DE112012001928B4 - Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie - Google Patents

Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie Download PDF

Info

Publication number
DE112012001928B4
DE112012001928B4 DE112012001928.8T DE112012001928T DE112012001928B4 DE 112012001928 B4 DE112012001928 B4 DE 112012001928B4 DE 112012001928 T DE112012001928 T DE 112012001928T DE 112012001928 B4 DE112012001928 B4 DE 112012001928B4
Authority
DE
Germany
Prior art keywords
magnesium
active material
bismuth
battery
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE112012001928.8T
Other languages
English (en)
Other versions
DE112012001928T5 (de
DE112012001928T8 (de
Inventor
Masaki Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Engineering and Manufacturing North America Inc
Original Assignee
Toyota Motor Engineering and Manufacturing North America Inc
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Engineering and Manufacturing North America Inc, Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Motor Engineering and Manufacturing North America Inc
Publication of DE112012001928T5 publication Critical patent/DE112012001928T5/de
Application granted granted Critical
Publication of DE112012001928T8 publication Critical patent/DE112012001928T8/de
Publication of DE112012001928B4 publication Critical patent/DE112012001928B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Aktives Material einer negativen Elektrode (14) einer Magnesiumbatterie, das metallisches Bismut umfasst, wobei das aktive Material eine Phase aufweist, die in einem geladenen Zustand der Magnesiumbatterie metallischem Bismut entspricht und wobei das aktive Material eine Phase aufweist, die in einem entladenen Zustand der Magnesiumbatterie einer intermetallischen Verbindung von Magnesium und Bismut entspricht.

Description

  • GEBIET DER ERFINDUNG
  • Die Erfindung bezieht sich auf elektrochemische Vorrichtungen, wie Batterien, insbesondere wiederaufladbare Batterien, wie eine wiederaufladbare Magnesiumbatterie.
  • STAND DER TECHNIK
  • Stand der Technik ist in den Patent-Dokumenten 1 und 2 zu finden.
  • HINTERGRUND DER ERFINDUNG
  • Wiederaufladbare Batterien, wie Lithiumionenbatterien, haben eine Vielzahl kommerzieller Anwendungen. Die Kapazitätsdichte ist eine wichtige Eigenschaft und höhere Kapazitätsdichten sind für eine Vielzahl von Anwendungen wünschenswert.
  • Ein Magnesiumion in einer Magnesium- oder einer Magnesiumionenbatterie trägt zwei elektrische Ladungen im Gegensatz zu der einzelnen Ladung eines Lithiumions. Verbesserte Elektrodenmaterialien wären sehr nützlich, um Batterien mit hoher Kapazitätsdichte zu entwickeln.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • In einem Aspekt wird eine Magnesiumionenbatterie offenbart, die eine negative Elektrode, die ein aktives Material umfasst, und eine positive Elektrode umfasst. Ein Elektrolyt ist zwischen der negativen Elektrode und der positiven Elektrode angeordnet. Der Elektrolyt umfasst eine Magnesiumverbindung, die Magnesiumionen bereitstellt, die elektrolytisch mit dem aktiven Material interagieren,. Das aktive Material umfasst eine intermetallische Verbindung von Magnesium und Bismut.
  • In einem anderen Aspekt wird ein aktives Material einer negativen Elektrode einer Magnesiumbatterie offenbart, das metallisches Bismut umfasst, wobei das aktive Material im geladenen Zustand der Magnesiumbatterie eine Phase aufweist, die metallischem Bismut entspricht und wobei das aktive Material im entladenen Zustand der Magnesiumbatterie eine Phase aufweist, die einer intermetallischen Verbindung von Magnesium und Bismut entspricht.
  • In einem weiteren Aspekt ist eine Verwendung des erfindungsgemäßen aktiven Materials in der negativen Elektrode offenbart, die ein Bindemittel und ein elektrisch leitendes Material umfasst.
  • In einem weiteren Aspekt ist eine Magnesiumionenbatterie offenbart, die eine negative Elektrode, die ein aktives Material umfasst, und eine positive Elektrode umfasst. Ein Elektrolyt ist zwischen der negativen Elektrode und der positiven Elektrode angeordnet. Der Elektrolyt umfasst eine Magnesiumverbindung, die Magnesiumionen bereitstellt, die elektrolytisch mit dem aktiven Material interagieren. Das aktive Material umfasst eine intermetallische Verbindung von Magnesium und Bismut.
  • Figurenliste
    • 1 ist ein Diagramm einer Magnesiumbatterie, die eine positive Magnesiummetallelektrode und eine negative Elektrode aufweist, die ein neues aktives Material umfasst;
    • 2 ist ein Röntgenbeugungs- (XRD) Diagramm der Intensität als Funktion von Theta für ein aktives Material einer Bismutelektrode, welches Bismut und intermetallische Spezies anzeigt;
    • 3 ist ein Diagramm der Spannung als Funktion der spezifischen Kapazität in einem zyklischen Test für ein aktives Material einer Anode, die Bismut umfasst.
  • DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
  • Beispiele der vorliegenden Erfindung umfassen elektrochemische Vorrichtungen, wie Batterien, insbesondere wiederaufladbare Batterien. Die Beispiele umfassen magnesiumbasierte Batterien und beziehen sich insbesondere auf Materialien, die als aktive Materialien innerhalb der Elektroden einer Magnesiumbatterie verwendet werden. Im Speziellen umfasst eine beispielhafte Batterie ein aktives Elektrodenmaterial, das Bismut umfasst. Das aktive Material kann zum Beispiel Bismut und eine intermetallische Verbindung von Bismut und Magnesium umfassen. Das hier beschriebene verbesserte aktive Material kann innerhalb der Kathode und/oder Anode einer beispielhaften Batterie verwendet werden.
  • In einem spezifischen Beispiel, das nicht als einschränkend gedacht ist, umfasst ein verbessertes aktives Material für eine Magnesiumbatterie Bismut und eine intermetallische Verbindung von Bismut und Magnesium, mit der Formel Mg3Bi2.
  • Eine wiederaufladbare Magnesiumbatterie ist aufgrund ihrer hohen Kapazitätsdichte erwartungsgemäß ein Hochenergiebatteriesystem. Insbesondere im Vergleich zu Lithiumionenbatterien überträgt das Magnesiumion zwei Elektronen pro Magnesiumion. Allerdings gab es zuvor keine guten aktiven Materialien für Kathoden oder Anoden, welche in vollem Umfang den Vorteil der hohen Kapazitätsdichte nutzen können.
  • In Beispielen der vorliegenden Erfindung werden verbesserte aktive Materialien, die Bismut und eine intermetallische Verbindung von Bismut und Magnesium umfassen, als aktives Material für eine wiederaufladbare Batterie verwendet. Ein bestimmtes Beispiel eines verbesserten aktiven Materials umfasst Bismut und Mg3Bi2. Das aktive Material kann ferner ein elektrisch leitfähiges Material und ein Bindemittel umfassen. Beispiele elektrisch leitender Materialien umfassen Kohlenstoffpartikel, wie Kohlenstoffruß. Beispiele von Bindemitteln umfassen verschiedene Polymere.
  • Die Elektrolytschicht kann einen Separator umfassen, der hilft, die elektrische Isolation zwischen den positiven und negativen Elektroden aufrechtzuerhalten. Ein Separator kann Fasern, Partikel, ein Netz, ein poröses Blatt oder andere Formen von Material umfassen, die ausgelegt sind, um das Risiko physikalischen Kontaktes und/oder eines Kurzschlusses zwischen den Elektroden zu reduzieren. Der Separator kann ein einheitliches Element sein, oder er kann eine Vielzahl einzelner Abstandshalterelemente, wie Partikel oder Fasern, umfassen. Die Elektrolytschicht kann einen Separator umfassen, der mit einer Elektrolytlösung getränkt ist. In einigen Beispielen, die zum Beispiel einen Polymerelektrolyten verwenden, kann der Separator weggelassen werden.
  • Die Elektrolytschicht kann ein nicht-wässriges Lösungsmittel, wie ein organisches Lösungsmittel, und ein Salz des aktiven Ions umfassen, zum Beispiel ein Magnesiumsalz. Magnesiumionen, die von dem Magnesiumsalz bereitgestellt werden, interagieren elektrolytisch mit dem/-n aktiven Material(-ien). Der Elektrolyt kann ein Elektrolyt sein, der Magnesiumionen umfasst, oder der diese auf andere Weise bereitstellt, wie ein nicht-wässriger oder aprotischer Elektrolyt, der ein Magnesiumsalz umfasst. Der Elektrolyt kann ein organisches Lösungsmittel umfassen. Magnesiumionen können als ein Salz oder als ein Komplex von Magnesium oder als jede beliebige geeignete Form vorliegen.
  • Der Elektrolyt kann andere Verbindungen umfassen, beispielsweise Zusatzstoffe, um die ionische Leitfähigkeit zu verbessern, und er kann in manchen Beispielen saure oder basische Verbindungen als Zusatzstoffe umfassen. Der Elektrolyt kann eine Flüssigkeit, ein Gel oder ein Feststoff sein. Der Elektrolyt kann ein Polymerelektrolyt sein, der beispielsweise ein weichgemachtes Polymer umfasst, und er kann ein Polymer aufweisen, das mit Magnesiumionen durchtränkt ist oder diese auf andere Weise umfasst. In manchen Beispielen kann der Elektrolyt ein geschmolzenes Salz umfassen.
  • Im Beispiel einer Batterie, die eine Elektrode umfasst, die Magnesiummetall aufweist, kann Magnesium als Blatt, Band, Partikel oder andere physikalische Form vorliegen. Magnesium kann als im Wesentlichen reines Magnesiummetall oder in einer andern Form vorliegen. Zum Beispiel kann eine Elektrode ein magnesiumenthaltendes Metall, wie eine Legierung, umfassen. Eine magnesiumenthaltende Elektrode kann durch einen Stromsammler unterstützt sein.
  • Ein Stromsammler kann ein Metall oder ein anderes elektrisch leitendes Blatt umfassen, auf dem die Elektrode unterstützt ist. Ein Metallblatt kann Aluminium, Kupfer oder ein anderes Metall oder eine Legierung umfassen. In manchen Beispielen kann ein Metallgehäuse die Funktion eines Stromsammlers übernehmen. Andere leitende Materialien, wie elektrisch leitende Polymere, können als Stromsammler verwendet werden.
  • Ein Bindemittel, das in einer Elektrode verwendet wird, kann jedes Material umfassen, das in der Lage ist, die Elektrodenkomponenten zu verbinden. Viele Bindemittel sind im Fachgebiet von Batterien bekannt. Zum Beispiel sind verschiedene Polymerbindemittel bekannt und können verwendet werden.
  • 1 stellt eine wiederaufladbare Magnesiumionenbatterie dar, die ein verbessertes aktives Material einer negativen Elektrode aufweist. Die Batterie umfasst eine positive Elektrode 10, die Magnesiummetall umfasst, eine Elektrolytschicht 12, eine negative Elektrode 14, einen Stromsammler 16, ein Gehäuse der negativen Elektrode 18, ein Gehäuse der positiven Elektrode 20 und eine dichtende Abdeckung 22. Die Elektrolytschicht 12 umfasst einen Separator, der in Elektrolytlösung getränkt ist und die negative Elektrode 14 ist auf dem Stromsammler 16 unterstützt. In diesem Beispiel umfasst die negative Elektrode ein verbessertes aktives Material nach einem Beispiel der vorliegenden Erfindung, leitenden Kohlenstoff und ein Bindemittel. Zum Beispiel kann die negative Elektrode Bismut und eine intermetallische Verbindung von Bismut und Magnesium, wie Mg3Bi2, umfassen.
  • Beispiele
  • Bismutpulver wurde von Sigma Aldrich gekauft (CAS 7440-69-9) und jeweils mit Acetylenruß (DENKAHS-100) und PVdF (Kreha KF-Polymer) als Bindemittel gemischt, um eine Paste zu erzeugen. Die erzeugten Pasten wurden mit einem herkömmlichen Elektrodenerzeugungsverfahren auf einen Ni- oder Cu-Stromsammler geschichtet. Eine Bi/Mg-Zelle wurde mit einer kommerziellen elektrochemischen Zelle (Tomcell TJAC) hergestellt. Ein Grignard basierter Elektrolyt (0,25M EtMgCl-Me, AlCl in THF) wurde als Elektrolytlösung erzeugt und eine Mg-Metallscheibe (ESPI Metalle 3N Reinheit) wurde als eine Gegenelektrode hergestellt. Die Mg-Metallkathode wurde mit einem Glasplättchen abgeschabt, um eine MgO-Schicht an der Oberfläche vor der Zellherstellung zu entfernen. Ein galvanostatischer Lade- Entladetest für die Bi/Mg Zelle wurde mit 0,43C (1 mA/Zelle) durchgeführt. Die XRD-Analyse der geladenen und der entladenen Anode wurde mit einem Cu-Ka-Strahl (40 kV 44mA) mit einer Abtastrate von 2°min-l im 2theta-Bereich von 10-60° durchgeführt.
  • 2 stellt ein XRD-Diagramm eines aktiven Materials einer Bismutanode, sowohl für eine entladene, als auch für eine geladene Elektrode dar. Wie anhand des Diagramms zu sehen ist, entspricht die Kurve des entladenen Zustands weitgehend dem Muster von Mg3Bi2, das in dem Diagramm durch die Diamantsymbole wiedergegeben wird. Das mit den Diamantsymbolen bezeichnete Muster entspricht einer hexagonalen intermetallischen Mg3Bi2 Phase. Die Kurve, die der geladenen Anode entspricht, ähnelt stark dem Muster einer rhombohedralen Phase von Bismut, das durch die Punkte wiedergegeben wird. Die Kombination der Kurven, die dem ungeladenen und dem geladenen Zustand entsprechen, deutet darauf hin, das während des Lade- und Entladezyklus der Magnesiumbatterie eine zweiphasige Reaktion zwischen Bismut und dem intermetallischen Mg3Bi2 auftritt.
  • 3 stellt Lade-Entladekurven für ein aktives Material einer Anode aus Bismut und einer intermetallsichen Verbindung von Bismut und Magnesium dar. Eine Bismutmagnesiumzelle, die einen Elektrolyten aus 0,25 M EtMgCl-2Me2AlCI aufwies, wurde mit einem Stromfluss von 1 Milliampere (0,43C) betrieben. Wie anhand des Diagramms zu sehen ist, zeigte die Elektrodenkonfiguration eine Energiekapazität von mehr als 380 Milliamperestunden/Gramm mit 100% Coulombeffizienz. Das Diagramm weist auf eine Energiekapazität von ungefähr 387 Milliamperestunden/Gramm hin.
  • Das Diagramm für eine Magnesiumbismuthalbzelle zeigte die Coulombeffizienz von ungefähr 100% und eine dauerhaft stabile Entladekapazität von 387 mAh/g. Somit hat das Magnesium/Bismut-System, was die Kapazitätsdichte betrifft, signifikante Potenzialvorteile gegenüber Lithiumionenbatterien.
  • Beispiele der vorliegenden Erfindung umfassen Batterien in jedem beliebigen geeigneten Format, wie Knopfzelle, andere runde Zelle, zylindrische Zelle, rechteckige oder andere prismatische Zelle und dergleichen, die eine oder mehrere Zellen aufweisen, die elektrisch parallel und/oder in Serie geschaltet sind. Beispielhafte Vorrichtungen umfassen auch aufgerollte Batterieformen und Kombinationen einer Batterie mit einem Superkondensator und/oder einer Brennstoffzelle und dergleichen. Beispiele der vorliegenden Erfindung umfassen auch verschiedene elektrisch betriebene Vorrichtungen, wie Endverbraucherelektrogeräte, medizinische Geräte, elektrische Fahrzeuge oder Hybridfahrzeuge oder, entsprechend den Ausführungsformen der vorliegenden Erfindung, andere Geräte, die Batterien umfassen.
  • Beispiele der vorliegenden Erfindung umfassen sowohl primäre (nicht-wiederaufladbare, z. B. Magnesiumbatterien) als auch sekundäre (wiederaufladbare, z. B. Magnesiumionen-) Batterien. Spezifische Beispiele umfassen wiederaufladbare Magnesiumionenbatterien. Der Begriff magnesiumbasierte Batterie umfasst sowohl primäre als auch sekundäre Batterien, also sowohl Magnesiumbatterien als auch Magnesiumionenbatterien. Beispiele der vorliegenden Erfindung umfassen jede beliebige magnesiumbasierte Batterie, was wiederaufladbare Magnesiumionenbatterien umfasst, die eine Kapazitätsdichte aufweisen, die über der herkömmlicher wiederaufladbarer Lithiumionenbatterien liegt.
  • Elektroden können mit jedem beliebigen geeigneten Verfahren hergestellt werden. Zum Beispiel kann eine Paste aus Partikeln des aktiven Materials, einem Bindemittel und einem elektronenleitenden Material (z. B. graphitischen Kohlenstoffpartikeln oder Kohlenstoffruß) hergestellt werden. Die Paste kann auf einem elektronisch leitenden Substrat, wie einem Stromsammler, abgelagert werden und, soweit nötig, Hitzebehandelt werden.
  • Ein verbessertes Verfahren zum Herstellen einer Batterie, wie einer wiederaufladbaren Lithiumionenbatterie, umfasst das Bereitstellen von ersten und zweiten Elektroden, die durch einen Elektrolyten getrennt sind, wobei wenigstens eine Elektrode Bismut und einer intermetallische Verbindung von Bismut und Magnesium, wie Mg3Bi2, umfasst.

Claims (10)

  1. Aktives Material einer negativen Elektrode (14) einer Magnesiumbatterie, das metallisches Bismut umfasst, wobei das aktive Material eine Phase aufweist, die in einem geladenen Zustand der Magnesiumbatterie metallischem Bismut entspricht und wobei das aktive Material eine Phase aufweist, die in einem entladenen Zustand der Magnesiumbatterie einer intermetallischen Verbindung von Magnesium und Bismut entspricht.
  2. Aktives Material nach Anspruch 1, wobei der geladene Zustand eine Phase aufweist, die einer rhomboedrischen Phase von Bismut entspricht.
  3. Aktives Material nach Anspruch 1, wobei der entladene Zustand eine Phase aufweist, die einer hexagonalen Phase von Mg3Bi2 entspricht.
  4. Verwendung des aktiven Materials nach Anspruch 1 in der negativen Elektrode (14), die ein Bindemittel und ein elektrisch leitendes Material umfasst.
  5. Magnesiumionenbatterie umfassend: eine negative Elektrode (14), die ein aktives Material umfasst; eine positive Elektrode (10); einen Elektrolyten (12), der zwischen der negativen Elektrode (14) und der positiven Elektrode (10) angeordnet ist, wobei der Elektrolyt (12) eine Magnesiumverbindung umfasst, die Magnesiumionen bereitstellt, die elektrolytisch mit dem aktiven Material interagieren, und wobei das aktive Material eine intermetallische Verbindung von Magnesium und Bismut umfasst.
  6. Magnesiumionenbatterie nach Anspruch 5, wobei die negative Elektrode (14) Bismut umfasst.
  7. Magnesiumionenbatterie nach Anspruch 5, wobei die positive Elektrode (10) metallisches Magnesium oder eine Magnesiumlegierung umfasst.
  8. Magnesiumionenbatterie nach Anspruch 5, wobei das aktive Material Mg3Bi2 umfasst.
  9. Magnesiumionenbatterie nach Anspruch 6, wobei das aktive Material in einem geladenen Zustand der Magnesiumionenbatterie eine Phase aufweist, die metallischem Bismut entspricht und wobei das aktive Material in einem entladenen Zustand der Magnesiumionenbatterie eine Phase aufweist, die einer intermetallischen Verbindung von Magnesium und Bismut entspricht.
  10. Magnesiumionenbatterie nach Anspruch 5, wobei die negative Elektrode (14) ein Bindemittel, ein elektrisch leitendes Material und das aktive Material umfasst.
DE112012001928.8T 2011-04-29 2012-03-09 Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie Expired - Fee Related DE112012001928B4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/097,648 US8361651B2 (en) 2011-04-29 2011-04-29 Active material for rechargeable battery
USUS-13/097,648 2011-04-29
US13/097,648 2011-04-29
PCT/US2012/028396 WO2012148577A1 (en) 2011-04-29 2012-03-09 Active material for rechargeable battery

Publications (3)

Publication Number Publication Date
DE112012001928T5 DE112012001928T5 (de) 2014-02-13
DE112012001928T8 DE112012001928T8 (de) 2014-04-10
DE112012001928B4 true DE112012001928B4 (de) 2020-07-16

Family

ID=47068140

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112012001928.8T Expired - Fee Related DE112012001928B4 (de) 2011-04-29 2012-03-09 Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie

Country Status (5)

Country Link
US (1) US8361651B2 (de)
JP (1) JP5878565B2 (de)
CN (1) CN103534861B (de)
DE (1) DE112012001928B4 (de)
WO (1) WO2012148577A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647770B2 (en) * 2012-05-30 2014-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Bismuth-tin binary anodes for rechargeable magnesium-ion batteries
US20140302354A1 (en) * 2013-04-08 2014-10-09 Battelle Memorial Institute Electrodes for Magnesium Energy Storage Devices
US9796023B2 (en) 2015-01-09 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis of ferromagnetic manganese-bismuth nanoparticles using a manganese-based ligated anionic-element reagent complex (Mn-LAERC) and formation of bulk MnBi magnets therefrom
US10023595B2 (en) 2015-01-09 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements
US10774196B2 (en) 2016-09-22 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11911995B2 (en) 2016-09-22 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and aramid with fully penetrated reinforcement
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
JP7245189B2 (ja) 2019-03-21 2023-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 完全に侵入している補強部材を有する織物カーボン繊維強化鋼マトリックス複合体
US11788175B2 (en) 2019-03-21 2023-10-17 Toyota Motor Engineering & Manufacturing North America, Inc. Chemically bonded amorphous interface between phases in carbon fiber and steel composite
CN113921762B (zh) * 2021-09-13 2022-06-28 苏州科技大学 一种纳米铋复合材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014503A1 (en) * 2009-07-20 2011-01-20 David Bradwell Alkaline earth metal ion battery
DE102011007988A1 (de) 2011-01-04 2012-07-05 Hans-Josef Sterzel Speicher zur reversiblen Speicherung elektrischer Energie mit sehr hoher Energiedichte und Zyklenzahl ohne Massetransport durch Ladungsspeicherung im Elektrodenvolumen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229509A (en) * 1979-04-09 1980-10-21 Esb Technology Company Non-aqueous primary battery having a bismuth (III) sulfide cathode
JP2752361B2 (ja) * 1986-11-03 1998-05-18 エバレディー、バッテリー、カンパニー、インコーポレーテッド 正極端子ピンと過塩素酸塩電解質を有する密閉された非水性電池
JP2000012016A (ja) 1998-06-22 2000-01-14 Matsushita Electric Ind Co Ltd 電池用負極およびその製造方法
JPH11345610A (ja) 1998-06-02 1999-12-14 Matsushita Electric Ind Co Ltd 電池用負極およびその製造方法
US6316141B1 (en) 1999-10-18 2001-11-13 Bar Ilan University High-energy, rechargeable, electrochemical cells with non-aqueous electrolytes
EP1434232B1 (de) 2001-08-13 2007-09-19 Advanced Micro Devices, Inc. Speicherzelle
US6730136B2 (en) * 2001-10-01 2004-05-04 Eveready Battery Company, Inc. Direct addition of beta-aminoenones in organic electrolytes of nonaqueous cells employing solid cathodes
JP2004259650A (ja) * 2003-02-27 2004-09-16 Kanegafuchi Chem Ind Co Ltd マグネシウム二次電池
RU2236069C1 (ru) * 2003-06-10 2004-09-10 Мятиев Ата Атаевич Электрод-электролитная пара на основе окиси висмута, способ ее изготовления и органогель
CN100423332C (zh) * 2003-09-16 2008-10-01 吉莱特公司 含有铋金属氧化物的碱性原电池
US7537863B2 (en) * 2003-09-16 2009-05-26 The Gillette Company Primary alkaline battery containing bismuth metal oxide
US20070134553A1 (en) * 2003-11-07 2007-06-14 Toshiba Battery Co., Ltd. Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
JP4839573B2 (ja) 2004-02-13 2011-12-21 ソニー株式会社 電気化学デバイス及び電極
DE102005047907A1 (de) * 2005-10-06 2007-04-12 Basf Ag Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
US7488526B2 (en) 2005-11-22 2009-02-10 Ricoh Company, Ltd. Sputtering target and manufacturing method therefor, and optical recording medium and manufacturing method therefor
JPWO2008015844A1 (ja) * 2006-07-31 2009-12-17 株式会社テクノバンク 発電装置
US8268471B2 (en) * 2006-08-15 2012-09-18 Massachusetts Institute Of Technology High-amperage energy storage device with liquid metal negative electrode and methods
US9012072B2 (en) 2007-01-25 2015-04-21 Bar-Ilan University Rechargeable magnesium battery
JP5245108B2 (ja) 2007-07-11 2013-07-24 ソニー株式会社 マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス
US8238990B2 (en) 2008-04-17 2012-08-07 Asg Superconductors, S.P.A. Granular superconducting joint
US9076996B2 (en) * 2009-07-20 2015-07-07 Massachusetts Institute Of Technology Liquid metal alloy energy storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014503A1 (en) * 2009-07-20 2011-01-20 David Bradwell Alkaline earth metal ion battery
DE102011007988A1 (de) 2011-01-04 2012-07-05 Hans-Josef Sterzel Speicher zur reversiblen Speicherung elektrischer Energie mit sehr hoher Energiedichte und Zyklenzahl ohne Massetransport durch Ladungsspeicherung im Elektrodenvolumen

Also Published As

Publication number Publication date
US8361651B2 (en) 2013-01-29
CN103534861B (zh) 2016-08-17
DE112012001928T5 (de) 2014-02-13
US20120276444A1 (en) 2012-11-01
JP2014512637A (ja) 2014-05-22
WO2012148577A1 (en) 2012-11-01
JP5878565B2 (ja) 2016-03-08
DE112012001928T8 (de) 2014-04-10
CN103534861A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
DE112012001928B4 (de) Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie
DE112009001242B4 (de) Verfahren zum Herstellen einer Interkalationselektrode
DE112012002904T5 (de) Aktives Material für eine wiederaufladbare Batterie
DE112011102079B4 (de) Aktives Material für eine wiederaufladbare Batterie
EP2573845B1 (de) Strukturstabiles Aktivmaterial für Batterieelektroden
WO2012110195A1 (de) Verfahren zur herstellung von elektroden
DE102012205931A1 (de) Elektrochemischer Energiespeicher und Verfahren zum Herstellen desselben
DE102015008345A1 (de) Elektrochemischer Energiespeicher
DE102014222664A1 (de) Verfahren zur Herstellung der Kathode und/oder der Anode einer Lithium-Ionen-Zelle
WO2011070056A1 (de) Batterie und verfahren zum betreiben einer batterie
DE102022107900A1 (de) Verbund-zwischenschicht für festkörperbatterien auf lithiummetallbasis und verfahren zu deren herstellung
WO2014206600A1 (de) Elektrode für einen elektrochemischen energiespeicher
EP3084862B1 (de) Magnesiumbatterie
EP3680981B1 (de) Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile
DE102015214577A1 (de) Verfahren zur Herstellung einer Elektrode eines Lithiumionenakkumulators
WO2015131977A1 (de) Folienverbundmaterial
DE112019007013T5 (de) Positive Elektrode für Lithium-Ionen-Batterie sowie Lithium-Ionen-Batterie
DE102020101890B4 (de) Bismut-Ionen-Akkumulator und Verfahren zu dessen Herstellung
DE102020105281A1 (de) Lithium-Ionen-Zelle mit delithierter Interkalationskathode und Lithiumanode
EP4235942A1 (de) Primärzelle umfassend anodenstapel, insbesondere metall-luft primärzelle
DE102014220964A1 (de) Batterie ohne Ableiterfolie
EP3113275B1 (de) Sekundäre magnesiumbatterie und elektrolytsystem sowie elektrode für eine sekundäre magnesiumbatterie
WO2023020829A1 (de) Anodenmaterial für eine feststoffbatterie und feststoffbatterie
DE102022119287A1 (de) Freistehende, dünne elektrolytschichten
DE102022111512A1 (de) Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH, US

Free format text: FORMER OWNER: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., ERLANGER, KY., US

R082 Change of representative

Representative=s name: KUHNEN & WACKER PATENT- UND RECHTSANWALTSBUERO, DE

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010050000

Ipc: H01M0010054000

R018 Grant decision by examination section/examining division
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010054000

Ipc: H01M0004134000

R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee