colonne moyenne pression, pour l'envoyer au rebouilleur intermédiaire de la colonne basse pression et pour envoyer le gaz condensé à la tête de la colonne moyenne pression et des conduites pour envoyer un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et pour envoyer le liquide qui s'y condense à la colonne moyenne pression caractérisé en ce qu'il comprend une conduite pour soutirer du liquide de cuve de la colonne d'oxygène pur comme produit et des moyens pour envoyer de l'air surpressé à la deuxième pression du surpresseur au vaporiseur.
Selon d'autres objets facultatifs de l'invention, il est prévu que l'appareil comprenne :
une conduite pour envoyer un liquide du vaporiseur en tête de la colonne d'oxygène pur et/ou
une conduite pour envoyer un liquide de cuve de la colonne basse pression en tête de la colonne d'oxygène pur
les moyens pour envoyer l'air surpressé du surpresseur au vaporiseur sont reliés au rebouilleur de cuve de la colonne d'oxygène pur de sorte que l'air destiné au vaporiseur passe à travers le rebouilleur de cuve de la colonne d'oxygène pur.
les moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur sont constitués par la conduite pour envoyer un liquide de cuve de la colonne basse pression en tête de la colonne d'oxygène pur.
des moyens pour diviser l'air surpressé à la deuxième pression en deux parties, les moyens pour envoyer de l'air surpressé à la deuxième pression du surpresseur au vaporiseur et la conduite pour envoyer un débit d'air surpressé à la deuxième pression au rebouilleur de cuve de la colonne d'oxygène pur étant reliés de sorte qu'une partie d'air surpressé est envoyée au rebouilleur de cuve de la colonne d'oxygène pur et une autre partie d'air surpressé est envoyée au vaporiseur. Le vaporiseur ne fait pas partie d'une colonne de distillation ou d'épuisement.
Selon un autre objet de l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique dans une unité de séparation comprenant une colonne moyenne pression et une colonne basse pression, reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve et un rebouilleur intermédiaire et une colonne d'oxygène pur dans lequel
i) on envoie de l'air gazeux épuré puis refroidi à une première pression dans une ligne d'échange à la colonne moyenne pression,
ii) on envoie un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression,
iii) on soutire un gaz riche en azote de la colonne basse pression, iv) on soutire un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression,
v) on envoie un premier débit de liquide riche en oxygène à un vaporiseur et on envoie l'oxygène gazeux ainsi formé à la ligne d'échange,
vi) on envoie un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve, où il s'épure pour former un liquide de cuve contenant au moins 98% mol.,
vii) on envoie un débit d'air surpressé à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur,
viii) on soutire un gaz riche en azote en tête de la colonne moyenne pression, on l'envoie au rebouilleur intermédiaire de la colonne basse pression et on envoie le gaz condensé à la tête de la colonne moyenne pression, et
ix) on envoie un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et on envoie le liquide qui s'y condense à la colonne moyenne pression caractérisé en ce que on soutire du liquide de cuve de la colonne d'oxygène pur comme produit et en ce que le premier débit de liquide riche en oxygène est moins riche en oxygène que le deuxième débit de liquide riche en oxygène.
Selon d'autres caractéristiques facultatives :
on pressurise le premier débit de liquide riche en oxygène en amont du vaporiseur. - on envoie un deuxième débit d'air surpressé à la deuxième pression au vaporiseur.
le premier débit de liquide riche en oxygène se vaporise partiellement dans le vaporiseur, le liquide formé constituant le deuxième débit de liquide riche en oxygène.
le débit d'air surpressé chauffe d'abord le rebouilleur de cuve de la colonne d'oxygène pur et ensuite le vaporiseur.
un liquide cryogénique d'une source auxiliaire est envoyé à la double colonne.
- la colonne moyenne pression opère à entre 2,5 et 4,5 bars abs.
Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant une colonne moyenne pression et une colonne basse pression, reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve et un rebouilleur intermédiaire et une colonne d'oxygène pur, une ligne d'échange, un vaporiseur, des moyens pour envoyer de l'air gazeux épuré puis refroidi à une première pression de la ligne d'échange à la colonne moyenne pression, des moyens pour envoyer un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression, des moyens pour soutirer un gaz riche en azote de la colonne basse pression, des moyens pour soutirer un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression, des moyens pour envoyer un premier débit de liquide riche en oxygène au vaporiseur, une conduite pour envoyer l'oxygène gazeux ainsi formé à la ligne d'échange, des moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve , où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène, un surpresseur, une conduite pour envoyer un débit d'air surpressé à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur, des conduites pour soutirer un gaz riche en azote en tête de la colonne moyenne pression, pour l'envoyer au rebouilleur intermédiaire de la colonne basse pression et pour envoyer le gaz condensé à la tête de la colonne moyenne pression et des conduites pour envoyer un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et pour envoyer le liquide qui s'y condense à la colonne moyenne pression caractérisé en ce qu'il comprend une conduite pour soutirer du liquide de cuve de la colonne d'oxygène pur comme produit et une conduite pour envoyer un liquide (53) du vaporiseur (51 ) en tête de la colonne d'oxygène pur (49).
L'appareil peut également comprendre une conduite pour envoyer un liquide de cuve de la colonne basse pression en tête de la colonne d'oxygène pur.
Les moyens pour envoyer l'air surpressé du surpresseur au vaporiseur peuvent être reliés au rebouilleur de cuve de la colonne d'oxygène pur de sorte que l'air destiné au vaporiseur passe à travers le rebouilleur de cuve de la colonne d'oxygène pur.
Les moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur peuvent être constitués par la conduite pour envoyer un liquide de cuve de la colonne basse pression en tête de la colonne d'oxygène pur.
L'appareil peut comprendre des moyens pour diviser l'air surpressé à la deuxième pression en deux parties, les moyens pour envoyer de l'air surpressé à la deuxième pression du surpresseur au vaporiseur et la conduite pour envoyer un débit d'air surpressé à la deuxième pression au rebouilleur de cuve de la colonne d'oxygène pur étant reliés de sorte qu'une partie d'air surpressé est envoyée au rebouilleur de cuve de la colonne d'oxygène pur et une autre partie d'air surpressé est envoyée au vaporiseur.
L'appareil peut comprendre des moyens pour envoyer un liquide cryogénique à la colonne basse pression d'une source extérieure.
L'appareil peut comprendre une conduite pour envoyer le débit d'air surpressé du rebouilleur de cuve de la colonne d'oxygène pur au vaporiseur et une conduite pour envoyer l'air du vaporiseur à la colonne moyenne pression et/ou à la colonne basse pression.
Selon une autre variante l'appareil comprend une conduite pour envoyer le débit d'air surpressé du rebouilleur de cuve de la colonne d'oxygène pur directement à la colonne moyenne pression et/ou à la colonne basse pression.
La principale caractéristique innovante de l'invention présentée ici est que le rebouillage de la colonne d'oxygène pur est réalisé par une fraction du débit d'air gazeux sortant de la ligne d'échange principale, comprimée par un surpresseur à la pression requise pour la vaporisation d'oxygène dans le vaporiseur (air HP). Cette fraction d'air HP se condense partiellement ou totalement dans le condenseur de la colonne d'oxygène pur.
Selon une variante, le débit d'air surpressé partiellement condensé, éventuellement après avoir séparé la partie condensée (qui est alors envoyée dans la colonne MP), est ensuite envoyé dans le vaporiseur produit où il finit de se condenser totalement. La condensation partielle de l'air surpressé permet, avec un débit quasi-nominal de production du GOX et la même pression, de faire fonctionner le vaporiseur en cuve de colonne pur, puis celui du vaporiseur produit. Le rebouillage de la colonne d'oxygène liquide pur est donc gratuit par rapport à l'énergie nécessaire pour vaporiser la production.
La pression de ce débit d'air est supérieure à la pression de la colonne MP (typiquement de l'ordre de 4,5 bar abs. contre 3,2 bar abs.).
On prélève une partie du liquide impur dans le vaporiseur produit (au même niveau et à la place de la purge de déconcentration du vaporiseur) que l'on envoie dans la colonne d'oxygène l iquide pur qui est une colonne à distiller sensiblement à la même pression que le vaporiseur produit..
Le reflux gazeux impur issu de la colonne d'oxygène pur est mélangé avec le flux gazeux issu du vaporiseur produit, les deux flux constituant le débit nominal de production du GOX impur.
Le liquide pur est prélevé en cuve de la colonne d'oxygène pur. Il sert aussi de purge de déconcentration de l'ensemble de l'appareil.
L'appoint de frigories peut être apporté par un liquéfacteur indépendant, par exemple par production d'azote liquide, à partir d'azote pur (issu d'un minaret), qui serait alors rajouté sous forme liquide dans l'appareil. S'il n'y a pas de production d'azote pur l iqu ide, on peut envisager de liquéfier de l'azote résiduaire dans un liquéfacteur indépendant.
Si la production de liquide pur est faible, on peut aussi envisager d'avoir un système de production de froid intégré à l'ASU.
L'invention sera décrite en plus de détail en se référant aux figures, qui illustrent des procédés de séparation d'air selon l'invention. Dans la Figure 1 , l'air est séparé dans un ASU comprenant une double colonne de séparation d'air, comprenant une colonne moyenne pression 23 et une colonne basse pression 25. Des frigories pour la séparation sont fournies par détente d'azote moyenne pression dans une turbine 47. L'appareil comprend une colonne d'oxygène liquide pur 49, une pompe 57, un vaporiseur 51 et une ligne d'échange 63.
L'air 1 est pressurisé par un compresseur 3 à une pression entre 2,5 et 4,5 bars abs. L'air est ensuite épuré dans une unité d'épuration 5 par adsoprtion. L'air épu ré 7 est d ivisé en deux parties . U ne partie 9 est surpressée dans un surpresseur 13 jusqu'à une pression d'entre 4. et 20 bars abs et puis refroidie dans la ligne d'échange 63 jusqu'au bout froid. L'air 9 est divisé en deux fractions 15, 17. Une fraction 1 5 est envoyée au vaporiseur 51 où elle sert à vaporiser partiellement de l'oxygène liquide comprenant au plus 97 % mol. d'oxygène, pour produire l'oxygène gazeux 59 qui se réchauffe dans la ligne d'échange 63. Ce gaz 59 est envoyé à une unité d'oxycombustion. Un liquide riche en oxygène 53 est soutiré du vaporiseur 51 comme purge. L'air se trouve condensé. L'autre fraction de l'air 17 est envoyée au rebouilleur de cuve 61 de la colonne d'oxygène pur 49. Cette colonne comporte le rebouilleur de cuve et des moyens d'échange de chaleur et de matière au-dessus de ce rebouilleur. De l'oxygène liquide 65 comprenant au plus 97% mol. d'oxygène est envoyé en tête de la colonne 49 et s'enrichit pour former le produit liquide 71 soutiré en cuve et contenant au moins 98% mol. d'oxygène. L'oxygène gazeux de tête de la colonne 49 est envoyé en cuve de la colonne basse pression 25. L'air condensé 17 se mélange avec l'air condensé provenant du vaporiseur 51 et, après détente dans une vanne 21 , est envoyé à la colonne MP 23, qui opère à entre 2,5 et 4,5 bars abs.
Une autre partie 1 1 de l'air est refroidie dans la ligne d'échange 63, est envoyée au rebouilleur de cuve 35 de la colonne BP 25, s'y condense au moins partiellement et est envoyée en cuve de la colonne MP 23, en dessous du point d'arrivée d'air liquide 19.
Du liquide enrichi en oxygène 27 est soutiré de la cuve de la colonne MP
23, refroidi dans le sous-refroidisseur 33, détendu et envoyé à la colonne BP 25. Du liquide 29 est soutiré de la colonne MP 23, refroidi dans le sous-refroidisseur 33, détendu et envoyé à la colonne BP 25. Du liquide riche en azote 31 est soutiré de la tête de la colonne MP 23, refroidi dans le sous-refroidisseur 33, détendu et envoyé à la tête de la colonne BP 25.
De l'azote basse pression 39 est soutiré en tête de la colonne BP, réchauffé dans le sous-refroidisseur 33 et réchauffé dans la ligne d'échange 63.
De l'azote moyenne pression 41 est divisé en deux pour former une partie
43 et une partie 45. La partie 43 sert à chauffer le rebouilleur intermédiaire 37 de la colonne basse pression 25. La partie 45 se réchauffe dans la ligne d'échange 63, est détendue dans la turbine 47 et est renvoyée à la ligne d'échange 63. De l'oxygène liquide est soutiré de la cuve de la colonne BP et divisé en deux. Une partie 55 est pressurisée dans la pompe 57 en amont du vaporiseur 51 et le reste 65 est envoyé en tête de la colonne d'oxygène pur 49 sans avoir été pressurisé. La tête de la colonne d'oxygène pur 49 se trouve donc à la même pression que la cuve de la colonne basse pression 25. Tout ou une partie du liquide de purge 53 peut également alimenter la tête de la colonne 49.
Un débit de liquide cryogénique 69, par exemple de l'azote liquide, est envoyé en tête de la colonne BP pour tenir le procédé en froid.
Le procédé de la Figure 1 bis diffère de celui de la Figure 1 en ce que la colonne 49 est alimentée en tête exclusivement par la purge 53 du vaporiseur 51 , suite à une étape de détente dans une vanne. Le rebouilleur de cuve 61 de la colonne 49 est toujours chauffé par l'air surpressé 17, l'air ainsi condensé étant mélangé avec l'air surpressé 15 qui a servi à chauffer le vaporiseur 51 . Il est également possible d'alimenter la colonne avec du liquide de purge 53 et de l'oxygène liquide 65 provenant de la cuve de la colonne basse pression 25.
Le procédé de la Figure 2 diffère de celui de la Figure 1 en ce que le débit d'air 9 est envoyé d'abord au vaporiseur de cuve 61 de la colonne d'oxygène pur 49 et ensuite au vaporiseur 51 où il se condense. L'air ainsi formé est détendu dans la vanne 21 et envoyé à la colonne moyenne pression 23. La fraction d'air 1 1 se refroidit dans la ligne d'échange 1 1 et est envoyée à la cuve de la colonne moyenne pression 23 sans avoir été détendue ou comprimée en aval du compresseur 3.
Le rebouilleur intermédiaire 37 est toujours chauffé par de l'azote moyenne pression 43 mais une autre partie de l'azote moyenne pression 73 est comprimée dans un surpresseur froid 71 à partir d'une température cryogénique et envoyée au rebouilleur de cuve 35. L'azote condensé est détendu dans une vanne 36 et envoyé en tête de la colonne MP 23. L'oxygène de cuve 55 de la colonne basse pression est entièrement pressurisé dans la pompe 57 envoyé au vaporiseur 51 où il se vaporise partiellement. Le gaz vaporisé constitue le produit d'oxygène gazeux 59 contenant moins que 97% mol. d'oxygène. Le liquide non-vaporisé 53 alimente la tête de la colonne 49. L'oxygène gazeux 67 de tête de la colonne 49 est mélangé avec l'oxygène gazeux 59. L'oxygène liquide 71 constitue le produit liquide. Dans ce cas, la colonne d'oxygène pur 49 n'opère pas à la même pression que la colonne BP 25.
Le procédé de la Figure 1 ou 1 bis peut utiliser de l'azote pour chauffer le rebouilleur de cuve 35 et le procédé de la Figure 2 peut utiliser de l'air pour chauffer le rebouilleur de cuve 35.

Claims

Revendications
1 . Procédé de séparation d'air par distillation cryogénique dans une unité de séparation comprenant une colonne moyenne pression (23) et une colonne basse pression (25), reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve (35) et un rebouilleur intermédiaire (37) et une colonne d'oxygène pur (49) dans lequel
i) on envoie de l'air gazeux épuré puis refroidi à une première pression dans une ligne d'échange à la colonne moyenne pression,
ii) on envoie un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression,
iii) on soutire un gaz riche en azote de la colonne basse pression, iv)on soutire un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression,
v) on envoie un premier débit de liquide riche en oxygène à un vaporiseur (51 ) et on envoie l'oxygène gazeux ainsi formé à la ligne d'échange,
vi) on envoie un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve (61 ), où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène,
vii) on envoie un débit d'air surpressé à une deuxième pression, supérieure à la première pression, au rebouilleur de cuve de la colonne d'oxygène pur,
viii) on soutire un gaz riche en azote en tête de la colonne moyenne pression, on l'envoie au rebouilleur intermédiaire de la colonne basse pression et on envoie le gaz condensé à la tête de la colonne moyenne pression, et
ix) on envoie un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et on envoie le liquide qui s'y condense à la colonne moyenne pression
caractérisé en ce que l'on soutire du liquide de cuve de la colonne d'oxygène pur comme produit et en ce que l'on envoie de l'air surpressé à la deuxième pression au vaporiseur pour vaporiser le premier débit de liquide riche en oxygène.
2. Procédé selon la revendication 1 dans lequel on pressurise le premier débit de liquide riche en oxygène en amont du vaporiseur (51 ).
3. Procédé selon la revendication 1 ou 2 dans lequel le premier débit de liquide riche en oxygène et le deuxième débit de liquide riche en oxygène ont la même pureté.
4. Procédé selon la revendication 3 dans lequel on divise de l'air surpressé à la deuxième pression en deux parties, on envoie une première partie d'air surpressé à la deuxième pression au rebouilleur de cuve de la colonne d'oxygène pur et on envoie une deuxième partie d'air surpressé à la deuxième pression au vaporiseur (51 ).
5. Procédé selon la revendication 1 ou 2 dans lequel le premier débit de liquide riche en oxygène est moins riche en oxygène que le deuxième débit de liquide riche en oxygène.
6. Procédé selon la revendication 5 dans lequel le premier débit de liquide riche en oxygène se vaporise partiellement dans le vaporiseur (51 ), le liquide formé constituant le deuxième débit de liquide riche en oxygène.
7. Procédé selon la revendication 6 dans lequel le débit d'air surpressé à la deuxième pression chauffe d'abord le rebouilleur de cuve (61 ) de la colonne d'oxygène pur (49) et ensuite le vaporiseur (51 ).
8. Procédé selon l'une des revendications précédentes dans lequel un liquide cryogénique (69) d'une source auxiliaire est envoyé à la double colonne.
9. Appareil de séparation d'air par distillation cryogénique comprenant une colonne moyenne pression (23) et une colonne basse pression (25), reliées thermiquement entre elles, la colonne basse pression comprenant un rebouilleur de cuve (35) et un rebouilleur intermédiaire (37) et une colonne d'oxygène pur (49), une ligne d'échange (63), un vaporiseur (51 ), des moyens pour envoyer de l'air gazeux épuré puis refroidi à une première pression de la ligne d'échange à la colonne moyenne pression, des moyens pour envoyer un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à la colonne basse pression, des moyens pour soutirer un gaz riche en azote de la colonne basse pression, des moyens pour soutirer un liquide riche en oxygène contenant au plus 97% mol. d'oxygène en cuve de la colonne basse pression, des moyens pour envoyer un premier débit de liquide riche en oxygène au vaporiseur, une conduite pour envoyer l'oxygène gazeux ainsi formé à la ligne d'échange, des moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur, ayant un rebouilleur de cuve (61 ), où il s'épure pour former un liquide de cuve contenant au moins 98% mol. d'oxygène, un surpresseur (3), une conduite pour envoyer un débit d'air surpressé (17) à une deuxième pression supérieure à la première pression au rebouilleur de cuve de la colonne d'oxygène pur, des conduites pour soutirer un gaz riche en azote en tête de la colonne moyenne pression, pour l'envoyer au rebouilleur intermédiaire de la colonne basse pression et pour envoyer le gaz condensé à la tête de la colonne moyenne pression et des conduites pour envoyer un gaz riche en azote ou de l'air au rebouilleur de cuve de la colonne basse pression et pour envoyer le liquide qui s'y condense à la colonne moyenne pression caractérisé en ce qu'il comprend une conduite pour soutirer du liquide de cuve (71 ) de la colonne d'oxygène pur comme produit et des moyens pour envoyer de l'air surpressé (15) à la deuxième pression du surpresseur au vaporiseur.
10. Appareil selon la revendication 9 comprenant :
i) une conduite pour envoyer un liquide (53) du vaporiseur (51 ) en tête de la colonne d'oxygène pur (49) et/ou
ii) une conduite pour envoyer un liquide de cuve (65) de la colonne basse pression (25) en tête de la colonne d'oxygène pur (49).
1 1 . Appareil selon la revendication 10 dans les moyens pour envoyer l'air surpressé du surpresseur (3) au vaporiseur (51 ) sont reliés au rebouilleur de cuve (61 ) de la colonne d'oxygène pur (49) de sorte que l'air destiné au vaporiseur passe à travers le rebouilleur de cuve de la colonne d'oxygène pur.
12. Appareil selon la revendication 9 ou 1 0 dans lequel les moyens pour envoyer un deuxième débit de liquide riche en oxygène en tête de la colonne d'oxygène pur sont constitués par la conduite pour envoyer un liquide de cuve de la colonne basse pression (65) en tête de la colonne d'oxygène pur (49).
13. Appareil selon la revendication 9,10 ou 12 comprenant des moyens pour diviser l'air surpressé à la deuxième pression en deux parties, les moyens pour envoyer de l'air surpressé à la deuxième pression du surpresseur (3) au vaporiseur (51 ) et la conduite pour envoyer un débit d'air surpressé à la deuxième pression au rebouilleur de cuve (61 ) de la colonne d'oxygène pur (49) étant reliés de sorte qu'une partie d'air surpressé (17) est envoyée au rebouilleur de cuve de la colonne d'oxygène pur et une autre partie d'air surpressé (15) est envoyée au vaporiseur.
14. Appareil selon l'une des revendications 9 à 13 comprenant une conduite pour envoyer un liquide (53) du vaporiseur (51 ) en tête de la colonne d'oxygène pur (49) et une conduite pour envoyer un liquide de cuve (65) de la colonne basse pression (25) en tête de la colonne d'oxygène pur (49).
15. Appareil selon l'une des revendications 9 à 14 comprenant des moyens (69) pour envoyer un liquide cryogénique à la colonne basse pression d'une source extérieure.
PCT/FR2012/050742 2011-04-08 2012-04-05 Procede et appareil de separation d'air par distillation cryogenique WO2012136939A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/110,356 US9696087B2 (en) 2011-04-08 2012-04-05 Method and apparatus for separating air by cryogenic distillation
EP12720248.9A EP2694898B1 (fr) 2011-04-08 2012-04-05 Procédé et appareil de séparation d'air par distillation cryogénique
AU2012238460A AU2012238460B2 (en) 2011-04-08 2012-04-05 Method and apparatus for separating air by cryogenic distillation
CA2830826A CA2830826C (fr) 2011-04-08 2012-04-05 Procede et appareil de separation d'air par distillation cryogenique
CN201280027982.2A CN103842753B (zh) 2011-04-08 2012-04-05 用于通过低温蒸馏分离空气的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153070A FR2973865B1 (fr) 2011-04-08 2011-04-08 Procede et appareil de separation d'air par distillation cryogenique
FR1153070 2011-04-08

Publications (2)

Publication Number Publication Date
WO2012136939A2 true WO2012136939A2 (fr) 2012-10-11
WO2012136939A3 WO2012136939A3 (fr) 2015-01-22

Family

ID=46052816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050742 WO2012136939A2 (fr) 2011-04-08 2012-04-05 Procede et appareil de separation d'air par distillation cryogenique

Country Status (7)

Country Link
US (1) US9696087B2 (fr)
EP (1) EP2694898B1 (fr)
CN (1) CN103842753B (fr)
AU (1) AU2012238460B2 (fr)
CA (1) CA2830826C (fr)
FR (1) FR2973865B1 (fr)
WO (1) WO2012136939A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251599A (zh) * 2014-07-12 2014-12-31 孙竟成 超低压空分设备工艺流程
FR3044747B1 (fr) * 2015-12-07 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de liquefaction de gaz naturel et d'azote
WO2018005540A1 (fr) 2016-06-27 2018-01-04 Texas Tech Universtiy System Appareil et procédé pour séparer l'oxygène liquide de l'air liquéfié
CN111406191B (zh) * 2017-12-25 2021-12-21 乔治洛德方法研究和开发液化空气有限公司 具有反向主热交换器的单封装空气分离设备
CN112781321B (zh) * 2020-12-31 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 一种具有氮液化器的空气分离装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936099A (en) 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
EP0547946A1 (fr) 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur
EP0793069A1 (fr) 1996-03-01 1997-09-03 Air Products And Chemicals, Inc. Générateur d'oxygène à deux degrés de pureté avec compresseur pour le rebouilleur
US5916262A (en) 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
EP0908689A3 (fr) * 1997-08-20 1999-06-23 AIR LIQUIDE Japan, Ltd. Procédé et dispositif de distillation d'air
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
FR2787561A1 (fr) * 1998-12-22 2000-06-23 Air Liquide Procede de separation d'air par distillation cryogenique
FR2930330B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2943772A1 (fr) * 2009-03-27 2010-10-01 Air Liquide Appareil et procede de separation d'air par distillation cryogenique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936099A (en) 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
EP0547946A1 (fr) 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur
EP0793069A1 (fr) 1996-03-01 1997-09-03 Air Products And Chemicals, Inc. Générateur d'oxygène à deux degrés de pureté avec compresseur pour le rebouilleur
US5916262A (en) 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen

Also Published As

Publication number Publication date
CN103842753A (zh) 2014-06-04
AU2012238460A1 (en) 2013-10-31
FR2973865A1 (fr) 2012-10-12
CA2830826A1 (fr) 2012-10-11
AU2012238460B2 (en) 2016-12-22
US9696087B2 (en) 2017-07-04
FR2973865B1 (fr) 2015-11-06
CN103842753B (zh) 2016-12-07
EP2694898A2 (fr) 2014-02-12
CA2830826C (fr) 2018-10-16
WO2012136939A3 (fr) 2015-01-22
EP2694898B1 (fr) 2020-06-17
US20140053601A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
CA2830826C (fr) Procede et appareil de separation d'air par distillation cryogenique
EP1623172A1 (fr) Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air
FR2990500A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP2510294A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3062197A3 (fr) Procede et appareil pour la separation de l'air par distillation cryogenique
EP2715260B1 (fr) Appareil et procédé intégré de séparation d'un mélange de dioxyde de carbone et au moins un autre gaz et de séparation d'air par distillation cryogénique
FR2844039A1 (fr) Procede et installation de production d'oxygene et de gaz rares par distillation cryogenique d'air
CA2865991C (fr) Procede et appareil de separation d'un melange contenant du dioxyde de carbone par distillation
EP3058297B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
EP3069091A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
EP2279385A2 (fr) Appareil et procédé de séparation d'air par distillation cryogénique
FR2831249A1 (fr) Procede et installation de separation d'air par distillation cryogenique
US20130133364A1 (en) Apparatus and process for separating air by cryogenic distillation
CA2885677A1 (fr) Procede et appareil de separation d'un melange contenant du dioxyde de carbone par distillation cryogenique
EP2686628B1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR2930328A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3102548A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
EP1132700A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2990019A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
WO2009136077A2 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2795496A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR2787561A1 (fr) Procede de separation d'air par distillation cryogenique
FR2974890A1 (fr) Procede et appareil de separation d'air par distillation cryogenique.
FR3141995A3 (fr) Procédé et appareil de séparation d'air par distillation cryogénique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720248

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2830826

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14110356

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012238460

Country of ref document: AU

Date of ref document: 20120405

Kind code of ref document: A