EP2676314A1 - Verfahren zur herstellung von elektroden - Google Patents

Verfahren zur herstellung von elektroden

Info

Publication number
EP2676314A1
EP2676314A1 EP12708665.0A EP12708665A EP2676314A1 EP 2676314 A1 EP2676314 A1 EP 2676314A1 EP 12708665 A EP12708665 A EP 12708665A EP 2676314 A1 EP2676314 A1 EP 2676314A1
Authority
EP
European Patent Office
Prior art keywords
temperature
drying
dried
electrode
metallic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12708665.0A
Other languages
English (en)
French (fr)
Inventor
Tim Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Tec Battery GmbH
Original Assignee
Li Tec Battery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Tec Battery GmbH filed Critical Li Tec Battery GmbH
Publication of EP2676314A1 publication Critical patent/EP2676314A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/04Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a process for the production of electrodes, in particular of negative electrodes, for electrochemical cells.
  • the electrochemical cells can preferably be used for driving a vehicle with an electric motor, preferably with hybrid drive or in "plug-in" operation.
  • Electrochemical cells especially lithium secondary batteries, because of their high energy density and high capacity, are used as energy stores in mobile information devices, e.g. Mobile phones, in tools or in electrically powered automobiles, as well as in automobiles with hybrid drive application.
  • electrochemical cells in the field of propulsion of automobiles must meet high requirements: the highest possible electrical capacity and energy density, which remains stable over a high number of charging and discharging cycles, with the lowest possible weight.
  • electrochemical cells The longevity of electrochemical cells is often dependent on the aging of the electrodes, in particular on the aging of the negative electrodes. During the aging process, the electrochemical cells lose their capacity and performance. This process takes place to a greater or lesser extent in most common electrochemical cells, and is highly dependent on the Usage circumstances (temperature, storage conditions, state of charge, etc.), but also of the quality and processing of the materials during the manufacturing process of the electrochemical cell. For example, high-quality processing of very pure materials can lead to very long-lived electrochemical cells that age only slightly over a longer period of time, thus losing less capacity and performance.
  • the invention is therefore based on the object of providing an optimized process for the production of electrodes, in particular of negative electrodes for long-lived electrochemical cells.
  • a method for producing electrodes for electrochemical cells in particular of negative electrodes, which comprises the step of: drying a material to be dried for the electrode by means of a temperature gradient, wherein in step of drying at least one UV irradiation is included.
  • the drying of a material to be dried by means of a temperature gradient has the advantage that a gentle drying can be carried out, which nevertheless takes place efficiently.
  • the UV irradiation of the material to be dried for the electrode has the advantage that impurities, in particular organic impurities by oxidation, can be removed at least partially gently and efficiently. Thereby arise primarily non-hazardous and easy-to-dispose decomposition products such as water and C0 2 .
  • the material to be dried of the electrode is at least partially cleaned by the UV irradiation. If the material to be dried is the metallic substrate of the electrode, the adhesion forces of the surface of the metallic substrate are at least partially increased, which leads to an improved adhesion of the electrochemical active material to the metal collector and thus to an improved longevity of the electrode.
  • electrochemical cell is any type of device for the electrical storage of energy to understand.
  • the term defines in particular electrochemical cells of the primary or secondary type, but also other forms of energy storage, such as capacitors.
  • an electrochemical cell is preferably to be understood as a lithium-ion cell.
  • negative electrode means that the electrode emits electrons when connected to a consumer, such as an electric motor.
  • positive electrode means that the electrode receives electrons when connected to a consumer, for example an electric motor.
  • the positive electrode according to this convention is the cathode.
  • An electrode that is to say the positive electrodes and / or the negative electrode, which is produced by the method according to the invention, has at least one metal collector and at least one electrochemical active material.
  • the electrode produced by the method according to the invention has, in addition to the metallic substrate and the electrochemical active material, at least one further additive, preferably an additive for increasing the conductivity, for example based on carbon, for example carbon black, and / or a redox-active additive which reduces the destruction of the electrochemical active material upon overcharge of the electrochemical cell, preferably minimized, preferably prevented.
  • the term "metallic substrate” designates the same component as the terms "electrode carrier” and "collector.”
  • the metallic substrate is at least partially designed as a film or as a network structure or as a fabric, preferably comprising copper or a copper-containing alloy, in particular as rolled copper. especially as a copper band.
  • said metallic substrate comprises aluminum.
  • the metallic substrate can be configured as a film, mesh structure or fabric, which preferably comprises at least partially plastics.
  • the metallic substrate, in particular its surface is pretreated, so that the adhesion force of the surface is at least partially increased. This is achieved, for example, by a wet-chemical treatment with acid, in particular an organic acid, and / or UV irradiation.
  • Suitable sources of UV radiation are, for example, mercury vapor lamps, in particular low-pressure mercury lamps.
  • temperature gradient is understood to mean that the temperature changes along a path.
  • the change in temperature along a path can be continuous or non-continuous, for example, in steps, the temperature can increase or decrease along a path, or As a result, at one point x of the distance, the temperature may be higher or lower than or equal to the temperature at another point y of the distance.
  • An advantage of using a temperature gradient is that the temperature, slowly, and thus gently for the material to be dried, is increased until the Temperature, which is needed for drying the material to be dried, is reached. Thus, the drying is gentle, but still efficient.
  • the material to be dried of the electrode is a metallic substrate whose surface has been treated with a paste of a liquid, such as NMP, and an electrochemical active material, preferably carbon-based, suspended therein.
  • a liquid such as NMP
  • an electrochemical active material preferably carbon-based, suspended therein.
  • the drying by means of temperature gradients is particularly advantageous.
  • the advantage in the present case for electrodes is that the material to be dried, ie the coated substrate, is heated slowly, so that the liquid contained can slowly evaporate and bumps, which can lead to the spalling of the electrochemical active material from the surface of the substrate, at least partially be prevented.
  • an electrode whose longevity has been improved can be obtained by improving the adhesion of the electrochemical active material on the surface of the metallic substrate, that is, in particular, the metal collector surface.
  • foiling is meant that the adhesion between electrochemical active material and metal collector surface is adversely affected, in particular deteriorates, or even no longer exists.
  • the temperature gradient is not greater than 100 ° C, preferably in the range of 10 ° C to 80 ° C, more preferably in the range of 30 ° C to 60 ° C.
  • the drying takes place at least partially under protective gas.
  • the shielding gas can be any gas which does not react with the material to be dried at the ambient conditions prevailing at the time of drying, that is, for example, at high temperatures. Suitable gases are, for example, C0 2 , N 2 or Ar.
  • the use of such protective gases has the advantage that the material to be dried does not come into contact with the ambient air and in particular not with oxygen and thus prevents the material to be dried from reacting in particular with oxygen.
  • ambient air refers to the air which is inside the drying device, which air may correspond in its composition to the respirable air that also prevails outside the drying device, but it may also be that the ambient air contains other components, such as vaporized solvents, or other concentrations of the components that make up the breathable air, such as increased water vapor concentration, or decreased oxygen concentration.
  • “Environmental conditions” are understood to mean the pressure and temperature which are within the range Prevail drying device.
  • the material to be dried is a preferably provided metallic substrate (collector) of the electrode.
  • the drying step may be carried out before or after a pretreatment of the surface of this substrate.
  • the material to be dried is the metallic substrate whose surface is wet-chemically pretreated, in particular purified, in particular with organic acid, in particular with oxalic acid, which is preferably dissolved in NMP.
  • the material to be dried is the metallic substrate whose surface has been coated with electrochemical active material.
  • the entire drying takes place in the absence of air, in particular of oxygen, and under a protective gas atmosphere.
  • the drying takes place only partially in the absence of air, in particular of oxygen, and under a protective gas atmosphere.
  • the drying may be followed by a storage step which likewise takes place at least partially with the exclusion of air, in particular of oxygen, and / or under a protective gas atmosphere.
  • the drying can be subdivided into a plurality of partial steps, preferably in up to ten partial steps, preferably in up to six partial steps, preferably in up to three partial steps.
  • the sub-steps may differ from each other by different, relevant for the drying process parameters, in particular concerning the environment (atmosphere) of the electrode in their treatment or coating, in particular selected from: temperature, pressure, atmosphere used (for example inert gas or ambient air), type of Drying (eg vacuum application, hot air blower, IR lamps or mechanical drying such as by suction, wiping or pressing), UV irradiation, or combinations thereof.
  • environment for example inert gas or ambient air
  • type of Drying eg vacuum application, hot air blower, IR lamps or mechanical drying such as by suction, wiping or pressing
  • UV irradiation or combinations thereof.
  • a first sub-step has a first temperature, which is different from a reference temperature, in particular is increased.
  • a first temperature which is preferably up to 10 ° C, preferably up to 30 ° C, preferably up to 50 ° C, preferably up to 70 ° C higher than the reference temperature.
  • the first temperature does not exceed 100 ° C.
  • the atmosphere may contain inert gas or ambient air.
  • the pressure may be different from a reference pressure, in particular lowered, but may also be equal to the reference pressure.
  • a second sub-step has a second temperature, which is different from the reference temperature and is preferably different from the first temperature in the first sub-step, in particular with respect to this.
  • a second temperature which is preferably up to 10 ° C, preferably up to 30 ° C, preferably up to 50 ° C, preferably up to 70 ° C higher than the reference temperature.
  • the second temperature exceeds 100 ° C Not.
  • the atmosphere may contain inert gas or ambient air.
  • the pressure may be different from the reference pressure, in particular be lowered, but may also be equal to the reference pressure.
  • a third substep comprises UV irradiation of the material to be dried at a third temperature.
  • the third temperature may be the same as the first temperature or the second temperature or the reference temperature.
  • the third temperature may also be different from the first temperature or the second temperature or the reference temperature.
  • the atmosphere may contain inert gas or ambient air.
  • the pressure may be different from the reference pressure, in particular be lowered, but may also be equal to the reference pressure.
  • a fourth sub-step has a fourth temperature which is different from the reference temperature and / or different from the first temperature and / or the second temperature and / or the third temperature, and which is in particular increased in relation to at least one of these temperatures , Preferred is a fourth temperature, which is preferably up to 10 ° C, preferably up to 30X, preferably up to 50 ° C, preferably up to 70 ° C higher than the reference temperature. Preferably, the fourth temperature does not exceed 100 ° C.
  • the atmosphere may contain inert gas or ambient air. In substep four, a protective gas atmosphere (e.g., argon) is particularly preferred.
  • the pressure may be different from the reference pressure, in particular be lowered, but may also be equal to the reference pressure.
  • the reference pressure can be the outside pressure and the reference temperature can mean the outside temperature.
  • the terms "outside pressure” and “outside temperature” refer to the pressure and the temperature which prevail outside the device within which the drying takes place. If, for example, the drying device is located in a production hall, the temperature and the pressure prevailing inside the production hall but outside the drying device are to be understood.
  • the reference temperature is preferably 25 ° C and the reference pressure is preferably 1, 031 bar.
  • Fig. 1 shows an embodiment schematically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Verfahren zum Herstellen einer Elektrode, insbesondere einer negativen Elektrode, einer elektrochemischen Zelle, welches den Schritt aufweist: Trocknen eines zu trocknenden Materials der Elektrode mittels eines Temperaturgradienten, wobei im Schritt des Trocknens eine UV-Bestrahlung enthalten ist.

Description

Verfahren zur Herstellung von Elektroden
Beschreibung Hiermit wird der gesamte Inhalt der Prioritätsanmeldung DE 10 201 1 01 1 156.5 durch Bezugnahme Bestandteil der vorliegenden Anmeldung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Elektroden, insbesondere von negativen Elektroden, für elektrochemische Zellen. Die elektrochemischen Zellen können vorzugsweise für den Antrieb eines Fahrzeugs mit Elektromotor, vorzugsweise mit Hybridantrieb oder im „plug in"-Betrieb, eingesetzt werden.
Elektrochemische Zellen, insbesondere Lithium-Sekundärbatterien, finden wegen ihrer hohen Energiedichte und hohen Kapazität als Energiespeicher in mobilen Informationseinrichtungen, wie z.B. Mobiltelefonen, in Werkzeugen oder in elektrisch betriebenen Automobilen sowie in Automobilen mit Hybrid-Antrieb Anwendung. Dabei müssen insbesondere elektrochemische Zellen im Bereich des Antriebs von Automobilen hohe Anforderungen erfüllen: möglichst hohe elektrische Kapazität und Energiedichte, welche über eine hohe Anzahl an Lade- und Entladezyklen stabil bleibt, bei möglichst geringem Gewicht.
Gerade die Langlebigkeit von elektrochemischen Zellen ist häufig abhängig von der Alterung der Elektroden, insbesondere von der Alterung der negativen Elektroden. Beim Alterungsprozess verlieren die elektrochemischen Zellen ihre Kapazität und Leistung. Dieser Prozess findet in mehr oder weniger großem Ausmaß in den meisten gebräuchlichen elektrochemischen Zellen statt, und ist stark abhängig von den Benutzungsumständen (Temperatur, Lagerungsbedingungen, Ladezustand, etc.), aber auch von der Qualität und Verarbeitung der Materialien während des Herstellungsprozesses der elektrochemischen Zelle. So kann eine hochwertige Verarbeitung von sehr reinen Materialien zu sehr langlebigen elektrochemischen Zellen führen, die auch über einen längeren Zeitraum hinweg nur wenig altern, also wenig Kapazität und Leistung verlieren.
Da der Reinheit von eingesetzten Materialien oftmals physikalische oder chemische Grenzen gesetzt sind, beispielsweise aufgrund von Syntheseprozessen, ist es ein vorrangiges Ziel der Batteriehersteller, durch Optimierung des Herstellungsverfahrens der Elektroden immer hochwertigere und damit langlebigere elektrochemische Zellen zu erhalten, wie beispielsweise beschrieben in der Druckschrift EP 2 006 942.
Der Erfindung liegt daher die Aufgabe zugrunde, ein optimiertes Verfahren zur Herstellung von Elektroden, insbesondere von negativen Elektroden für langlebige elektrochemische Zellen bereitzustellen.
Das wird erfindungsgemäß durch die Lehre der unabhängigen Ansprüche erreicht. Zu bevorzugende Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Zur Lösung dieser Aufgabe ist, wie im Folgenden ausführlich beschrieben wird, ein Verfahren zum Herstellen von Elektroden für elektrochemische Zellen, insbesondere von negativen Elektroden, vorgesehen, welches den Schritt aufweist: Trocknen eines zu trocknenden Materials für die Elektrode mittels eines Temperaturgradienten, wobei im Schritt des Trocknens zumindest eine UV-Bestrahlung enthalten ist.
Das Trocknen eines zu trocknenden Materials mittels eines Temperaturgradienten hat den Vorteil, dass eine schonende Trocknung ausgeführt werden kann, welche aber trotzdem effizient erfolgt.
Die UV-Bestrahlung des zu trocknenden Materials für die Elektrode hat den Vorteil, dass Verunreinigungen, insbesondere organische Verunreinigungen durch Oxidation, zumindest teilweise schonend und effizient entfernt werden können. Dabei entstehen primär ungefährliche und einfach zu entsorgende Zersetzungsprodukte wie Wasser und C02. Somit wird durch die UV-Bestrahlung das zu trocknende Material der Elektrode zumindest teilweise gereinigt. Handelt es sich bei dem zu trocknenden Material um das metallische Substrat der Elektrode, so werden die Adhäsionskräfte der Oberfläche des metallischen Substrats zumindest teilweise erhöht, was zu einer verbesserten Haftung des elektrochemischen Aktivmaterials auf dem Metallkollektor und somit zu einer verbesserten Langlebigkeit der Elektrode führt.
Unter einer "elektrochemischen Zelle" ist jede Art von Einrichtung zur elektrischen Speicherung von Energie zu verstehen. Der Begriff definiert damit insbesondere elektrochemische Zellen vom primären oder sekundären Typ, aber auch andere Formen von Energiespeichern, wie beispielsweise Kondensatoren. Vorzugsweise ist unter einer elektrochemischen Zelle im Sinne der vorliegenden Erfindung eine Lithium-Ionen-Zelle zu verstehen.
Der Begriff "negative Elektrode" bedeutet, dass die Elektrode beim Anschluss an einen Verbraucher, beispielsweise einen Elektromotor, Elektronen abgibt. Somit ist die negative Elektrode gemäß dieser Konvention die Anode. Entsprechend bedeutet der Begriff "positive Elektrode", dass die Elektrode beim Anschluss an einen Verbraucher, beispielsweise einen Elektromotor, Elektronen aufnimmt. Somit ist die positive Elektrode gemäß dieser Konvention die Kathode.
Eine Elektrode, also die positive Elektroden und/oder die negative Elektrode, welche durch das erfindungsgemäße Verfahren hergestellt wird, weist mindestens einen Metallkollektor und mindestens ein elektrochemisches Aktivmaterial auf.
In einer Ausführungsform weist die Elektrode, welche durch das erfindungsgemäße Verfahren hergestellt wurde, zusätzlich zum metallischen Substrat und zum elektrochemischen Aktivmaterial mindestens einen weiteren Zusatzstoff auf, vorzugsweise einen Zusatzstoff zu Erhöhung der Leitfähigkeit, beispielsweise auf Kohlenstoffbasis, beispielsweise Ruß, und/oder einen redoxaktiven Zusatzstoff, welcher bei Überladung der elektrochemischen Zelle die Zerstörung des elektrochemischen Aktivmaterials reduziert, vorzugsweise minimiert, vorzugsweise verhindert. Der Begriff „metallisches Substrat" bezeichnet vorliegend dasselbe Bauteil wie die Begriffe„Elektrodenträger" und„Kollektor". Vorzugsweise ist das metallische Substrat zumindest teilweise als Folie oder als Netzstruktur oder als Gewebe ausgestaltet, vorzugsweise aufweisend Kupfer oder eine kupferhaltige Legierung, insbesondere als Walzkupfer, insbesondere als Kupferband.
In einer weiteren Ausführungsform weist besagtes metallisches Substrat Aluminium auf.
In einer Ausführungsform kann das metallische Substrat als Folie, Netzstruktur oder Gewebe ausgestaltet sein, welches vorzugsweise zumindest teilweise Kunststoffe aufweist. In einer bevorzugten Ausführungsform wird das metallische Substrat, insbesondere dessen Oberfläche, vorbehandelt, so dass die Adhäsionskraft der Oberfläche zumindest teilweise erhöht wird. Dies wird beispielsweise durch eine nasschemische Behandlung mit Säure, insbesondere einer organischen Säure, und/oder einer UV-Bestrahlung erreicht.
Als UV-Strahlungsquelle eignen sich beispielsweise Quecksilberdampflampen, insbesondere Niederdruckquecksilberlampen.
Unter dem Begriff „Temperaturgradient" ist zu verstehen, dass sich die Temperatur entlang einer Strecke ändert. Die Änderung der Temperatur entlang einer Stecke kann kontinuierlich oder nicht kontinuierlich, also beispielsweise in Stufen erfolgen. Die Temperatur kann sich entlang einer Strecke erhöhen oder sinken, oder erhöhen und sinken. Es ergibt sich also, dass an einem Punkt x der Strecke die Temperatur höher oder niedriger oder gleich sein kann als die Temperatur an einem anderen Punkt y der Strecke.
Ein Vorteil der Verwendung eines Temperaturgradienten ist, dass die Temperatur, langsam, und somit für das zu trocknende Materials schonend, erhöht wird, bis die Temperatur, welche zur Trocknung des zu trocknenden Materials benötigt wird, erreicht ist. Somit erfolgt die Trocknung schonend, aber dennoch effizient.
In einer Ausführungsform handelt es sich bei dem zu trocknenden Material der Elektrode um ein metallisches Substrat, dessen Oberfläche mit einer Paste aus einer Flüssigkeit behandelt wurde, beispielsweise NMP, und einem darin suspendierten elektrochemischen Aktivmaterial, vorzugsweise auf Kohlenstoffbasis. In diesem Falle ist die Trocknung mittels Temperaturgradienten besonders vorteilhaft. Der Vorteil besteht vorliegend für Elektroden darin, dass das zu trocknenden Material, also das beschichtete Substrat, langsam erwärmt wird, so dass die enthaltene Flüssigkeit langsam verdampfen kann und Siedeverzüge, welche zum Abplatzen des elektrochemischen Aktivmaterials von der Oberfläche des Substrats führen können, zumindest teilweise verhindert werden. Somit kann eine Elektrode erhalten werden, deren Langlebigkeit verbessert wurde, durch eine Verbesserung der Adhäsion des elektrochemischen Aktivmaterials auf der Oberfläche des metallischen Substrats, also insbesondere Metallkollektoroberfläche.
Unter „Abplatzen" ist dabei zu verstehen, dass die Adhäsion zwischen elektrochemischen Aktivmaterial und Metallkollektoroberfläche negativ beeinflusst wird, insbesondere verschlechtert wird, oder sogar nicht mehr existent ist.
In einer bevorzugten Ausführungsform ist der Temperaturgradient nicht größer als 100°C, vorzugsweise im Bereich von 10°C bis 80°C, weiter vorzugsweise im Bereich von 30°C bis 60°C. In einer bevorzugten Ausführungsform findet die Trocknung zumindest teilweise unter Schutzgas statt. Als Schutzgas können alle Gase dienen, welche mit dem zu trocknenden Material bei den zum Zeitpunkt der Trocknung herrschenden Umgebungsbedingungen, also beispielsweise bei hohen Temperaturen, keine Reaktion eingehen. Geeignete Gase sind beispielsweise C02, N2 oder Ar. Die Verwendung solcher Schutzgase hat den Vorteil, dass das zu trocknende Material nicht mit der Umgebungsluft und insbesondere nicht mit Sauerstoff in Kontakt kommt und somit verhindert wird, dass das zu trocknende Material insbesondere mit Sauerstoff reagiert. Weiterhin sei darauf verwiesen, dass mit „Umgebungsluft" diejenige Luft gemeint ist, welche sich innerhalb der Trocknungsvorrichtung befindet. Diese Luft kann in ihrer Zusammensetzung der atembaren Luft, welche auch außerhalb der Trocknungsvorrichtung vorherrscht, entsprechen. Es kann jedoch auch sein, dass die Umgebungsluft weitere Komponenten enthält, wie beispielsweise verdampfte Lösemittel, oder andere Konzentrationen der Komponenten aus denen die atembare Luft besteht, enthält, wie beispielsweise eine erhöhte Wasserdampfkonzentration, oder eine erniedrigte Sauerstoffkonzentration. Unter „Umgebungsbedingungen" sind der Druck und die Temperatur zu verstehen, welche innerhalb der Trocknungsvorrichtung vorherrschen.
In einer Ausführungsform ist das zu trocknende Material ein vorzugsweise vorgesehenes metallisches Substrat (Kollektor) der Elektrode. Der Trocknungsschritt kann vor oder nach einer Vorbehandlung der Oberfläche dieses Substrats ausgeführt werden.
In einer besonders bevorzugten Ausführungsform ist das zu trocknende Material das metallische Substrat, dessen Oberfläche nasschemisch vorbehandelt, insbesondere gereinigt, wird, insbesondere mit organischer Säure, insbesondere mit Oxalsäure, welche vorzugsweise in NMP gelöst ist.
In einer weiteren bevorzugten Ausführungsform ist das zu trocknende Material das metallische Substrat, dessen Oberfläche mit elektrochemischem Aktivmaterial beschichtet wurde.
In einer Ausführungsform findet die gesamte Trocknung unter Ausschluss von Luft, insbesondere von Sauerstoff, und unter Schutzgasatmosphäre statt.
In einer weiteren Ausführungsform findet die Trocknung nur teilweise unter Ausschluss von Luft, insbesondere von Sauerstoff, und unter Schutzgasatmosphäre statt. An die Trocknung kann sich ein Lagerungsschritt anschließen, welcher ebenfalls zumindest teilweise unter Ausschluss von Luft, insbesondere von Sauerstoff, und/oder unter Schutzgasatmosphäre stattfindet. Die Trocknung kann sich in mehrere Teilschritte, vorzugsweise in bis zu zehn Teilschritte, vorzugsweise in bis zu sechs Teilschritte, vorzugsweise in bis zu drei Teilschritte unterteilen. Die Teilschritte können sich voneinander durch unterschiedliche, für den Trocknungsprozess maßgebliche Parameter unterscheiden, insbesondere betreffend die Umgebung (Atmosphäre) der Elektrode bei deren Behandlung bzw. Beschichtung, insbesondere ausgewählt aus: Temperatur, Druck, verwendete Atmosphäre (beispielsweise Schutzgas oder Umgebungsluft), Art der Trocknung (beispielsweise Vakuumbeaufschlagung, Heißluftgebläse, IR-Lampen oder mechanische Trocknung etwa durch Absaugen, Wischen, oder Pressen), UV-Bestrahlung, oder Kombinationen daraus.
Besonders vorteilhaft ist es, wenn die Temperatur langsam in verschiedenen aufeinanderfolgenden Teilschritten mit der Zeit erhöht wird.
In einer Ausführungsform weist ein erster Teilschritt eine erste Temperatur auf, welche von einer Referenztemperatur verschieden ist, insbesondere erhöht ist. Bevorzugt ist eine erste Temperatur, welche vorzugsweise bis zu 10°C, vorzugsweise bis zu 30°C, vorzugsweise bis zu 50°C, vorzugsweise bis zu 70°C höher ist als die Referenztemperatur. Vorzugsweise überschreitet die erste Temperatur 100°C nicht. Die Atmosphäre kann Schutzgas oder Umgebungsluft enthalten. Der Druck kann verschieden sein von einem Referenzdruck, insbesondere erniedrigt sein, kann aber auch gleich sein mit dem Referenzdruck.
In einer Ausführungsform weist ein zweiter Teilschritt eine zweite Temperatur aus, welche verschieden ist von der Referenztemperatur und vorzugsweise verschieden ist von der ersten Temperatur im ersten Teilschritt, insbesondere gegenüber dieser erhöht ist. Bevorzugt ist eine zweite Temperatur, welche vorzugsweise bis zu 10°C, vorzugsweise bis zu 30°C, vorzugsweise bis zu 50°C, vorzugsweise bis zu 70°C höher ist als die Referenztemperatur. Vorzugsweise überschreitet die zweite Temperatur 100°C nicht. Die Atmosphäre kann Schutzgas oder Umgebungsluft enthalten. Der Druck kann verschieden sein vom Referenzdruck, insbesondere erniedrigt sein, kann aber auch gleich sein mit dem Referenzdruck. In einer weiteren bevorzugten Ausführungsform weist ein dritter Teilschritt eine UV- Bestrahlung des zu trocknenden Materials bei einer dritten Temperatur auf. Die dritte Temperatur kann gleich sein wie die erste Temperatur oder wie die zweite Temperatur oder wie die Referenztemperatur. Die dritte Temperatur kann aber auch verschieden sein von der ersten Temperatur oder der zweiten Temperatur oder der Referenztemperatur. Die Atmosphäre kann Schutzgas oder Umgebungsluft enthalten. Der Druck kann verschieden sein vom Referenzdruck, insbesondere erniedrigt sein, kann aber auch gleich sein mit dem Referenzdruck.
In einer Ausführungsform weist ein vierter Teilschritt eine vierte Temperatur auf, welche verschieden ist von der Referenztemperatur und/oder verschieden ist von der ersten Temperatur und/oder der zweiten Temperatur und/oder der dritten Temperatur, und die insbesondere gegenüber wenigstens einer dieser Temperaturen erhöht ist. Bevorzugt ist eine vierte Temperatur, welche vorzugsweise bis zu 10°C, vorzugsweise bis zu 30X, vorzugsweise bis zu 50°C, vorzugsweise bis zu 70°C höher ist als die Referenztemperatur. Vorzugsweise überschreitet die vierte Temperatur 100°C nicht. Die Atmosphäre kann Schutzgas oder Umgebungsluft enthalten. In Teilschritt vier ist eine Schutzgasatmosphäre (z.B. Argon) besonders bevorzugt. Der Druck kann verschieden sein vom Referenzdruck, insbesondere erniedrigt sein, kann aber auch gleich sein mit dem Referenzdruck.
Der Referenzdruck kann den Außendruck und die Referenztemperatur kann die Außentemperatur bedeuten. Die Begriffe „Außendruck" und „Außentemperatur" bezeichnen den Druck und die Temperatur, welche außerhalb der Vorrichtung, innerhalb derer die Trocknung stattfindet, vorherrschen. Steht beispielsweise die Trocknungsvorrichtung in einer Produktionshalle, so ist die Temperatur und der Druck zu verstehen, welche innerhalb der Produktionshalle, aber außerhalb der Trocknungsvorrichtung vorherrschen. Die Referenztemperatur beträgt vorzugsweise 25°C und der Referenzdruck beträgt vorzugsweise 1 ,031 bar. Fig. 1 stellt ein Ausführungsbeispiel schematisch dar.
Das Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Herstellung einer Elektrode weist folgende Schritte auf:
• Bereitstellung des zu trocknenden Materials einer Elektrode (10).
• Ausführen der Trocknung in einem ersten Segment bei einer Temperatur, welche höher ist als in Verfahrensschritt (10), vorzugsweise bis zu 20°C höher, aber nicht höher als 100°C (20).
• Ausführen der Trocknung in einem zweiten Segment bei einer Temperatur, welche höher ist als in Verfahrensschritt (20), vorzugsweise bis zu 20°C höher, aber nicht höher als 100°C (30).
• Ausführen der Trocknung mit zusätzlicher UV-Bestrahlung in einem dritten Segment bei einer Temperatur, welche höher ist als in Verfahrensschritt (30), vorzugsweise bis zu 20°C höher, aber nicht höher als 100°C (40).
• Ausführen der Trocknung in einem vierten Segment bei einer Temperatur, welche höher ist als in Verfahrensschritt (30), vorzugsweise bis zu 20°C höher, aber nicht höher als 100°C unter Schutzgasatmosphäre (50).
• Lagerung des getrockneten Materials einer Elektrode, vorzugsweise unter Schutzgas (60).

Claims

Patentansprüche
Verfahren zum Herstellen einer Elektrode, insbesondere einer negativen Elektrode, einer elektrochemischen Zelle, welches den Schritt aufweist:
Trocknen eines zu trocknenden Materials der Elektrode mittels eines Temperaturgradienten,
dadurch gekennzeichnet, dass
im Schritt des Trocknens zumindest eine UV-Bestrahlung enthalten ist.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Temperaturgradient nicht größer ist als 100°C.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trocknung
einen ersten Trocknungsschritt aufweist bei einer ersten Temperatur,
einen zweiten Trocknungsschritt bei einer zweiten Temperatur,
einen dritten Trocknungsschritt bei einer dritten Temperatur und
einen vierten Trocknungsschritt bei einer vierten Temperatur.
Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass eine UV-Bestrahlung des zu trocknenden Materials im dritten Trocknungsschritt ausgeführt wird.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trocknung zumindest teilweise unter Schutzgas stattfindet.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zu trocknende Material ein metallisches Substrat aufweist oder ist. Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zu trocknende Material als metallisches Substrat ausgestaltet ist, welches zumindest teilweise mit elektrochemischen Aktivmaterial beschichtet ist.
Verfahren gemäß mindestens einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass das metallische Substrat eine vorbehandelte Oberfläche aufweist.
Verfahren gemäß mindestens einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das metallische Substrat eine mit organischer Säure vorbehandelte Oberfläche aufweist.
EP12708665.0A 2011-02-14 2012-01-26 Verfahren zur herstellung von elektroden Withdrawn EP2676314A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011011156A DE102011011156A1 (de) 2011-02-14 2011-02-14 Verfahren zur Herstellung von Elektroden
PCT/EP2012/000356 WO2012110195A1 (de) 2011-02-14 2012-01-26 Verfahren zur herstellung von elektroden

Publications (1)

Publication Number Publication Date
EP2676314A1 true EP2676314A1 (de) 2013-12-25

Family

ID=45833284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12708665.0A Withdrawn EP2676314A1 (de) 2011-02-14 2012-01-26 Verfahren zur herstellung von elektroden

Country Status (7)

Country Link
US (1) US20140059846A1 (de)
EP (1) EP2676314A1 (de)
JP (1) JP2014505342A (de)
KR (1) KR20140020263A (de)
CN (1) CN103403923A (de)
DE (1) DE102011011156A1 (de)
WO (1) WO2012110195A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510939A (ja) * 2013-03-11 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムイオン電池の吹付けコーティングプロセスのための電極表面粗さ制御
DE102013219604A1 (de) * 2013-09-27 2015-04-02 Robert Bosch Gmbh Elektrodenherstellung mit NMP unter Inertgasatmosphäre
WO2017000157A1 (en) * 2015-06-30 2017-01-05 GM Global Technology Operations LLC Method for reducing residual water content in battery material
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11735755B2 (en) 2018-11-06 2023-08-22 Utility Global, Inc. System and method for integrated deposition and heating
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
WO2020102634A1 (en) * 2018-11-17 2020-05-22 Utility Global, Inc. Method of making electrochemical reactors
CN115692615A (zh) * 2021-07-30 2023-02-03 华中科技大学 一种基于水系粘结剂的低迂曲度厚电极、其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294765A1 (en) * 2008-05-30 2009-12-03 Fujifilm Corporation Semiconductor device, method for producing the same, sensor and electro-optical device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717085B2 (ja) * 1994-10-21 2005-11-16 キヤノン株式会社 二次電池用負極、該負極を有する二次電池及び電極の作製方法
JP2004303610A (ja) * 2003-03-31 2004-10-28 Yuasa Corp 直接メタノール形燃料電池とその製造方法
JP5194255B2 (ja) 2006-03-02 2013-05-08 国立大学法人岩手大学 二次電池及びその製造方法並びにシステム
KR101430617B1 (ko) * 2008-02-26 2014-08-18 삼성에스디아이 주식회사 니오븀 산화물 함유 전극 및 이를 채용한 리튬 전지
US8147916B2 (en) * 2008-03-07 2012-04-03 Bathium Canada Inc. Process for making electrodes for lithium based electrochemical cells
JP4412412B2 (ja) * 2008-05-28 2010-02-10 トヨタ自動車株式会社 リチウム電池の処理方法
CN101685853A (zh) * 2008-09-23 2010-03-31 深圳市比克电池有限公司 一种锂离子电池制备方法
JPWO2010113708A1 (ja) * 2009-03-30 2012-10-11 三菱マテリアル株式会社 太陽電池モジュールの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294765A1 (en) * 2008-05-30 2009-12-03 Fujifilm Corporation Semiconductor device, method for producing the same, sensor and electro-optical device

Also Published As

Publication number Publication date
WO2012110195A1 (de) 2012-08-23
DE102011011156A1 (de) 2012-08-16
CN103403923A (zh) 2013-11-20
KR20140020263A (ko) 2014-02-18
US20140059846A1 (en) 2014-03-06
JP2014505342A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
WO2012110195A1 (de) Verfahren zur herstellung von elektroden
DE102015112182B4 (de) Feststoff-Lithium-Sekundärbatterie und Herstellungsverfahren dafür
DE112012001928B4 (de) Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie
EP2573845B1 (de) Strukturstabiles Aktivmaterial für Batterieelektroden
DE102010044080A1 (de) Herstellungsverfahren für Elektroden
DE102016212779B4 (de) Elektrolyt und Magnesium-Sekundärbatterie
DE102015208734A1 (de) Verfahren zum Herstellen einer Energiespeichereinrichtung und Energiespeichereinrichtung
DE102015223610A1 (de) Neue Vorbehandlungsmethode für Aktivmaterialien für Lithium-Ionen-Batterien
DE3615975A1 (de) Polyaniline, verfahren zu ihrer herstellung und sie enthaltende zellen
WO2012110196A2 (de) Verfahren zur herstellung von elektroden
DE602004002276T2 (de) Sekundärzelle mit polymerbeschichter anode
EP3662525B1 (de) Verfahren zur thermischen behandlung eines elektrodenfilms auf einem metallischen stromkollektor
DE112016006973T5 (de) Lithiumionenbatterie und Verfahren zu ihrer Herstellung
DE102008046498A1 (de) Elektrode und Separatormaterial für Lithium-Ionen-Zellen sowie Verfahren zu deren Herstellung
DE102020110101A1 (de) Nachbehandlungsverfahren für eine Lithium-Sekundärbatterie
DE102018214216A1 (de) Herstellungsverfahren für eine Batterieelektrode und Batteriezelle sowie Batterieelektrode und Batteriezelle daraus, Vorrichtung zur Herstellung von Batteriezellen, Fahrzeug, sowie Verwendung von ionischen Flüssigkeiten
DE102018219586A1 (de) Beschichtung von Anoden- und Kathodenaktivmaterialien mit hochvoltstabilen Festelektrolyten und einem Elektronenleiter im Mehrschichtsystem und Lithium-Ionen-Batteriezelle
DE102014105531A1 (de) LiPON oder LiPSON Festelektrolyt-Schichten und Verfahren zur Herstellung solcher Schichten
EP3635807B1 (de) Elektrolyt für eine alkali-schwefel-batterie, alkali-schwefel-batterie denselben enthaltend, und verwendung des elektrolyten
DE102011011154A1 (de) Verfahren zur Herstellung von Elektroden
DE102015214577A1 (de) Verfahren zur Herstellung einer Elektrode eines Lithiumionenakkumulators
DE102014210499A1 (de) Neue Vorbehandlungsmethode für Anoden in Lithiumionenbatterien
DE102014213686A1 (de) Elektrode für eine galvanische Zelle
DE102020101890B4 (de) Bismut-Ionen-Akkumulator und Verfahren zu dessen Herstellung
DE102015219473A1 (de) Elektrodenmaterial, Batteriezelle dieses enthaltend und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140716

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141127