EP2667116A1 - Verfahren und Vorrichtung zum Kühlen - Google Patents

Verfahren und Vorrichtung zum Kühlen Download PDF

Info

Publication number
EP2667116A1
EP2667116A1 EP12168675.2A EP12168675A EP2667116A1 EP 2667116 A1 EP2667116 A1 EP 2667116A1 EP 12168675 A EP12168675 A EP 12168675A EP 2667116 A1 EP2667116 A1 EP 2667116A1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
carrier medium
liquid
medium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12168675.2A
Other languages
English (en)
French (fr)
Other versions
EP2667116B1 (de
Inventor
Patrick Matheoud
Dr. Friedhelm Herzog
James Hennequin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Messer France SAS
Original Assignee
Messer Group GmbH
Messer France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH, Messer France SAS filed Critical Messer Group GmbH
Priority to EP12168675.2A priority Critical patent/EP2667116B1/de
Publication of EP2667116A1 publication Critical patent/EP2667116A1/de
Application granted granted Critical
Publication of EP2667116B1 publication Critical patent/EP2667116B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the invention relates to a method and a device for cooling a medium or a plurality of media.
  • the heterogeneous mixture for example, from carbon dioxide and a in consists of this temperature range in the liquid state carrier medium.
  • a plant is about from the DE 30 04 114 A1 known.
  • the refrigeration system described therein operates with a heat transfer medium consisting of a suspension of solid carbon dioxide particles in terpene as a liquid carrier medium. To produce the suspension, pressurized liquid carbon dioxide (carbonic anhydride) is converted to solid carbon dioxide particles and carbon dioxide gas by expansion.
  • the carbon dioxide particles are then fed to the carrier medium to form the suspension and cool it.
  • the temperature of the resulting carbon dioxide - and thus the suspension - between minus 56 ° C (at pressures just below the triple point) and minus 79 ° C (with relaxation to 1 bar final pressure) can be set.
  • the suspension is then pumped through a sublimator (heat exchanger) in which the carbon dioxide particles at least partially sublimate in heat exchange with the medium to be cooled, for example a gas stream.
  • the cooled gas stream can then be used, for example, for freezing and storing food.
  • the remaining mixture, containing terpene, carbon dioxide vapor and optionally remaining in the terpene carbon dioxide particles, is separated; the thereby separated gaseous carbon dioxide is sucked off and can then be liquefied in a compressor and used in a renewed cooling cycle.
  • the object of the present invention is therefore to provide a cooling method and a cooling device which is or is particularly suitable for the generation of temperatures in the range between -56 ° C and -79 ° C and at the or the risk of disturbance due coagulation of solid carbon dioxide particles is minimized.
  • a method for cooling a medium in which a liquid carrier medium is mixed with liquid carbon dioxide under a pressure at which the mixture is in the liquid state, then the mixture of carrier medium and liquid carbon dioxide is expanded while being cooled to a pressure in which at least a portion of the carbon dioxide evaporates, then the expanded mixture is fed to a separator in which vaporized carbon dioxide is separated from the carrier medium, the separated carrier medium is repressurized and recirculated for mixing with liquid refrigerant dioxide, the mixture after the relaxation and / or the carrier medium from the separator passes through a heat exchanger in which it is brought into thermal contact with a medium to be cooled.
  • the mixing of the carrier medium with the carbon dioxide takes place at a pressure at which the mixture forming is present in the liquid state.
  • the two liquids mix thoroughly. Only then is the mixture expanded, with part of the carbon dioxide in gaseous form, while the remaining part of the carbon dioxide forms a suspension with the carrier medium or can go completely or partially into solution.
  • the forming suspension or solution is characterized by a high degree of homogeneity, whereby a risk of transport problems due to dry ice coagulation hardly exists.
  • the support medium in the process according to the invention - as well as the carbon dioxide - two different pressure levels it is crucial that the mixture of carrier medium and carbon dioxide at and immediately after mixing has a pressure at which it is a mixture of Liquids and not for example as a suspension.
  • this pressure value should have a value above the triple point of carbon dioxide (5.18 bar), it may differ depending on the solubility of carbon dioxide and carrier medium into each other.
  • the mixture present at this high pressure, and thus the carrier medium contained therein, is relaxed to a value which is between 0 and a value at which part of the carbon dioxide present in the mixture evaporates.
  • this lower pressure value is a maximum of 5.18 bar. Due to the relaxation is a strong cooling, for example, to a temperature of up to minus 79 ° C with relaxation to 1 bar, with relaxation to a lower pressure value than 1 bar even lower, to, for example, minus 85 ° C. From its relaxation, the mixture is thus available as a refrigerant for the heat exchange with a medium or with several media, the heat exchange can take place downstream of the place of relaxation and / or downstream of the separation of the gaseous carbon dioxide. Likewise, the cold of the separated gaseous carbon dioxide can be used for heat exchange with a medium. The heat exchange can take place indirectly or directly, whereby in the latter case care should be taken that the medium to be cooled can be completely separated again from the mixture or the carbon dioxide after thorough mixing.
  • the mass flow of the liquid carbon dioxide and / or the mass flow of the pressurized carrier medium is / are regulated in dependence on a predetermined or measured cooling capacity or the temperature of a medium to be cooled.
  • the pressurized carrier medium is brought to a temperature above the melting point of carbon dioxide at the respective pressure before it is fed to the liquid carbon dioxide. This ensures that the liquid carbon dioxide does not freeze out during its mixing with the liquid carrier medium.
  • the temperature increase of the carrier medium can be done for example by a correspondingly controlled heater, and / or the carrier medium is brought by heat exchange with a medium to be cooled to the appropriate temperature.
  • a further expedient development of the invention provides that a carrier medium is used, in which the carbon dioxide is at least partially soluble.
  • the at least partial dissolution of the carbon dioxide in the carrier medium or the carrier medium in the carbon dioxide not only improves the fluidity of the suspension, but also determines the thermodynamic properties of the mixture, thus providing a further degree of freedom for adapting the method of the invention to the respective cooling task ,
  • a suitable carbon dioxide-releasing carrier medium by choosing a suitable carbon dioxide-releasing carrier medium, the temperature in the preparation of the mixture and the temperature can be influenced after its relaxation.
  • Ethanol is used as a particularly advantageous, inexpensive and environmentally friendly carrier medium.
  • all carrier media can be used which, at the mentioned temperature and pressure ratios in the liquid state, for example other alcohols or terpenes.
  • An advantageous development of the invention provides that the separated evaporated carbon dioxide is pressure-liquefied and recycled in the circuit for mixing with the carrier medium. In this case, therefore, both the carrier medium and the carbon dioxide is recycled, whereby a particularly efficient process management is made possible.
  • a further advantageous embodiment provides that the gaseous carbon dioxide separated off in the separator is likewise used in a heat exchanger for cooling a medium.
  • the medium to be cooled can be the same medium or the same media which is also cooled by the carrier medium or the mixture, or else by another medium.
  • the cold content of the gaseous carbon dioxide can also be used, in particular, to pre-cool the liquid carbon dioxide intended for mixing with the carrier medium.
  • a pressure-resistant mixing device such as a pressure vessel or a pressure-resistant fitting in which substantially the pressure of the supply lines is maintained, merging liquid carbon dioxide and carrier medium at a pressure at which the forming mixture as pure Liquid mixture is present.
  • a suitable carrier medium is selected, partial or complete dissolution of the carbon dioxide in the carrier medium can also take place.
  • the carrier medium cools down and is then available as a heat exchange medium for cooling another medium.
  • the expansion element can also be arranged directly on or in a heat exchanger, which serves to cool a medium; the expansion device can also be arranged directly at the mouth of the discharge for the mixture in the separator.
  • the gaseous carbon dioxide formed during the expansion at least largely separates from the carrier medium and is withdrawn via the outlet for the gaseous carbon dioxide, while the carrier medium accumulates in a lower region of the separator.
  • the separator acts in this way at the same time as a storage container for the carrier medium, which is withdrawn from there and fed after pressure increase again the liquid carbon dioxide for mixing with this.
  • a compressor and a cooler are provided to liquefy the carbon dioxide.
  • the diversion for the gaseous carbon dioxide is also fluidly connected to the opening into the mixing device inlet for liquid carbon dioxide. This makes it possible to completely or partially recycle the carbon dioxide.
  • Compressor and cooler can be provided in a common arrangement or be present as separate facilities.
  • the cooling required for renewed liquefaction of the carbon dioxide can also be at least partially carried out by the fact that the carbon dioxide gas taken from the separator is used for precooling the carbon dioxide to be supplied to the mixing device and thereby cools down.
  • a heat exchanger located in the outlet for the vaporized carbon dioxide.
  • a medium can be cooled.
  • the cooling power contained in the gaseous carbon dioxide is also utilized profitably.
  • a yet further advantageous embodiment of the device according to the invention is characterized by a control device which controls the flow rate of the liquid carbon dioxide and / or the flow rate of the liquid carrier medium as a function of the cooling capacity of the heat exchanger and / or the temperature of a medium to be cooled.
  • a preferred use of the method and the device according to the invention consists in the cooling of one or more media in the temperature range between minus 56 ° C and minus 85 ° C, the temperature range between minus 79 ° C and minus 85 ° C and below, in particular by relaxation of the mixture can be achieved to a pressure value of less than 1 bar.
  • Fig. 1 shows an inventive device 1 for cooling a medium with the aid of a mixture of carbon dioxide and a carrier medium.
  • the carrier medium is a substance which is in the liquid state in the entire temperature and pressure range in which the cooling process described below takes place, ie, for example, in the temperature range between minus 56 ° C. and minus 79 ° C. and at pressures between 1 bar and a pressure above the triple point pressure of carbon dioxide (5.18 bar), z. B. 20 bar.
  • the carrier medium is ethanol.
  • the apparatus 1 comprises a mixing device 2, for example a mixing nozzle, at which liquid carbon dioxide, which is introduced via a carbon dioxide line 3, is mixed with the carrier medium, which is introduced under pressure via a feed line 4.
  • the mixing device 2 opens into a discharge 6, in which after a mixing section 7 an expansion valve 8 is arranged. Downstream to the expansion valve 8, the outlet 6 passes through a heat exchanger 9, in which the mixture guided in the outlet 6 enters into indirect heat exchange with a medium to be cooled, which is introduced in a liquid or gaseous medium flow (indicated by arrows).
  • the outlet 6 opens into a separator 10 a.
  • the separator 10 is essentially a vessel equipped with thermally insulated walls, in whose geodesically lower section a liquid phase 12 consisting predominantly of carrier medium is present and in the upper area of which a gas phase 11 consisting predominantly of gaseous carbon dioxide is present.
  • the liquid phase 12 is fluidly connected to a discharge 14, in which a device 15 is arranged to increase the pressure, which is driven in the embodiment with a motor 16. Downstream to the device 15, the outlet 14 passes through a second heat exchanger 17, in which the guided through the discharge 14 carrier medium is brought in the embodiment shown here in heat exchange with the same medium as the guided through the outlet 6 mixture in the heat exchanger 9.
  • the discharge 14th finally leads into the supply line 4 or goes into this.
  • the separator 10 further comprises a gas discharge 19, which is fluidly connected to the gas phase in the separator 10.
  • the gas discharge 19 passes through a heat exchanger 20 in which the gaseous carbon dioxide guided through the gas discharge enters into indirect heat exchange with the carbon dioxide introduced through the carbon dioxide line 3.
  • a mixture of liquid carbon dioxide and carrier medium is generated in the mixing device 2, which intimately mixes in the subsequent mixing section 7 as a mixture of liquids.
  • the mixture has in the mixing section 7, for example, a pressure of 10 to 20 bar and a temperature of minus 56 ° C.
  • the mixture is expanded under strong cooling and fed to the heat exchanger 9, wherein the carbon dioxide partially passes into gaseous form.
  • the heat exchanger 9 a heat exchange with the medium to be cooled takes place, wherein the guided through the outlet 6, relaxed mixture heat is supplied.
  • the mixture then passes into the separator 10, in which a separation takes place into gaseous carbon dioxide and carrier medium, carbon dioxide possibly being dissolved in the carrier medium or being present as a suspension.
  • the carrier medium has a temperature of, for example, minus 78 ° C. and a pressure of, for example, 1 bar.
  • the carrier medium is then brought by means of the device 15 to the outlet pressure, ie the pressure of the carrier medium at the mixing device 2 (for example 10 to 20 bar) and returned to the mixing device 2.
  • the carrier medium before reaching the mixing device 2, the carrier medium passes through the heat exchanger 17, in which it is heated by heat exchange with the medium to be cooled and preferably brought to a temperature above the solidification temperature of liquid carbon dioxide at the mixing device at the mixing of both liquids Pressure is. According to the invention, the carrier medium is thus recycled, wherein it passes through two pressure stages in succession. Due to the mixing of carrier medium and carbon dioxide taking place at the mixing device 2 or in the mixing section 7 as two substances present in liquid form at a pressure preferably above the triple point of carbon dioxide, a particularly thorough mixing takes place, whereby a suspension forming during the expansion becomes a very has high homogeneity. The risk of clogging of the lines by coagulatingniceisteilchen is therefore low.
  • the gaseous carbon dioxide separated from the carrier medium in the separator 10 is in the gas phase 11 at the same temperature and pressure as the carrier medium in the liquid phase 12 (for example, minus 78 ° C and 1 bar).
  • the gaseous carbon dioxide is discharged via the gas outlet 19 and supplied, for example, to another utilization or released into the atmosphere.
  • the cold of the gaseous carbon dioxide is used in the heat exchanger 20 to pre-cool the liquid carbon dioxide in the carbon dioxide line 3, but can - not shown here - alternatively or additionally be used to cool another medium.
  • a regulation of the carrier medium flow serves in the embodiment according to Fig. 1 a regulation of the carrier medium flow.
  • the temperature of the mixture downstream of the heat exchanger 9 is measured by a sensor 21 and used as a control variable for the control of the power of the motor 16.
  • the cooling capacity is regulated in this way via the flow rate of the carrier medium.
  • Fig. 2 shown device 1 'differs from the device 1 Fig. 1 only by the type of regulation, which is why the same or identically acting components in both devices are indicated by the same reference numerals.
  • the regulation of the cooling capacity of the heat exchangers 9, 17 takes place via a variation of the mass flow of the supplied liquid carbon dioxide.
  • the power of the motor 16 and thus the flow rate of the carrier medium remains constant during an operating phase of the device 1 '.
  • the sensor 21 is operatively connected to a quantity control valve 22 in the carbon dioxide line 3, which regulates the mass flow of the supplied carbon dioxide in dependence on the values measured at the sensor 21, wherein, of course, care must be taken that no such strong pressure reduction takes place at the volume control valve 22 that already 3 dry ice particles are formed immediately behind the flow control valve 22 in the supply line.
  • the gas discharge line 19 is flow-connected to the carbon dioxide supply line 3 via a compressor and optionally a cooling device, thus allowing a circulation of the carbon dioxide.
  • a compressor and optionally a cooling device it is also conceivable to dispense with one of the heat exchangers 9, 17 and to allow the cooling of the medium to take place only via the respectively remaining heat exchanger.
  • the expansion nozzle 8 can also be arranged directly at the junction of the outlet 6 in the separator.
  • the heat exchangers 9, 17 can be used for cooling different media.
  • the device according to the invention and the method according to the invention are particularly suitable for cooling tasks in the temperature range between minus 56 ° C. and minus 79 ° C. and below, in particular for applications in the field of the food processing industry, pharmacy or the chemical industry; the invention is of course not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zum indirekten Kühlen mit einem kryogenen Medium, insbesondere Kohlendioxid, bei dem zum Kühlen eines Mediums auf tiefe Temperaturen, insbesondere auf Temperaturen im Bereich zwischen - 56°C und -85°C, bei dem ein unter Druck stehendes flüssiges Trägermedium mit flüssigem Kohlendioxid vermischt und das Gemisch unter Abkühlen entspannt wird, anschließend bei der Entspannung entstandenes gasförmiges Kohlendioxid vom flüssigen Trägermedium separiert und das flüssige Trägermedium erneut unter Druck gesetzt und mit dem flüssigen Kohlendioxid vermischt wird. Das entspannte Gemisch und/oder das vom gasförmigen Kohlendioxid separierte Trägermedium wird/werden zum Wärmetausch mit dem zu kühlenden Medium eingesetzt.

Description

  • Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Kühlen eines Mediums oder mehrerer Medien.
  • Insbesondere im Temperaturbereich zwischen minus 56°C und minus 79°C kommen Anlagen zum Kühlen eines Mediums, beispielsweise eines Gasstroms, zum Einsatz, die nach dem Prinzip einer indirekten Kühlung mittels einer heterogenen Mischung arbeiten, wobei die heterogene Mischung beispielsweise aus Kohlendioxid und einem in diesem Temperaturbereich im flüssigen Zustand vorliegenden Trägermedium besteht. Eine derartige Anlage ist etwa aus der DE 30 04 114 A1 bekannt. Das dort beschriebene Kältesystem arbeitet mit einem Wärmeübertragungsmedium, bestehend aus einer Suspension aus festen Kohlendioxidteilchen in Terpen als flüssigem Trägermedium. Zur Herstellung der Suspension wird unter Druck stehendes flüssiges Kohlendioxid (Kohlensäureanhydrid) durch Entspannen in feste Kohlendioxidpartikel sowie Kohlendioxidgas umgewandelt. Die Kohlendioxidpartikel werden dem Trägermedium anschließend unter Bildung der Suspension zugeführt und kühlen dieses ab. Durch Variation des Enddrucks der Entspannung kann bei diesem Gegenstand die Temperatur der entstehenden Kohlendioxidteilchen - und somit der Suspension - zwischen minus 56°C (bei Drücken knapp unter dem Tripelpunkt) und minus 79°C (bei Entspannung auf 1 bar Enddruck) eingestellt werden. Die Suspension wird anschließend durch einen Sublimator (Wärmetauscher) gepumpt, in dem die Kohlendioxidteilchen im Wärmetausch mit dem zu kühlenden Medium, beispielsweise einem Gasstrom, zumindest teilweise sublimieren. Der gekühlte Gasstrom kann anschließend beispielsweise zum Einfrieren und Aufbewahren von Nahrungsmitteln eingesetzt werden. Das verbleibende Gemisch, enthaltend Terpen, Kohlendioxiddampf und gegebenenfalls noch im Terpen verbliebene Kohlendioxidteilchen, wird separiert; das dabei abgetrennte gasförmige Kohlendioxid wird abgesaugt und kann anschließend in einem Kompressor verflüssigt und in einem erneuten Kühlzyklus eingesetzt werden.
  • Um die Homogenität der Suspension zu verbessern wird in der EP 0 948 727 B1 vorgeschlagen, die die Kohlendioxidpartikel enthaltende Transportflüssigkeit im Mischbehälter laufend umzuwälzen. Dies erfolgt gemäß der Lehre dieser Druckschrift dadurch, dass die im Mischbehälter erzeugte Suspension mittels einer Pumpe teilweise in die Flüssigphase des Mischbehälters zurückgeführt wird, sodass diese ständig in Bewegung gehalten wird. Als Transportflüssigkeit kommt bei diesem Gegenstand anstelle von Terpen Limonen zum Einsatz.
  • Nachteilig bei den zuvor beschriebenen Gegenständen ist jedoch die Gefahr, dass die Kohlendioxidpartikel in der Suspension koagulieren und dadurch Leitungen des Kühlsystems ganz oder teilweise blockieren können. Nach wie vor auftretende Inhomogenitäten der Suspension führen zudem zu unregelmäßigen Kühlleistungen und damit zu Schwierigkeiten bei der Regelung des Systems.
  • Aufgabe der vorliegenden Erfindung ist daher, ein Kühlverfahren sowie eine Kühlvorrichtung zu schaffen, das bzw. die insbesondere für die Erzeugung von Temperaturen im Bereich zwischen -56°C und -79°C geeignet ist und bei dem bzw. der die Gefahr einer Störung aufgrund einer Koagulation fester Kohlendioxidteilchen minimiert ist.
  • Gelöst ist diese Aufgabe durch ein Verfahren zum Kühlen eines Mediums, bei dem ein flüssiges Trägermedium mit flüssigem Kohlendioxid unter einem Druck vermischt wird, bei dem das Gemisch im flüssigen Zustand vorliegt, anschließend das Gemisch aus Trägermedium und flüssigem Kohlendioxid unter Abkühlung auf einen Druck entspannt wird, bei dem zumindest ein Teil des Kohlendioxids verdampft, anschließend das entspannte Gemisch einem Separator zugeführt wird, in dem verdampftes Kohlendioxid vom Trägermedium separiert wird, das separierte Trägermedium erneut unter Druck gesetzt und im Kreislauf zur Vermischung mit flüssigem Kühlendioxid zurückgeführt wird, wobei das Gemisch nach der Entspannung und/oder das Trägermedium aus dem Separator einen Wärmetauscher durchläuft, in dem es mit einem zu kühlenden Medium in Wärmekontakt gebracht wird.
  • Im Unterschied zu den erwähnten Verfahren nach dem Stande der Technik erfolgt also erfindungsgemäß die Vermischung des Trägermediums mit dem Kohlendioxids bei einem Druck, bei dem das sich bildende Gemisch im flüssigen Zustand vorliegt. Die beiden Flüssigkeiten durchmischen sich innig. Erst anschließend wird das Gemisch entspannt, wobei ein Teil des Kohlendioxids in Gasform übergeht, während der verbleibende Teil des Kohlendioxids mit dem Trägermedium eine Suspension bilden bzw. ganz oder teilweise in Lösung gehen kann. Die sich bildende Suspension bzw. Lösung zeichnet sich durch eine hohe Homogenität aus, wodurch eine Gefahr von Transportstörungen aufgrund von Trockeneis - Koagulationen kaum noch besteht. Anders als beim Stand der Technik durchläuft das Trägermedium beim erfindungsgemäßen Verfahren also - ebenso wie das Kohlendioxid - zwei unterschiedliche Druckniveaus, wobei entscheidend ist, dass das Gemisch aus Trägermedium und Kohlendioxid bei und unmittelbar nach der Vermischung einen Druck aufweist, bei dem es als Gemisch von Flüssigkeiten und nicht beispielsweise als Suspension vorliegt. In der Regel dürfte dieser Druckwert einen Wert oberhalb des Tripelpunkts von Kohlendioxid (5,18 bar) aufweisen, er kann je nach Löslichkeit von Kohlendioxid und Trägermedium ineinander davon abweichen. Das auf diesem hohen Druck vorliegende Gemisch, und damit das darin enthaltene Trägermedium, wird auf einen Wert entspannt, der zwischen 0 und einem Wert liegt, bei dem ein Teil des im Gemisch vorliegenden Kohlendioxids verdampft. In dem Fall, dass keine oder nur eine vernachlässigbare Lösung des Kohlendioxids im Trägermedium erfolgt, liegt dieser niedrigere Druckwert maximal bei 5,18 bar. Aufgrund der Entspannung erfolgt eine starke Abkühlung, beispielsweise auf eine Temperatur von bis zu minus 79 °C bei Entspannung auf 1 bar, bei Entspannung auf einen tieferen Druckwert als 1 bar sogar noch darunter, bis beispielsweise minus 85 °C. Ab seiner Entspannung steht das Gemisch somit als Kälteträger für den Wärmetausch mit einem Medium oder mit mehreren Medien zur Verfügung, wobei der Wärmetausch jeweils stromab zum Ort der Entspannung und/oder stromab nach der Separation des gasförmigen Kohlendioxids stattfinden kann. Ebenso kann die Kälte des separierten gasförmigen Kohlendioxids zum Wärmetausch mit einem Medium genutzt werden. Der Wärmetausch kann indirekt oder direkt erfolgen, wobei im letzteren Falle darauf zu achten ist, dass sich das zu kühlende Medium nach der Durchmischung wieder vollständig vom Gemisch bzw. dem Kohlendioxid trennen lässt.
  • Vorzugsweise wird/werden der Mengenstrom des flüssigen Kohlendioxids und/oder der Mengenstrom des unter Druck gesetzten Trägermediums in Abhängigkeit von einer vorgegebenen oder gemessenen Kühlleistung oder der Temperatur eines zu kühlenden Mediums geregelt.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das unter Druck gesetzte Trägermedium vor seiner Zuführung an das flüssige Kohlendioxid auf eine Temperatur oberhalb des Schmelzpunkts von Kohlendioxid beim jeweiligen Druck gebracht wird. Dadurch wird gewährleistet, dass das flüssige Kohlendioxid während seiner Vermischung mit dem flüssigen Trägermedium nicht ausfriert. Die Temperaturerhöhung des Trägermediums kann dabei beispielsweise durch eine entsprechend geregelte Heizeinrichtung erfolgen, und/oder das Trägermedium wird durch Wärmetausch mit einem zu kühlenden Medium auf die entsprechende Temperatur gebracht.
  • Eine abermals zweckmäßige Weiterbildung der Erfindung sieht vor, dass ein Trägermedium zum Einsatz kommt, in dem das Kohlendioxid zumindest teilweise lösbar ist. Durch die zumindest teilweise Lösung des Kohlendioxids im Trägermedium bzw. des Trägermediums im Kohlendioxid wird nicht nur die Fließfähigkeit der Suspension verbessert, sondern es werden die thermodynamischen Eigenschaften des Gemisches mitbestimmt, wodurch ein weiterer Freiheitsgrad für die Anpassung des erfindungsgemäßen Verfahrens an die jeweilige Kühlaufgabe gewonnen wird. Insbesondere können auf diese Weise durch die Wahl eines geeigneten, Kohlendioxid lösenden Trägermediums die Temperatur bei der Herstellung des Gemisches und die Temperatur nach seiner Entspannung beeinflusst werden.
  • Als ein besonders vorteilhaftes, preiswertes und umweltfreundliches Trägermedium kommt Ethanol zum Einsatz. Jedoch können im Rahmen der Erfindung grundsätzlich alle Trägermedien zum Einsatz kommen, die bei den genannten Temperatur- und Druckverhältnissen im flüssigen Zustand vorliegen, beispielsweise andere Alkohole oder Terpene.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das separierte verdampfte Kohlendioxid druckverflüssigt und im Kreislauf zur Vermischung mit dem Trägermedium zurückgeführt wird. In diesem Fall wird also sowohl das Trägermedium als auch das Kohlendioxid im Kreislauf geführt, wodurch eine besonders effiziente Verfahrensführung ermöglicht wird.
  • Um die Effizienz des erfindungsgemäßen Verfahrens weiter zu erhöhen, sieht eine weitere vorteilhafte Ausgestaltung vor, dass das im Separator abgetrennte gasförmige Kohlendioxid in einem Wärmetauscher ebenfalls zum Kühlen eines Mediums eingesetzt wird. Bei dem zu kühlenden Medium kann es sich um das gleiche Medium bzw. die gleichen Medien handeln, das bzw. die auch vom Trägermedium bzw. dem Gemisch gekühlt wird/werden, oder aber um ein anderes Medium. Der Kälteinhalt des gasförmigen Kohlendioxids kann insbesondere auch dazu eingesetzt werden, das zum Mischen mit dem Trägermedium bestimmte flüssige Kohlendioxid vorzukühlen.
  • Die Aufgabe der Erfindung wird auch mit einer Vorrichtung zum Kühlen eines Mediums gelöst, die folgende Merkmale aufweist:
    • eine Mischeinrichtung, in die eine Zuleitung für flüssiges Kohlendioxid und eine Zuleitung für unter Druck stehendes flüssiges Trägermedium einmündet, und die in eine Ausleitung für ein Gemisch aus flüssigem Kohlendioxid und Trägermedium ausmündet,
    • ein stromab zur Mischeinrichtung in der Ausleitung für das Gemisch angeordneten Entspannungsorgan zum Entspannen des Gemisches,
    • ein Separator zum Abtrennen von bei der Entspannung verdampftem Kohlendioxid vom flüssigen Trägermedium, in den die Ausleitung für das Gemisch ausmündet und der eine Ausleitung für das flüssige Trägermedium und eine Ausleitung für verdampftes Kohlendioxid aufweist, wobei die Ausleitung für das flüssige Trägermedium mit einer Einrichtung zur Druckerhöhung ausgerüstet und mit der Zuleitung für das Trägermedium an die Mischeinrichtung strömungsverbunden ist,
    • wenigstens ein mit einer Zuleitung und einer Ableitung für ein zu kühlendes Medium ausgerüsteter Wärmetauscher, der/die in der Ausleitung für das Gemisch, stromab zum Entspannungsorgan und/oder in der Ausleitung für das flüssige Trägermedium, stromab zum Separator angeordnet ist/sind.
  • Bei der erfindungsgemäßen Vorrichtung erfolgt somit an einer druckfesten Mischeinrichtung, beispielsweise einem Druckbehälter oder einer druckfesten Armatur, in der im Wesentlichen der Druck der Zuleitungen aufrecht erhalten wird, ein Zusammenführen von flüssigem Kohlendioxid und Trägermedium bei einem Druck, bei dem das sich bildende Gemisch als reines Flüssiggemisch vorliegt. Bei der Zusammenführung an der Mischeinrichtung bzw. in einer gegebenenfalls sich an die Mischeinrichtung anschließenden Mischstrecke erfolgt/erfolgen eine innige Durchmischung beider Flüssigkeiten. Bei Wahl eines geeigneten Trägermediums kann auch eine teilweise oder vollständige Lösung des Kohlendioxids im Trägermedium erfolgen. Durch die Entspannung des Gemisches bzw. der Lösung am Entspannungsorgan kühlt sich das Trägermedium ab und steht sodann als Wärmetauschermedium zum Kühlen eines anderen Mediums zur Verfügung. Hierzu kann das Entspannungsorgan auch unmittelbar an oder in einem Wärmetauscher angeordnet sein, der der Kühlung eines Mediums dient; das Entspannungsorgan kann auch unmittelbar an der Ausmündung der Ausleitung für das Gemisch in den Separator angeordnet sein. Im Separator trennt sich das bei der Entspannung entstandene gasförmige Kohlendioxid zumindest weitgehend vom Trägermedium und wird über die Ausleitung für das gasförmige Kohlendioxid abgezogen, während sich das Trägermedium in einem unteren Bereich des Separators ansammelt. Der Separator fungiert auf diese Weise zugleich als Vorratsbehälter für das Trägermedium, das von dort abgezogen und nach Druckerhöhung erneut dem flüssigen Kohlendioxid zur Vermischung mit diesem zugeführt wird.
  • Bevorzugt sind in der Ausleitung für das verdampfte Kohlendioxid ein Kompressor sowie ein Kühler vorgesehen, um das Kohlendioxid zu verflüssigen. Die Ausleitung für das gasförmige Kohlendioxid ist dabei zudem mit der in die Mischeinrichtung einmündenden Zuleitung für flüssiges Kohlendioxid strömungsverbunden. Dadurch besteht die Möglichkeit, das Kohlendioxid ganz oder teilweise im Kreislauf zu führen. Kompressor und Kühler können dabei in einer gemeinsamen Anordnung vorgesehen sein oder als voneinander separate Einrichtungen vorliegen. Die zur erneuten Verflüssigung des Kohlendioxids erforderliche Kühlung kann auch zumindest teilweise dadurch vollzogen werden, dass das dem Separator entnommene Kohlendioxidgas zur Vorkühlung des der Mischeinrichtung zuzuführenden Kohlendioxids eingesetzt wird und sich dabei abkühlt.
  • Vorteilhafterweise befindet sich in der Ausleitung für das verdampfte Kohlendioxid ein Wärmetauscher, mittels dessen ein Medium gekühlt werden kann. Auf diese Weise wird auch die im gasförmigen Kohlendioxid enthaltene Kälteleistung noch nutzbringend verwertet.
  • Eine abermals vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung zeichnet sich durch eine Regeleinrichtung aus, die den Mengenstrom des flüssigen Kohlendioxids und/oder den Mengenstrom des flüssigen Trägermediums in Abhängigkeit von der Kühlleistung des Wärmetauschers und/oder der Temperatur eines zu kühlenden Mediums regelt.
  • Eine bevorzugte Verwendung des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung besteht in der Kühlung eines oder mehrerer Medien im Temperaturbereich zwischen minus 56°C und minus 85°C, wobei der Temperaturbereich zwischen minus 79°C und minus 85°C und darunter insbesondere durch Entspannung des Gemisches auf einen Druckwert von unter 1 bar erzielt werden kann.
  • Anhand der Zeichnung sollen nachfolgend ein Ausführungsbeispiele der Erfindung näher erläutert werden. In schematischer Ansicht zeigen:
    • Fig. 1: Eine erfindungsgemäße Vorrichtung zum Kühlen eines Mediums in einer ersten Ausführungsform und
    • Fig. 2: Eine erfindungsgemäße Vorrichtung zum Kühlen eines Mediums in einer zweiten Ausführungsform.
  • Fig. 1 zeigt eine erfindungsgemäße Vorrichtung 1 zum Kühlen eines Mediums mit Hilfe eines Gemisches aus Kohlendioxid und einem Trägermedium. Beim Trägermedium handelt es sich um eine Substanz, die im gesamtem Temperatur- und Druckbereich, in dem der im Folgenden beschriebene Kühlprozess stattfindet, im flüssigen Zustand vorliegt, also beispielsweise im Temperaturbereich zwischen minus 56°C und minus 79°C und bei Drücken zwischen 1 bar und einem Druck oberhalb des Tripelpunktdrucks von Kohlendioxid (5,18 bar), z. B. 20 bar. Beispielsweise handelt es sich bei dem Trägermedium um Ethanol. Die Vorrichtung 1 umfasst eine Mischeinrichtung 2, etwa eine Mischdüse, an der flüssiges Kohlendioxid, das über eine Kohlendioxidleitung 3 herangeführt wird, mit dem Trägermedium, das unter Druck über eine Zuleitung 4 herangeführt wird, vermischt wird. Die Mischeinrichtung 2 mündet in eine Ausleitung 6 ein, in der nach einer Mischstrecke 7 ein Entspannungsventil 8 angeordnet ist. Stromab zum Entspannungsventil 8 durchläuft die Ausleitung 6 einen Wärmetauscher 9, in dem das in der Ausleitung 6 geführte Gemisch in indirekten Wärmetausch mit einem zu kühlenden Medium tritt, das in einem flüssigen oder gasförmigen Mediumsstrom (durch Pfeile angedeutet) herangeführt wird. Die Ausleitung 6 mündet in einen Separator 10 ein. Beim Separator 10 handelt es sich im Wesentlichen um ein mit thermisch isolierten Wänden ausgerüstetes Gefäß, in dessen -geodätisch gesehen- unterem Abschnitt eine überwiegend aus Trägermedium bestehende Flüssigphase 12 und in dessen oberen Bereich eine überwiegend aus gasförmigem Kohlendioxid bestehende Gasphase 11 vorliegt. Die Flüssigphase 12 ist mit einer Ausleitung 14 strömungsverbunden, in der eine Einrichtung 15 zur Druckerhöhung angeordnet ist, die im Ausführungsbeispiel mit einem Motor 16 angetrieben wird. Stromab zur Einrichtung 15 durchläuft die Ausleitung 14 einen zweiten Wärmetauscher 17, in dem das durch die Ausleitung 14 geführte Trägermedium im hier gezeigten Ausführungsbeispiel mit dem gleichen Medium in Wärmetausch gebracht wird, wie das durch die Ausleitung 6 geführte Gemisch im Wärmetauscher 9. Die Ausleitung 14 mündet schließlich in die Zuleitung 4 bzw. geht in diese über. In der Zeichnung nicht gezeigt, jedoch gleichwohl vorhanden, ist eine beispielsweise in den Separator 10 einmündende Füllleitung, über die Trägermedium aus dem Kreislauf abgelassen oder diesem zugeführt werden kann. Der Separator 10 weist des Weiteren eine Gasableitung 19 auf, die mit der Gasphase im Separator 10 strömungsverbunden ist. Die Gasableitung 19 durchläuft einen Wärmetauscher 20, in dem das durch die Gasableitung geführte gasförmige Kohlendioxid in indirekten Wärmetausch mit dem durch die Kohlendioxidleitung 3 herangeführten Kohlendioxid tritt.
  • Im Einsatz der Vorrichtung 1 wird in der Mischeinrichtung 2 ein Gemisch aus flüssigem Kohlendioxid und Trägermedium erzeugt, das sich in der darauffolgenden Mischstrecke 7 als ein Gemisch von Flüssigkeiten innig durchmischt. Je nach Wahl des Trägermediums kann es dabei gegebenenfalls auch zu einer teilweisen oder vollständigen Lösung des Kohlendioxids im Trägermedium - bzw. des Trägermediums im Kohlendioxid- kommen. Das Gemisch weist in der Mischstrecke 7 beispielsweise einen Druck von 10 bis 20 bar und eine Temperatur von minus 56°C auf. An der Entspannungsdüse 8 wird das Gemisch unter starker Abkühlung entspannt und dem Wärmetauscher 9 zugeführt, wobei das Kohlendioxid teilweise in Gasform übergeht. Im Wärmetauscher 9 erfolgt ein Wärmetausch mit dem zu kühlenden Medium, wobei dem durch die Ausleitung 6 geführten, entspannten Gemisch Wärme zugeführt wird. Das Gemisch gelangt anschließend in den Separator 10, in dem eine Separation in gasförmiges Kohlendioxid und Trägermedium erfolgt, wobei im Trägermedium gegebenenfalls noch Kohlendioxid gelöst sein oder als Suspension vorliegen kann. Im Separator 10 weist das Trägermedium eine Temperatur von beispielsweise minus 78°C und einen Druck von beispielsweise 1 bar auf. Das Trägermedium wird anschließend mittels der Einrichtung 15 auf den Ausgangsdruck, also den Druck des Trägermediums an der Mischeinrichtung 2 (beispielsweise 10 bis 20 bar) gebracht und zur Mischeinrichtung 2 zurückgeführt. Dabei durchläuft das Trägermedium vor Erreichen der Mischeinrichtung 2 den Wärmetauscher 17, in dem es durch Wärmetausch mit dem zu kühlenden Medium erwärmt und bevorzugt auf eine Temperatur gebracht wird, die oberhalb der Erstarrungstemperatur von flüssigem Kohlendioxid bei dem bei der Vermischung beider Flüssigkeiten an der Mischeinrichtung herrschenden Druck liegt. Gemäß der Erfindung wird das Trägermedium also im Kreislauf geführt, wobei es nacheinander zwei Druckstufen durchläuft. Aufgrund der an der Mischeinrichtung 2 bzw. in der Mischstrecke 7 erfolgenden Durchmischung von Trägermedium und Kohlendioxid als zwei in flüssiger Form vorliegende Substanzen bei einem Druck bevorzugt oberhalb des Tripelpunkts von Kohlendioxid erfolgt eine besonders innige Durchmischung, wodurch eine sich bei der Entspannung bildende Suspension eine sehr hohe Homogenität aufweist. Die Gefahr einer Verstopfung der Leitungen durch koagulierende Trockeneisteilchen ist daher gering.
  • Das im Separator 10 vom Trägermedium abgetrennte gasförmige Kohlendoxid liegt in der Gasphase 11 bei der gleichen Temperatur und dem gleichen Druck vor wie das Trägermedium in der Flüssigphase 12 (beispielsweise minus 78°C und 1 bar). Das gasförmige Kohlendioxid wird über die Gasableitung 19 abgeführt und beispielsweise einer anderweitigen Verwertung zugeführt oder in die Atmosphäre abgegeben. Die Kälte des gasförmigen Kohlendioxids wird im Wärmetauscher 20 dazu genutzt, das flüssige Kohlendioxid in der Kohlendioxidleitung 3 vorzukühlen, kann jedoch - hier nicht gezeigt - alternativ oder zusätzlich dazu genutzt werden, ein anderes Medium zu kühlen.
  • Zur Kontrolle der Kühlleistung in den Wärmetauschern 9, 17 und/oder der Temperatur, auf die das Medium gekühlt wird, dient im Ausführungsbeispiel nach Fig 1 eine Regulierung des Trägermediumsstroms. Dabei wird die Temperatur des Gemisches stromab zum Wärmetauscher 9 von einem Sensor 21 gemessen und als Stellgröße für die Regelung der Leistung des Motors 16 eingesetzt. Bei gleichem Mengenstrom des zugeführten flüssigen Kohlendioxids wird auf diese Weise die Kühlleistung über den Mengenstrom des Trägermediums reguliert.
  • Die in Fig. 2 gezeigte Vorrichtung 1' unterscheidet sich von der Vorrichtung 1 aus Fig. 1 lediglich durch die Art der Regelung, weshalb im Übrigen gleiche oder gleich wirkende Bestandteile in beiden Vorrichtungen mit dem gleichen Bezugszeichen gekennzeichnet sind. Im Unterscheid zur Ausführungsform nach Fig. 1 erfolgt bei dieser Variante die Regulierung der Kühlleistung der Wärmetauscher 9, 17 über eine Variation des Mengenstroms des zugeführten flüssigen Kohlendioxids. Die Leistung des Motors 16 und damit der Mengenstrom des Trägermediums bleibt während einer Betriebsphase der Vorrichtung 1' konstant. Der Sensor 21 ist mit einem Mengenregelventil 22 in der Kohlendioxidleitung 3 wirkverbunden, das in Abhängigkeit von den am Sensor 21 gemessenen Werten den Mengenstrom des zugeführten Kohlendioxids reguliert, wobei freilich darauf zu achten ist, dass am Mengenregelventil 22 keine derart starke Druckabsenkung stattfindet, dass bereits unmittelbar hinter dem Mengenregelventil 22 in der Zuleitung 3 Trockeneispartikel gebildet werden.
  • In einer hier nicht gezeigten Variante einer erfindungsgemäßen Vorrichtung ist die Gasableitung 19 über einen Kompressor und gegebenenfalls einer Kühleinrichtung mit der Kohlendioxidzuleitung 3 strömungsverbunden und ermöglicht so eine Kreislaufführung des Kohlendioxids. Im Rahmen der Erfindung ist auch vorstellbar, auf einen der Wärmetauscher 9, 17 zu verzichten und die Kühlung des Mediums nur über den jeweils verbleibenden Wärmetauscher erfolgen zu lassen. Wird dabei auf den Wärmetauscher 9 verzichtet, kann die Entspannungsdüse 8 auch unmittelbar an der Einmündung der Ausleitung 6 in den Separator angeordnet sein. Im Rahmen der Erfindung ist es möglich, die beiden Wärmetauscher 9, 17 in einem gemeinsamen Gehäuse oder in unterschiedlichen Gehäusen unterzubringen. Ebenso können die Wärmetauscher 9, 17 zur Kühlung unterschiedlicher Medien eingesetzt werden. Weiterhin ist es möglich, den Druck im Separator 10 und in der Ausleitung 6, stromab zum Entspannungsventil 8, auf Werte unterhalb von 1 bar abzusenken, indem beispielsweise in der Gasableitung 19 eine entsprechende - hier gleichfalls nicht gezeigte - Einrichtung zur Druckabsenkung angeordnet wird. In diesem Falle können, abhängig vom Druck auf den entspannt wird, auch Temperaturen von unter minus 79°C erreicht werden.
  • Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren eignet sich insbesondere für Kühlaufgaben im Temperaturbereich zwischen minus 56°C und minus 79°C und darunter, insbesondere für Anwendungen im Bereich der Lebensmittelverarbeitenden Industrie, Pharmazie oder der chemischen Industrie; die Erfindung ist freilich hierauf nicht beschränkt.
  • Bezugszeichenliste
  • 1,1'
    Vorrichtung
    2
    Mischeinrichtung
    3
    Kohlendioxidleitung
    4
    Zuleitung (für Trägermedium)
    5
    -
    6
    Ausleitung
    7
    Mischstrecke
    8
    Entspannungsventil
    9
    Wärmetauscher
    10
    Separator
    11
    Gasphase
    12
    Flüssigphase
    13
    -
    14
    Ausleitung
    15
    Einrichtung zur Druckerhöhung
    16
    Motor
    17
    Wärmetauscher
    18
    -
    19
    Gasableitung
    20
    Wärmetauscher
    21
    Sensor
    22
    Mengenregelventil

Claims (12)

  1. Verfahren zum Kühlen eines Mediums, bei dem ein flüssiges Trägermedium mit flüssigem Kohlendioxid unter einem Druck, bei dem das Gemisch im flüssigen Zustand vorliegt, vermischt wird, anschließend das Gemisch aus Trägermedium und flüssigem Kohlendioxid unter Abkühlung auf einen Druck entspannt wird, bei dem zumindest ein Teil des Kohlendioxids verdampft, anschließend das entspannte Gemisch einem Separator (10) zugeführt wird, in dem verdampftes Kohlendioxid vom Trägermedium separiert wird, das separierte Trägermedium erneut unter Druck gesetzt und im Kreislauf zur Vermischung mit flüssigem Kühlendioxid zurückgeführt wird, wobei das Gemisch nach der Entspannung und/oder das Trägermedium aus dem Separator (10) einen Wärmetauscher (9, 17) durchläuft, in dem es mit einem zu kühlenden Medium in Wärmekontakt gebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Mengenstrom des flüssigen Kohlendioxids und/oder der Mengenstrom des unter Druck gesetzten Trägermediums in Abhängigkeit von einer vorgegebenen oder gemessenen Kühlleistung geregelt wird/werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das unter Druck gesetzte Trägermedium vor seiner Zuführung an das flüssige Kohlendioxid auf eine Temperatur oberhalb des Schmelzpunkts von Kohlendioxid beim jeweiligen Druck gebracht wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Trägermedium zum Einsatz kommt, in dem das Kohlendioxid zumindest teilweise lösbar ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Trägermedium Ethanol zum Einsatz kommt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das separierte verdampfte Kohlendioxid druckverflüssigt und im Kreislauf zur Vermischung mit dem Trägermedium zurückgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das separierte verdampfte Kohlendioxid in einem Wärmetauscher (20) zur Kühlung eines Mediums eingesetzt wird.
  8. Vorrichtung zum Kühlen eines Mediums,
    - mit einer Mischeinrichtung (2), in die eine Zuleitung (3) für flüssiges Kohlendioxid und eine Zuleitung (4) für unter Druck stehendes flüssiges Trägermedium einmündet und die in eine Ausleitung (6) für ein Gemisch aus flüssigem Kohlendioxid und Trägermedium ausmündet,
    - mit einem stromab zur Mischeinrichtung (2) in der Ausleitung (6) für das Gemisch angeordneten Entspannungsorgan (8) zum Entspannen des Gemisches,
    - mit einem Separator (10) zum Abtrennen von bei der Entspannung verdampftem Kohlendioxid vom flüssigen Trägermedium, in den die Ausleitung (6) für das Gemisch ausmündet und der mit einer Ausleitung (14) für das flüssige Trägermedium und mit einer Ausleitung (19) für verdampftes Kohlendioxid ausgerüstet ist, wobei die Ausleitung (14) für das flüssige Trägermedium mit einer eine Einrichtung (15) zur Druckerhöhung ausgerüstet und mit der Zuleitung (4) für das Trägermedium an die Mischeinrichtung (2) strömungsverbunden ist,
    - mit wenigstens einem mit einer Zuleitung und einer Ableitung für ein zu kühlendes Medium ausgerüsteten Wärmetauscher (9, 17), der/die in der Ausleitung (6) für das Gemisch, stromab zum Entspannungsorgan (8) und/oder in der Ausleitung (14) für das flüssige Trägermedium, stromab zum Separator (10) angeordnet ist/sind.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass in der Ausleitung (19) für das verdampfte Kohlendioxid ein Kompressor sowie ein Kühler vorgesehen und die Ausleitung (19) mit der in die Mischeinrichtung einmündenden Zuleitung (3) für flüssiges Kohlendioxid strömungsverbunden ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass in der Ausleitung (19) für das verdampfte Kohlendioxid ein Wärmetauscher (20) zwecks Kühlung eines Mediums vorgesehen ist.
  11. Vorrichtung nach einem der Ansprüche 8 bis 10, gekennzeichnet durch eine Regeleinrichtung (21, 22) zum Regeln des Mengenstroms des flüssigen Kohlendioxids und/oder des Mengenstroms des flüssigen Trägermediums in Abhängigkeit von der Kühlleistung des/der Wärmetauscher/s (9, 17) und/oder der Temperatur eines zu kühlenden Mediums.
  12. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 7 und einer Vorrichtung nach einem der Ansprüche 9 bis 11 zur Kühlung eines oder mehrere Medien im Temperaturbereich zwischen minus 85°C und minus 56 °C.
EP12168675.2A 2012-05-21 2012-05-21 Verfahren und Vorrichtung zum Kühlen Active EP2667116B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12168675.2A EP2667116B1 (de) 2012-05-21 2012-05-21 Verfahren und Vorrichtung zum Kühlen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12168675.2A EP2667116B1 (de) 2012-05-21 2012-05-21 Verfahren und Vorrichtung zum Kühlen

Publications (2)

Publication Number Publication Date
EP2667116A1 true EP2667116A1 (de) 2013-11-27
EP2667116B1 EP2667116B1 (de) 2016-07-13

Family

ID=46148650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12168675.2A Active EP2667116B1 (de) 2012-05-21 2012-05-21 Verfahren und Vorrichtung zum Kühlen

Country Status (1)

Country Link
EP (1) EP2667116B1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111183A1 (de) * 2015-07-10 2017-01-12 Technische Universität Dresden Kreislaufverfahren zur Kältebereitstellung mit Kohlendioxid als Kältemittel und Kälteanlage zur Durchführung des Verfahrens
WO2019187231A1 (ja) * 2018-03-30 2019-10-03 株式会社Ihi 冷却システム
DE102019127488A1 (de) * 2019-10-11 2021-04-15 Technische Universität Dresden Fluidkreislauf und Verfahren zum Betreiben des Fluidkreislaufs
DE102020118437A1 (de) 2020-07-13 2022-01-13 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Verwendung einer Wärmeträgerflüssigkeit, Kälteanlage und Verfahren zu deren Betrieb
DE102021005135A1 (de) 2020-06-22 2022-12-22 Mycon Gmbh Verfahren zur Temperatursenkung und/oder Aufrechterhaltung geringer Temperaturen eines Objektes mittels eines flüssigen Gases, insbesondere mittels flüssigem Kohlendioxid, und dazu geeignete Vorrichtung
DE102022134153A1 (de) 2022-12-20 2024-06-20 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Verfahren und Anlage zur Erzeugung von Eis, Eisbrei/Eispartikeln, Schnee, Hydraten, Kaltwasser oder deren Kombinationen bzw. Mischung/Suspension in einem geschlossenen Prozess
WO2024132024A1 (de) 2022-12-20 2024-06-27 Technische Universität Chemnitz Verfahren und anlage zur erzeugung von eis, eisbrei/eispartikeln, schnee, hydraten, kaltwasser oder deren kombinationen bzw. mischung/suspension in einem geschlossenen prozess

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004114A1 (de) 1979-04-18 1980-11-06 Liquid Carbonic De Espana S A Verfahren zur erzeugung tiefer temperaturen
EP0948727A1 (de) * 1996-11-15 1999-10-13 Frigoscandia Equipment Aktiebolag Einen schlamm von festen teilchen in einer flüssigkeitverwendende kälteanlage
JP2003014333A (ja) * 2001-04-24 2003-01-15 Univ Nihon ヒートポンプ
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004114A1 (de) 1979-04-18 1980-11-06 Liquid Carbonic De Espana S A Verfahren zur erzeugung tiefer temperaturen
EP0948727A1 (de) * 1996-11-15 1999-10-13 Frigoscandia Equipment Aktiebolag Einen schlamm von festen teilchen in einer flüssigkeitverwendende kälteanlage
EP0948727B1 (de) 1996-11-15 2004-04-21 Frigoscandia Equipment Aktiebolag Kälteanlage, die einen schlamm von festen teilchen in einer flüssigkeit verwendet
JP2003014333A (ja) * 2001-04-24 2003-01-15 Univ Nihon ヒートポンプ
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111183A1 (de) * 2015-07-10 2017-01-12 Technische Universität Dresden Kreislaufverfahren zur Kältebereitstellung mit Kohlendioxid als Kältemittel und Kälteanlage zur Durchführung des Verfahrens
DE102015111183B4 (de) 2015-07-10 2023-05-04 Technische Universität Dresden Kreislaufverfahren zur Kältebereitstellung mit Kohlendioxid als Kältemittel und Kälteanlage zur Durchführung des Verfahrens
WO2019187231A1 (ja) * 2018-03-30 2019-10-03 株式会社Ihi 冷却システム
US20200011576A1 (en) * 2018-03-30 2020-01-09 Ihi Corporation Cooling system
JPWO2019187231A1 (ja) * 2018-03-30 2020-04-30 株式会社Ihi 冷却システム
US11725852B2 (en) 2018-03-30 2023-08-15 Ihi Corporation Cooling system for fluid to be cooled
US11466903B2 (en) 2018-03-30 2022-10-11 Ihi Corporation Cooling system for fluid to be cooled
DE102019127488A1 (de) * 2019-10-11 2021-04-15 Technische Universität Dresden Fluidkreislauf und Verfahren zum Betreiben des Fluidkreislaufs
DE102021005135B4 (de) 2020-06-22 2023-01-19 Mycon Gmbh Verfahren zur Temperatursenkung und/oder Aufrechterhaltung geringer Temperaturen eines Objektes mittels eines flüssigen Gases, insbesondere mittels flüssigem Kohlendioxid, und dazu geeignete Vorrichtung
DE102021005135A1 (de) 2020-06-22 2022-12-22 Mycon Gmbh Verfahren zur Temperatursenkung und/oder Aufrechterhaltung geringer Temperaturen eines Objektes mittels eines flüssigen Gases, insbesondere mittels flüssigem Kohlendioxid, und dazu geeignete Vorrichtung
DE102020118437B4 (de) 2020-07-13 2022-02-10 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Verwendung einer Wärmeträgerflüssigkeit, Kälteanlage und Verfahren zu deren Betrieb
DE102020118437A1 (de) 2020-07-13 2022-01-13 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Verwendung einer Wärmeträgerflüssigkeit, Kälteanlage und Verfahren zu deren Betrieb
DE102022134153A1 (de) 2022-12-20 2024-06-20 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Verfahren und Anlage zur Erzeugung von Eis, Eisbrei/Eispartikeln, Schnee, Hydraten, Kaltwasser oder deren Kombinationen bzw. Mischung/Suspension in einem geschlossenen Prozess
WO2024132024A1 (de) 2022-12-20 2024-06-27 Technische Universität Chemnitz Verfahren und anlage zur erzeugung von eis, eisbrei/eispartikeln, schnee, hydraten, kaltwasser oder deren kombinationen bzw. mischung/suspension in einem geschlossenen prozess
DE102022134153A8 (de) 2022-12-20 2024-08-01 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Verfahren und Anlage zur Erzeugung von Eis, Eisbrei/Eispartikeln, Schnee, Hydraten, Kaltwasser oder deren Kombinationen bzw. Mischung/Suspension in einem geschlossenen Prozess

Also Published As

Publication number Publication date
EP2667116B1 (de) 2016-07-13

Similar Documents

Publication Publication Date Title
EP2667116B1 (de) Verfahren und Vorrichtung zum Kühlen
DE2748796C2 (de)
DE69937127T2 (de) Station und Verfahren zur Verteilung von Gas
DE69311978T2 (de) Kühlverfahren und Vorrichtung
DE1199293B (de) Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
EP2863103A2 (de) Vorrichtung und Verfahren zum Unterkühlen von Kohlendioxid
EP1612495B1 (de) Verfahren und Vorrichtung zur Produktkühlung
DE102017008210B4 (de) Vorrichtung und Verfahren zum Befüllen eines mobilen Kältemitteltanks mit einem kryogenen Kältemittel
DE1012939B (de) Verfahren zum Zerlegen von Luft bei niedriger Temperatur
WO2022106053A1 (de) Verfahren und fördervorrichtung
CH677397A5 (de)
DE2218199A1 (de) Verfahren und anlage zur rueckgewinnung einer in einem gas enthaltenen verdampften fluessigkeit
EP1577262A1 (de) Verfahren und Vorrichtung zur Herstellung fester Kohlendioxidpartikel
DE69712340T2 (de) Verfahren und einrichtung zur herstellung eines luftgases mit variablen mengen
EP0242426B1 (de) Verfahren und Vorrichtung zur Erzeugung einer Eiskristallsuspension mittels Gefrierverdampfung am Tripelpunkt
DE935196C (de) Verfahren zur Abgabe eines Gases
WO2011131771A2 (de) Verfahren und vorrichtung zur erzeugung von eisbrei
EP2369280A2 (de) Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft
EP3144615B1 (de) Verfahren und vorrichtung zum herstellen von trockeneis
EP3106217B1 (de) Vorrichtung und verfahren zum kühlen und zerstäuben flüssiger oder pastöser stoffe
DE102017003105A1 (de) Verfahren und Vorrichtung zum Kühlen eines Bauteils
EP3450819B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
EP2711601B1 (de) Verfahren zum Befüllen eines Kältemitteltanks eines Kühlfahrzeugs sowie Kühlfahrzeug
EP1030135B1 (de) Verfahren zur geregelten Kühlung durch Verdampfen flüssigen Stickstoffs
EP3710134B1 (de) Verfahren und vorrichtung zur reinigung oder zerlegung und kühlung eines gasgemischs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140527

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20140527

Extension state: ME

Payment date: 20140527

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20141222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 812683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007621

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012007621

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 812683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713