EP2369280A2 - Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft - Google Patents

Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft Download PDF

Info

Publication number
EP2369280A2
EP2369280A2 EP20110159073 EP11159073A EP2369280A2 EP 2369280 A2 EP2369280 A2 EP 2369280A2 EP 20110159073 EP20110159073 EP 20110159073 EP 11159073 A EP11159073 A EP 11159073A EP 2369280 A2 EP2369280 A2 EP 2369280A2
Authority
EP
European Patent Office
Prior art keywords
air
heat exchanger
refrigerant
cryogenic refrigerant
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20110159073
Other languages
English (en)
French (fr)
Other versions
EP2369280A3 (de
Inventor
Friedhelm Herzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Publication of EP2369280A2 publication Critical patent/EP2369280A2/de
Publication of EP2369280A3 publication Critical patent/EP2369280A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/40Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method for producing cryogenic gaseous or liquefied air, is conveyed in the air to a heat exchanger and cooled there in heat exchange with a liquefied, cryogenic refrigerant, wherein the cryogenic refrigerant evaporates.
  • the invention further relates to a corresponding device.
  • the cooling of cold chambers, cold rooms or the transport cooling are usually carried out today with conventional chillers. Disadvantages are the often high cost of the machines and their high maintenance, the limited cooling capacity, energy requirements and emissions in the form of noise, exhaust gases u. dergl.
  • An alternative is the direct cooling of the area to be cooled with a cryogenic refrigerant, such as liquefied nitrogen or solid carbon dioxide (dry ice). If these refrigerants are introduced directly into the area to be cooled, although you have a technically simple and effective cooling, closed Cold rooms can no longer be done without breathing apparatus or a thorough previous ventilation. For certain applications, such as cryotherapy, therefore, partly liquid air is used as the refrigerant.
  • liquid air must be produced industrially and transported over long distances. Since liquid air does not in itself constitute a stable system, but over time concentrates with the gradual evaporation of the nitrogen content of oxygen, special safety measures are required to ensure the economic viability of the use of liquid or cryogenic gaseous air for the purchaser, in particular for small customers drastically reduce customers far from the liquid air production site.
  • the object of the present invention is therefore to provide a method and a device which enables economical production of cryogenic gaseous or liquefied air even in smaller quantities on site.
  • the cryogenic gaseous or liquefied air is produced by thermal contact with a liquefied cryogenic refrigerant which is at a temperature below the desired temperature, in particular below the liquefaction temperature of air.
  • a liquefied cryogenic refrigerant which is at a temperature below the desired temperature, in particular below the liquefaction temperature of air.
  • liquid nitrogen is used as the cryogenic refrigerant.
  • the cryogenic refrigerant evaporates at least partially and subsequently serves as a means for a device for drying the air to be cooled.
  • the previous drying of the air is essential in the generation of cold gaseous or liquid air by heat exchange with a cold medium, since the water vapor contained in the air to be cooled leads to ice formation, which can affect the operability of the production facility quickly.
  • the vaporized refrigerant can be used in various ways as a resource in the device for air drying. For example, even after the evaporation in the heat exchanger still very cold gaseous refrigerant can be used to remove water vapor contained in the air by way of condensation. If, as an alternative or in addition to such a refrigerant drying, a membrane is used for separating the water vapor from the air, the gaseous refrigerant can be used as purge gas. In a further variant, absorption drying takes place by means of an absorbent. Here, the vaporized refrigerant can be used to regenerate the water-loaded adsorbent. By combining air cooling on the one hand with air drying on the other hand, a high efficiency of the method according to the invention is achieved.
  • the inventive method allows the production of economically usable amounts of cryogenic gaseous or liquid air even in relatively small and compact system on site; There is only a supply of the user with cryogenic liquefied inert gas, for which there are no comparable with the transport of liquid air complex security requirements.
  • the pressure caused by the evaporation of the refrigerant pressure is used in an advantageous development of the invention in an expansion machine for generating energy, in particular electrical and / or mechanical energy.
  • the energy generated in the expansion of the evaporated liquid refrigerant is then used to operate a conveyor for conveying the air to be cooled to the heat exchanger, so that provided for the operation of the conveyor motor for the same power can be dimensioned much smaller or even eliminated altogether.
  • a yet further advantageous embodiment of the invention provides that the evaporated cryogenic refrigerant is used for precooling the air supplied to the heat exchanger.
  • the remaining residual cold of the evaporated cryogenic refrigerant is used to further improve the efficiency of the method according to the invention.
  • the evaporated cryogenic refrigerant is preferably used for cooling the conveyor.
  • the air to be cooled is sucked in because of the pressure drop occurring in the cooling of the air in the heat exchanger and by the device for air drying.
  • a conveyor for conveying the air to the heat exchanger is unnecessary, or it can be at least dimensioned smaller.
  • the object of the invention is also achieved by a device for generating cryogenic gaseous or liquefied air, comprising a heat exchanger having an air inlet line and an air outlet line and heat exchanger surfaces for thermally contacting air with a liquefied cryogenic refrigerant and a vaporized cryogenic refrigerant outlet line.
  • the device according to the invention is characterized in that a device for drying the air is provided in the air inlet line, which is also connected to the outlet line for vaporized cryogenic refrigerant and in which the cryogenic refrigerant can be used as operating means in the device for drying the air.
  • the device according to the invention therefore comprises a heat exchanger in which, on suitable heat exchanger surfaces, such as pipe walls, the air to be cooled enters into heat exchange with a liquefied cryogenic refrigerant. During heat exchange, the air is cooled and optionally liquefied, while at the same time the refrigerant evaporates. The vaporized refrigerant is then supplied via the vaporized refrigerant outlet line to the air drying device where it is used as a drying agent for the air.
  • the device according to the invention has only a few components that can be assembled very compact and thus have only a small space requirement.
  • cryogenic refrigerant such as liquid nitrogen
  • the device according to the invention can be easily carried on refrigerated vehicles or in refrigerated containers, for example, or placed in closed rooms, for example in the rooms of a doctor's office or a fitness studio.
  • the device for air drying preferably comprises an adsorption dryer, a membrane dryer or a refrigerant dryer.
  • an absorption dryer water vapor is removed from the air by means of an absorber, wherein the absorber is loaded with water vapor.
  • the absorption dryer preferably comprises two mutually employable units, one of which is used in each case for drying the air, while the other passes through a regeneration phase.
  • a membrane dryer such as in the DE 19812960 C1 and the documents cited therein, the separation of the water vapor from the air by a water vapor-selective membrane.
  • the membrane requires regeneration by a purge gas, as the evaporated in the context of the present invention cryogenic refrigerant from the heat exchanger is used.
  • cryogenic refrigerant from the heat exchanger is used.
  • the separation of the water vapor by condensing takes place during cooling of the air in thermal contact with the still very cold evaporated refrigerant. In this case, a pre-cooling of the air takes place at the same time, which further increases the economic efficiency of the plant.
  • a conveying device for conveying air into the heat exchanger and the outlet line for evaporated cryogenic refrigerant is flow-connected to an expansion machine, wherein the expansion machine is operatively connected via means for transmitting energy to the conveyor.
  • the expansion engine which includes, for example, a turbine or a lift cylinder, generates mechanical or electrical energy by expansion of the refrigerant used to operate the conveyor. In this way, the amount of the conveyor to their operation - for example by means of a motor - from the outside, such as through a power grid, supplied energy can be at least significantly reduced.
  • a recuperator is provided in the air inlet line, which has a supply line connected to the outlet line for evaporated cryogenic refrigerant and a heat exchanger surface for transferring heat from the air from the air inlet line to the evaporated cryogenic refrigerant.
  • the residual refrigeration contained in the evaporated cryogenic refrigerant is used to lower the refrigerant demand of the system.
  • this process can also be used to compensate for water vapor from the air to be cooled.
  • An advantageous development of the invention provides that the heat exchanger and / or the recuperator is / are integrated in a tank for the liquefied cryogenic refrigerant. As a result, heat losses are reduced as well as the space requirement of the device and further increases the efficiency. Likewise, it proves to be advantageous to arrange a connected to the air outlet line reservoir for liquid air within the reservoir for the liquefied cryogenic refrigerant. In this way, the temperature of the liquefied air remains below the boiling point of the nitrogen whereby one - under Safety issues problematic - accumulation of oxygen in the liquid air is avoided.
  • a further embodiment of the invention provides that the recuperator is designed as a cold storage.
  • the recuperator is connected to an exhaust pipe of the tank for liquid refrigerant and is constantly, so even during breaks in the flow of evaporating refrigerant and stores its cold content. In this way, the recuperator is quickly operational even after prolonged breaks and the cold of evaporating refrigerant during the break is used.
  • the conveyor includes a fan or a compressor, which is arranged on the input side of the heat exchanger and by means of which the air is pressed into the heat exchanger.
  • the conveyor is arranged on the output side of the heat exchanger; If the air is liquefied in the heat exchanger, the delivery device in this case comprises a pump which pumps off the liquefied air from the heat exchanger, while at the same time fresh air flows into the heat exchanger.
  • a preferred use of the method or the device according to the invention consists in the cooling of walk-in spaces such as refrigerators for storing temperature-sensitive goods or cold chambers for therapeutic purposes.
  • Fig. 1 1 includes a heat exchanger 2 equipped with an air inlet duct 3, an air outlet duct 4, a refrigerant inlet duct 5 and a refrigerant outlet duct 6.
  • the refrigerant input line 5 is in fluid communication with a tank 7 for a liquefied cryogenic refrigerant, for example, a stand tank for liquid nitrogen.
  • a conveyor 8 for example, a compressor or a fan, arranged by means of which air is conveyed to the heat exchanger 2 out.
  • the refrigerant outlet line 6 opens into an expansion machine 9 in which energy released during the expansion of gaseous refrigerant is converted into mechanical or electrical energy.
  • Expansion machine 9 and conveyor 8 are operatively connected to each other in such a way that the energy generated in the expansion machine 9 is used to operate the conveyor 8 via suitable energy transmission means 10.
  • the energy transmission means 10 comprise a shaft, by means of which the mechanical energy generated in the expansion machine is transferred directly to the conveyor 8 or the expansion machine 9 comprises a generator for generating electrical energy, directly or indirectly, for example via a power grid, for operating the conveyor 8th is being used.
  • a device 11 for drying the air to be supplied to the heat exchanger 2 is provided in the air inlet line 3.
  • a device 11 for example, a refrigerant dryer, a membrane dryer or an absorption dryer is provided.
  • the device 11 is connected to the refrigerant outlet line 6 and thus enables the use of the cryogenic refrigerant evaporated in the heat exchanger 2 as operating means for the device 11;
  • the evaporated cryogenic refrigerant thus serves as a regeneration gas for regenerating an absorber and / or as a purge gas for regenerating a membrane dryer and / or as a refrigerant for condensing water vapor from the air to be dried.
  • the air outlet line 4 opens into a storage tank 12 for liquid air, which is arranged in the exemplary embodiment within the tank 7 for the liquid cryogenic refrigerant and is thermally connected to the liquid phase of the stored in the tank 7 refrigerant. From the reservoir 12, the generated air can be stored and if necessary taken over a removal line 13, wherein, if necessary, a pressure build-up evaporator 14 is used.
  • the arrangement of the storage tank 12 within the liquid phase of the stockpiled in the storage tank 7 refrigerant whose temperature is maintained at a temperature equal to or below the boiling point of nitrogen in the reservoir 12, thereby ensuring that the composition of the liquid air in the reservoir 12 remains substantially constant and no accumulation of liquid oxygen in the storage tank 12 takes place.
  • air is supplied via the conveyor 8 to the heat exchanger 2.
  • the air comes into thermal contact with the liquefied cryogenic refrigerant from the tank 7.
  • the air cools and is liquefied, for example while the liquefied cryogenic refrigerant evaporates.
  • the evaporated cryogenic refrigerant is used in the device 11 for drying the air in the manner described above as a resource.
  • the caused by the evaporation increased pressure of the cryogenic refrigerant in the refrigerant outlet line 6 is expanded in the work in the expansion machine 9 and used to operate the conveyor 8.
  • the expansion machine comprises a turbine or a piston and a generator connected thereto, and the electrical energy generated in this generator is used to drive the conveyor 8. If more electrical or mechanical energy is generated in the expansion machine 9 than can be consumed in the conveyor 8, the excess energy can be utilized otherwise - in the case of electrical energy, for example, it can be fed into a pipeline network. If, conversely, the energy generated in the expansion machine 9 is insufficient to operate the conveyor 8, additional energy must be supplied, for example by means of a motor driving the conveyor 8, which may of course be of lower power than without the operative connection of the conveyor 8 the expansion engine 9 would be the case.
  • the expansion machine 9 can therefore also be arranged upstream of the device 11.
  • the conveyor for air downstream of dryer and / or heat exchanger. It is also conceivable to completely dispense with a conveyor and to use the resulting due to the cooling of the air through the heat exchange with the cryogenic refrigerant negative pressure for sucking the air, in which case it must be ensured in a suitable manner that the liquefied Air is supplied to the reservoir 12.
  • a heat exchanger 21 is housed within a liquefied cryogenic refrigerant tank 22.
  • the heat exchanger 21 is connected to an air inlet line 23 through which air is passed to the heat exchanger 21 where it is cooled and / or liquefied by thermal contact with the liquefied cryogenic refrigerant present in the tank 22.
  • a conveyor 25 which operates in the same manner as the conveyor air dryer 26 and a recuperator 27 are arranged.
  • the air dryer is an apparatus which, as far as possible, removes the water vapor contained in the air supplied to the heat exchanger 12 via the front section 28 of the air inlet line 23.
  • the air dryer in the exemplary embodiment is an absorption dryer in which vaporized cryogenic refrigerant is used to regenerate the absorbent material.
  • the recuperator 27 serves for precooling the air. Due to the thermal contact of the air to be cooled with the liquefied cryogenic refrigerant, such as liquid nitrogen in the tank 22 vaporizes a portion of the liquefied cryogenic refrigerant is discharged through a flow-connected to the gas space of the tank 22 line 30 and enters the recuperator 27. There a thermal interaction of the still provided with considerable residual refrigerant evaporated cryogenic refrigerant with the zoomed in the front portion 28 of the air inlet duct 23 air.
  • the air cools down while the vaporized cryogenic refrigerant is heated, fed to the air dryer 26 via a refrigerant line 31 is deprived of moisture in the air as described above. Subsequently, the refrigerant is supplied to an expansion machine 32 in which it is similar to the expansion machine 9 Fig. 1 used for energy production by relaxation. The generated electrical or mechanical energy is used to operate the conveyor 25. In the embodiment according to Fig. 2 In addition, an auxiliary motor 33 is used, which can supply additional energy to the conveyor 25. The air dried in the air dryer 26 and pre-cooled in the recuperator 27 air is fed to the heat exchanger 21, where brought into thermal contact with the liquid cryogenic refrigerant in tank 22 and liquefied, for example.
  • the sequence of the components 32, 25, 26, 27, 21 is otherwise not mandatory and can be set differently in other embodiments of the invention.
  • a conveyor for air and downstream of the heat exchanger 2, 21 are arranged;
  • the conveyor is, for example, a pump for liquid air.
  • the air dryer 26 (or generally an air dryer) and / or the Rekuperatur 27 (or generally a recuperator) - seen in the flow direction of the refrigerant - be arranged downstream of the expansion machine 32.
  • the device according to the invention With the device according to the invention, it is no longer necessary, in particular for the cooling of accessible spaces, to supply liquid air, but the required liquid air is generated on site; only the usual logistics for liquid cryogenic refrigerant (for example, liquid nitrogen) is required.
  • liquid cryogenic refrigerant for example, liquid nitrogen
  • the drive of the conveyor by means of expanding, evaporated cryogenic refrigerant saves the use of an engine (or reduces its performance) and therefore leads to a significantly lower noise.
  • the device according to the invention can be used both for generating liquid air and for generating cold, gaseous air.
  • the systems can be small in size so that they can be installed, for example, in medical practices, fitness studios or carried on mobile cooling devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Tiefkalte gasförmige oder verflüssigte Luft wird heute in der Regel großtechnisch erzeugt und über große Entfernungen zum Endabnehmer transportiert. Bei der Logistik sind jedoch besondere Sicherheitsmaßnahmen erforderlich, die die Wirtschaftlichkeit der Nutzung von tiefkalter bzw. flüssiger Luft insbesondere für kleinere und/oder fernab vom Erzeugungsort der flüssigen Luft gelegene Abnehmer drastisch absenken. Erfindungsgemäß umfasst ein Verfahren zum Erzeugen tiefkalt gasförmiger oder verflüssigter Luft einen Wärmetauscher (27,21) zum thermischen Kontaktieren von Luft mit einem kryogenen Kältemittel (22,30) und einen Lufttrockner (26), in dem das beim Wärmetausch mit der zu kühlenden Luft verdampfte kryogene Kältemittel (30) als Betriebsmittel eingesetzt wird. Die Erfindung ermöglicht eine wirtschaftliche Bereitstellung von tiefkalter gasförmiger oder verflüssigter Luft auch bei kleineren Abnahmemengen.

Description

  • Die Erfindung betrifft ein Verfahren zum Erzeugen tiefkalter gasförmiger oder verflüssigter Luft, bei dem Luft zu einem Wärmetauscher gefördert und dort in Wärmetausch mit einem verflüssigten, kryogenen Kältemittel abgekühlt wird, wobei das kryogene Kältemittel verdampft. Die Erfindung betrifft ferner eine entsprechende Vorrichtung.
  • Die Kühlung von Kältekammern, Kühlräumen oder die Transportkühlung werden heute meist mit konventionellen Kältemaschinen durchgeführt. Nachteilig sind dabei die oft hohen Kosten der Maschinen und ihr hoher Wartungsaufwand, die begrenzte Kälteleistung, der Energiebedarf und Emissionen in Form von Lärm, Abgasen u. dergl. Eine Alternative stellt die direkte Kühlung des zu kühlenden Bereiches mit einem kryogenen Kältemittel, beispielsweise verflüssigten Stickstoff oder festes Kohlendioxid (Trockeneis) dar. Werden diese Kältemittel direkt in den zu kühlenden Bereich eingebracht, hat man zwar eine technisch einfache und wirksame Kühlung, geschlossene Kühlräume können aber ohne Atemgeräte oder eine gründliche vorherige Durchlüftung nicht mehr begangen werden. Für bestimmte Anwendungen, beispielsweise bei der Kryotherapie, wird daher teilweise flüssige Luft als Kältemittel verwendet. Nachteilig hierbei ist, dass flüssige Luft großtechnisch erzeugt und über weite Strecken transportiert werden muss. Da flüssige Luft in sich kein stabiles System darstellt, sondern sich im Laufe der Zeit durch das allmähliche Abdampfen des Stickstoffanteils Sauerstoff aufkonzentriert, sind besondere Sicherheitsmaßnahmen erforderlich, die die Wirtschaftlichkeit der Nutzung von flüssiger oder tiefkalter gasförmiger Luft für den Abnehmer, insbesondere bei Kleinabnehmern oder bei fernab von der Erzeugungsstätte für die flüssige Luft gelegener Abnehmern drastisch herabsetzen.
  • Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren und eine Vorrichtung anzugeben, welches eine wirtschaftliche Erzeugung von tiefkalter gasförmiger oder verflüssigter Luft auch in kleineren Mengen vor Ort ermöglicht.
  • Gelöst ist diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch, dass die zu kühlende Luft vor ihrer Zuführung an den Wärmetauscher eine Einrichtung zur Lufttrocknung durchläuft, in der im Wärmetauscher verdampftes Kältemittel als Betriebsmittel eingesetzt wird.
  • Erfindungsgemäß wird also die tiefkalte gasförmige bzw. verflüssigte Luft durch Wärmekontakt mit einem verflüssigten kryogenen Kältemittel erzeugt, das bei einer Temperatur unterhalb der gewünschten Temperatur, insbesondere unterhalb der Verflüssigungstemperatur von Luft, vorliegt. Als kryogenes Kältemittel kommt beispielsweise Flüssigstickstoff zum Einsatz. Beim Wärmetausch verdampft das kryogene Kältemittel zumindest teilweise und dient in der Folge als Betriebsmittel für eine Einrichtung zum Trocknen der zu kühlenden Luft. Die vorhergehende Trocknung der Luft ist essenziell bei der Erzeugung von kalter gasförmiger oder flüssiger Luft durch Wärmetausch mit einem kalten Medium, da der in der zu kühlenden Luft enthaltene Wasserdampf zu Eisbildung führt, die die Betriebsfähigkeit der Produktionsanlage schnell beeinträchtigen kann. Das verdampfte Kältemittel kann dabei auf verschiedene Weise als Betriebsmittel in der Einrichtung zur Lufttrocknung eingesetzt werden. Beispielsweise kann das - auch nach dem Verdampfen im Wärmetauscher noch sehr kalte gasförmige Kältemittel dazu genutzt werden, in der Luft enthaltenen Wasserdampf im Wege der Kondensation zu entfernen. Wird eine alternativ oder ergänzend zu einer derartigen Kältetrocknung eine Membran zum Abtrennen des Wasserdampfs aus der Luft eingesetzt, kann das gasförmige Kältemittel als Spülgas verwendet werden. In einer weiteren Variante erfolgt eine Absorptionstrocknung mittels eines Absorbens. Hierbei kann das verdampfte Kältemittel eingesetzt werden, um das mit Wasser beladene Adsorbens zu regenerieren. Durch die Verbindung von Luftkühlung einerseits mit Lufttrocknung andererseits wird eine hohe Wirtschaftlichkeit des erfindungsgemäßen Verfahrens erzielt. Das erfindungsgemäße Verfahren ermöglicht die Erzeugung wirtschaftlich verwertbarer Mengen tiefkalt gasförmiger bzw. flüssiger Luft auch in vergleichsweise kleinen und kompakten Anlage vor Ort; es erfolgt lediglich eine Belieferung des Anwenders mit tiefkalt verflüssigten inerten Gases, wofür keine mit dem Transport flüssiger Luft vergleichbaren aufwändigen Sicherheitsanforderungen bestehen.
  • Der durch der Verdampfung des Kältemittel hervorgerufene Druck wird in einer vorteilhaften Weiterbildung der Erfindung in einer Expansionsmaschine zur Erzeugung von Energie, insbesondere elektrischer und/oder mechanischer Energie, eingesetzt. Die bei der Expansion des verdampften flüssigen Kältemittels erzeugte Energie wird sodann zum Betreiben einer Fördereinrichtung zum Fördern der zu kühlenden Luft zum Wärmetauscher eingesetzt, sodass ein für den Betrieb der Fördereinrichtung vorgesehene Motor bei gleicher Leistung wesentlich geringer dimensioniert werden oder sogar ganz entfallen kann.
  • Eine abermals vorteilhafte Weiterbildung der Erfindung sieht vor, dass das verdampfte kryogene Kältemittel zum Vorkühlen der dem Wärmetauscher zugeführten Luft eingesetzt wird. In diesem Falle wird die noch vorhandene Restkälte des verdampften kryogenen Kältemittels eingesetzt, um die Wirtschaftlichkeit des erfindungsgemäßen Verfahrens weiter zu verbessern. Ergänzend oder alternativ dazu wird bevorzugt das verdampfte kryogene Kältemittel zum Kühlen der Fördereinrichtung eingesetzt.
  • Bevorzugt wird die zu kühlende Luft aufgrund des bei der Abkühlung der Luft im Wärmetauscher entstehenden Druckabfalls eingesaugt und durch die Einrichtung zur Lufttrocknung. In diesem Falle erübrigt sich eine Fördereinrichtung zum Fördern der Luft zum Wärmetauscher, oder diese kann zumindest geringer dimensioniert werden.
  • Die Aufgabe der Erfindung wird auch durch eine Vorrichtung zum Erzeugen tiefkalter gasförmiger oder verflüssigter Luft gelöst, mit einem Wärmetauscher, der eine Lufteingangsleitung und eine Luftausgangsleitung sowie Wärmetauscherflächen zum thermischen Kontaktieren von Luft mit einem verflüssigten kryogenen Kältemittel und eine Ausgangsleitung für verdampftes kryogenes Kältemittel aufweist. Die erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, dass in der Lufteingangsleitung eine Einrichtung zum Trocknen der Luft vorgesehen ist, die zugleich mit der Ausgangsleitung für verdampftes kryogenes Kältemittel verbunden ist und in der das kryogene Kältemittel als Betriebsmittel in der Einrichtung zum Trocknen der Luft einsetzbar ist.
  • Die erfindungsgemäße Vorrichtung umfasst also einen Wärmetauscher, in dem an geeigneten Wärmetauscherflächen, wie z.B. Rohrwänden, die zu kühlende Luft in Wärmetausch mit einem verflüssigten kryogenen Kältemittel tritt. Beim Wärmetausch wird die Luft abgekühlt und gegebenenfalls verflüssigt, während zugleich das Kältemittel verdampft. Das verdampfte Kältemittel wird anschließend über die Ausgangsleitung für verdampftes Kältemittel der Einrichtung zur Lufttrocknung zugeführt und dort als Betriebsmittel zum Trocknen der Luft eingesetzt. Die erfindungsgemäße Vorrichtung weist nur wenige Bauteile auf, die sehr kompakt zusammengestellt werden können und damit einen nur kleinen Raumbedarf haben. Zur Versorgung benötigt sie im wesentlichen nur verflüssigtes kryogenes Kältemittel, beispielsweise Flüssigstickstoff, der zu geringen Kosten auch in kleineren Mengen von wenigen Kubikmetern oder sogar weniger als 1 m3 angeliefert und gelagert werden kann. Die erfindungsgemäße Vorrichtung kann dadurch beispielsweise problemlos auch auf Kühlfahrzeugen oder in Kühlcontainern mitgeführt oder in geschlossenen Räumen, beispielsweise in den Räumen einer Arztpraxis oder eines Fitnessstudios aufgestellt werden.
  • Die Einrichtung zur Lufttrocknung umfasst dabei bevorzugt einen Adsorptionstrockner, einen Membrantrockner oder einen Kältetrockner. In einem Absorptionstrockner wird mittels eines Absorbers Wasserdampf aus der Luft entfernt, wobei der Absorber mit Wasserdampf beladen wird. Um die Funktionsfähigkeit des Absorbers aufrecht zu erhalten, ist es daher erforderlich, diesen von Zeit zu Zeit durch Beaufschlagen mit einem trockenen Gas, in diesem Falle mit dem verdampften kryogenen Kältemittel zu regenerieren. Um einen kontinuierlichen Betrieb zu ermöglichen, umfasst der Absorptionstrockner dabei vorzugsweise zwei wechselweise einsetzbare Einheiten, von denen der eine jeweils zum Trocknen der Luft eingesetzt wird, während der andere eine Regenerationsphase durchläuft. In einem Membrantrockner, wie er beispielsweise in der DE 19812960 C1 und den dort zitierten Dokumenten beschrieben wird, erfolgt die Abtrennung des Wasserdampfes aus der Luft durch eine wasserdampfselektive Membran. Auch hier bedarf die Membran einer Regeneration durch ein Spülgas, als das im Rahmen der vorliegenden Erfindung verdampftes kryogenes Kältemittel aus dem Wärmetauscher zum Einsatz kommt. In einem Kältetrockner erfolgt die Abtrennung des Wasserdampfes durch Auskondensieren beim Abkühlen der Luft im Wärmekontakt mit dem noch sehr kalten verdampften Kältemittel. In diesem Falle findet sogar zugleich eine Vorkühlung der Luft statt, die die Wirtschaftlichkeit der Anlage noch weiter erhöht.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass eine Fördereinrichtung zum Fördern von Luft in den Wärmetauscher vorgesehen und die Ausgangsleitung für verdampftes kryogenes Kältemittel mit einer Expansionsmaschine strömungsverbunden ist, wobei die Expansionsmaschine über Mittel zum Übertragen von Energie mit der Fördereinrichtung wirkverbunden ist. Die Expansionsmaschine, die beispielsweise eine Turbine oder einem Hubzylinder umfasst, erzeugt mechanische oder elektrische Energie durch Entspannung des Kältemittels, die zum Betreiben der Fördereinrichtung genutzt wird. Auf diese Weise kann die Menge der der Fördereinrichtung zu deren Betrieb ― etwa mittels eines Motors ― von außen, etwa durch ein Stromnetz, zugeführte Energie zumindest deutlich reduziert werden.
  • Bevorzugt ist in der Lufteingangsleitung ein Rekuperator vorgesehen, der eine mit der Ausgangsleitung für verdampftes kryogenes Kältemittel strömungsverbundene Zuleitung und eine Wärmetauscherfläche zum Übertragen von Wärme von der Luft aus der Lufteingangsleitung auf das verdampfte kryogene Kältemittel aufweist. Auf diese Weise wird die im verdampften kryogenen Kältemittel enthaltene Restkälte dazu genutzt, um den Kältemittelbedarf des Systems abzusenken. Wie zuvor erwähnt, kann dieser Vorgang auch dazu genutzt werden, Wasserdampf aus der zu kühlenden Luft auszukondsieren.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Wärmetauscher und/oder der Rekuperator in einen Tank für das verflüssigte kryogene Kältemittel integriert ist/sind. Dadurch werden Wärmeverluste ebenso wie der Platzbedarf der Vorrichtung reduziert und die Wirtschaftlichkeit weiter erhöht. Desgleichen erweist es sich als vorteilhaft, einen an die Luftausgangsleitung angeschlossenen Vorratsbehälter für flüssige Luft innerhalb des Vorratsbehälters für das verflüssigte kryogene Kältemittel anzuordnen. Auf diese Weise bleibt die Temperatur der verflüssigten Luft unterhalb der Siedetemperatur des Stickstoffs wodurch eine - unter Sicherheitsaspekten problematische - Anreicherung von Sauerstoff in der flüssigen Luft vermieden wird.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Rekuperator als Kältespeicher ausgelegt ist. Der Rekuperator ist dabei mit einer Abgasleitung des Tanks für flüssiges Kältemittel verbunden und wird ständig, also auch während Betriebspausen, von verdampfendem Kältemittel durchströmt und speichert dessen Kälteinhalt. Auf diese Weise ist der Rekuperator auch nach längeren Betriebspausen schnell einsatzfähig und die Kälte des während der Betriebspause verdampfenden Kältemittels wird genutzt.
  • Bevorzugt enthält die Fördereinrichtung ein Gebläse oder einen Kompressor, der eingangsseitig am Wärmetauscher angeordnet ist und mittels dessen die Luft in den Wärmetauscher hineingepresst wird. Alternativ ist jedoch auch vorstellbar, dass die Fördereinrichtung ausgangsseitig am Wärmetauscher angeordnet ist; wird im Wärmetauscher die Luft verflüssigt, umfasst die Fördereinrichtung in diesem Fall eine Pumpe, die die verflüssigte Luft aus dem Wärmetauscher abpumpt, während zugleich frische Luft in den Wärmetauscher nachströmt.
  • Eine bevorzugte Verwendung des erfindungsgemäßen Verfahrens oder der erfindungsgemäßen Vorrichtung besteht in der Kühlung begehbarer Räume wie beispielsweise Kühlräume zum Lagern temperaturempfindlicher Waren oder Kältekammern für therapeutische Zwecke.
  • Anhand der Zeichnungen sollen nachfolgend Ausführungsbeispiele der Erfindung näher erläutert werden. In schematischer Ansicht zeigen:
    • Fig. 1: Das Schaltbild einer erfindungsgemäßen Vorrichtung zum Erzeugen von tiefkalter gasförmiger oder verflüssigter Luft in einer ersten Ausführungsform und
    • Fig. 2: Das Schaltbild einer erfindungsgemäßen Vorrichtung zum Erzeugen von tiefkalter gasförmiger oder verflüssigter Luft in einer zweiten Ausführungsform.
  • Die in Fig. 1 gezeigte Vorrichtung 1 umfasst einen Wärmetauscher 2, der mit einer Lufteingangsleitung 3, einer Luftausgangsleitung 4, einer Kältemitteleingangsleitung 5 und einer Kältemittelausgangsleitung 6 ausgerüstet ist. Die Kältemitteleingangsleitung 5 steht mit einem Tank 7 für ein verflüssigtes kryogenes Kältemittel, beispielsweise einem Standtank für Flüssigstickstoff, in Strömungsverbindung. In der Lufteingangsleitung 3 ist eine Fördereinrichtung 8, beispielsweise ein Kompressor oder ein Gebläse, angeordnet, mittels dessen Luft zum Wärmetauscher 2 hin gefördert wird. Die Kältemittelausgangsleitung 6 mündet in eine Expansionsmaschine 9 in der bei der Entspannung von gasförmigem Kältemittel freiwerdende Energie in mechanische oder elektrische Energie umgewandelt wird. Expansionsmaschine 9 und Fördereinrichtung 8 sind in der Weise miteinander wirkverbunden, dass über geeignete Energieübertragungsmittel 10 die in der Expansionsmaschine 9 erzeugte Energie zum Betreiben der Fördereinrichtung 8 verwendet wird. Beispielsweise umfassen die Energieübertragungsmittel 10 eine Welle, mittels der in der Expansionsmaschine erzeugte mechanische Energie direkt auf die Fördereinrichtung 8 übertragen wird oder die Expansionsmaschine 9 umfasst einen Generator zur Erzeugung elektrischer Energie, die direkt oder indirekt, etwa über ein Stromnetz, zum Betreiben der Fördereinrichtung 8 genutzt wird.
  • Stromab zur Fördereinrichtung 8 ist in der Lufteingangsleitung 3 eine Einrichtung 11 zum Trocknen der dem Wärmetauscher 2 zuzuführenden Luft vorgesehen. Als Einrichtung 11 ist beispielsweise ein Kältetrockner, ein Membrantrockner oder ein Absorptionstrockner vorgesehen. Die Einrichtung 11 ist mit der Kältemittelausgangsleitung 6 verbunden und ermöglicht so den Einsatz des im Wärmetauscher 2 verdampften kryogenen Kältemittels als Betriebsmittel für die Einrichtung 11; in den genannten Beispielen dient das verdampfte kryogene Kältemittel also als Regenerationsgas zum Regenerieren eines Absorbers und/oder als Spülgas zum Regenerieren eines Membrantrockners und/oder als Kältemittel zum Kondensieren von Wasserdampf aus der zu trocknenden Luft.
  • Die Luftausgangsleitung 4 mündet in einen Vorratstank 12 für flüssige Luft, der im Ausführungsbeispiel innerhalb des Tanks 7 für das flüssige kryogene Kältemittel angeordnet und mit der Flüssigphase des im Tank 7 bevorrateten Kältemittels thermisch verbunden ist. Aus dem Vorratsbehälter 12 kann die erzeugte Luft gespeichert und bei Bedarf über eine Entnahmeleitung 13 entnommen werden, wobei bei Bedarf ein Druckaufbauverdampfer 14 zum Einsatz kommt. Die Anordnung des Vorratstanks 12 innerhalb der flüssigen Phase des im Vorratstank 7 bevorrateten Kältemittels, dessen Temperatur auf einer Temperatur gleich oder unterhalb der Siedetemperatur des Stickstoffs im Vorratsbehälter 12 gehalten wird, gewährleistet dabei, dass die Zusammensetzung der flüssigen Luft im Vorratsbehälter 12 im wesentlichen konstant bleibt und keine Anreicherung von flüssigem Sauerstoff im Vorratstank 12 erfolgt. Im Rahmen der Erfindung ist die Anordnung des Vorratsbehälters 12 innerhalb des Tanks 7 im Übrigen keineswegs zwingend erforderlich, sie weist jedoch die angegebenen thermodynamischen Vorteile auf.
  • Beim Betrieb der Vorrichtung 1 wird Luft über die Fördereinrichtung 8 dem Wärmetauscher 2 zugeführt. An im Wärmetauscher 2 vorliegenden Wärmetauscherflächen, etwa an den Wänden von Rohrbündeln, durch die die Luft bzw. das Kältemittel geführt wird, kommt die Luft in thermischen Kontakt mit dem verflüssigten kryogenen Kältemittel aus dem Tank 7. Die Luft kühlt sich ab und wird beispielsweise verflüssigt, während das verflüssigte kryogene Kältemittel verdampft. Das verdampfte kryogene Kältemittel wird in der Einrichtung 11 zum Trocknen der Luft in der oben beschriebenen Weise als Betriebsmittel eingesetzt. Der durch die Verdampfung verursachte erhöhte Druck des kryogenen Kältemittels in der Kältemittelausgangsleitung 6 wird in der in der Expansionsmaschine 9 arbeitsleistend entspannt und zum Betreiben der Fördereinrichtung 8 eingesetzt. Beispielsweise umfasst die Expansionsmaschine eine Turbine oder einen Kolben und einen daran angeschlossenen Generator, und die in diesem Generator erzeugte elektrische Energie wird dazu eingesetzt, die Fördereinrichtung 8 anzutreiben. Wird in der Expansionsmaschine 9 mehr elektrische oder mechanische Energie erzeugt, als in der Fördereinrichtung 8 verbraucht werden kann, kann die überschüssige Energie anderweitig verwertet werden - im Falle von elektrischer Energie kann sie beispielsweise in ein Leitungsnetz eingespeist werden. Reicht umgekehrt die in der Expansionsmaschine 9 erzeugte Energie nicht aus, um die Fördereinrichtung 8 zu betreiben, muss zusätzliche Energie zugeführt werden, beispielsweise mittels eines die Fördereinrichtung 8 antreibenden Motors, der freilich leistungsschwächer ausgelegt sein kann, als dies ohne die Wirkverbindung der Fördereinrichtung 8 mit der Expansionsmaschine 9 der Fall wäre. Die Reihenfolge der Komponenten 9 und 11 kann in Bezug auf die Strömungsrichtung des Kältemittels auf geändert werden, die Expansionsmaschine 9 kann also auch stromauf zur Einrichtung 11 angeordnet sein. Ebenso ist, in Strömungsrichtung der Luft gesehen, im Rahmen der Erfindung vorstellbar, die Fördereinrichtung für Luft stromab zu Trockner und/oder Wärmetauscher vorzusehen. Es ist auch vorstellbar, auf eine Fördereinrichtung völlig zu verzichten und den aufgrund der Abkühlung der Luft durch den Wärmetausch mit dem kryogenen Kältemittel entstehenden Unterdruck zum Einsaugen der Luft zu nutzen, wobei in diesem Falle auf geeignete Weise dafür Sorge getragen werden muss, dass die verflüssigte Luft dem Vorratsbehälter 12 zugeführt wird.
  • Bei der Vorrichtung 20 in Fig. 2 ist ein Wärmetauscher 21 innerhalb eines Tanks 22 für ein verflüssigtes kryogenes Kältemittel aufgenommen. Der Wärmetauscher 21 ist mit einer Lufteingangsleitung 23 verbunden, durch die hindurch Luft zum Wärmetauscher 21 geführt und dort durch thermischen Kontakt mit dem im Tank 22 befindlichen verflüssigten kryogenen Kältemittel gekühlt und/oder verflüssigt wird. In der Lufteingangsleitung 23 sind, stromauf zum Wärmetauscher 21 hintereinander eine Fördereinrichtung 25, die in der gleichen Weise arbeitet wie die Fördereinrichtung Lufttrockner 26 und ein Rekuperator 27 angeordnet. Beim Lufttrockner handelt es sich beispielsweise um eine Apparatur, die dem in der dem Wärmetauscher 12 über den Vorderabschnitt 28 der Lufteingangsleitung 23 zugeführten Luft so weit wie möglich den darin enthaltenen Wasserdampf entzieht. Bei dem Lufttrockner handelt es sich im Ausführungsbeispiel um einen Absorptionstrockner, bei dem verdampftes kryogenes Kältemittel dazu genutzt wird, um das Absorbermaterial zu regenerieren. Der Rekuperator 27 dient zur Vorkühlung der Luft. Aufgrund des thermischen Kontakts der zu kühlenden Luft mit dem verflüssigten kryogenen Kältemittel, beispielsweise Flüssigstickstoff, im Tank 22 verdampft ein Teil des verflüssigten kryogenen Kältemittels, wird über eine mit dem Gasraum des Tanks 22 strömungsverbundene Leitung 30 abgeführt und gelangt in den Rekuperator 27. Dort findet eine thermische Wechselwirkung des noch mit beträchtlicher Restkälte ausgestatteten verdampften kryogenen Kältemittels mit der in dem Vorderabschnitt 28 der Lufteingangsleitung 23 herangeführten Luft. Im Rekuperator 27 kühlt sich die Luft ab, während sich das verdampfte kryogene Kältemittel erwärmt, über eine Kältemittelleitung 31 dem Lufttrockner 26 zugeführt wird und in der zuvor beschriebenen Weise der Luft Feuchtigkeit entzieht. Anschließend wird das Kältemittel einer Expansionsmaschine 32 zugeführt, in der es ähnlich der Expansionsmaschine 9 aus Fig. 1 zur Energieerzeugung durch Entspannung eingesetzt wird. Die dabei erzeugte elektrische oder mechanische Energie wird zum Betrieb der Fördereinrichtung 25 eingesetzt. Bei der Ausführungsform nach Fig. 2 kommt zusätzlich noch ein Hilfsmotor 33 zum Einsatz, der der Fördereinrichtung 25 zusätzliche Energie zuführen kann. Die im Lufttrockner 26 getrocknete und im Rekuperator 27 vorgekühlte Luft wird dem Wärmetauscher 21 zugeführt, dort in thermischen Kontakt mit dem flüssigen kryogenen Kältemittel in Tank 22 gebracht und beispielsweise verflüssigt. Die Reihenfolge der Komponenten 32, 25, 26, 27, 21 ist im Übrigen nicht zwingend und kann in anderen Ausführungsformen der Erfindung auch anders gesetzt werden. So kann beispielsweise eine Fördereinrichtung für Luft auch stromab zum Wärmetauscher 2, 21 angeordnet werden; in diesem Falle handelt es sich bei der Fördereinrichtung beispielsweise um eine Pumpe für flüssige Luft. Auch kann der Lufttrockner 26 (oder generell ein Lufttrockner) und/oder der Rekuperatur 27 (oder generell ein Rekuperator) ― in Strömungsrichtung des Kältemittels gesehen ― stromab zur Expansionsmaschine 32 angeordnet sein.
  • Mit der erfindungsgemäßen Vorrichtung ist es insbesondere zur Kühlung begehbarer Räume nicht mehr erforderlich, flüssige Luft anzuliefern, sondern die benötigte flüssige Luft wird vor Ort erzeugt; lediglich die übliche Logistik für flüssiges kryogenes Kältemittel (beispielsweise Flüssigstickstoff) ist erforderlich. Der Antrieb der Fördereinrichtung mittels expandierendem, verdampftem kryogenen Kältemittel erspart den Einsatz einen Motors (oder reduziert dessen Leistung) und führt daher zu einer erheblich geringeren Lärmentwicklung. Die erfindungsgemäße Vorrichtung ist sowohl zur Erzeugung von flüssiger Luft wie auch zum Erzeugen von kalter, gasförmiger Luft einsetzbar. Die Anlagen können klein dimensioniert sein, sodass sie beispielsweise in Arztpraxen, Fitnessstudios aufgestellt oder auf mobilen Kühleinrichtungen mitgeführt werden kann.
  • Bezugszeichenliste
  • 1.
    Vorrichtung
    2.
    Wärmetauscher
    3.
    Lufteingangsleitung
    4.
    Luftausgangsleitung
    5.
    Kältemitteleingangsleitung
    6.
    Kältemittelausgangsleitung
    7.
    Tank
    8.
    Gebläse
    9.
    Expansionsmaschine
    10.
    Energieübertragungsmittel
    11.
    Einrichtung zur Luftrocknung
    12.
    Vorratsbehälter (für flüssige Luft)
    13.
    Entnahmeleitung
    14.
    Druckaufbauverdampfer
    15.-19.
    -
    20.
    Vorrichtung
    21.
    Wärmetauscher
    22.
    Tank
    23.
    Lufteingangsleitung
    24.
    -
    25.
    Fördereinrichtung
    26.
    Lufttrockner
    27.
    Rekuperator
    28.
    Vorderabschnitt der Lufteingangsleitung
    29.
    -
    30.
    Leitung
    31.
    Kältemittelleitung
    32.
    Expansionsmaschine
    33.
    Hilfsmotor

Claims (12)

  1. Verfahren zum Erzeugen tiefkalter gasförmiger oder verflüssigter Luft, bei dem Luft zu einem Wärmetauscher (2, 21) gefördert und dort in Wärmetausch mit einem verflüssigten, kryogenen Kältemittel abgekühlt wird, wobei das kryogene Kältemittel verdampft,
    dadurch gekennzeichnet,
    dass die zu kühlende Luft vor ihrer Zuführung an den Wärmetauscher (2, 21) eine Einrichtung (11, 26) zur Lufttrocknung durchläuft, in der die im Wärmetauscher (2, 21) verdampftes Kältemittel als Betriebsmittel eingesetzt wird.
  2. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das verdampfte kryogene Kältemittel in einer Expansionsmaschine (9, 32) arbeitsleistend entspannt und die dabei gewonnene Energie zum Fördern der zu kühlenden Luft zum Wärmetauscher (2,21) eingesetzt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das verdampfte kryogene Kältemittel zum Vorkühlen der dem Wärmetauscher (2, 21) zugeführten Luft und/oder zum Kühlen der Fördereinrichtung (2, 21) eingesetzt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zu kühlende Luft aufgrund des beim Wärmekontakt mit dem kryogenen Kältemittel im Wärmetauscher (2,21) entstehenden Druckabfalls eingesaugt und durch die Einrichtung (11, 26) zur Lufttrocknung geführt wird.
  5. Vorrichtung zum Erzeugen tiefkalter gasförmiger oder verflüssigter Luft, mit einem Wärmetauscher (2, 21), der eine Lufteingangsleitung (6, 23) und eine Luftausgangsleitung (4) sowie Wärmetauscherflächen zum thermischen Kontaktieren von Luft mit einem verflüssigten kryogenen Kältemittel und eine Ausgangsleitung (6, 30) für verdampftes kryogenes Kältemittel aufweist, dadurch gekennzeichnet,
    dass in der Lufteingangsleitung (3, 23) eine Einrichtung (11, 26) zum Trocknen der Luft vorgesehen ist, die mit der Ausgangsleitung (6, 30) für verdampftes kryogenes Kältemittel verbunden ist und in der das kryogene Kältemittel als Betriebsmittel zum Trocknen der Luft einsetzbar ist.
  6. Verfahren nach Anspruch 5, dass die Einrichtung (26) zur Lufttrocknung einen Adsorptionstrockner, einen Membrantrockner oder einen Kältetrockner umfasst.
  7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass eine Fördereinrichtung (8, 29) zum Fördern von Luft in den Wärmetauscher (2, 21) vorgesehen ist und die Ausgangsleitung für verdampftes kryogenes Kältemittels mit einer Expansionsmaschine (9, 32) strömungsverbunden ist, die über Mittel zum Übertragen von Energie mit der Fördereinrichtung (8, 29) wirkverbunden ist.
  8. Vorrichtung nach Anspruch 5 bis 7 dadurch gekennzeichnet, dass in der Lufteingangsleitung (3, 23) ein Rekuperator (27) vorgesehen ist, der eine mit der Ausgangsleitung (30) für verdampftes kryogenes Kältemittel strömungsverbundene Zuleitung und eine Wärmetauscherfläche zum Übertragen von Wärme von der Luft aus der Lufteingangsleitung (3, 23) auf das verdampfte kryogene Kältemittel aufweist.
  9. Vorrichtung nach Anspruch 5 bis 8, dadurch gekennzeichnet, dass der Wärmetauscher (2, 21) und/oder der Rekuperator (27) und/oder ein an die Luftausgangsleitung (6, 23) angeschlossener Vorratsbehälter für verflüssigte Luft in einen Tank (22) für das verflüssigte kryogene Kältemittel integriert ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Rekuperator als Kältespeicher ausgelegt ist.
  11. Vorrichtung nach Anspruch 5 bis 10, dadurch gekennzeichnet, dass die Fördereinrichtung (8, 29) ein Gebläse, einen Kompressor oder eine Pumpe für verflüssigte Luft umfasst.
  12. Verwendung eines Verfahrens nach Anspruch 1 bis 2 oder einer Vorrichtung nach Anspruch 5 bis 11 zum Kühlen begehbarer Räume.
EP20110159073 2010-03-25 2011-03-21 Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft Withdrawn EP2369280A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010012778 DE102010012778A1 (de) 2010-03-25 2010-03-25 Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft

Publications (2)

Publication Number Publication Date
EP2369280A2 true EP2369280A2 (de) 2011-09-28
EP2369280A3 EP2369280A3 (de) 2015-05-06

Family

ID=44260937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110159073 Withdrawn EP2369280A3 (de) 2010-03-25 2011-03-21 Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft

Country Status (2)

Country Link
EP (1) EP2369280A3 (de)
DE (1) DE102010012778A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996909A1 (fr) * 2012-10-12 2014-04-18 Air Liquide Procede et appareil de production d'air liquefie
US20150143844A1 (en) * 2013-05-01 2015-05-28 Fertilesafe Ltd Devices and methods for producing liquid air
CN107691429A (zh) * 2017-09-30 2018-02-16 曾里 一种梯度降温机构及其工作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812960C1 (de) 1998-03-24 1999-11-04 Kompressoren Und Druckluft Tec Membrantrockner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960515B1 (de) * 1969-12-02 1971-05-27 Linde Ag Verfahren und Vorrichtung zum Verfluessigen eines Gases
US4320627A (en) * 1979-10-20 1982-03-23 Air Products And Chemicals, Inc. Apparatus for recovering natural gas in a mine
CH659698A5 (de) * 1982-04-05 1987-02-13 Nippon Oxygen Co Ltd Verfahren zum vorkuehlen einer anlage zur erzeugung von tieftemperaturgas sowie vorrichtung zur ausfuehrung des verfahrens.
FR2690982A1 (fr) * 1992-05-11 1993-11-12 Air Liquide Procédé et installation de production d'oxygène gazeux impur par distillation d'air.
DE19748966B4 (de) * 1997-11-06 2008-09-04 Air Liquide Deutschland Gmbh Vorrichtung und Verfahren zur Herstellung und Lagerung von flüssiger Luft
CA2588540C (en) * 2006-10-02 2011-08-16 Jose Lourenco Method to condense and recover carbon dioxide (co2) from co2 containing gas streams
DE102007054772B4 (de) * 2007-05-18 2009-11-26 Messer Group Gmbh Vorrichtung zum Kühlen von Stoffströmen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812960C1 (de) 1998-03-24 1999-11-04 Kompressoren Und Druckluft Tec Membrantrockner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996909A1 (fr) * 2012-10-12 2014-04-18 Air Liquide Procede et appareil de production d'air liquefie
FR2996910A1 (fr) * 2012-10-12 2014-04-18 Air Liquide Procede et appareil de production d'air liquefie
US20150143844A1 (en) * 2013-05-01 2015-05-28 Fertilesafe Ltd Devices and methods for producing liquid air
US9890995B2 (en) * 2013-05-01 2018-02-13 Fertilesafe Ltd Devices and methods for producing liquid air
CN107691429A (zh) * 2017-09-30 2018-02-16 曾里 一种梯度降温机构及其工作方法

Also Published As

Publication number Publication date
EP2369280A3 (de) 2015-05-06
DE102010012778A1 (de) 2011-09-29

Similar Documents

Publication Publication Date Title
EP0248296B1 (de) Verfahren zur Erhoehung des Leistungsfaktors von hybriden Kaeltemaschinen oder Waermepumpen
DE2407617A1 (de) Verfahren zur energierueckgewinnung aus verfluessigten gasen
EP0842385A1 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
WO2014000882A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
WO2014019698A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
DE102011014678A1 (de) Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms
DE102011108970A1 (de) Niedertemperaturkraftwerk, sowie Verfahrenzum Betrieb desselben
EP2880268A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP2835507B1 (de) Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage
DE69910042T2 (de) Anlage zur erzeugung von niederspannugsstrom mit einer anlage, die in einer luftzerlegungsanlage integriert ist
EP1706599B1 (de) Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
EP2369280A2 (de) Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft
EP2692416B1 (de) Kältetrockner
DE102010004187A1 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
DE935196C (de) Verfahren zur Abgabe eines Gases
EP2368080A2 (de) Verfahren und vorrichtung zum verdampfen und verflüssigen eines mediums
JPH08254368A (ja) 低温破砕装置における被破砕物の冷却方法及び装置
DE19908506A1 (de) Verfahren und Anlage zur Kälteerzeugung, ausgehend von einem thermischen Zyklus für ein Fluid mit niedrigem Siedepunkt
EP3293475A1 (de) Verfahren und methode zur speicherung und rückgewinnung von energie
EP2199671A1 (de) Verfahren und Anordnung zur Erzeugung von Wasserdampf
WO2018029371A1 (de) Wärmeübertrager zur verwendung in einem warmteil eines flüssigluftenergiespeicherkraftwerks, warmteil und verfahren zum betrieb eines solchen wärmeübertragers in einem solchen warmteil
EP1271075B1 (de) Verfahren und Vorrichtung zur Kältebereitstellung
WO2021129925A1 (de) Turbo-abgas-co2-abscheidung
EP1010954A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes
DE2344133A1 (de) Verfahren zur verfluessigung von luft und verfluessigung deren komponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110324

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESSER GROUP GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/00 20060101ALI20141104BHEP

Ipc: F25D 3/10 20060101ALI20141104BHEP

Ipc: F25J 1/02 20060101AFI20141104BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/00 20060101ALI20150331BHEP

Ipc: F25J 1/02 20060101AFI20150331BHEP

Ipc: F25D 3/10 20060101ALI20150331BHEP

17Q First examination report despatched

Effective date: 20150522

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151002