EP3680981B1 - Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile - Google Patents

Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile Download PDF

Info

Publication number
EP3680981B1
EP3680981B1 EP19151528.7A EP19151528A EP3680981B1 EP 3680981 B1 EP3680981 B1 EP 3680981B1 EP 19151528 A EP19151528 A EP 19151528A EP 3680981 B1 EP3680981 B1 EP 3680981B1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrodes
active material
electrochemical cell
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19151528.7A
Other languages
English (en)
French (fr)
Other versions
EP3680981A1 (de
Inventor
Werner Fink
Martin Krebs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARTA Microbattery GmbH
Original Assignee
VARTA Microbattery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Microbattery GmbH filed Critical VARTA Microbattery GmbH
Priority to EP19151528.7A priority Critical patent/EP3680981B1/de
Priority to PCT/EP2019/084751 priority patent/WO2020143983A1/de
Publication of EP3680981A1 publication Critical patent/EP3680981A1/de
Application granted granted Critical
Publication of EP3680981B1 publication Critical patent/EP3680981B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention described below relates to an electrochemical cell and an arrangement of components that are electrically connected to one another.
  • Electrochemical cells always include a positive and a negative electrode.
  • an energy-yielding chemical reaction takes place, which is composed of two partial reactions that are electrically coupled to one another but are spatially separate from one another.
  • a partial reaction taking place at a comparatively lower redox potential takes place at the negative electrode, one at a comparatively higher redox potential at the positive electrode.
  • electrons are released at the negative electrode as a result of an oxidation process, resulting in a flow of electrons - usually via an external consumer - to the positive electrode, from which a corresponding quantity of electrons is absorbed.
  • a reduction process therefore takes place at the positive electrode.
  • an ion current corresponding to the electrode reaction occurs within the cell.
  • This ion flow is ensured by an ionically conductive electrolyte.
  • this discharge reaction is reversible, meaning there is a possibility to reverse the conversion of chemical energy into electrical energy that occurs during the discharge.
  • the discharge reaction is irreversible or recharging of the cell is not possible for other reasons.
  • Electrochemical cells cannot only be produced by assembling solid individual components; in fact, in recent years cells have also become increasingly important, for the production of which at least individual functional parts, in particular the electrodes and/or required conductor tracks, are produced by pressure, i.e. from a solution and/or Paste containing suspending agents are produced. Cells produced in this way are, for example, from WO 03/009920 A1 or the WO 2010/026285 A1 known.
  • printed electrochemical cells have a multilayer structure.
  • a printed electrochemical cell usually comprises two current collector levels, two electrode levels and one electrolyte level in a stacked arrangement.
  • the electrolyte level is arranged between the two electrode levels, while the current collectors form the top and bottom of the electrochemical cell.
  • An electrochemical cell with such a structure is, for example, in US4119770A described.
  • Electrodes are located side by side on a flat, electrically non-conductive substrate (coplanar arrangement).
  • the electrodes are connected to one another via an ion-conductive electrolyte, which can be, for example, a gel-like zinc chloride paste.
  • the electrolyte is reinforced and stabilized by a non-woven or net-like material.
  • Cells with coplanar electrodes are still from the US6379835A known.
  • electrochemical cells can be printed. Rather, it is also possible to print circuits with electrochemical cells, in particular the electrical conductors that are required to contact electrical components with the poles of the electrochemical cell. If they are not also produced by printing, the electrical components can be glued to the printed conductors in a further step, for example by means of a conductive adhesive.
  • Electrochemical cells known structure for example in the figures of WO 2006/105966 A1 cells shown, are often required to drive electrical components with different power requirements, for example, an optical signal generator such as an LED and an IC (integrated circuit).
  • the cells quickly reach their performance limits. To counteract this, the components have so far been supplied with energy from separate electrochemical cells. However, this makes the production of the affected circuits more expensive. In addition, the area required for the circuit increases.
  • the invention described here was based on the object of providing a solution to these problems.
  • the invention proposes an electrochemical cell with the features mentioned in claim 1 and an arrangement with the features mentioned in claim 6 . Developments of the invention are the subject of dependent claims.
  • the claimed cell thus has, for example, a negative pole as the first electrode and two positive poles as the second and third electrodes.
  • a negative pole as the first electrode
  • two positive poles as the second and third electrodes.
  • such a configuration could also be viewed as a combination of two cells that have a common negative pole.
  • the surface on which the electrodes are arranged is preferably an electrically non-conductive surface.
  • the substrate can be a substrate made of paper or of electrically non-conductive plastic.
  • the claimed cell can thus have, for example, a negative pole as the first electrode and three positive poles as the second and third and fourth electrodes.
  • a negative pole as the first electrode
  • three positive poles as the second and third and fourth electrodes.
  • such a configuration could also be viewed as a combination of three cells that share a common negative pole.
  • the gap between the electrodes preferably has a width in the range from 10 ⁇ m to 1 mm.
  • features a. and b. or c. and d. implemented in combination.
  • An electrode active material is generally understood to mean a material that actively participates in the discharge and possibly also the charging processes in an electrochemical cell, electrical So energy can be released and, if necessary, absorbed again. As explained at the beginning, energy is usually stored in a battery in chemical form and is converted into electrical energy during a discharge process. In addition, it is of course also possible to store electrical energy statically in the form of separate electrical charges. This is done in the classic way in capacitors.
  • the electrochemical cell according to the invention is a primary cell, ie a non-rechargeable cell.
  • the negative electrode active material preferably comprises an oxidizable metal, preferably at least one metal from the group consisting of zinc, aluminum and magnesium or an alloy with at least one of these metals.
  • the negative electrode active material may comprise a carbon-based material, particularly from the group consisting of activated carbon, activated carbon fiber, carbide-derived carbon, carbon airgel, graphite, graphene and carbon nanotubes (CNTs).
  • a carbon-based material particularly from the group consisting of activated carbon, activated carbon fiber, carbide-derived carbon, carbon airgel, graphite, graphene and carbon nanotubes (CNTs).
  • Activated carbon is known to be a porous, particularly fine-grain carbon modification with a large inner surface.
  • Activated carbon that can be used according to the invention preferably has a BET surface area of at least 800 m 2 /g, preferably at least 900 m 2 /g (determined in each case according to DIN ISO 9277).
  • activated carbon that can be used according to the invention has a capacitance value of at least 60 F/g (determined according to DIN IEC 62391).
  • Activated carbon fibers can be obtained from activated carbon. They are also porous, have a large inner surface and mostly have a typical diameter of about 10 ⁇ m. In addition to a high specific capacity, activated carbon fibers have extremely good conductivity along the fiber axis.
  • Carbon airgel is a synthetic, highly porous material made from an organic gel in which the liquid component of the gel has been replaced by pyrolysis with a gas.
  • Carbon aerogels can be produced, for example, by pyrolysis of resorcinol-formaldehyde. They have better electrical conductivity than activated carbon.
  • Carbide-derived carbons consist of a number of materials that have been converted from carbides such as silicon carbide and titanium carbide to pure carbon by thermal decomposition or by chemical halogenation. Carbide-derived electrodes Carbons have large surface areas with tailored pore sizes. In general, CDC electrodes have a higher energy density than activated carbon electrodes.
  • Graphene is a carbon modification with a two-dimensional structure.
  • a multiplicity of concatenated benzene rings form a honeycomb pattern in which each carbon atom is surrounded by three other carbon atoms at an angle of 120° and all carbon atoms are sp 2 hybridized.
  • Graphene offers the theoretically largest surface area per unit weight that can be achieved with carbon and is therefore currently the subject of intensive investigations in connection with the development of supercapacitors.
  • Carbon nanotubes are graphene sheets formed into cylindrical nanotubes. There are single-walled nanotubes and multi-walled nanotubes, in which several single-walled nanotubes are nested coaxially in one another. In general, CNT electrodes have a smaller electrode surface area than activated carbon. Irrespective of this, higher capacities can be achieved with CNTs than with activated carbon electrodes.
  • the negative electrode active material can also include the carbon-based materials mentioned in combination with one another. Any mixing ratio is conceivable.
  • an oxidic material from the group consisting of manganese dioxide, silver oxide and nickel hydroxide is preferably used as the positive electrode active material.
  • the positive electrode active material can also include a catalyst that catalyzes the reduction of atmospheric oxygen at room temperature.
  • a catalyst is, for example, platinum, palladium or manganese oxide.
  • the positive electrode active material can include one or more of the carbon-based materials mentioned above, i.e. in particular activated carbon, activated carbon fiber, carbide-derived carbon, carbon aerogel, graphite, graphene and/or carbon nanotubes (CNTs).
  • activated carbon activated carbon fiber
  • carbide-derived carbon carbide-derived carbon
  • carbon aerogel graphite, graphene and/or carbon nanotubes (CNTs).
  • CNTs carbon nanotubes
  • the electrodes of the claimed electrochemical cell can also contain an electrode binder and/or a conductive agent as further fixed components.
  • the conductive agent is, for example, a metal powder, in particular nickel and/or cobalt powder.
  • a cellulose-based binder for example carboxymethyl cellulose or a derivative of carboxymethyl cellulose, can be used as the electrode binder.
  • Water-soluble cellulose ethers such as methylhydroxyethyl cellulose (MHEC), methylhydroxypropyl cellulose (MHPC) and hydroxyethyl cellulose (HEG) are also particularly suitable.
  • the electrochemical cell according to the invention is preferably a zinc-manganese dioxide cell (in the case of zinc as a component of the negative electrode active material and manganese dioxide as a component of the positive electrode active material), a silver oxide-zinc cell (in case of zinc as a component of the negative electrode active material and silver oxide as a component of the positive electrode active material), a nickel oxyhydroxide cell (in the case of zinc as a component of the negative electrode active material and nickel hydroxide as a component of the positive electrode active material in the case of nickel hydroxide) or a zinc -air cell (in the case of zinc as a component of the negative electrode active material and the reduction of atmospheric oxygen catalyzing catalyst as a component of the positive electrode active material).
  • a zinc-manganese dioxide cell in the case of zinc as a component of the negative electrode active material and manganese dioxide as a component of the positive electrode active material
  • a silver oxide-zinc cell in case of zinc as a component of the negative electrode active material and
  • the cell can also be a secondary cell, ie a rechargeable cell.
  • a secondary cell ie a rechargeable cell.
  • lithium cobalt(III) oxide, lithium titanate, manganese dioxide, iron disulfide, LiMn 2 O 4 spinel or lithium iron phosphate can be used as the positive electrode active material, for example, and graphitic carbon and/or something capable of intercalating lithium can be used as the negative electrode active material non-graphitic carbon material and/or a metallic or semi-metallic material alloyable with lithium (e.g. tin, antimony or silicon).
  • the claimed cell is preferably a double-layer capacitor. This is because the carbon-based materials mentioned are particularly capable of developing double-layer capacitances.
  • Double layer capacitors have been known for a long time. With these, a double-layer capacitance forms at the phase boundary between the electrode surface and the electrolyte when an electrical voltage is applied. In this is electrical energy stored in an electric field. The amount of charge stored is proportional to the voltage applied and is essentially determined by the size and nature of the electrode surface.
  • the difference is preferably that the second electrode contains a quantity of at least one of the abovementioned carbon -based materials, which is higher or lower than the amount of these materials in the one or more electrodes.
  • the larger quantity of the at least one carbon-based material for example in a second positive electrode, ensures that this electrode has a higher double-layer capacity than the third and possibly the fourth and/or the fifth positive electrode.
  • features a. and b. but also all features a. to c., realized in combination with each other.
  • a screen printing process is preferably used as the printing process for forming the electrodes.
  • screen printing is a printing process in which a suspension or paste is pressed through a fine-meshed fabric onto the material to be printed using a squeegee.
  • the mesh openings of the fabric are made impermeable by a stencil.
  • the suspension or paste should be able to penetrate the mesh openings without any problems. So that the mesh openings cannot become clogged, the solid components contained in the suspension or paste should not exceed a certain maximum size, which should be less than the mesh opening size.
  • the electrochemical cell supplies both the first and the second component with electrical energy.
  • the components are both connected to the first electrode.
  • the electrodes with opposite polarity to the first electrode are only connected to one of the components. This has the advantage that the components can be operated independently of one another. If necessary, the second and the third electrode, as described above, can also be specifically adapted to special energetic requirements of the components.
  • the first and the second component differ.
  • the first component can be an integrated circuit, while the second component is an optical signal transmitter in the form of an LED.
  • the substrate on which the electrodes of the cell according to the invention are arranged with conductor tracks before the electrodes are applied to the substrate do not necessarily have to be printed. They can also be formed, for example, by sputtering or by vapor deposition. Appropriate procedures are known to those skilled in the art.
  • the conductor tracks preferably comprise either a continuous metal layer or metal particles and/or carbon particles which are in contact with one another.
  • Different voltages can be provided within the arrangement by the at least one additional cell.
  • an additional electrochemical cell with a positive electrode and a negative electrode between an electrochemical cell, which has a negative electrode as the first electrode and two positive electrodes as the second and third electrodes, and one of the electrical components to switch while connecting the second electrode to the negative electrode of the additional cell and the component to the positive electrode of the additional cell.
  • the voltages of the cells connected in series add up.
  • a current collector structure 60 (shown as a black continuous layer) is printed onto an electrically non-conductive substrate 12.
  • FIG. The electrical components 20 (in the example an integrated circuit) and 30 (in the example an LED) and the switch S are glued on using a conductive adhesive. These are connected to one another via the current collector structure 60 .
  • the current collector structure 60 comprises a layer of silver particles directly on the substrate, which is covered by a layer of carbon particles.
  • the current conductor structure 60 is partially overprinted with the zinc anodes 10a, 40a and 50a.
  • the current conductor structure 60 is partially overprinted with the manganese dioxide cathodes 10b, 10c, 40b and 50b.
  • the zinc anodes 10a, 40a and 50a and the manganese dioxide cathodes 10b, 10c, 40b and 50b including gaps formed by the zinc anodes and the manganese dioxide cathodes are overprinted with the electrolyte layers 10d, 40c and 50c.
  • the electrochemical cells 10, 40 and 50 are formed.
  • the electrochemical cell 10 is an embodiment of a cell according to the invention, which has the zinc anode 10a as the first electrode of a first polarity and the manganese dioxide cathode 10b as the second electrode of a second polarity opposite to the first polarity, and the manganese dioxide cathode 10b as the third electrode, which has the same Having polarity as the second electrode having manganese dioxide cathode 10c.
  • the first electrode 10a, the second electrode 10b and the third electrode 10c are arranged side by side on the surface of the substrate 10 separately from each other in a coplanar arrangement.
  • the first electrode is connected to the second and third electrodes via the ion-conductive electrolyte 10c.
  • Electrochemical cells 40 and 50 are additional electrochemical cells connected in series with cell 10 .
  • the manganese dioxide cathodes 10b and 10c of the cell 10 are electrically conductively connected to the zinc anodes 40a and 50a via the current collector structure 60 .
  • both the components 20 and 30 can be operated reliably, although their respective requirements with regard to their energy supply are very different.
  • the manganese dioxide cathode 10b and the cell 40 can be designed to also be able to supply the LED 20 with high pulse-like currents.
  • the manganese dioxide cathode 10c and the cell 50 can be designed to supply the component 30 with low-intensity currents evenly.
  • the cell electrodes of cells 10, 40 and 50 can be designed accordingly.
  • the total area available on the substrate 12 can thus be optimally divided. The Exploitation of the active materials is more efficient. The number of voltage-stabilizing elements is minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

  • Die nachfolgend beschriebene Erfindung betrifft eine elektrochemische Zelle sowie eine Anordnung elektrisch miteinander verschalteter Bauteile.
  • Elektrochemische Zellen umfassen stets eine positive und eine negative Elektrode. Bei der Entladung einer elektrochemischen Zelle findet eine energieliefernde chemische Reaktion statt, welche sich aus zwei elektrisch miteinander gekoppelten, aber räumlich voneinander getrennten Teilreaktionen zusammensetzt. Eine bei vergleichsweise niedrigerem Redoxpotential stattfindende Teilreaktion läuft an der negativen Elektrode ab, eine bei vergleichsweise höherem Redoxpotential an der positiven Elektrode. Bei der Entladung werden an der negativen Elektrode durch einen Oxidationsprozess Elektronen freigesetzt, resultierend in einem Elektronenstrom - meist über einen äußeren Verbraucher - zur positiven Elektrode, von der eine entsprechende Menge an Elektronen aufgenommen wird. An der positiven Elektrode findet also ein Reduktionsprozess statt. Zeitgleich kommt es zu einem der Elektrodenreaktion entsprechenden lonenstrom innerhalb der Zelle. Dieser lonenstrom wird durch einen ionisch leitenden Elektrolyten gewährleistet. In sekundären elektrochemischen Zellen ist diese Entladereaktion reversibel, es besteht also die Möglichkeit, die bei der Entladung erfolgte Umwandlung chemischer Energie in elektrische umzukehren. Bei primären Zellen ist die Entladereaktion hingegen irreversibel oder aber eine Wiederaufladung der Zelle verbietet sich aus anderen Gründen.
  • Ursprünglich wurden mehrere in Serie geschaltete elektrochemische Zellen in einem Gehäuse als Batterie bezeichnet. Heute werden jedoch häufig auch einzelne elektrochemische Zellen als Batterie bezeichnet.
  • Elektrochemische Zellen sind nicht nur durch Zusammenfügen fester Einzelkomponenten herstellbar, vielmehr gewinnen in den letzten Jahren auch verstärkt Zellen an Bedeutung, zu deren Herstellung zumindest einzelne Funktionsteile, insbesondere die Elektroden und/oder erforderlichen Leiterbahnen, durch Druck, also aus einer Lösungs- und/oder Suspensionsmittel-haltigen Paste, hergestellt werden. So hergestellte Zellen sind beispielsweise aus der WO 03/009920 A1 oder der WO 2010/026285 A1 bekannt.
  • In der Regel weisen gedruckte elektrochemische Zellen einen mehrschichtigen Aufbau auf. In herkömmlicher Bauweise umfasst eine gedruckte elektrochemische Zelle meist zwei Stromkollektorebenen, zwei Elektrodenebenen und eine Elektrolytebene in stapelartiger Anordnung. Die Elektrolytebene ist dabei zwischen den zwei Elektrodenebenen angeordnet, während die Stromkollektoren die Ober- bzw. die Unterseite der elektrochemischen Zelle bilden. Eine elektrochemische Zelle mit einem solchen Aufbau ist beispielsweise in der US 4119770 A beschrieben.
  • Deutlich flachere elektrochemische Zellen, bei denen sich die Elektroden nebeneinander auf einem flächigen, elektrisch nicht leitenden Substrat befinden (koplanare Anordnung), sind in der WO 2006/105966 A1 beschrieben. Die Elektroden sind hierbei über einen ionenleitfähigen Elektrolyten miteinander verbunden, bei dem es sich beispielsweise um eine gelartige Zinkchloridpaste handeln kann. In aller Regel ist der Elektrolyt dabei durch ein vlies- oder netzartiges Material verstärkt und stabilisiert. Zellen mit koplanar angeordneten Elektroden sind weiterhin aus der US 6379835 A bekannt.
  • Natürlich lassen sich nicht nur elektrochemische Zellen drucken. Vielmehr ist es möglich, auch Schaltungen mit elektrochemischen Zellen zu drucken, insbesondere die elektrischen Leiter, die benötigt werden, um elektrische Bauteile mit den Polen der elektrochemischen Zelle zu kontaktieren. Die elektrischen Bauteile können, sofern sie nicht ebenfalls über Druck hergestellt werden, in einem weiteren Schritt auf die gedruckten Leiter aufgeklebt werden, beispielsweise mittels eines Leitklebers.
  • Elektrochemische Zellen bekannten Aufbaus, beispielsweise die in den Figuren der WO 2006/105966 A1 dargestellten Zellen, werden häufig benötigt, um elektrische Bauteile mit unterschiedlichem Strombedarf zu betreiben, beispielsweise einen optischen Signalgeber wie eine LED und einen IC (integrierten Schaltkreis). Dabei stoßen die Zellen schnell an ihre Leistungsgrenzen. Um dem zu begegnen, werden die Bauteile bislang jeweils von separaten elektrochemischen Zellen mit Energie gespeist. Hierdurch verteuert sich jedoch die Produktion der betroffenen Schaltungen. Darüber hinaus wächst der Flächenbedarf für die Schaltung.
  • Der hier beschriebenen Erfindung lag die Aufgabe zu Grunde, eine Lösung für diese Probleme bereitzustellen.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung eine elektrochemische Zelle mit den in Anspruch 1 genannten Merkmalen und eine Anordnung mit den in Anspruch 6 genannten Merkmalen vor. Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Die beanspruchte elektrochemische Zelle zeichnet sich durch die folgenden Merkmale aus:
    • Sie umfasst eine erste Elektrode einer ersten Polarität,
    • sie umfasst eine zweite Elektrode einer zweiten, der ersten Polarität entgegengesetzten Polarität, und
    • sie umfasst eine dritte Elektrode, welche die gleiche Polarität wie die zweite Elektrode aufweist. Hierbei sind
    • die erste, die zweite und die dritte Elektrode getrennt voneinander in einer koplanaren Anordnung nebeneinander auf einer Oberfläche eines Substrats angeordnet und
    • die erste Elektrode ist mit der zweiten und der dritten Elektrode über einen ionenleitfähigen Elektrolyten, insbesondere eine Schicht aus dem ionenleitfähigen Elektrolyten, verbunden.
  • Die beanspruchte Zelle weist also einen beispielsweise als erste Elektrode einen Minuspol und als zweite und dritte Elektrode zwei Pluspole auf. Alternativ könnte man eine solche Konfiguration allerdings auch als Kombination zweier Zellen ansehen, die einen gemeinsamen Minuspol aufweisen.
  • Bei der Oberfläche, auf der die Elektroden angeordnet sind, handelt es sich bevorzugt um eine elektrisch nichtleitende Oberfläche. Beispielsweise kann es sich bei dem Substrat um ein Substrat aus Papier oder aus elektrisch nichtleitendem Kunststoff handeln.
  • In einer bevorzugten Weiterbildung der Erfindung zeichnet sich die beanspruchte Zelle durch mindestens eines der unmittelbar folgenden Merkmale a. bis c. aus:
    1. a. Sie umfasst eine vierte und/oder eine fünfte Elektrode, welche die gleiche Polarität wie die zweite Elektrode aufweist.
    2. b. Die erste, die zweite, die dritte sowie die vierte und/oder die fünfte Elektrode sind in einer koplanaren Anordnung nebeneinander auf dem Substrat angeordnet.
    3. c. Die erste Elektrode ist mit der vierten und/oder der fünften Elektrode über einen ionenleitfähigen Elektrolyten verbunden.
  • Die beanspruchte Zelle kann also beispielsweise als erste Elektrode einen Minuspol und als zweite und dritte und vierte Elektrode drei Pluspole aufweisen. Alternativ könnte man eine solche Konfiguration auch als Kombination dreier Zellen ansehen, die einen gemeinsamen Minuspol aufweisen.
  • In einerweiteren bevorzugten Weiterbildung der Erfindung zeichnet sich die beanspruchte Zelle durch mindestens eines der unmittelbar folgenden Merkmale a. bis g. aus:
    1. a. Die erste, die zweite und die dritte Elektrode sind bevorzugt jeweils durch einen Spalt voneinander getrennt.
    2. b. Der ionenleitfähige Elektrolyt füllt den Spalt zwischen der ersten und der zweiten sowie der ersten und der dritten Elektrode.
    3. c. Der ionenleitfähige Elektrolyt füllt den Spalt zwischen der zweiten und der dritten Elektrode.
    4. d. Die erste Elektrode und die die vierte und/oder die fünfte Elektrode sind bevorzugt jeweils durch einen Spalt voneinander sowie von der zweiten und der dritten Elektrode getrennt.
    5. e. Der ionenleitfähige Elektrolyt füllt den Spalt zwischen der ersten Elektrode und der vierten Elektrode und/oder den Spalt zwischen der ersten Elektrode und der fünften Elektrode.
    6. f. Der ionenleitfähige Elektrolyt füllt den Spalt zwischen der vierten und der fünften Elektrode.
    7. g. Der ionenleitfähige Elektrolyt füllt den Spalt zwischen der vierten und/oder der fünften Elektrode auf der einen Seite und derzweiten und der dritten Elektrode auf der anderen Seite.
  • Besonders bevorzugt sind zumindest die unmittelbar vorstehenden Merkmale a., b. und c. in Kombination miteinander realisiert. Bei Anwesenheit der vierten und gegebenenfalls der fünften Elektrode sind bevorzugt die unmittelbar vorstehenden Merkmale d. bis g. in Kombination miteinander realisiert.
  • Der Spalt zwischen den Elektroden weist bevorzugt eine Breite im Bereich von 10 µm bis 1 mm auf.
  • In einer besonders bevorzugten Weiterbildung der Erfindung zeichnet sich die beanspruchte Zelle durch mindestens eines der unmittelbar folgenden Merkmale a. bis d. aus:
    1. a. Die erste Elektrode ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite, die dritte, die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen.
    2. b. Das positive Elektrodenaktivmaterial der zweiten Elektrode unterscheidet sich vom positiven Elektrodenaktivmaterial der dritten und/oder der vierten und/oder der fünften Elektrode.
    3. c. Die erste Elektrode ist eine positive Elektrode und umfasst ein positives Elektrodenaktivmaterial während die zweite, die dritte, die vierte und/oder die fünfte Elektrode negative Elektroden sind und jeweils ein negatives Elektrodenaktivmaterial umfassen.
    4. d. Das negative Elektrodenaktivmaterial der zweiten Elektrode unterscheidet sich vom negativen Elektrodenaktivmaterial der dritten und/oder der vierten und/oder der fünften Elektrode.
  • In bevorzugten Ausführungsformen sind die unmittelbar vorstehenden Merkmale a. und b. oder c. und d. in Kombination miteinander realisiert.
  • Unter einem Elektrodenaktivmaterial wird gemeinhin ein Material verstanden, das aktiv an den Entladungs- und gegebenenfalls auch Ladungsprozessen in einer elektrochemischen Zelle teilnimmt, elektrische Energie also abgeben und gegebenenfalls wieder aufnehmen kann. Wie eingangs erläutert, ist Energie in einer Batterie in der Regel in chemischer Form gespeichert und wird während eines Entladungsprozesses in elektrische Energie umgewandelt. Darüber hinaus ist es aber natürlich auch möglich, elektrische Energie statisch in Form getrennter elektrischer Ladungen zu speichern. Dies erfolgt so klassisch in Kondensatoren.
  • Bei der erfindungsgemäßen elektrochemischen Zelle handelt es sich in besonders bevorzugten Ausführungsformen um eine primäre Zelle, also um eine nicht wiederaufladbare Zelle. Insbesondere in diesem Fall umfasst das negative Elektrodenaktivmaterial bevorzugt ein oxidierbares Metall, bevorzugt mindestens ein Metall aus der Gruppe mit Zink, Aluminium und Magnesium oder eine Legierung mit mindestens einem dieser Metalle.
  • Zusätzlich zu dem oxidierbaren Metall oder alternativ hierzu kann das negative Elektrodenaktivmaterial ein Kohlenstoff-basiertes Material, insbesondere aus der Gruppe mit Aktivkohle, Aktivkohlefaser, Carbid-abgeleiteter Kohlenstoff, Kohlenstoff-Aerogel, Graphit, Graphen und Kohlenstoffnanoröhrchen (CNTs) umfassen.
  • Bei Aktivkohle handelt es sich bekanntlich um eine poröse, besonders feinkörnige Kohlenstoffmodifikation mit großer innerer Oberfläche. Erfindungsgemäß einsetzbare Aktivkohle weist bevorzugt eine BET-Oberfläche von mindestens 800 m2/g, bevorzugt von mindestens 900 m2/g (jeweils bestimmt gemäß DIN ISO 9277) auf. Alternativ oder zusätzlich weist erfindungsgemäß einsetzbare Aktivkohle einen Kapazitätswert von mindestens 60 F/g (bestimmt gemäß DIN IEC 62391) auf.
  • Aktivkohlefasern können aus Aktivkohle gewonnen werden. Sie sind ebenfalls porös, weisen eine gro-βe innere Oberfläche auf und haben meist einen typischen Durchmesser von etwa 10 µm. Neben einer hohen spezifischen Kapazität weisen Aktivkohlefasern eine außerordentlich gute Leitfähigkeit entlang der Faserachse auf.
  • Kohlenstoff-Aerogel ist ein synthetisches, hochporöses Material aus einem organischen Gel, in dem die flüssige Komponente des Gels durch Pyrolyse mit einem Gas ersetzt wurde. Kohlenstoff-Aerogele können beispielsweise durch Pyrolyse von Resorcin-Formaldehyd hergestellt werden. Sie weisen eine bessere elektrische Leitfähigkeit auf als Aktivkohle.
  • Carbid-abgeleitete Kohlenstoffe (CDC) bestehen aus einer Anzahl von Stoffen, die aus Carbiden wie zum Beispiel Siliciumcarbid und Titancarbid durch thermische Zersetzung oder durch chemische Halogenierung in einen reinen Kohlenstoff umgewandelt wurden. Elektroden aus Carbid-abgeleiteten Kohlenstoffen besitzen große Oberflächen mit maßgeschneiderten Porengrößen. Im Allgemeinen haben Elektroden aus CDC eine höhere Energiedichte als Elektroden aus Aktivkohle.
  • Bei Graphen handelt es sich um eine Kohlenstoffmodifikation mit zweidimensionaler Struktur. Eine Vielzahl von verketteten Benzol-Ringen bildet ein bienenwabenförmiges Muster aus, in dem jedes Kohlenstoffatom im Winkel von 120° von drei weiteren Kohlenstoffatomen umgeben ist und wobei alle Kohlenstoffatome sp2-hybridisiert sind. Graphen bietet die theoretisch größte mit Kohlenstoff erreichbare Oberfläche pro Gewichtseinheit und ist daher aktuell Gegenstand intensiver Untersuchungen im Zusammenhang mit der Entwicklung von Superkondensatoren.
  • Bei Kohlenstoffnanoröhrchen (CNTs) handelt es sich um zu zylindrischen Nanoröhren umgeformte Graphenschichten. Es gibt einwandige Nanoröhren und mehrwandige Nanoröhren, bei denen mehrere einwandige Nanoröhren koaxial ineinander verschachtelt angeordnet sind. Allgemein besitzen CNT-Elektroden eine kleinere Elektrodenoberfläche als Aktivkohle. Ungeachtet dessen lassen sich mit CNTs höhere Kapazitäten erzielen als mit Aktivkohle-Elektroden.
  • Selbstverständlich kann das negative Elektrodenaktivmaterial die genannten Kohlenstoff-basierten Materialien auch in Kombination miteinander umfassen. Hierbei ist jedes Mischungsverhältnis denkbar.
  • Als positives Elektrodenaktivmaterial kommt im Falle einer primären Zelle bevorzugt ein oxidisches Material aus der Gruppe mit Mangandioxid, Silberoxid und Nickelhydroxid zum Einsatz. Gegebenenfalls kann das positive Elektrodenaktivmaterial auch einen Katalysator umfassen, der die Reduktion von Luftsauerstoff bei Raumtemperatur katalysiert. Bei einem solchen Katalysator handelt es sich beispielsweise um Platin, Palladium oder Manganoxid.
  • Zusätzlich zu den genannten oxidischen Materialien und diesen Katalysatoren oder auch alternativ hierzu kann das positive Elektrodenaktivmaterial eines oder mehrere der oben genannten Kohlenstoff-basierten Materialien umfassen, also insbesondere Aktivkohle, Aktivkohlefaser, Carbid-abgeleiteter Kohlenstoff, Kohlenstoff-Aerogel, Graphit, Graphen und/oder Kohlenstoffnanoröhrchen (CNTs).
  • Neben den genannten Elektrodenaktivmaterialien können die Elektroden der beanspruchten elektrochemischen Zelle als weitere feste Bestandteile auch einen Elektrodenbinder und/oder ein Leitmittel enthalten.
  • Bei dem Leitmittel handelt es sich beispielsweise um ein Metallpulver, insbesondere um Nickel und/oder Kobaltpulver.
  • Als Elektrodenbinder kann beispielsweise ein Cellulose-basierter Binder, beispielsweise Carboxymethylcellulose oder ein Derivat von Carboxymethylcellulose, verwendet werden. Besonders geeignet sind auch wasserlösliche Celluloseether wie beispielsweise Methylhydroxyethylcellulose (MHEC), Methylhydroxypro pylcellulose (MHPC) und Hydroxyethylcellulose (HEG). Alternativ kommen aber auch Polyacrylate oder Kunststoff-basierte Binder wie zum Beispiel PTFE-Binder (PTFE = Polytetrafluorethylen) oder Binder auf Basis von SBR (Styrene-Butadien-Rubber) in Frage.
  • Aus diesen Ausführungen wird klar, dass es sich bei der erfindungsgemäßen elektrochemischen Zelle bevorzugt um eine Zink-Braunstein-Zelle (im Fall von Zink als Bestandteil des negativen Elektrodenaktivmaterials und Mangandioxid als Bestandteil des positiven Elektrodenaktivmaterials), um eine Silberoxid-Zink-Zelle (im Fall von Zink als Bestandteil des negativen Elektrodenaktivmaterials und Silberoxid als Bestandteil des positiven Elektrodenaktivmaterials), um eine Nickel-Oxyhydroxid-Zelle (im Fall von Zink als Bestandteil des negativen Elektrodenaktivmaterials und Nickelhydroxid als Bestandteil des positiven Elektrodenaktivmaterials im Fall von Nickelhydroxid) oder um eine Zink-Luft-Zelle (im Fall von Zink als Bestandteil des negativen Elektrodenaktivmaterials und des die Reduktion von Luftsauerstoff katalysierenden Katalysators als Bestandteil des positiven Elektrodenaktivmaterials) handelt.
  • In einigen Ausführungsformen kann die Zelle aber auch eine sekundäre Zelle, also eine wiederaufladbare Zelle, sein. In diesem Fall kann als positives Elektrodenaktivmaterial beispielsweise Lithium-Cobalt(III)-oxid, Lithiumtitanat, Mangandioxid, Eisendisulfid, LiMn2O4-Spinell oder Lithiumeisenphosphat zum Einsatz kommen und als negatives Elektrodenaktivmaterial beispielsweise graphitischer Kohlenstoff und/oder ein zur Interkalation von Lithium befähigtes nicht-graphitisches Kohlenstoffmaterial und/oder ein metallisches oder halbmetallisches Material, das mit Lithium legierbar ist (beispielsweise Zinn, Antimon oder Silizium).
  • Wenn die Elektroden beider Polaritäten als Elektrodenaktivmaterial ausschließlich eines oder mehrere der genannten Kohlenstoff-basierten Materialien umfassen, so ist die beanspruchte Zelle bevorzugt ein Doppelschichtkondensator. Die genannten Kohlenstoff-basierten Materialien sind nämlich in besonderem MaßzurAusbildungvon Doppelschichtkapazitäten befähigt.
  • Doppelschichtkondensatoren (englisch: electric double layer capacitor) sind bereits seit langem bekannt. Bei diesen bildet sich an der Phasengrenze zwischen Elektrodenoberfläche und Elektrolyt beim Anlegen einer elektrischen Spannung eine Doppelschichtkapazität aus. In dieser ist elektrische Energie in einem elektrischen Feld gespeichert. Die Menge der gespeicherten Ladung ist dabei proportional zur angelegten Spannung und wird ganz wesentlich durch die Größe und Beschaffenheit der Elektrodenoberfläche bestimmt.
  • In den genannten bevorzugten Ausführungsformen, bei denen sich das Elektrodenaktivmaterial der zweiten Elektrode vom Elektrodenaktivmaterial der dritten und gegebenenfalls auch der vierten und/oder der fünften Elektrode unterscheidet, besteht der Unterschied bevorzugt darin, dass die zweite Elektrode eine Menge an mindestens einem der oben genannten Kohlenstoff-basierten Materialien aufweist, die höher oder niedriger ist als der Menge dieser Materialien in der oder den weiteren Elektroden. Durch die größere Menge an dem mindestens einen Kohlenstoff-basierten Material beispielsweise in einer zweiten positiven Elektrode ist gewährleistet, dass diese Elektrode eine höhere Doppelschichtkapazität als die dritte und gegebenenfalls die vierte und/oder die fünfte positive Elektrode aufweist.
  • Die folgenden bevorzugten Konstellationen sind möglich:
    1. (a) Die erste Elektrode ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite, die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen, wobei die zweite Elektrode als Elektrodenaktivmaterial ausschließlich mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweist und die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode ausschließlich das oben genannte oxidische Material und/oder einen der genannten Katalysatoren aufweist: Die zweite Elektrode kann in diesem Fall elektrische Energie nur statisch speichern. Sie ist dann aber besser zur Abgabe von kurzen Pulsströmen hoher Intensität geeignet als die dritte und/oder die vierte und/oder die fünfte Elektrode. Dies gilt natürlich insbesondere dann, wenn gleichzeitig die negative Elektrode zumindest einen Anteil an mindestens einem der oben genannten Kohlenstoff-basierten Materialien aufweist.
    2. (b) Die erste Elektrode ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite, die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen, wobei die zweite Elektrode als Elektrodenaktivmaterial ausschließlich das oben genannte oxidische Material und/oder einen der genannten Katalysatoren und die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode ausschließlich mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweist: Die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode können in diesem Fall elektrische Energie nur statisch speichern. Sie sind dann aber besser zur Abgabe von kurzen Pulsströmen hoher Intensität geeignet als die zweite Elektrode. Auch dies gilt natürlich insbesondere dann, wenn gleichzeitig die negative Elektrode zumindest einen Anteil an mindestens einem der oben genannten Kohlenstoff-basierten Materialien aufweist.
    3. (c) Die erste Elektrode ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite, die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen, wobei die zweite Elektrode als Elektrodenaktivmaterial neben dem oben genannten oxidierbaren Metall mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweist und die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode neben dem oben genannten oxidierbaren Metall mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweisen, wobei die Menge an dem mindestens einem der oben genannten Kohlenstoff-basierten Materialien in der zweiten Elektrode größer ist als in den weiteren positiven Elektroden: Alle Elektroden speichern in diesem Fall elektrische Energie sowohl in einer Doppelschicht als auch elektrochemisch. Sie weisen somit sowohl eine Doppelschichtkapazität auf als auch eine sogenannte Pseudokapazität (Speicherung elektrischer Energie durch Faraday'schen Ladungsaustausch mit Hilfe von Redoxreaktionen). Die Doppelschichtkapazität der zweiten Elektrode ist aber größer als die der anderen positiven Elektroden, weshalb die zweite Elektrode besser zur Abgabe von kurzen Pulsströmen hoher Intensität geeignet ist als die dritte und/oder die vierte und/oder die fünfte Elektrode. Dies gilt natürlich insbesondere dann, wenn gleichzeitig die negative Elektrode zumindest einen Anteil an mindestens einem der oben genannten Kohlenstoff-basierten Materialien aufweist.
    4. (d) Die erste Elektrode ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite, die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen, wobei die zweite Elektrode als Elektrodenaktivmaterial neben dem oben genannten oxidierbaren Metall mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweist und die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode neben dem oben genannten oxidierbaren Metall mindestens eines der oben genannten Kohlenstoff-basierten Materialien aufweisen, wobei die Menge an dem mindestens einem der oben genannten Kohlenstoff-basierten Materialien in der zweiten Elektrode niedriger ist als in den weiteren positiven Elektroden: Auch in diesem Fall speichern alle Elektroden elektrische Energie sowohl in einer Doppelschicht als auch elektrochemisch. Hier sind jedoch die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode besser zur Abgabe von kurzen Pulsströmen hoher Intensität geeignet als die zweite Elektrode. Auch dies gilt natürlich insbesondere dann, wenn gleichzeitig die negative Elektrode zumindest einen Anteil an mindestens einem der oben genannten Kohlenstoff-basierten Materialien aufweist.
  • In einer Weiterbildung der Erfindung zeichnet sich die beanspruchte Zelle durch mindestens eines der unmittelbar folgenden Merkmale a. und b. aus:
    1. a. Die Kapazitäten der ersten Elektrode auf der einen Seite sowie der zweiten und der dritten Elektrode sowie gegebenenfalls der vierten und/oder der fünften Elektrode auf der anderen Seite stehen in einem Verhältnis X im Bereich von 2: 1 bis 1 : 2, bevorzugt im Bereich von 1,5 : 1 bis 1 : 1,5.
    2. b. Die Kapazitäten der zweiten Elektrode auf der einen Seite sowie der dritten Elektrode sowie gegebenenfalls der vierten und/oder der fünften Elektrode auf der anderen Seite stehen in einem Verhältnis X im Bereich von 100 : 1 bis 1 : 100, bevorzugt im Bereich von 10 : 1 bis 1 : 10.
  • In einer weiteren möglichen Weiterbildung der Erfindung zeichnet sich die beanspruchte Zelle durch mindestens eines der unmittelbar folgenden Merkmale a. bis c. aus:
    1. a. Die Elektroden und der Elektrolyt sind als Schichten mit jeweils einer Dicke im Bereich von 10 µm bis 200 µm, bevorzugt von 20 µm bis 100 µm, ausgebildet.
    2. b. Die Elektroden und der Elektrolyt sind durch Druck aus einer Suspension oder Paste gebildet.
    3. c. Der ionenleitfähige Elektrolyt bedeckt die auf dem Substrat angeordneten Elektroden vollständig.
  • In einigen besonders bevorzugten Ausführungsformen sind die unmittelbar vorstehenden Merkmale a. und b., gegebenenfalls aber auch alle Merkmale a. bis c., in Kombination miteinander realisiert.
  • Bevorzugt kommt bei der Bildung der Elektroden als Druckverfahren ein Siebdruckverfahren zum Einsatz. Beim Siebdruck handelt es sich bekanntlich um ein Druckverfahren, bei dem eine Suspension oder Paste mittels eines Rakels durch ein feinmaschiges Gewebe hindurch auf das zu bedruckende Material gepresst wird. An denjenigen Stellen des Gewebes, an denen dem Druckbild entsprechend keine Suspension oder Paste aufgedruckt werden soll, werden die Maschenöffnungen des Gewebes durch eine Schablone undurchlässig gemacht. An den übrigen Stellen sollte die Suspension oder Paste dagegen die Maschenöffnungen problemlos durchdringen können. Damit es nicht zu einem Verstopfen der Maschenöffnungen kommen kann, sollten die in der Suspension oder Paste enthaltenen festen Bestandteile eine gewisse Maximalgröße, die unter der Maschenöffnungsweite liegen sollte, nicht überschreiten.
  • Die beanspruchte Anordnung umfasst mindestens zwei elektrisch miteinander verschaltete Bauteile und zeichnet sich durch das folgende Merkmal aus:
    1. a. Sie umfasst eine Ausführungsform der oben beschriebenen elektrochemischen Zelle, die zur Energieversorgung der Bauteile dient.
  • Bevorzugt zeichnet sich die Anordnung durch mindestens eines der unmittelbar folgenden zusätzlichen Merkmale a. und b., bevorzugt durch beide derfolgenden Merkmale, aus:
    1. a. Die Anordnung umfasst ein erstes elektrisches Bauteil, das mit der ersten und mit der zweiten Elektrode elektrisch verbunden ist.
    2. b. Die Anordnung umfasst ein zweites elektrisches Bauteil, das mit der ersten und der dritten Elektrode elektrisch verbunden ist.
  • Es ist also bevorzugt, dass die elektrochemische Zelle sowohl das erste als auch das zweite Bauteil mit elektrischer Energie versorgt. Die Bauteile sind beide mit der ersten Elektrode verbunden. Die zur ersten Elektrode entgegengesetzt gepolten Elektroden sind dabei jeweils aber nur mit einem der Bauteile verbunden. Dies hat den Vorteil, dass die Bauteile unabhängig voneinander betrieben werden können. Gegebenenfalls können die zweite und die dritte Elektrode, wie oben beschrieben, auch spezifisch an spezielle energetische Anforderungen der Bauteile angepasst werden.
  • In einer Weiterbildung zeichnet sich die Anordnung durch mindestens eines der unmittelbar folgenden zusätzlichen Merkmale a. und b., bevorzugt durch beide der folgenden Merkmale, aus:
    1. a. Das erste elektrische Bauteil ist ausgewählt aus der Gruppe mit elektrischem Schalter, integrierter Schaltkreis, Transistor, Diode, optischer Signalgeber, akustischer Signalgeber und Sensor.
    2. b. Das zweite elektrische Bauteil ist ausgewählt aus der Gruppe mit elektrischem Schalter, integrierter Schaltkreis, Transistor, Diode, optischer Signalgeber, akustischer Signalgeber und Sensor.
  • In besonders bevorzugten Ausführungsformen unterscheiden sich das erste und das zweite Bauteil. So kann das erste Bauteil beispielsweise ein integrierter Schaltkreis sein während das zweite Bauteil ein optischer Signalgeber in Form einer LED ist.
  • In einer weiteren möglichen Weiterbildung zeichnet sich die Anordnung durch das unmittelbar folgende zusätzliche Merkmal a. aus:
    1. a. Die elektrischen Bauteile der Anordnung sind über gedruckte Leiterbahnen mit der elektrochemischen Zelle verbunden.
  • Am einfachsten ist es, das Substrat, auf dem die Elektroden der erfindungsgemäßen Zelle angeordnet sind, mit Leiterbahnen zu versehen, bevor die Elektroden auf das Substrat aufgebracht werden. Die Leiterbahnen müssen allerdings nicht unbedingt gedruckt werden. Sie können beispielsweise auch durch Sputtern oder über eine Abscheidung aus der Gasphase gebildet werden. Dem Fachmann sind entsprechende Vorgehensweisen bekannt.
  • Abhängig von der Art ihrer Herstellung umfassen die Leiterbahnen bevorzugt entweder eine durchgehende Metallschicht oder miteinander in Kontakt stehende Metallpartikel und/oder Kohlenstoffpartikel.
  • In einer besonders bevorzugten Weiterbildung zeichnet sich die Anordnung durch das unmittelbar folgende zusätzliche Merkmal a. aus:
    1. a. Die Anordnung umfasst mindestens eine zusätzliche elektrochemische Zelle, die in Reihe oder parallel zu der elektrochemischen Zelle geschaltet ist.
  • Durch die mindestens eine zusätzliche Zelle können innerhalb der Anordnung unterschiedliche Spannungen bereitgestellt werden. So ist es beispielsweise möglich, in einer erfindungsgemäßen Anordnung zwischen eine elektrochemische Zelle, die als erste Elektrode eine negative Elektrode und als zweite und dritte Elektrode zwei positive Elektroden aufweist, und eines der elektrischen Bauteile eine zusätzliche elektrochemische Zelle mit einer positiven Elektrode und einer negativen Elektrode zu schalten und dabei die zweite Elektrode mit der negativen Elektrode der zusätzlichen Zelle und das Bauteil mit der positiven Elektrode der zusätzlichen Zelle zu verbinden. Die Spannungen der in Serie geschalteten Zellen addieren sich so.
  • Weitere Merkmale und Vorteile der beschriebenen Erfindung ergeben sich aus der nachfolgend beschriebenen Zeichnung, in der eine bevorzugte Ausführungsform der erfindungsgemäßen Anordnung und eine bevorzugte Ausführungsform der erfindungsgemäßen elektrochemischen Zelle dargestellt sind. Die beschriebenen Ausführungsformen dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen.
  • In Fig. 1 ist die Herstellung einer erfindungsgemäßen Anordnung illustriert anhand derer auch der Aufbau einer erfindungsgemäßen elektrochemischen Zelle verdeutlicht wird.
  • 1A Zur Herstellung der Anordnung 11 wird eine Stromableiterstruktur 60 (als schwarze, durchgehende Schicht dargestellt) auf ein elektrisch nichtleitendes Substrat 12 gedruckt. Auf das Substrat 12 werden anschließend die elektrische Bauteile 20 (im Beispiel ein integrierter Schaltkreis) und 30 (im Beispiel eine LED) sowie der Schalter S mittels eines Leitklebers aufgeklebt. Diese sind über die Stromableiterstruktur 60 miteinander verbunden. Die Stromableiterstruktur 60 umfasst eine Lage aus Silberpartikeln unmittelbar auf dem Substrat, die von einer Lage aus Kohlenstoffpartikeln abgedeckt ist.
  • 1B In einem weiteren Schritt wird die Stromableiterstruktur 60 mit den Zinkanoden 10a, 40a und 50a teilweise überdruckt.
  • 1C In einem weiteren Schritt wird die Stromableiterstruktur 60 mit den Braunsteinkathoden 10b, 10c, 40b und 50b teilweise überdruckt.
  • 1D In einem weiteren Schritt werden die Zinkanoden 10a, 40a und 50a und die Braunsteinkathoden 10b, 10c, 40b und 50b einschließlich von den Zinkanoden und den Braunsteinkathoden gebildeter Spalte mit den Elektrolytschichten 10d, 40c und 50c überdruckt. In diesem Schritt werden die elektrochemischen Zellen 10, 40 und 50 gebildet.
  • Bei der elektrochemischen Zelle 10 handelt es sich um eine Ausführungsform einer erfindungsgemä-βen Zelle, die als erste Elektrode einer ersten Polarität die Zinkanode 10a und als zweite Elektrode einer zweiten, der ersten Polarität entgegengesetzten Polarität die Braunsteinkathode 10b und als dritte Elektrode, welche die gleiche Polarität wie die zweite Elektrode aufweist, die Braunsteinkathode 10c aufweist. Die erste Elektrode 10a, die zweite Elektrode 10b und die dritte Elektrode 10c sind getrennt voneinander in einer koplanaren Anordnung nebeneinander auf der Oberfläche des Substrats 10 angeordnet. Über den ionenleitfähigen Elektrolyten 10c ist die erste Elektrode mit der zweiten und der dritten Elektrode verbunden.
  • Die elektrochemischen Zellen 40 und 50 sind zusätzliche elektrochemische Zellen, die in Reihe mit der Zelle 10 geschaltet sind. Hierzu sind die Braunsteinkathoden 10b und 10c der Zelle 10 über die Stromableiterstruktur 60 elektrisch leitend mit den Zinkanoden 40a und 50a verbunden.
  • Mit der einen Zelle 10 können sowohl die Bauteile 20 und 30 zuverlässig betrieben werden, obwohl ihre jeweiligen Anforderungen bezgl. ihrer Energieversorgung sehr unterschiedlich ist. So können beispielsweise die Braunsteinkathode 10b und die Zelle 40 dazu ausgelegt werden, die LED 20 auch mit hohen pulsartigen Strömen versorgen zu können. Die Braunsteinkathode 10c und die Zelle 50 können gleichzeitig dazu ausgelegt werden, das Bauteil 30 gleichmäßig mit Strömen geringer Intensität zu versorgen. Entsprechend können die Zellen Elektroden der Zellen 10, 40 und 50 ausgelegt werden. Die zur Verfügung stehende Gesamtfläche auf dem Substrat 12 kann so optimal aufgeteilt werden. Die Ausbeutung der Aktivmaterialien ist effizienter. Die Anzahl der spannungsstabilisierenden Elemente ist dabei minimiert.

Claims (10)

  1. Elektrochemische Zelle (10) mit den folgenden Merkmalen:
    a. Sie umfasst eine erste Elektrode (10a) einer ersten Polarität,
    b. Sie umfasst eine zweite Elektrode (10b) einer zweiten, der ersten Polarität entgegengesetzten Polarität,
    c. Sie umfasst eine dritte Elektrode (10c), welche die gleiche Polarität wie die zweite Elektrode aufweist,
    wobei
    d. die erste Elektrode (10a), die zweite Elektrode (10b) und die dritte Elektrode (10c) getrennt voneinander in einer koplanaren Anordnung nebeneinander auf einer Oberfläche eines Substrats (12) angeordnet sind und
    e. die erste Elektrode (10a) mit der zweiten Elektrode (10b) und der dritten Elektrode (10c) über einen ionenleitfähigen Elektrolyten (10d) verbunden ist.
  2. Elektrochemische Zelle (10) nach Anspruch 1 mit mindestens einem der folgenden zusätzlichen Merkmale:
    a. Sie umfasst eine vierte und/oder eine fünfte Elektrode, welche die gleiche Polarität wie die zweite Elektrode aufweist.
    b. Die erste, die zweite, die dritte sowie die vierte und/oder die fünfte Elektrode sind in einer koplanaren Anordnung nebeneinander auf dem Substrat angeordnet.
    c. Die erste Elektrode ist mit der vierten und/oder der fünften Elektrode über einen ionenleitfähigen Elektrolyten verbunden.
  3. Elektrochemische Zelle (10) nach einem der vorhergehenden Ansprüche mit mindestens einem der folgenden zusätzlichen Merkmale:
    a. Die erste Elektrode (10a) ist eine negative Elektrode und umfasst ein negatives Elektrodenaktivmaterial während die zweite (10b), die dritte (10c) und gegebenenfalls die vierte und/oder die fünfte Elektrode positive Elektroden sind und jeweils ein positives Elektrodenaktivmaterial umfassen.
    b. Das positive Elektrodenaktivmaterial der zweiten Elektrode unterscheidet sich vom positiven Elektrodenaktivmaterial der dritten und gegebenenfalls der vierten und/oder der fünften Elektrode.
    c. Die erste Elektrode ist eine positive Elektrode und umfasst ein positives Elektrodenaktivmaterial während die zweite, die dritte und gegebenenfalls die vierte und/oder die fünfte Elektrode negative Elektroden sind und jeweils ein negatives Elektrodenaktivmaterial umfassen.
    d. Das negative Elektrodenaktivmaterial der zweiten Elektrode unterscheidet sich vom negativen Elektrodenaktivmaterial der dritten und gegebenenfalls der vierten und/oder der fünften Elektrode.
  4. Elektrochemische Zelle (10) nach einem der vorhergehenden Ansprüche mit mindestens einem der folgenden zusätzlichen Merkmale:
    a. Die Kapazitäten der ersten Elektrode (10a) auf der einen Seite sowie der zweiten und der dritten Elektrode (10b; 10c) sowie gegebenenfalls der vierten und/oder der fünften Elektrode auf der anderen Seite stehen in einem Verhältnis X im Bereich von 2 : 1 bis 1: 2.
    b. Die Kapazitäten der zweiten Elektrode (10b) auf der einen Seite sowie der dritten Elektrode (10c) sowie gegebenenfalls der vierten und/oder der fünften Elektrode auf der anderen Seite stehen in einem Verhältnis X im Bereich von 100 : 1 bis 1: 100.
  5. Elektrochemische Zelle (10) nach einem der vorhergehenden Ansprüche mit mindestens einem der folgenden zusätzlichen Merkmale:
    a. Die Elektroden (10a; 10b; 10c; 40a; 40b; 50a; 50b) und der Elektrolyt (10d; 40c; 50c) sind als Schichten mit einer Dicke im Bereich von 10 µm bis 200 µm ausgebildet.
    b. Die Elektroden (10a; 10b; 10c; 40a; 40b; 50a; 50b) und der Elektrolyt (10d; 40c; 50c) sind durch Druck aus einer Suspension oder Paste gebildet.
    c. Der ionenleitfähige Elektrolyt (10d; 40c; 50c) bedeckt die auf dem Substrat angeordneten Elektroden (10a; 10b; 10c; 40a; 40b; 50a; 50b) vollständig.
  6. Anordnung (11) elektrisch miteinander verschalteter Bauteile mit dem folgenden Merkmal:
    a. Sie umfasst eine elektrochemische Zelle (10) nach einem der Ansprüche 1 bis 5 zur Energieversorgung der Bauteile (20; 30).
  7. Anordnung (11) nach Anspruch 6 mit den folgenden zusätzlichen Merkmalen:
    a. Ein erstes Bauteil (20) ist mit der ersten Elektrode (10a) und mit der zweiten Elektrode (10b) elektrisch verbunden.
    b. Ein zweites Bauteil (30) ist mit der ersten Elektrode (10a) und der dritten Elektrode (10c) elektrisch verbunden.
  8. Anordnung (11) nach Anspruch 7 mit mindestens einem der folgenden zusätzlichen Merkmale:
    a. Das erste elektrische Bauteil (20) ist ausgewählt aus der Gruppe mit elektrischem Schalter, integrierter Schaltkreis, Transistor, Diode, optischer Signalgeber, akustischer Signalgeber und Sensor.
    b. Das zweite elektrische Bauteil (30) ist ausgewählt aus der Gruppe mit elektrischem Schalter, integrierter Schaltkreis, Transistor, Diode, optischer Signalgeber, akustischer Signalgeber und Sensor.
  9. Anordnung (11) nach einem der Ansprüche 6 bis 8 mit dem folgenden zusätzlichen Merkmal:
    a. Die elektrischen Bauteile (20; 30) der Anordnung (11) sind über gedruckte Leiterbahnen (60) mit der elektrochemischen Zelle (10) nach einem der Ansprüche 1 bis 5 verbunden.
  10. Anordnung (11) nach einem der Ansprüche 6 bis 9 mit dem folgenden zusätzlichen Merkmal:
    a. Sie umfasst mindestens eine zusätzliche elektrochemische Zelle (40; 50), die in Reihe oder parallel zu der Zelle (10) nach einem der Ansprüche 1 bis 5 geschaltet ist.
EP19151528.7A 2019-01-11 2019-01-11 Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile Active EP3680981B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19151528.7A EP3680981B1 (de) 2019-01-11 2019-01-11 Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile
PCT/EP2019/084751 WO2020143983A1 (de) 2019-01-11 2019-12-11 Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19151528.7A EP3680981B1 (de) 2019-01-11 2019-01-11 Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile

Publications (2)

Publication Number Publication Date
EP3680981A1 EP3680981A1 (de) 2020-07-15
EP3680981B1 true EP3680981B1 (de) 2023-03-01

Family

ID=65019454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19151528.7A Active EP3680981B1 (de) 2019-01-11 2019-01-11 Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile

Country Status (2)

Country Link
EP (1) EP3680981B1 (de)
WO (1) WO2020143983A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843430A (zh) * 2022-05-06 2022-08-02 深圳新源柔性科技有限公司 共面分形电芯、模组及制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119770A (en) 1976-05-07 1978-10-10 Polaroid Corporation Electrical cells and batteries
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
WO2003009920A1 (en) * 2001-07-25 2003-02-06 Biosource, Inc. Electrode array for use in electrochemical cells
DE102005017682A1 (de) 2005-04-08 2006-10-12 Varta Microbattery Gmbh Galvanisches Element
WO2010026285A1 (en) * 2008-09-08 2010-03-11 Enfucell Oy (Ltd) Anode and a method of manufacturing an anode
US9461341B2 (en) * 2012-12-26 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for charging the same

Also Published As

Publication number Publication date
EP3680981A1 (de) 2020-07-15
WO2020143983A1 (de) 2020-07-16

Similar Documents

Publication Publication Date Title
DE60100442T2 (de) Verfahren zur Herstellung eines Kohlenstoffhaltiges Material für eine Doppelschichtkondensatorelektrode und Verfahren zur Herstellung einer Doppelschichtkondensatorelektrode sowie diese verwendender Doppelschichtkondensator
DE102011077932B4 (de) Kathodeneinheit für Alkalimetall-Schwefel-Batterie mit optimierter Ableiterstruktur sowie eine diese Kathodeneinheit enthaltende Batterie und ein Verfahren zur Herstellung der Kathodeneinheit
DE112012001928B4 (de) Aktives Material und Verwendung des aktiven Materials sowie Magnesiumionenbatterie
EP3528323B1 (de) Sekundäre elektrochemische zelle
DE112012002904T5 (de) Aktives Material für eine wiederaufladbare Batterie
DE102012112186A1 (de) Materialverbund, Verfahren zu dessen Herstellung, daraus hergestelltes System und Anwendung desselben
DE112011102079B4 (de) Aktives Material für eine wiederaufladbare Batterie
DE102012212788B4 (de) Negative Elektroden für Lithium-Ionen-Batterien und ihre Herstellung
EP3680981B1 (de) Elektrochemische zelle und anordnung elektrisch miteinander verschalteter bauteile
EP3178125B1 (de) Sekundäre elektrochemische zelle auf basis von nickel / eisen
DE19540845B4 (de) Wiederaufladbare nicht-wäßrige Lithiumbatterie mit schichtartig angeordneten elektrochemischen Zellen
EP3276706B1 (de) Elektrochemische zelle und damit betriebene sensorvorrichtung
WO2014206600A1 (de) Elektrode für einen elektrochemischen energiespeicher
EP2718992B1 (de) Grusskarte mit metall-luft-zelle
AT526160B1 (de) Batteriezelle
DE102020101890B4 (de) Bismut-Ionen-Akkumulator und Verfahren zu dessen Herstellung
EP3893309B1 (de) Feststoff-elektrolytmaterial für elektrochemische sekundärzelle
DE102017209960A1 (de) Verfahren zum Herstellen einer Elektrode, insbesondere für eine Batterie
EP4080663A1 (de) Verfahren und set zur herstellung einer zink-braunstein-zelle sowie damit hergestellte zelle
DE212023000065U1 (de) Lithium-Schwefel-Batterie mit hoher Energiedichte
DE102014223194A1 (de) Sekundäres elektrochemisches Element
DE202021105203U1 (de) Elektrochemische Zink-Braunstein-Zelle mit schichtförmigem Aufbau und Batterie
EP4020695A1 (de) Verfahren und set zur herstellung einer zink-braunstein-zelle sowie damit hergestellte zelle
EP4181162A1 (de) Elektrochemische energiespeicherzelle und batterie
DE102014221640A1 (de) Galvanische Zelle mit robuster Trennung von Kathode und Anode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201230

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 6/40 20060101ALI20220921BHEP

Ipc: H01M 10/42 20060101AFI20220921BHEP

INTG Intention to grant announced

Effective date: 20221013

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1551633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007063

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007063

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

26N No opposition filed

Effective date: 20231204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240121

Year of fee payment: 6

Ref country code: GB

Payment date: 20240124

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 6