EP2665773A1 - Flammhemmende thermoplastische zusammensetzung - Google Patents

Flammhemmende thermoplastische zusammensetzung

Info

Publication number
EP2665773A1
EP2665773A1 EP12700125.3A EP12700125A EP2665773A1 EP 2665773 A1 EP2665773 A1 EP 2665773A1 EP 12700125 A EP12700125 A EP 12700125A EP 2665773 A1 EP2665773 A1 EP 2665773A1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic composition
terephthalate
polyalkylene terephthalate
polyester
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12700125.3A
Other languages
English (en)
French (fr)
Inventor
Siqi Xue
Michael Roth
Elke Marten
Martin Klatt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP12700125.3A priority Critical patent/EP2665773A1/de
Publication of EP2665773A1 publication Critical patent/EP2665773A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the invention relates to a thermoplastic composition containing
  • the invention relates to the use of the thermoplastic composition according to the invention for the production of fibers, films or moldings as well as fibers, films or moldings which contain the composition according to the invention.
  • the invention further relates to the use of the thermoplastic composition as a coating agent.
  • thermoplastic composition comprising (A) a polybutylene terephthalate, (B) a polybutylene terephthalate-polyester urethane (b1), (C) aluminum diethylphosphinate, melamine cyanurate, or melamine polyphosphate or mixtures thereof.
  • a further embodiment relates to a thermoplastic composition comprising (A) a polybutylene terephthalate, (B) a polybutylene terephthalate polyether (b2), (C) aluminum diethylphosphinate, melamine cyanurate, or melamine polyphosphate or mixtures thereof.
  • the invention also relates to a thermoplastic composition
  • a thermoplastic composition comprising (A) a polybutylene terephthalate, (B) a polybutylene terephthalate polyester (b3), (C) aluminum diethylphosphinate, melamine cyanurate, or melamine polyphosphate or mixtures thereof.
  • US 2008/0167406 A1 describes a flame-retardant polybutylene terephthalate-based molding composition which, in addition to a phosphinic acid salt and an epoxy compound, comprises a thermoplastic polyester elastomer.
  • This elastomer may on the one hand be a polyester-polyester elastomer.
  • the hard segment may be a polyester of an aromatic diacid and a short chain alkylenediol.
  • the soft segment is made of a polyester, an aliphatic diacid and a short chain alkylenediol or polycaprolactone.
  • this elastomer may be a polyester-polyether elastomer, wherein the hard segment is a polyester consisting of an aromatic diacid and a short-chain alkylenediol, and the soft segment is a polyoxyalkylene glycol or a polyester of polyoxyalkylene and an aliphatic diacid.
  • WO 2006/040066 A1 describes a flame-retardant molding composition which, in addition to polybutylene terephthalate, comprises as base component at least one highly branched or hyperbranched polycarbonate and / or at least one highly branched polyester or a mixture of the two. Various flame retardant additives are added to the molding compound.
  • the object of the present invention was to develop a thermoplastic composition which is easy to process and at the same time has a flame retardant effect. Furthermore, compositions should be provided which have a light inherent color. In addition, it was an object to find thermoplastic compositions with flame retardant effect, which are odorless. The compositions should also be suitable for making coatings, also called coatings.
  • thermoplastic composition described above.
  • Component A of the thermoplastic composition according to the invention is a polyalkylene terephthalate.
  • This also means mixtures of polyalkylene terephthalates.
  • polyalkylene terephthalate is not limited to terephthalate-containing compounds. Rather, polyalkylene terephthalates according to the invention are derived from structures which contain an aromatic ring in the main chain derived from an aromatic dicarboxylic acid. The aromatic ring may be unsubstituted or substituted.
  • Suitable substituents are, inter alia, C 1 - to C 4 -alkyl groups such as methyl, ethyl, isopropyl or n-propyl and n-, i- or t-butyl groups or fluorine.
  • Preferred dicarboxylic acids are substituted, in particular unsubstituted, 2,6-naphthalenedicarboxylic acid, terephthalic acid and isophthalic acid or mixtures thereof. Preference is given to terephthalic acid or isophthalic acid or mixtures thereof. Terephthalic acid as the sole monomeric dicarboxylic acid is widely used.
  • Polyalkylene terephthalates contain, in addition to aromatic radicals derived from corresponding dicarboxylic acids, aliphatic hydrocarbon radicals derived from the corresponding alkylene diols.
  • the alkylenediols can thus be branched or unbranched, ie linear.
  • Branched polyalkylene terephthalates include branched hydrocarbon radicals, while linear polyalkylene terephthalates include unbranched hydrocarbon radicals.
  • alkylene diols preference is given to diols having 2 to 6 carbon atoms, in particular 1, 2-ethanediol, 1, 3-propanediol, 1, 4-butanediol, 1, 6-hexanediol, 1, 4-hexanediol, 1, 4-cyclohexanediol, 1 , 4-cyclohexanedimethanol or neopentyl glycol or mixtures thereof.
  • component A may comprise polyethylene terephthalate, 1,3-polypropylene terephthalate, 1,4-polybutylene terephthalate, polyethylene naphthalate, 1,4-polybutylene naphthalate, 1,3-polypropylene terephthalate poly (cyclohexane dimethanol terephthalate) or mixtures thereof.
  • polyalkylene terephthalates generally have an intrinsic viscosity measured in phenol / carbon tetrachloride (1/1 by volume) of 0.4 dL / g to 2.0 dL / g.
  • the polyalkylene terephthalates generally have an average molecular weight of 5,000 to 130000 g / mol (determined by gel permeation chromatography in chloroform / hexafluoroisopropanol (5/95, volume ratio) at 25 ° C. measured against a polystyrene standard)
  • the thermoplastic composition comprises an elastomer (component B) selected from the group of polyalkylene terephthalate-polyester urethanes b1), polyalkylene terephthalate-polyether urethanes b2), polyalkylene terephthalate polyethers b3), polyalkylene terephthalate polyesters b4) and mixtures thereof ,
  • An elastomer is a copolymer in which hard segments and soft segments can be combined.
  • Hard segments are generally characterized by stiff elongated sections.
  • Soft segments usually have strongly bunched areas together. Hard segments mostly attach themselves to one another and build up secondary valences, which increases the cohesion between the polymer strands. Soft segments can be stretched, providing elasticity to the area.
  • the elastomer b1) comprises polyalkylene terephthalate as a hard segment and polyester urethane as a soft segment (for formula, see WO03014179, p. 9-p. 10).
  • a polyalkylene terephthalate is first reacted with one or more hydroxy compounds for the preparation, one or more low molecular weight diols preferably being used, which generally have a molecular weight of from 62 g / mol to 500 g / mol. sen (i) to form a polyalkylene terephthalate hydroxy compound.
  • This polyalkylene terephthalate hydroxy compound can be prepared in sequence first with one or more polyesterols, which generally have a molecular weight of more than 500 to 8000 g / mol, preferably 700 to 6000 g / mol, in particular 800 to 4000 g / mol ii) and then reacted with one or a mixture of different isocyanates (iii).
  • the hard segment of the thermoplastic elastomer b1) may differ from the polyalkylene terephthalate A in structural structure and / or distribution. However, the hard segment may also have the same structural configuration as A.
  • the hard segment of the thermoplastic elastomer may be a polyalkylene terephthalate based on terephthalic acid and an alkylene diol having 2 to 15 carbon atoms.
  • the hard segment is a polybutylene terephthalate, especially a poly, 4-butylene terephthalate.
  • the polyalkylene terephthalate (s) generally has an average molecular weight of from 1000 to 5000 g / mol (determined by gel permeation chromatography in chloroform / hexafluoroisopropanol (5/95, volume ratio) at 25 ° C., measured against a polystyrene standard).
  • the thermoplastic polyalkylene terephthalate may e.g. with one or more, preferably a generally known low molecular weight diol, in particular reacted with those having a molecular weight of 62 to 500 g / mol, for example ethylene glycol, l, 3-propanediol, 1, 4-butanediol, 1, S-pentanediol, l , 6-hexanediol, heptanediol, octanediol, preferably butane-1, 4-diol and / or ethane-1, 2-diol.
  • a generally known low molecular weight diol in particular reacted with those having a molecular weight of 62 to 500 g / mol, for example ethylene glycol, l, 3-propanediol, 1, 4-butanediol, 1, S-pentanediol, l , 6-
  • the weight ratio of polyalkylene terephthalate to diol in the step (i) is usually 100: 1 to 100: 10, preferably 100: 1, 5 to 100: 8.0.
  • the polyalkylene terephthalate hydroxy compound as the reaction product of (i) preferably has a molecular weight of from 1000 g / mol to 5000 g / mol.
  • the melting point of the polyalkylene terephthalate hydroxy compound as the reaction product of (i) is preferably from 150 ° C to 260 ° C, more preferably from 151 ° C to 260 ° C, especially from 165 to 245 ° C, i. in that the polyalkylene terephthalate hydroxy compound of the thermoplastic polyalkylene terephthalate with the diol in step (i) contains compounds having the stated melting point which are used in the subsequent step (ii).
  • the polyalkylene terephthalate hydroxy compound can be reacted, for example, with aliphatic polyesterols having molecular weights of more than 500 to 8000, preferably 700 to 6000, in particular 800 to 4000.
  • the polyesterols preferably have an average functionality of from 1.8 to 2.6, preferably from 1.9 to 2.2, in particular 2.
  • functionality is meant in particular the number of active hydrogen atoms, in particular hydroxyl groups.
  • polyesterols which are obtainable by reacting butanediol and hexanediol as the diol with adipic acid as the dicarboxylic acid, the weight ratio of butanediol to hexanediol preferably being 2: 1.
  • Preferred as a polyesterol is further Polytetrahydrofuran having a molecular weight of 750 to 2500 g / mol, preferably 750 to 1200 g / mol.
  • the intermediate product has free hydroxyl groups which are added in the further step (iii) with isocyanate the elastomer b1), the polyalkylene terephthalate polyester urethane, further processed.
  • the isocyanates used are generally customary aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, preferably diisocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methylpentamethylene diisocyanate-1 , 5, 2-ethyl-butylene-diisocyanate-l, 4, pentamethylene-diisocyanate-1,5, butylene-diisocyanate-1,4, l-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (Isophoron - diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexanediisocyanate, 1-methyl-2,4- and / or
  • Suitable polyalkylene terephthalate-polyester urethane b1) are randomly distributed copolymers with a proportion of soft segment of from 10% by weight to 35% by weight.
  • the polyalkylene terephthalate-polyester urethane can be prepared by methods known to those skilled in the art, such as by a batch synthesis or reaction in the extruder.
  • thermoplastic elastomer b1) consisting of a hard segment and a soft segment has been described in WO 03 014 179 (page 7, lines 32 to page 8, lines 42, pages 13 to 18).
  • the elastomer b2) comprises polyalkylene terephthalates as a hard segment and polyether urethane as a soft segment.
  • a polyalkylene terephthalate hydroxy compound as described above can be reacted with one or more polyetherols.
  • these polyols have molecular weights of more than 500 g / mol to 8000 g / mol, preferably 700 to 6000 g / mol, in particular 800 to 4000 g / mol.
  • the polyetherols preferably have an average functionality of from 1.8 to 2.6, preferably from 1.9 to 2.2, in particular 2.
  • the intermediate has free hydroxyl groups to those in the further step (iii) with isocyanate product, the polyalkylene terephthalate-polyether-urethane, further processed.
  • the reaction takes place as described for the preparation of the elastomers b1).
  • Suitable polyalkylene terephthalate-polyether urethane b2) are, for example, randomly distributed copolymers with a proportion of soft segment of from 10% by weight to 35% by weight.
  • the polyalkylene terephthalate-polyether urethane may be prepared by methods known to those skilled in the art such as by batch synthesis or reaction in the extruder.
  • the thermoplastic composition comprises an elastomer b3) comprising a polyalkylene terephthalate polyether.
  • elastomer b3 comprising a polyalkylene terephthalate polyether.
  • Such products are known in the literature or are accessible by methods known per se.
  • polyester polyethers are described in U.S. Patents 3,651,014, 3,784,520, 4,185,003 and 4,136,090.
  • the hard segment of the elastomer b3) may differ from the polyalkylene terephthalate A in structural configuration and / or distribution. However, the hard segment may also have the same structural configuration as A.
  • the hard segment of the thermoplastic elastomer may be a polyester based on terephthalic acid and an alkylene diol having 2 to 15 carbon atoms.
  • the hard segment is a polybutylene terephthalate.
  • the soft polyether segment of the thermoplastic elastomer (b2) may be a polyester-polyether according to the invention.
  • polyester polyethers are meant according to this invention compounds derived from poly (alkylene) ether glycols and short-chain low molecular weight diols and dicarboxylic acids.
  • the poly (alkylene oxide) glycols preferably have a melting point of less than 55 ° C and a carbon / oxygen ratio of preferably 2 to 10, especially 2 to 6.
  • Examples of poly (alkylene oxide) glycols are poly (ethylene oxide) glycol, poly (1 , 2-propylene oxide) glycol, poly (1, 3-propylene oxide) glycol, poly (1, 2-butylene oxide) glycol, poly (1, 3-butylene oxide) glycol, poly (1, 4-butylene oxide) glycol, poly (pentemethylene oxide) glycol, poly (hexamethylene oxide) glycol, poly (heptamethylene oxide) glycol, poly (heptamethylene oxide) glycol, poly (octamethylene oxide) glycol, poly (nonamethylene oxide) glycol and random or block copolymers of various of the abovementioned glycols.
  • the long-chain poly (alkylene oxide) glycol may have a preferred molecular weight of 400 to 3000 g / mol.
  • the molecular weight can be calculated from the OH number determine.
  • the OH number can be determined by means of titration.
  • Mw - 56.1 x functionality ⁇ 1000 / OH number in mg KOH / g
  • the molecular weight Mw can be determined.
  • diols are generally generally low molecular weight diols having molecular weights of preferably less than 250 into consideration. These may have a linear or branched, cycloaliphatic or aromatic basic structure.
  • diols having 2 to 15 carbon atoms are preferred. Examples are 1, 2-ethanediol, 1, 3-propanediol, 1, 2-propanediol, 1, 4-butanediol, 1, 3-butanediol, 1, 2-butanediol, 1, 5-pentanediol, 2,2-dimethyl -1, 3-propanediol, 1, 6-hexanediol and its isomers called. Of these, particular preference is given to aliphatic diols having 2 to 8, in particular 2 to 4, carbon atoms, in particular 1, 3-propanediol and / or 1, 4-butanediol. Unsaturated diols have also been found to be suitable, in particular in mixtures with the abovementioned diols. Particularly noteworthy here is 2-butene-1, 4-diol.
  • dicarboxylic acids compounds having molecular weights of less than 300 are preferably used.
  • the dicarboxylic acids can be aromatic, aliphatic or cycloaliphatic compounds and have substituents which do not interfere in the course of the polymerization.
  • the dicarboxylic acids may also be aromatic compounds and have substituents as long as the resulting polymer can be a soft segment.
  • aromatic dicarboxylic acids examples include terephthalic acid, isophthalic acid and derivatives thereof.
  • aliphatic dicarboxylic acids which can be used, there are mentioned oxalic acid, fumaric acid, maleic acid, citraconic acid, sebacic acid, adipic acid, glutaric acid, succinic acid, azelaic acid and the like. It is also possible to use mixtures of different aliphatic dicarboxylic acids. Also, instead of the acids, their first-forming derivatives can be used. Preferred are aromatic dicarboxylic acids.
  • a possible synthesis of the thermoplastic elastomer (b2) is described in US 3,651,014.
  • polyalkylene terephthalate polyether b3) various block copolymers are suitable.
  • the thermoplastic composition comprises an elastomer b4), which may be a polyalkylene terephthalate polyester.
  • b4) may be a copolymer comprising a mixture of an aromatic diacid and an aliphatic diacid, which is treated with a diol.
  • the aromatic diacids may be 2,6-naphthalenedicarboxylic acid, terephthalic acid and isophthalic acid or mixtures thereof.
  • the aliphatic diacids may be oxalic acid, fumaric acid, maleic acid, citraconic acid, sebacic acid, adipic acid, succinic acid, sebacic acid, glutaric acid, succinic acid and azelaic acid or mixtures thereof.
  • the diols may be C2-C15 diols, for example 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 1,5. Pentanediol, 2,2-dimethyl-1, 3-propanediol, 1, 6-hexanediol and their isomers.
  • the molar ratio of aromatic diacid to aliphatic diacid can be varied widely from 9/1 to 1/9.
  • the polyalkylene terephthalate polyester can be prepared by methods known to those skilled in the art such as by a batch synthesis or reaction in the extruder.
  • the thermoplastic composition according to the invention contains a halogen-free flame retardant (C) selected from the group of nitrogen-containing or phosphorus-containing flame retardants or P- and N-containing flame retardants or mixtures thereof.
  • halogen-free is to be understood in accordance with the definitions of the International Electronical Commission (IEC 61249-2-21) and the Japan Printed Circuit Association (JPCA-ES-01 -1999), which are understood to mean halogen-free materials , which are largely chlorine and bromine free.
  • the thermoplastic composition may contain a halogen-free compound from the group of nitrogen-containing heterocycles having at least one nitrogen atom. Also, the thermoplastic composition may contain mixtures of the nitrogen-containing heterocycles having at least one nitrogen atom.
  • the flame retardants which are preferably suitable according to the invention are melamine cyanurate.
  • Melamine cyanurate is a reaction product of preferably equimolar amounts of melamine (formula I) and cyanuric acid or isocyanuric acid (formulas Ia and Ib)
  • Enol form Ketoform Melamine cyanurate can be obtained, for example, by reacting aqueous solutions of the starting compounds at 90 to 100.degree.
  • salts or adducts are melamine, melamine borate, and melamine oxalate. It is also possible to use mixtures of these salts.
  • thermoplastic composition according to the invention may also contain a halogen-free compound from the group of P-, N-containing flame retardants (c2).
  • P-, N-containing flame retardants are suitable, as described in WO 2002/96976.
  • Melamine phosphate prim. Phosphate sec. And pyrophosphate sec, neopentylglycolboronic acid melamine and polymeric melamine phosphate (CAS No. 56386-64-2) are suitable here.
  • Suitable guanidine salts are
  • compounds are meant to be both e.g. Benzoguanamine itself and its adducts or salts as well as the nitrogen-substituted derivatives and its adducts or salts are understood.
  • ammonium polyphosphate N H4P03
  • n from about 200 to 1000, preferably from 600 to 800
  • TEEIC tris (hydroxyethyl) isocyanurate
  • R 9 , R 10 are straight-chain or branched alkyl radicals having 1 to 10 C atoms, preferably hydrogen, and in particular their adducts with phosphoric acid, boric acid and / or pyrophosphoric acid.
  • R 9 , R 10 have the meaning given in formula III and their salts with phosphoric acid, boric acid and / or pyrophosphoric acid and glycolurils of the formula V or its salts with the abovementioned acids
  • Suitable products are available commercially or for example according to DE-A 196 14 424.
  • the cyanoguanidine (Formula VI) usable according to the invention is e.g. by reaction of calcium cyanamide (calcium cyanamide) with carbonic acid, wherein the resulting cyanamide is dimerized at pH 9 to 10 to cyanoguanidine.
  • Preferred phosphorus-containing compounds (c3) are phosphinic acid salts of the formula (VII) and / or diphosphinic acid salts of the formula (VIII) and / or their polymers,
  • R 11 , R 12 is hydrogen, C 1 - to C 6 -alkyl, preferably C 1 - to C 4 -alkyl, linear or branched, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n pentyl; phenyl; wherein preferably at least one radical R 11 or R 12 , in particular R 11 and R 12 is hydrogen;
  • R 13 is C 1 to C 10 alkylene, linear or branched, e.g. Methylene, ethylene, n-propylene, iso-propylene, n-butylene, tert-butylene, n-pentylene, n-octylene, n-dodecylene; Arylene, e.g. Phenylene, naphthylene;
  • Alkylarylene e.g. Methyl-phenylene, ethyl-phenylene, tert-butyl-phenylene, methyl-naphthylene, ethyl-naphthylene, tert-butyl-naphthylene;
  • Arylalkylene e.g. Phenyl-methylene, phenyl-ethylene, phenyl-propylene, phenyl-butylene;
  • M is an alkaline earth, alkali metal, Al, Zn, Fe, Mg, Ca;
  • s is an integer from 1 to 3;
  • z is an integer of 1 and 3 and
  • R 11 and R 12 are hydrogen, methyl, ethyl or isobutyl, where M is preferably Ca, Zn, Mg or Al and aluminum diethylphosphinate and aluminum hypophosphites are very particularly preferred.
  • Phosphorus of the valence state +0 is the elemental phosphorus. Can be considered red and black phosphorus. Preference is given to red phosphorus.
  • Suitable phosphorus compounds of the oxidation state +5 are, in particular, alkyl- and aryl-substituted phosphates.
  • Examples are phenylbisdodecylphosphate, phenylethylhydrogenphosphate, phenylbis (3,5,5-trimethylhexyl) phosphate, ethyldiphenylphosphate, 2-ethylhexyldi (tolyl) phosphate, diphenylhydrogenphosphate, bis (2-ethylhexyl) -p-tolylphosphate, tritolylphosphate , Bis (2-ethylhexyl) phenyl phosphate, di (nonyl) phenyl phosphate, phenylmethyl hydrogen phosphate, di (dodecyl) p-tolyl phosphate, p-tolylbis (2,5,5-trimethylhexyl) phosphate or 2-ethylhexyldiphenyl phosphate , Particularly suitable are phosphorus compounds in which each radical is an aryloxy radical. Very particularly suitable is triphenyl
  • R18.R21 e j n aromatic radical having 6 to 20 carbon atoms, preferably a phenyl radical which with
  • Alkyl groups having 1 to 4 carbon atoms, preferably methyl, may be substituted
  • R 22 is a divalent phenol radical, preferred
  • n is an average of from 0.1 to 100, preferably from 0.5 to 50, in particular from 0.8 to 10 and very particularly from 1 to 5.
  • the thermoplastic composition may contain a fibrous, porous and / or platelet-shaped reinforcing additive (D).
  • This reinforcing additive can be, for example, glass fibers, carbon fibers, aramid fibers, potassium titanate fibers, glass beads, amorphous silica, calcium silicate, magnesium carbonate, kaolins, chalk, powdered quartz, mica, barium sulfate, feissate, metal hydroxides, metal oxides, similar mineral fillers or a ceramic , It is also possible to mix the reinforcing additives.
  • the thermoplastic composition of the invention may contain at least one additive selected from the group of stabilizers, antistatic agents, nucleating agents, processing aids, impact modifiers, lubricants and mold release agents, pigments and antioxidants.
  • UV stabilizers for example, substituted resorcinols, salicylates, benzotriazoles and benzophenones can be used.
  • inorganic pigments for example, titanium dioxide, ultramarine blue and / or carbon black are suitable, while as organic pigments, e.g. Perylenes, phthalocyanines and / or quinacridones can be admixed. Dyes such as nigrosine and / or anthraquinones are also suitable for dyeing the thermoplastic composition.
  • long-chain fatty acids e.g., stearic acid
  • its salts e.g., Ca-stearate
  • Lubricants and mold release agents are usually used in proportions by weight of up to 1% relative to the total mass of the thermoplastic composition.
  • the plasticizers used may, in particular, be dioctyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, hydrocarbon oils, and / or N- (n-butyl) benzenesulfonamide.
  • the thermoplastic composition according to the invention may contain fluorine-containing ethylene polymers. These are preferably polymers of ethylene with a fluorine content of 55 to 76 wt .-%. Examples of these are polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymers or tetrafluoroethylene copolymers with smaller amounts of copolymerizable ethylenically unsaturated monomers. These are e.g. by Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, page 484 to page 494.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene-hexafluoropropylene copolymers or tetrafluoroethylene copolymers with smaller amounts of copolymerizable ethylenically unsaturated monomers.
  • This additive may be added to the thermoplastic composition via an admixture to a component as well as added as a separate admixture to the overall thermoplastic composition.
  • composition according to the invention preferably contains no fluorine-containing ethylene polymers.
  • compositions according to the invention contain one or more additives, their proportion is usually not more than 5% by weight, based on the total mass of the thermoplastic composition. In most cases, the proportion of additives is at least 0.1% by weight, based on the total mass of the thermoplastic composition.
  • the components (A), (B), (C) and (D) can be mixed in various proportions by weight. The following percentages by weight are based on the total weight of the thermoplastic composition. In a thermoplastic composition, the addition of the individual weight percentages gives 100% by weight. Based on the total mass, compositions of the invention contain, for example, from 30 to 70% by weight of component (A). Preferably, (A) in parts by weight of 40 to 60 wt .-%, in particular from 40 to 55 wt .-% based on the total mass of the thermoplastic composition are used.
  • thermoplastic elastomer (B) can be used in amounts of from 1 to 50% by weight.
  • the thermoplastic elastomer can preferably be used in amounts of from 1 to 30% by weight, in particular from 3 to 15% by weight, based on the total mass of the thermoplastic composition.
  • a halogen-free flame retardant (C) selected from the group c1) of the nitrogen-containing flame retardants, c2) the nitrogen and phosphorus-containing flame retardants or c3) of the phosphorus flame retardants and mixtures thereof in proportions by weight of 5 to 35 wt .-% based on the total mass of be added to thermoplastic composition.
  • the flame retardant is preferably added in proportions by weight of from 5 to 30% by weight, in particular from 5 to 25% by weight.
  • the reinforcing additive (D) can be used in proportions by weight of from 1 to 50% by weight relative to the total weight of the thermoplastic composition.
  • the thermoplastic composition contains a reinforcing additive in proportions by weight of from 15 to 60% by weight, in particular from 15 to 30% by weight, based on the total mass of the thermoplastic composition.
  • thermoplastic compositions of the present invention include the following compositions.
  • thermoplastic composition In a thermoplastic composition, the addition of the individual weight percentages gives 100 wt .-%.
  • the particular thermoplastic composition may further contain additives.
  • thermoplastic composition according to the invention can be prepared by the known methods.
  • the starting components are e.g. mixed in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are generally in the range of 240 ° C to 265 ° C. The temperature refers to the temperature of the extruder.
  • thermoplastic composition favors use of the thermoplastic composition for the production of fibers, films and / or moldings.
  • the thermoplastic composition is suitable for the production of special moldings in the vehicle and apparatus construction, for example for industrial or consumer-related purposes.
  • thermoplastic composition according to the invention can be used as a coating agent for fibers, films and / or shaped articles. Moldings are understood to mean three-dimensionally solid objects that offer themselves to be coated with a thermoplastic composition.
  • the thickness of such coatings is generally in the range from 0.1 to 3.0 cm, preferably from 0.1 to 2.0 cm, most preferably from 0.5 to 2.0 cm.
  • Such coatings can be prepared by methods known to those skilled in the art.
  • thermoplastic composition according to the invention can be used in processes for the production of industrially produced flame-retarded materials.
  • thermoplastic composition according to the invention has a flame retardant effect which meets the highest requirements.
  • moldings were produced which, in the context of good processability, surprisingly passed the fire test UL 94 with the class V0 or V2.
  • thermoplastic composition has a surprisingly low melt flow index and high break and impact resistance for examples
  • Component A is a compound having Component A:
  • PBT 1 poly (butylene terephthalate) having a viscosity number of 130 mL / g (measured with a 0.5 wt% solution in a phenol / o-dichlorobenzene (1/1) mixture at 23 ° C), Ultradur® B4520 the company BASF SE.
  • PBT 2 Poly (butylene terephthalate), having a viscosity number of 107 mL / g (measured with a 0.5% by weight solution in a phenol / o-dichlorobenzene (1/1) mixture at 23 ° C) Ultradur® B2550 of Company BASF SE.
  • Component B is a compound having Component B:
  • Polyalkylene terephthalate-polyester urethane 1 -3 comprising poly (butylene terephthalate), adipater, hexamethylene diisocyanate and butanediol; Hardness and melt index (Melt flow index (M FI)) see table.
  • Butanediol-1, 4 3,6%
  • Additives finely powdered talc, hindered phenol as antioxidant, carbodiimide as hydrolysis stabilizer, slip additive, antiblocking agent: 3.4%
  • Additives finely powdered talc, hindered phenol as antioxidant, carbodiimide as hydrolysis stabilizer, slip additive, antiblocking agent: 3.4%
  • Additives fine powdered talc, hindered phenol as antioxidant, carbodiimide as hydrolysis stabilizer, slip additive, antiblocking agent: 3.1%
  • Polyalkylene terephthalate polyethers 1 and 2 comprising poly (butylene terephthalate) and poly (tetrahydrofuran);
  • Hytrel® 7246 and Hytrel® 8238 for Dupont hardness and melt flow index (MFI) see table.
  • Component b4) polyalkylene terephthalate polyester comprising poly (butylene terephthalate) and poly (butylene adipate); Ecoflex® FBX 701 1 from BASF SE, hardness and melt index see table.
  • Component B Shore D hardness at 230 ° C, at 240 ° C,
  • DEPAL aluminum diethylphosphinate.
  • MC melamine cyanurate, Melapur® MC 25 from BASF SE.
  • MPP melamine polyphosphate, Melapur® 200 from BASF SE.
  • Component D Glass fibers: PPG 3786 glass fibers
  • the stabilizer comprises various antioxidants: primary phenolic antioxidants and, secondary antioxidants such as phosphites and thiosynergists) Irganox 1010 from BASF SE.
  • Lubricant oxidized polyethylene wax, Luwax® OA5 from BASF SE.
  • Thermoplastic Composition Preparation, Processing and Testing of the Thermoplastic Composition: The respective blends were blended in a twin-screw extruder at 260 ° C and then injection molded according to ISO 294 (Title: Plastics - Injection Molding of Thermoplastics).
  • melt volume-flow rate was measured at 275 ° C at a weight of 2.16 Kg.
  • the tensile strength test and the notched impact test were investigated in accordance with ISO 527 (Title: Determination of tensile properties) or according to ISO 179 (Title: Determination of Charpy impact properties).
  • the test for combustibility of UL94 plastics was carried out with 5 samples with a thickness of 0.8 mm or 1 .6 mm.
  • the injection molding pressure is based on the pressure required to produce the 0.8 mm thick samples for the UL94 Plastics Flammability Test.
  • melamine polyphosphate further improved the flame retardant effect (Example 3 and, inter alia, Example 7). Further, the compounds exhibited improved mechanical properties over the comparative example, particularly in the impact test, the thermoplastic compositions exhibited improved Charpy impact strength (Comparative Example and, inter alia, Example 9).
  • mixtures were prepared comprising PBT, aluminum diethylphosphinate (DEPAL) melamine cyanurate in each case a polyalkylene terephthalate polyether 1 or polyalkylene terephthalate polyether 2, and also the stabilizer Irganox 1010 from BASF and glass fibers of the type PPG 3786. The proportions of polyalkylene terephthalate polyether 1 or polyalkylene terephthalate polyether 2 were varied.
  • the samples showed improved mechanical properties with improved flame retardancy compared to the comparative example (comparative example and, inter alia, Example 11).
  • melamine polyphosphate was added to this mixture, further improving the flame retardancy (Example 12 and, inter alia, Example 15). Further, the compounds showed improved mechanical properties over the comparative example, especially in the impact test, the thermoplastic compositions showed improved Charpy impact strength (Comparative Example and, inter alia, Examples 17 and 18).
  • mixtures were prepared comprising PBT, aluminum diethylphosphinate (DEPAL) melamine cyanurate, melamine polyphosphate and a polyalkylene terephthalate polyester (poly (butylene terephthalate), poly (butylene adipate)), as well as the stabilizer Irganox 1010 from BASF and glass fibers of the type PPG 3786.
  • DEPAL aluminum diethylphosphinate
  • melamine cyanurate melamine polyphosphate
  • melamine polyphosphate and a polyalkylene terephthalate polyester
  • poly (butylene terephthalate), poly (butylene adipate) polyalkylene terephthalate polyester
  • stabilizer Irganox 1010 from BASF and glass fibers of the type PPG 3786.
  • the proportions of polyalkylene terephthalate polyester were varied.
  • the samples showed improved mechanical properties with improved flame retardancy compared to the comparative example (Comparative Example and, inter alia, Examples 19 and 20).
  • the flowabilities were improved by the addition of polyalkylene terephthalate-polyester-urethane 1, 2, 3, polyalkylene terephthalate-polyether 1, 2 and polyalkylene terephthalate-polyester, compared to the comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Flammhemmende thermoplastische Zusammensetzung Beschreibung
Die Erfindung betrifft eine thermoplastische Zusammensetzung, enthaltend
A) ein Polyalkylenterephthalat
B) ein Elastomer ausgewählt aus der Gruppe
b1 ) der Polyalkylenterephthalat-Polyester-Urethane,
b2) der Polyalkylenterephthalat-Polyether-Urethane,
b3) der Polyalkylenterephthalat-Polyether,
b4) der Polyalkylenterephthalat-Polyester
und deren Mischungen
C) ein halogenfreies Flammschutzmittel, ausgewählt aus der Gruppe
c1 ) der stickstoffhaltigen Flammschutzmittel
c2) der Stickstoff- und phosphorhaltigen Flammschutzmittel
c3) der phosphorhaltigen Flammschutzmittel
und deren Mischungen.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen thermoplastischen Zusammensetzung zu Herstellung von Fasern, Folien oder Formkörpern sowie Fasern, Folien oder Formkörper, die die erfindungsgemäße Zusammensetzung enthalten. Die Erfindung betrifft des Weiteren die Verwendung der thermoplastischen Zusammensetzung als Überzugmittel.
Speziell betrifft die Erfindung eine thermoplastische Zusammensetzung, enthaltend (A) ein Po- lybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyester-Urethan (b1 ), (C) Aluminium- diethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren Mischungen. Eine weitere Ausführungsform betrifft eine thermoplastische Zusammensetzungen, enthaltend (A) ein Polybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyether (b2), (C) Aluminium- diethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren Mischungen.
Insbesondere betrifft die Erfindung auch eine thermoplastische Zusammensetzung, enthaltend (A) ein Polybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyester (b3), (C) Aluminium- diethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren Mischungen.
Weitere bevorzugte Ausführungsformen sind den Ansprüchen und der Beschreibung zu entnehmen. Kombinationen bevorzugter Ausführungsformen fallen in den Rahmen der vorliegen- den Erfindung. Der Bedarf an flammhemmenden thermoplastischen Zusammensetzungen ist von wachsendem Interesse, wobei insbesondere Zusammensetzungen gefragt sind, die halogenfrei, insbesondere chlor- und bromfrei sind. WO 2009/009249 A2 beschreibt eine halogenfreie Polyester Zusammensetzung mit verschiedenen flammhemmenden und stabilisierenden Zusätzen. Dabei werden herkömmliche hart- Segment Polyester verwendet.
In US 2008/0167406 A1 wird eine flammhemmende Formmasse auf Polybutylenterephthalat- Basis beschrieben, die neben einem Phosphinsäuresalz und einer Epoxyverbindung ein thermoplastisches Polyester-Elastomer umfasst. Dieses Elastomer kann einerseits ein Polyester- Polyester Elastomer sein. Hierbei kann das harte Segment ein Polyester aus einer aromatischen Disäure und einem kurzkettige Alkylendiol sein. Das weiche Segment ist aus einem Polyester, einer aliphatischen Disäure und einem kurzkettigen Alkylendiol oder Polycaprolactons. Dieses Elastomer kann andererseits ein Polyester-Polyether-Elastomer sein, wobei das harte Segment ein Polyester bestehend aus einer aromatischen Disäure und einem kurzkettigen Alkylendiol ist und das weiche Segment ein Polyoxyalkylen Glycol oder ein Polyester aus Polyo- xyalkylen und einer aliphatischen Disäure ist. WO 2006/040066 A1 beschreibt eine flammhemmende Formmasse, die neben Polybutylente- rephthalat als Basiskomponente mindestens ein hoch- oder hyperverzweigtes Polycarbonat und/oder mindestens ein hochverzweigten Polyester oder ein Gemisch aus beiden umfasst. Zu der Formmasse werden verschiedene flammhemmende Additive hinzugefügt. Aufgabe der vorliegenden Erfindung war es, eine thermoplastische Zusammensetzung zu entwickeln, die gut zu verarbeiten ist und zugleich eine flammhemmende Wirkung aufweist. Des Weiteren sollten Zusammensetzungen zur Verfügung gestellt werden, die eine helle Eigenfarbe aufweisen. Darüber hinaus war es eine Aufgabe, thermoplastische Zusammensetzungen mit flammhemmender Wirkung zu finden, die geruchsneutral sind. Die Zusammensetzungen sollten auch geeignet sein, um Überzüge, auch Coatings genannt, herzustellen.
Gelöst wird die gestellte Aufgabe mit einer eingangs beschriebenen thermoplastischen Zusammensetzung. Komponente A der erfindungsgemäßen thermoplastischen Zusammensetzung ist ein Polyalky- lenterephthalat. Hierunter werden auch Mischungen von Polyalkylenterephthalaten verstanden. Im Rahmen der Erfindung ist Polyalkylenterephthalat nicht auf Terephthalat enthaltende Verbindungen beschränkt. Vielmehr leiten sich erfindungsgemäße Polyalkylenterephthalate von Strukturen ab, die einen aromatischen Ring in der Hauptkette enthalten, der von einer aromati- sehen Dicarbonsäure stammt. Der aromatische Ring kann unsubstituiert oder substituiert sein. Als Substituenten bieten sich unter anderem d- bis C4-Alkylgruppen wie Methyl-, Ethyl-, i- bzw. n-Propyl- und n-, i- bzw. t-Butylgruppen oder Fluor an. Bevorzugte Dicarbonsäuren sind substituierte, insbesondere unsubstituierte 2,6- Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen. Bevorzugt sind darunter Terephthalsäure oder Isophthalsäure oder deren Mischungen zu verstehen. Terephthalsäure als alleinige monomere Dicarbonsäure wird häufig eingesetzt.
Polyalkylenterephthalate enthalten neben aromatischen Resten, die sich von entsprechenden Dicarbonsäuren ableiten, aliphatische Kohlenwasserstoffreste, die sich von den entsprechenden Alkylendiolen ableiten. Die Alkylendiole können verzweigt oder unverzweigt also linear sein. Verzweigte Polyalkylenterephthalate umfassen verzweigte Kohlenwasserstoffreste, während lineare Polyalkylenterephthalate unverzweigte Kohlenwasserstoffreste umfassen. In den erfindungsgemäßen thermoplastischen Zusammensetzungen werden bevorzugt lineare Polyalkylenterephthalate eingesetzt.
Von den Alkylendiolen werden Diole mit 2 bis 6 Kohlenstoffatomen bevorzugt, insbesondere 1 ,2-Ethandiol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,4-Hexandiol, 1 ,4-Cyclohexandiol, 1 ,4-Cyclohexandimethanol oder Neopentylglykol oder deren Mischungen.
In einer bevorzugten Ausführungsform der Erfindung kann die Komponente A Polyethylente- rephthalat, 1 ,3-Polypropylenterephthalat, 1 ,4-Polybutylenterephthalat Polyethylennaphthalat, 1 ,4-Polybutylennaphthalat, 1 ,3-Polypropylenterephthalat Po- ly(cyclohexandimethanolterephthalat), oder deren Mischungen umfassen.
Diese Polyalkylenterephthalate haben in der Regel eine in Phenol/Tetrachlorkohlenstoff (1/1 - Volumenverhältniss) gemessene Grenzviskosität von 0.4 dL/g bis 2.0 dL/g. Die Polyalkylenterephthalate haben in der Regel ein mittleres Molekulargewicht von 5000 bis 130000 g/mol (bestimmt mittels Gelpermeationschromatographie in Chloroform/Hexafluoroisopropanol (5/95, Volumenverhältniss) bei 25°C gemessen gegen einen Polystyrol-Standart)
Erfindungsgemäß umfasst die thermoplastische Zusammensetzung ein Elastomer (Komponente B) ausgewählt aus der Gruppe der Polyalkylenterephthalat-Polyester-Urethane b1 ), Polyalky- lenterephthalat-Polyether-Urethane b2), Polyalkylenterephthalat-Polyether b3), Polyalkylente- rephthalat-Polyester b4) und deren Mischungen.
Ein Elastomer ist ein Copolymer, bei dem hart-Segmente und weich-Segmente kombiniert werden können. Hart-Segmente zeichnen sich im Allgemeinen durch steife gestreckte Abschnitte aus. Weich-Segmente weisen in der Regel stark zusammen geknäulte Bereiche auf. Hart- Segmente lagern sich meist längs zueinander an und bauen Nebenvalenzen auf, was den Zu- sammenhalt zwischen den Polymersträngen erhöht. Weich-Segmente können gestreckt werden und sorgen somit für Elastizität des Bereichs.
Das Elastomer b1 ) umfasst Polyalkylenterephthalate als hart-Segment und Polyester-Urethan als weich-Segment (Formel siehe WO03014179, S. 9-S.10).
Üblicherweise wird zur Herstellung zunächst ein Polyalkylenterephthalat mit ein oder mehreren Hydroxyverbindungen umgesetzt, wobei vorzugsweise ein oder mehrere niedermolekulare Diole verwendet werden, die in der Regel ein Molekulargewicht von 62 g/mol bis 500 g/mol aufwei- sen (i), um eine Polyalkylenterephthalat-Hydroxyverbindung zu bilden. Diese Polyalkylente- rephthalat-Hydroxyverbindung kann in Folge zunächst mit ein oder mehreren Polyesterolen, die im Allgemeinen ein Molekulargewicht von mehr als 500 bis 8000 g/mol, bevorzugt 700 bis 6000 g/mol, insbesondere 800 bis 4000 g/mol aufweisen ii) und dann mit einem oder einer Mischung unterschiedlicher Isocyanaten umgesetzt werden (iii).
Das hart-Segment des thermoplastischen Elastomers b1 ) kann sich von dem Polyalkylente- rephthalat A im strukturellen Aufbau und/oder der Verteilung unterscheiden. Das hart-Segment kann aber auch den gleichen strukturellen Aufbau haben wie A. Zum Beispiel kann das hart- Segment des thermoplastischen Elastomers ein Polyalkylenterephthalat auf der Basis von Te- rephthalsäure und einem alkylenischen Diol mit 2 bis 15 C-Atomen sein. Bevorzugt ist das harte Segment ein Polybutylenterephthalat, insbesondere ein Polyl ,4-butylenterephthalat. Das oder die Polyalkylenterephthalat/e Segment hat/haben im Allgemeinen ein mittleres Molekulargewicht von 1000 bis 5000 g/mol (bestimmt mittels Gelpermeationschromatographie in Chloro- form/Hexafluoroisopropanol (5/95, Volumenverhältniss) bei 25°C gemessen gegen einen Polystyrol-Standart).
Zur Bildung der Polyalkylenterephthalat-Hydroxyverbindung kann in dem Schritt (i) das thermoplastische Polyalkylenterephthalat z.B. mit einem oder mehreren, bevorzugt einem allgemein bekannten niedermolekularen Diol, insbesondere mit solchen mit einem Molekulargewicht von 62 bis 500 g/mol umgesetzt werden, beispielsweise Ethylenglykol, l,3-Propandiol, 1 ,4-Butandiol, 1 ,S-Pentandiol, l,6-Hexandiol, Heptandiol, Oktandiol, bevorzugt Butan-1 ,4-diol und/oder Ethan- 1 ,2-diol.
Das Gewichtsverhältnis von Polyalkylenterephthalat zu Diol in dem Schritt (i) beträgt üblicherweise 100 : 1 bis 100 : 10, bevorzugt 100 : 1 ,5 bis 100 : 8,0. Die Polyalkylenterephthalat- Hydroxyverbindung als Umsetzungsprodukt aus (i) weist bevorzugt ein Molekulargewicht von 1000 g/mol bis 5000 g/mol auf. Der Schmelzpunkt des Polyalkylenterephthalat- Hydroxyverbindung als Umsetzungsprodukt aus (i) beträgt bevorzugt I50 °C bis 260 °C, besonders bevorzugt 151 °C bis 260 °C, insbesondere 165 bis 245°C, d.h. dass die Polyalkylente- rephthalat-Hydroxyverbindung des thermoplastischen Polyalkylenterephthalat mit dem Diol im Schritt (i) Verbindungen mit dem genannten Schmelzpunkt enthält, die in dem anschließenden Schritt (ii) eingesetzt werden.
In Schritt ii) kann die Polyalkylenterephthalat-Hydroxyverbindung beispielsweise mit aliphati- sehen Polyesterolen mit Molekulargewichten von mehr als 500 bis 8000, bevorzugt 700 bis 6000, insbesondere 800 bis 4000 umgesetzt werden. Die Polyesterole weisen bevorzugt eine mittlere Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2 auf. Unter dem Ausdruck„Funktionalität" ist insbesondere die Anzahl an aktiven Wasserstoffatomen, insbesondere Hydroxylgruppen, zu verstehen.
Bevorzugt werden Polyesterole eingesetzt, die erhältlich sind durch Umsetzung von Butandiol und Hexandiol als Diol mit Adipinsäure als Dicarbonsäure, wobei das Gewichtsverhältnis von Butandiol zu Hexandiol bevorzugt 2 zu 1 beträgt. Bevorzugt als Polyesterol ist des weiteren Polytetrahydrofuran mit einem Molekulargewicht von 750 bis 2500 g/mol, bevorzugt 750 bis 1200 g/mol.
Durch die Umsetzung des thermoplastischen Polyalkylenterephthalats mit dem Diol in dem Schritt (i) zur Polyalkylenterephthalat-Hydroxyverbindung und der dann folgenden Umsetzung mit dem Polyesterol in dem Schritt ii) weist das Zwischenprodukt freie Hydroxylgruppen auf, die in dem weiteren Schritt (iii) mit Isocyanat zu dem Elastomer b1 ), dem Polyalkylenterephthalat- Polyester-Urethan, weiterverarbeitet wird. Als Isocyanate werden im Allgemeinen übliche aliphatische, cycloaliphatische, araliphatische und/oder aromatische Isocyanate, bevorzugt Diioscyanate eingesetzt, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen- diisocyanat-1,5, 2-Ethyl-butylen-diisocyanat-l,4, Pentamethylen-diisocyanat-1,5, Butylen- diisocyanat-1,4, l-lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron- diisocyanat, IPDI), 1 ,4- und/oder l,3-Bis(isocyanatomethyl)cyclohexan (HXDI), l,4-Cyclohexan- diisocyanat, 1 -Methyl-2,4- und/oder -2,6-cyclohexan-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'- Dicyclohexylmethandiisocyanat, 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (M DI), l,5- Naphthylendiisocyanat (NDI), 2,4- und/oder 2, 6-Toluylendiisocyanat (TDI), Diphenylmethandii- socyanat, 3,3'-Dimethyl-diphenyl-diisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder Pheny- lendiisocyanat, bevorzugt 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (NDI) und/oder Hexamethylendiisocyanat (HDI).
Als Polyalkylenterephthalat-Polyester-Urethan b1 ) eignen sich zum Beispiel statistisch verteilte Copolymere mit einem Anteil an Weichsegment von 10 Gew.- % bis 35 Gew.-%.
Das Polyalkylenterephthalat-Polyester-Urethan kann durch dem Fachmann bekannte Verfahren wie durch eine Batch-Synthese oder Reaktion im Extruder hergestellt werden.
Eine mögliche Synthese dieses thermoplastischen Elastomers b1 ) bestehend aus einem harten Segment und einem weichen Segment wurde in WO 03 014 179 (S. 7, Z. 32 bis S. 8, Z. 42, S.13 bis S.18) beschrieben.
Das Elastomer b2) umfasst Polyalkylenterephthalate als hart-Segment und Polyether-Urethan als weich-Segment. Hierzu kann eine Polyalkylenterephthalat-Hydroxyverbindung wie sie oben beschrieben wurde mit einem oder mehreren Polyetherolen umgesetzt werden. Diese Polyethe- role weisen in der Regel Molekulargewichte von mehr als 500 g/mol bis 8000 g/mol auf, bevorzugt 700 bis 6000 g/mol, insbesondere 800 bis 4000 g/mol. Die Polyetherolen haben bevorzugt eine mittlere Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2.
Durch die Umsetzung des thermoplastischen Polyalkylenterephthalats mit dem Diol in dem Schritt (i) zur Polyalkalenterephthalat-Hydroxyverbindung und der dann folgenden Umsetzung mit dem Polyetherol in dem Schritt ii) weist das Zwischenprodukt freie Hydroxylgruppen auf die in dem weiteren Schritt (iii) mit Isocyanat zu dem eigentlichen Produkt, dem Polyalkylente- rephthalat-Polyether-Urethan, weiterverarbeitet wird. Die Umsetzung erfolgt dabei wie für die Herstellung der Elastomere b1 ) beschrieben.
Als Polyalkylenterephthalat-Polyether-Urethan b2) eignen sich zum Beispiel statistisch verteilte Copolymere mit einem Anteil an Weichsegment von 10 Gew.- % bis 35 Gew.-%.
Das Polyalkylenterephthalat-Polyether-Urethan kann durch dem Fachmann bekannte Verfahren wie durch eine Batch-Synthese oder Reaktion im Extruder hergestellt werden. In einer weiteren Ausführungsform der Erfindung umfasst die thermoplastische Zusammensetzung ein Elastomer b3) umfassend einen Polyalkylenterephthalat-Polyether. Derartige Produkte sind in der Literatur bekannt oder sind mittels an sich bekannter Methoden zugänglich. Zum Beispiel werden Polyester-Polyether in den US-Schriften 3,651 ,014, 3,784,520, 4,185,003 und 4,136,090 beschrieben.
Das harte Segment des Elastomers b3) kann sich von dem Polyalkylenterephthalat A im strukturellen Aufbau und/oder der Verteilung unterscheiden. Das harte Segment kann aber auch den gleichen strukturellen Aufbau haben wie A. Zum Beispiel kann das harte Segment des thermoplastischen Elastomers ein Polyester auf der Basis von Terephthalsäure und einem alkyleni- sehen Diol mit 2 bis 15 C-Atomen sein. Bevorzugt ist das harte Segment ein Polybutylente- rephthalat.
Das weiche Polyether Segment des thermoplastischen Elastomers (b2) kann erfindungsgemäß ein Polyester-Polyether sein. Unter Polyester-Polyethern werden gemäß dieser Erfindung Ver- bindungen verstanden, die sich von Poly(alkylen)etherglycolen und kurzkettigen niedermolekularen Diolen und Dicarbonsäuren ableiten.
Eine mögliche Strukturformel wird in der Schrift WO2007/009930, S. 29, Z. 1 -15 gezeigt. Es versteht sich, dass auch Mischungen von mehreren Poly(alkylenoxiden)glykolen, mehreren Dio- len und/oder mehreren Dicarbonsäuren eingesetzt werden können.
Die Poly(alkylenoxid)glykole haben vorzugsweise einen Schmelzpunkt von weniger als 55 °C und ein Kohlenstoff/Sauerstoffverhältnis von vorzugsweise 2 bis 10, insbesondere von 2 bis 6. Beispiele für Poly(alkylenoxid)glykole sind Poly(ethylenoxid)glykol, Poly(1 ,2-propylenoxid)glykol, Poly(1 ,3-propylenenoxid)glykol, Poly(1 ,2-butylenoxid)glykol, Poly(1 ,3-butylenoxid)glykol, Po- ly(1 ,4-butylenoxid)glykol, Poly(pentemethylenoxid)glykol, Poly(hexamethylenoxid)glykol, Po- ly(heptamethylenoxid)glykol, Poly(heptamethylenoxid)glykol, Poly(octamethylenoxid)glykol, Po- ly(nonamethylenoxid)glykol sowie statistische oder Blockcopolymere aus verschiedenen der vorstehend genannten Glykole. Bevorzugt werden Poly(ethylenoxid)glykol, Poly(1 ,2- propylenoxid)glykol, Poly(1 ,3-propylenenoxid)glykol und Poly(1 ,4-butylenoxid)glykol sowie deren Mischungen eingesetzt. Das langkettige Poly(alkylenoxid)glykol kann ein bevorzugtes Molekulargewicht von 400 bis 3000 g/mol haben. Das Molekulargewicht lässt sich aus der OH-Zahl bestimmen. Hierzu wird die OH-Zahl kann mittels Tritration festgestellt. Mit Hilfe der Formel Mw - 56.1 x Funktionalität χ 1000 / OH-Zahl in mg KOH/g) kann so das Molekulargewicht Mw bestimmt werden. (Carey, M.; Wellons, S.; Eider, D. Journal of Cellular Plastics 1984, 20, 42.) Als Diole kommen in der Regel ganz allgemein niedermolekulare Diole mit Molekulargewichten von vorzugsweise weniger als 250 in Betracht. Diese können lineare oder verzweigte, cycloa- liphatische oder aromatische Grundstruktur aufweisen.
Insbesondere sind Diole mit 2 bis 15 Kohlenstoffatomen bevorzugt. Beispielhaft seien hier 1 ,2- Ethandiol, 1 ,3-Propandiol, 1 ,2-Propandiol, 1 ,4-Butandiol, 1 ,3-Butandiol, 1 ,2-Butandiol, 1 ,5- Pentandiol, 2,2-Dimethyl-1 ,3-propandiol, 1 ,6-Hexandiol sowie dessen Isomere genannt. Von diesen werden insbesondere aliphatische Diole mit 2 bis 8, insbesondere 2 bis 4 Kohlenstoffatomen bevorzugt insbesondere 1 ,3-Propandiol und/oder 1 ,4-Butandiol. Auch ungesättigte Diole haben sich insbesondere in Mischungen mit zuvor genannten Diolen, als geeignet herausgestellt. Hier ist insbesondere 2-Buten-1 ,4-diol hervorzuheben.
Als Dicarbonsäuren werden vorzugsweise Verbindungen mit Molekulargewichten von weniger als 300 eingesetzt. Die Dicarbonsäuren können aromatische, aliphatische oder cycloaliphati- sche Verbindungen sein und Substituenten aufweisen, die im Verlaufe der Polymerisation nicht stören. Die Dicarbonsäuren können auch aromatische Verbindungen sein und Substituenten aufweisen, solange das resultierende Polymer ein weich-Segment sein kann.
Als Beispiele für aromatische Dicarbonsäuren sei Terephthalsäure, Isophthalsäure und deren Derivate genannt. Als aliphatische Dicarbonsäuren, die eingesetzt werden können, sind Oxalsäure, Fumarsäure, Maleinsäure, Citraconsäure, Sebacinsäure, Adipinsäure, Glutarsäure, Suc- cinsäure, Azelainsäure und ähnliche genannt. Auch Mischungen verschiedener aliphatischer Dicarbonsäuren können eingesetzt werden. Auch können an Stelle der Säuren deren ersterbil- dende Derivate eingesetzt werden. Bevorzugt sind aromatische Dicarbonsäuren. Eine mögliche Synthese des thermoplastischen Elastomers (b2) wird in US 3 651 014 beschrieben. Als Polyalkylenterephthalat-Polyether b3) eignen sich verschiedene Blockcopolymere.
In einer weiteren Ausführungsform der Erfindung umfasst die thermoplastische Zusammensetzung ein Elastomer b4), welches ein Polyalkylenterephthalat-Polyester sein kann. So kann b4) ein Copolymer umfassend ein Gemisch aus einer aromatischen Disäure und einer aliphatische Disäure sein, das mit einem Diol versetzt wird.
Die aromatischen Disäuren können 2,6-Naphthalindicarbonsäure, Terephthalsäure und I- sophthalsäure oder deren Mischungen sein.
Die aliphatischen Disäuren können Oxalsäure, Fumarsäure, Maleinsäure, Citraconsäure, Seba- cinsäure, Adipinsäure, Bernsteinsäure, Sebazinsäure, Glutarsäure, Succinsäure und Azelainsäure oder deren Mischungen sein. Die Diole können C2-C15 Diole, zum Beispiel 1 ,2-Ethandiol, 1 ,3-Propandiol, 1 ,2-Propandiol, 1 ,4-Butandiol, 1 ,3-Butandiol, 1 ,2-Butandiol, 1 ,5-Pentandiol, 2,2-Dimethyl-1 ,3-propandiol, 1 ,6- Hexandiol und ihre Isomere sein.
Das molare Verhältnis zwischen aromatischer Disäure und aliphatischer Disäure kann in weiten Bereichen von 9 / 1 bis 1 / 9 variiert werden.
Das Polyalkylenterephthalat-Polyester kann durch dem Fachmann bekannte Verfahren wie durch eine Batch-Synthese oder Reaktion im Extruder hergestellt werden. Zudem enthält die erfindungsgemäße thermoplastische Zusammensetzung ein halogenfreies Flammschutzmittel (C), ausgewählt aus der Gruppe der stickstoffhaltigen oder phosphorhaltigen Flammschutzmittel oder der P- und N-haltigen Flammschutzmittel oder deren Mischungen.
Halogenfrei ist in diesem Zusammenhang entsprechend den Definitionen der„International E- lectronical Commission" (IEC 61249-2-21 ) und der„Japan Printed Circuit Association" (JPCA- ES-01 -1999) zu verstehen, die unter halogenfreien Materialen solche verstehen, die weitestgehend chlor- und bromfrei sind.
Aus der Gruppe der stickstoffhaltigen Flammschutzmittel (c1 ) kann die thermoplastische Zu- sammensetzung eine halogenfreie Verbindung aus der Gruppe der stickstoffhaltigen Heterocyclen mit mindestens einem Stickstoffatom enthalten. Auch kann die thermoplastische Zusammensetzung Gemische der stickstoffhaltigen Heterocyclen mit mindestens einem Stickstoffatom enthalten. Zu den gemäß der Erfindung bevorzugt geeigneten Flammschutzmitteln zählt Melamincyanurat. Melamincyanurat ist ein Reaktionsprodukt aus vorzugsweise äquimolaren Mengen von Melamin (Formel I) und Cyanursäure bzw. Isocyanursäure (Formeln la und Ib)
(la) (Ib)
Enolform Ketoform Melamincyanurat kann z.B. durch Umsetzung von wässrigen Lösungen der Ausgangsverbindungen bei 90 bis 100°C erhalten werden.
Weitere geeignete Verbindungen (oft auch als Salze oder Addukte bezeichnet) sind Melamin, Melaminborat, und Melaminoxalat. Auch können Mischungen dieser Salze eingesetzt werden.
Aus der Gruppe der Flammschutzmittel (C) kann die thermoplastische Zusammensetzung erfindungsgemäß auch eine halogenfreie Verbindung aus der Gruppe der P-, N-haltigen Flammschutzmittel (c2) enthalten. Es sind zum Beispiel P-, N-haltige Flammschutzmittel geeignet, wie sie in der WO 2002/96976 beschrieben sind.
Hierbei eignen sich Melaminphosphat prim., -phosphat sec. und -pyrophosphat sec, Neopen- tylglycolborsäuremelamin sowie polymeres Melaminphosphat (CAS-Nr 56386-64-2).
Geeignete Guanidinsalze sind
CAS-Nr.
G-carbonat 593-85-1
G-cyanurat prim. 70285-19-7
G-phosphat prim. 5423-22-3
G-phosphat sec. 5423-23-4
G-sulfat prim. 646-34-4
G-sulfat sec. 594-14-9
Pentaerythritborsäureguanidin N.A.
Neopentylglycolborsäureguanidin N.A.
sowie Harnstoffphosphat grün 4861 -19-2
Harnstoffcyanurat 57517-1 1 -0
Ammeiin 645-92-1
Ammelid 645-93-2
Meiern 1502-47-2
Melon 32518-77-7
Unter Verbindungen im Sinne der vorliegenden Erfindung sollen sowohl z.B. Benzoguanamin selbst und dessen Addukte bzw. Salze als auch die am Stickstoff substituierten Derivate und dessen Addukte bzw. Salze verstanden werden.
Weiterhin geeignet sind Ammoniumpolyphosphat (N H4P03)n mit n ca. von 200 bis 1000 bevorzugt von 600 bis 800, und Tris(hydroxyethyl)isocyanurat (THEIC) der Formel II
Weiterhin geeignet sind Benzoguanamin-Verbindungen der Formel III
in der R9, R10 geradkettige oder verzweigte Alkylreste mit 1 bis 10 C-Atomen, bevorzugt Wasserstoff bedeutet und insbesondere deren Addukte mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure.
Bevorzugt sind ferner Allantoin-Verbindungen der Formel IV
wobei R9,R10 die in Formel III angegebene Bedeutung haben sowie deren Salze mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure sowie Glycolurile der Formel V oder dessen Sal- ze mit den oben genannten Säuren
in der R9 die in Formel III genannte Bedeutung hat.
Geeignete Produkte sind im Handel oder zum Beispiel gemäß DE-A 196 14 424 erhältlich.
Das gemäß der Erfindung verwendbare Cyanguanidin (Formel VI) wird z.B. durch Umsetzung von Kalkstickstoff (Calciumcyanamid) mit Kohlensäure erhalten, wobei das entstehende Cya- namid bei pH 9 bis 10 zu Cyanguanidin dimerisiert.
H2N
C-N-CN
HN '/ H
(VI) Als phosphorhaltige Verbindungen (c3) sind Phosphinsäuresalze der Formel (VII) und/oder Diphosphinsäuresalze der Formel (VIII) und/oder deren Polymere bevorzugt,
Aus der großen Zahl von erfindungsgemäß geeigneten phosphorhaltigen Verbindungen seien nur einige Beispiele erwähnt.
wobei die Substituenten folgende Bedeutung haben:
R11, R12 Wasserstoff, d- bis Cß-Alkyl, vorzugsweise d- bis C4-Alkyl, linear oder verzweigt, z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl; Phenyl; wobei bevorzugt mindestens ein Rest R11 oder R12, insbesondere R11 und R12 Wasserstoff ist;
R13 C bis Cio-Alkylen, linear oder verzweigt, z.B. Methylen, Ethylen, n-Propylen, iso- Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen, n-Dodecylen; Arylen, z.B. Phenylen, Naphthylen;
Alkylarylen, z.B. Methyl-phenylen, Ethyl-phenylen, tert.-Butyl-phenylen, Methyl- naphthylen, Ethyl-naphthylen, tert.-Butyl-naphthylen;
Arylalkylen, z.B. Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen, Phenyl-butylen;
M ein Erdalkali-, Alkalimetall, AI, Zn, Fe, Mg, Ca;
s eine ganze Zahl von 1 bis 3;
z eine ganze Zahl von 1 und 3 und
X 1 oder 2.
Besonders bevorzugt sind Verbindungen der Formel VII, in denen R11 und R12 Wasserstoff, Me- thyl, Ethyl oder Isobutyl sind, wobei M vorzugsweise Ca, Zn, Mg oder AI ist und Aluminium Diethylphosphinat und Aluminium Hypophosphite ganz besonders bevorzugt sind.
Phosphor der Wertigkeitsstufe +0 ist der elementare Phosphor. In Betracht kommen roter und schwarzer Phosphor. Bevorzugt ist roter Phosphor. Als Phosphorverbindungen der Oxidationsstufe +5 kommen vor allem alkyl- und arylsubstituier- te Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat, Phenyl- ethylhydrogenphosphat, Phenyl-bis(3,5,5-trimethylhexyl)phosphat, Ethyldiphenyl-phosphat, 2- Ethylhexyldi(tolyl)phosphat, Diphenylhydrogenphosphat, Bis(2-ethylhexyl)-p-tolylphosphat, Tri- tolylphosphat, Bis(2-ethylhexyl)-phenylphosphat, Di(nonyl)phenyl-phosphat, Phenylmethyl- hydrogenphosphat, Di(dodecyl)-p-tolylphosphat, p-Tolyl-bis(2,5,5-trimethylhexyl)phosphat oder 2-Ethylhexyldiphenylphosphat. Besonders geeignet sind Phosphorverbindungen, bei denen jeder Rest ein Aryloxi-Rest ist. Ganz besonders geeignet ist Triphenylphosphat und/oder Re- sorcinol-bis-(diphenylphosphat) und/oder dessen kernsubstituierten Derivate der allgemeinen Formel X (RDP):
in der die Substituenten folgende Bedeutung haben:
R18.R21 ejn aromatischer Rest mit 6 bis 20 C-Atomen, bevorzugt ein Phenylrest, welcher mit
Alkylgruppen mit 1 bis 4 C-Atomen, bevorzugt Methyl, substituiert sein kann,
R22 ein zweiwertiger Phenolrest, bevorzugt
und n einen Durchschnittswert von 0,1 bis 100, bevorzugt von 0,5 bis 50, insbesondere von 0,8 bis 10 und ganz besonders von 1 bis 5. Die derzeit im Handel erhältlichen RPD-Produkte sind bedingt durch das Herstellungsverfahren Gemische aus ca. 85 % RDP (n=1 ) mit ca. 2,5 % Triphenylphosphat sowie ca. 12,5 % oligome- ren Anteilen, in denen der Oligomerisierungsgrad meist kleiner 10 beträgt.
Erfindungsgemäß kann die thermoplastische Zusammensetzung einen faserförmigen, späroi- den und oder plättchenförmigen Verstärkungszusatz (D) enthalten. Dieser Verstärkungszusatz kann z.B. Glasfasern, Kohlenstoff-Fasern, Aramid-Fasern, Kaliumtitanat-Fasern, Glaskugeln, amorphe Kieselsäure, Calciumsilicat, Magnesiumcarbonat, Kaoline, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat, Feispat, Metallhydroxide, Metalloxide, ähnliche Mineralfüllstoffe oder eine Keramik sein. Auch Mischungen der Verstärkungszusätze sind möglich. Des weiteren kann die erfindungsgemäße thermoplastische Zusammensetzung mindestens einen Zusatzstoff enthalten, ausgewählt aus der Gruppe der Stabilisatoren, Antistatika, Keimbildner, Verarbeitungshilfsmittel, Schlagzähigkeitsverbesserer, Gleit- und Entformungshilfen, Pigmente und Antioxidantien.
Als UV-Stabilisatoren können zum Beispiel substituierte Resorcine, Salicylate, Benzotriazole und Benzophenonen verwendet werden.
Als anorganische Pigmente eigenen sich beispielsweise Titandioxid, Ultramarinblau und/oder Ruß, während als organische Pigmente z.B. Perylene, Phthalocyanine und/oder Chinacridone beigemischt werden können. Auch eigenen sich Farbstoffe wie Nigrosin und/oder Antrachione zum Färben der thermoplastischen Zusammensetzung.
Als Gleit- und Entformunsgmittel können langkettige Fettsäuren (z.B. Stearinsäure) oder deren Salze (z.B.Ca-Stearat) eingesetzt werden. Gleit- und Entformunsgmittel werden zumeist in Gewichtsanteilen von bis zu 1 % in Bezug auf die Gesamtmasse der thermoplastischen Zusammensetzung eingesetzt.
Als Weichmacher können insbesondere Phthalsäuredioctylester, Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlenwasserstofföle, und/oder N-(n-Butyl)benzolsulfonamid dienen.
Die erfindungsgemäße thermoplastische Zusammensetzung kann fluorhaltige Ethylenpolymeri- sate enthalten. Hierbei handelt es sich bevorzugt um Polymerisate des Ethylens mit einem Flu- orgehalt von 55 bis 76 Gew.-%. Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluo- rethylenhexafluorpropylen-Copolymere oder Tetrafluorethylen-Copolymerisate mit kleineren Anteilen copolymerisierbarer ethylenisch ungesättigter Monomerer. Diese werden z.B. von Schildknecht in„Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis Seite 494 beschrieben.
Dieser Zusatz kann sowohl der thermoplastischen Zusammensetzung über eine Beimischung zu einer Komponente zugefügt werden als auch als gesonderte Beimischung zur gesamten thermoplastischen Zusammensetzung beigefügt werden.
Vorzugsweise enthält die erfindungsgemäße Zusammensetzung keine fluorhaltigen Ethylenpo- lymerisate.
Sofern die erfindungsgemäße Zusammensetzung einen oder mehrere Zusatzstoffe enthält, liegt deren Anteil meist bei nicht mehr als 5 Gew.-% bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung. Meist beträgt der Anteil and Zusatzstoffen bei wenigstens 0.1 Gew.-% bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung. Die Komponenten (A), (B), (C) und (D) können in verschiedenen Gewichtsanteilen vermischt werden. Die folgenden Angaben zu den Gewichtprozenten beziehen sich auf die Gesamtmasse der thermoplastischen Zusammensetzung. In einer thermoplastischen Zusammensetzung ergibt die Addition der einzelnen Gewichtsprozent-Angaben 100 Gew.-%. Bezogen auf die Gesamtmasse enthalten erfindungsgemäße Zusammensetzungen zum Beispiel von 30 bis 70 Gew.-% der Komponente (A). Bevorzugt kann (A) in Gewichtsanteilen von 40 bis 60 Gew.-%, insbesondere von 40 bis 55 Gew.-% bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung eingesetzt werden.
Das thermoplastische Elastomer (B) kann in Mengen von 1 bis 50 Gew.-% eingesetzt werden. Bevorzugt kann das thermoplastische Elastomer in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 15 Gew.-% bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung eingesetzt werden.
Ein halogenfreies Flammschutzmittel (C), ausgewählt aus der Gruppe c1 ) der stickstoffhaltigen Flammschutzmittel, c2) der Stickstoff- und phosphorhaltigen Flammschutzmittel oder c3) der phosphorhaltigen Flammschutzmittel und deren Mischungen kann in Gewichtsanteilen von 5 bis 35 Gew.-% bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung zugesetzt werden. Bevorzugt wird das Flammschutzmittel in Gewichtsanteilen von 5 bis 30 Gew.-%, insbesondere von 5 bis 25 Gew.-% zugesetzt.
Sofern enthalten kann der Verstärkungszusatz (D) eingesetzt werden in Gewichtsanteilen von 1 bis 50 Gew.-% in Bezug auf die Gesamtmasse der thermoplastischen Zusammensetzung. In einer bevorzugten Ausführungsform enthält die thermoplastische Zusammensetzung einen Verstärkungszusatz in Gewichtsanteilen von 15 bis 60 Gew.-%, insbesondere von 15 bis 30 Gew.- % bezogen auf die Gesamtmasse der thermoplastischen Zusammensetzung.
Zu den bevorzugten erfindungsgemäßen thermoplastischen Zusammensetzungen gehören die folgenden Zusammensetzungen.
a: In einer thermoplastischen Zusammensetzung ergibt die Addition der einzelnen Gewichts- prozent-Angaben 100 Gew.-%. Die jeweilige thermoplastische Zusammensetzung kann darüber hinaus Zusatzstoffe enthalten.
Die erfindungsgemäße thermoplastische Zusammensetzung kann nach den bekannten Verfahren hergestellt werden. Hierzu werden die Ausgangskomponenten z.B. in üblichen Mischvor- richtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen gemischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel in Bereichen von 240 °C bis 265 °C. Die Temperatur bezieht sich auf die Temperatur des Extruders.
Die mechanischen Eigenschaften der erfindungsgemäßen thermoplastischen Zusammensetzung begünstigen die Verwendung der thermoplastischen Zusammensetzung zur Herstellungen von Fasern, Folien und/oder Formkörpern. Insbesondere eignet sich die thermoplastische Zu- sammensetzung für die Herstellung von speziellen Formkörpern im Fahrzeug und Gerätebau zum Beispiel für industrielle oder Verbraucher nahe Zwecke. So kann die thermoplastische Zusammensetzung zur Produktion von Elektronikteilen, Gehäusen, Gehäuseteilen, Abdeckklappen, Stossfängern, Spoilern, Karosserieteilen, Dämpfungselementen, Federn, Griffen, Ladeluftrohren, Kraftfahrzeuginnenanwendungen wie Instrumententafeln, Teile von Instrumententafeln, Instrumententafelträger, Abdeckungen, Luftkanäle, Lufteinlassgitter, Schiebedachtraversen, Dachrahmen, Anbauteile, insbesondere die Mittelkonsole als Teil des Handschuhfachs oder auch Tachoholzen verwendet werden. Die erfindungsgemäße thermoplastische Zusammensetzung kann als Überzugmittel für Fasern, Folien und/oder Formkörper verwendet werden. Unter Formkörper werden dreidimensional feste Gegenstände verstanden, die sich anbieten, mit einer thermoplastischen Zusammensetzung überzogen zu werden. Die Dicke solcher Beschichtungen liegt in der Regel in Bereichen von 0.1 bis 3.0 cm, bevorzugt von 0.1 bis 2.0 cm, ganz besonders bevorzugt von 0.5 bis 2.0 cm. Derartige Beschichtungen können durch dem Fachmann bekannte Verfahren hergestellt werden.
Die erfindungsgemäße thermoplastische Zusammensetzung kann in Verfahren zur Herstellung von industriell hergestellten flammgehemmten Materialen eingesetzt werden.
Die erfindungsgemäße thermoplastische Zusammensetzung weist flammhemmende Wirkung auf, die höchsten Ansprüchen genügt. Zum Nachweis der flammhemmenden Eigenschaften wurden Formkörper hergestellt, die vor dem Hintergrund der guten Verarbeitbarkeit überra- sehender weise den Brandtest UL 94 mit der Klasse V0 oder V2 bestanden.
Die thermoplastische Zusammensetzung weist einen überraschend günstigen Schmelzflussindex sowie eine hohe Bruch und Schlagfestigkeit auf Beispiele
Verwendete Materialien:
Komponente A:
PBT 1 : Poly(butylenterephthalat), mit einer Viskositätszahl von 130 mL/g (Messung durchgeführt mit einer 0.5 Gew.-% Lösung in einem Phenol/o-Dichlorobenzol (1/1 )-Gemisch bei 23 °C), Ultradur® B4520 der Firma BASF SE.
PBT 2: Poly(butylenterephthalat), mit einer Viskositätszahl von 107 mL/g (Messung durchgeführt mit einer 0.5 Gew.-% Lösung in einem Phenol/o-Dichlorobenzol (1/1 )-Gemisch bei 23 °C) Ultradur® B2550 der Firma BASF SE.
Komponente B:
Komponente b1 )
Polyalkylenterephthalat-Polyester-Urethan 1 -3: umfassend Poly(butylenterephthalat), Adipa- tester, Hexamethylendiisocyanat und Butandiol; Härte und Schmelzindex (Melt flow index (M FI)) siehe Tabelle.
Polyalkylenterephthalat-Polyester-Urethan 1
PBT: 60 %
Polyol: 25 % Polyester aus Adipinsäure, Butandiol und 2-Methylpropandiol (1 +1 ), Mn = 3000 g/mol; OH-Zahl: 38 mg KOH/g
Isocyanat: 9 % Hexamethylendiisocyanat
Butandiol-1 ,4: 3,6 % Additive (Fein gepudertes Talkum, sterisch gehindertes Phenol als Antioxidant, Carbodiimid als Hydrolysestabilisator, Gleitadditiv, Antiblockmittel): 3,4 %
Polyalkylenterephthalat-Polyester-Urethan 2
PBT: 67,5 %
Polyol: 16 % Polyester of adipic acid, Butandiol + 2-Methylpropandiol (1 +1 ), Mn = 3000 g/mol;
OH-Zahl: 38 mg KOH/g
Isocyanat: 9 % Hexamethylendiisocyanat
Butandiol-1 ,4: 4,1 %
Additive (Fein gepudertes Talkum, sterisch gehindertes Phenol als Antioxidant, Carbodiimid als Hydrolysestabilisator, Gleitadditiv, Antiblockmittel): 3,4 %
Polyalkylenterephthalat-Polyester-Urethan 3
PBT: 71 %
Polyol: 12,6 % Polyester of adipic acid, Butandiol + 2-Methylpropandiol (1 +1 ), Mn = 3000 g/mol; OH-Zahl: 38 mg KOH/g
Isocyanat: 9 % Hexamethylendiisocyanat
Butandiol-1 ,4: 4,3 %
Additive (Fein gepudertes Talkum, sterisch gehindertes Phenol als Antioxidant, Carbodiimid als Hydrolysestabilisator, Gleitadditiv, Antiblockmittel): 3,1 %
Komponente b3)
Polyalkylenterephthalat-Polyether 1 und 2: umfassend Poly(butylenterephthalat) und Po- ly(tetrahydrofuran); Hytrel® 7246 und Hytrel® 8238, der Firma Dupont Härte und Schmelzindex (Melt flow index (MFI)) siehe Tabelle.
Komponente b4) Polyalkylenterephthalat-Polyester: umfassend Poly(butylenterephthalat) und Po- ly(butylenadipat); Ecoflex® FBX 701 1 der Firma BASF SE, Härte und Schmelzindex siehe Tabelle.
Schmelzindex (MFI)
Bei 190 °C,
Komponente B Shore D Härte bei 230 °C, bei 240 °C,
2.16 Kg 2.16 Kg 2.16 Kg
b1 ) Polyalkylen- terephthalat-
55 24 g/10 min - - Polyester- Urethan 1
b1 ) Polyalkylen- terephthalat-
64 38 g/10 min - - Polyester- Urethan 2
b1 ) Polyalkylen- terephthalat-
66 30 g/10 min - - Polyester- Urethan 3
b3) Polyalkylen- terephthalat- 72 - 12.5 g/10 min - Polyether 1
b3) Polyalkylen- terephthalat- 82 - 12.5 g/10 min - Polyether 2
b4) Polyalkylen- terephthalat- 32 - - 5 g/10 min Polyester
Komponente C:
DEPAL: Aluminiumdiethylphosphinat.
MC: Melamincyanurat, Melapur® MC 25 der Firma BASF SE.
MPP: Melaminpolyphosphat, Melapur® 200 der Firma BASF SE.
Komponente D: Glasfasern: PPG 3786 Glasfasern
Weitere Zusatzstoffe:
Stabilisator:. Der Stabilisator umfasst verschiedene Antioxidantien: primäre phenolische Antioxidantien und, sekundäre Antioxidantien wie Phosphite und Thiosynergisten) Irganox 1010 der Firma BASF SE.
Schmiermittel: oxidiertes Polyethylen-Wachs, Luwax® OA5 der Firma BASF SE.
Herstellung, Verarbeitung und Untersuchung der thermoplastischen Zusammensetzung: Die jeweiligen Mischungen wurden in einem Doppelschneckenextruder bei 260 °C vermischt und dann nach ISO 294 (Titel: Kunststoffe - Spritzgießen von Probekörpern aus Thermoplasten) spritzgegossen.
Die Schmelzvolumenfließrate (melt volume-flow rate (MVR)) wurde bei at 275 °C bei einem Gewicht von 2.16 Kg gemessen.
Der Zugfestigkeitstest und der Kerbschlagtest wurden nach ISO 527 (Titel: Bestimmung der Zugeigenschaften) beziehungsweise nach ISO 179 (Titel: Bestimmung der Charpy- Schlageigenschaften) untersucht.
Der Test zur Brennbarkeit von Kunststoffen UL94 wurde mit 5 Proben mit einer dicke von 0.8 mm oder 1 .6 mm durchgeführt.
Der Spritzgussdruck basiert auf dem nötigen Druck zur Herstellung der 0.8 mm dicken Proben für den UL94 Test zur Brennbarkeit von Kunststoffen.
Beispiele: Polyalkylenterephthalat-Polyester-Urethan + DEPAL + MC
Komponente Vergleichsbeispiel Beispiel Beispiel Beispiel Beispiel
1 2 3 4
PBT 1 [%] 52.4 47.4 47.4 47.4 42.4
DEPAL [%] 15 15 15 15 15
MC [%] 7.5 7.5 7.5 7.5 7.5
Polyalkylenterephthalat- - 5 - - -
Polyester-Urethan 1 [%]
Polyalkylenterephthalat- - - 5 - -
Polyester-Urethan 2 [%]
Polyalkylenterephthalat- - - - 5 10
Polyester-Urethan 3 [%]
Stabilizer [%] 0.1 0.1 0.1 0.1 0.1
GF [%] 25 25 25 25 25
Eigenschaften
UL94 1 .6 mm VO VO VO VO VO
UL94 0.8 mm V2 V2 VO V2 V2
MVR (cc/10min) 20 74 30 27 34
Zugfestigkeit [MPa] 96 96 98 101 101
Zugmodul [GPa] 10.0 9.3 9.6 9.8 9.3
Charpy-Schlagzähigkeit 39.7 40.5 45.6 44.1 42.4
[kJ/m2]
Beispiele: Polyalkylenterephthalat-Polyester-Urethan + DEPAL + MC + MPP
Beispiele: Polyalkylenterephthalat-Polyether + DEPAL + MC
Beispiele: Polyalkylenterephthalat-Polyether + DEPAL + MC + MPP
Beispiele: Polyalkylenterephthalat-Polyester + DEPAL + MC + MPP
VergleichsBeispiel 19 Beispiel 20 beispiel
Komponente
PBT 2 [%] 52.1 47.1 42.1
DEPAL [%] 15 15 15
MC [%] 3.75 3.75 3.75
MPP [%] 3.75 3.75 3.75
Polyalkylenterephthalat- - 5 10
Polyester [%]
Stabilize [%]r 0.1 0.1 0.1
Schmiermittel [%] 0.3 0.3 0.3
GF [%] 25 25 25
Eigenschaften
UL94 1 .6 mm VO VO VO
UL94 0.8 mm VO VO VO
MVR (cc/10min) 23 44 52
Fließspirale (cm) - - -
Injection molding pressure - - -
(bar)
Zugfestigkeit (MPa) 104 95 95
Zugmodul (GPa) 10.3 8.6 8.8
Kerbschlagtest (kJ/m2) 40.9 44.7 45
Die Proben zeigten gegenüber dem Vergleichsbeispiel verbesserte mechanische Eigenschaften bei verbesserter flammhemmender Wirkung (Vergleichsbeispiel und unter anderem Beispiel 2).
Der Zusatz von Melaminpolyphosphat verbesserte die flammhemmende Wirkung weiter (Bei- spiel 3 und unter anderem Beispiel 7). Des Weiteren zeigten die Verbindungen gegenüber dem Vergleichsbeispiel verbesserte mechanische Eigenschaften, insbesondere im Schlagtest zeigten die thermoplastischen Zusammensetzungen eine verbesserte Charpy-Schlagzähigkeit (Vergleichsbeispiel und unter anderem Beispiel 9). In einer weiteren Ausführungsform wurden Mischungen hergestellt, umfassend PBT, Alumini- umdiethylphosphinat (DEPAL) Melamincyanurat jeweils ein Polyalkylenterephthalat-Polyether 1 oder Polyalkylenterephthalat-Polyether 2, sowie dem Stabilisator Irganox 1010 der BASF und Glasfasern des Typs PPG 3786. Die Mengenanteile an Polyalkylenterephthalat-Polyether 1 beziehungsweise Polyalkylenterephthalat-Polyether 2 wurden variiert.
Die Proben zeigten gegenüber dem Vergleichsbeispiel verbesserte mechanische Eigenschaften bei verbesserter flammhemmender Wirkung (Vergleichsbeispiel und unter anderem Beispiel 1 1 ).
In einer weiteren Ausführungsform wurde diesem Gemisch Melaminpolyphosphat zugesetzt, was die flammhemmende Wirkung weiter verbesserte (Beispiel 12 und unter anderem Beispiel 15). Des Weiteren zeigten die Verbindungen gegenüber dem Vergleichsbeispiel verbesserte mechanische Eigenschaften, insbesondere im Schlagtest zeigten die thermoplastischen Zusammensetzungen eine verbesserte Charpy-Schlagzähigkeit (Vergleichsbeispiel und unter anderem Beispiele 17 und 18).
In einer weiteren Ausführungsform wurden Mischungen hergestellt, umfassend PBT, Alumini- umdiethylphosphinat (DEPAL) Melamincyanurat, Melaminpolyphosphat und ein Polyalkylente- rephthalat-Polyester (Poly(butylenterephthalat), Poly(butyleneadipate)), sowie dem Stabilisator Irganox 1010 der BASF und Glasfasern des Typs PPG 3786. Die Mengenanteile an Polyalky- lenterephthalat-Polyester wurden variiert.
Die Proben zeigten gegenüber dem Vergleichsbeispiel verbesserte mechanische Eigenschaften bei verbesserter flammhemmender Wirkung (Vergleichsbeispiel und unter anderem Beispiel 19 und 20). In allen Beispielen wurde die Fließfähigkeiten durch der Zugabe von Polyalkylenterephthalat- Polyester-Urethan 1 , 2, 3, Polyalkylenterephthalat-Polyether 1 , 2 und Polyalkylenterephthalat- Polyester, im Vergleich zu den Vergleichsbeispielen verbessert.

Claims

Patentansprüche
1. Die Erfindung betrifft eine thermoplastische Zusammensetzung, enthaltend
A) ein Polyalkylenterephthalat
B) ein Elastomer ausgewählt aus der Gruppe
b1) der Polyalkylenterephthalat-Polyester-Urethane,
b2) der Polyalkylenterephthalat-Polyether-Urethane, und deren Mischungen
C) ein halogenfreies Flammschutzmittel, ausgewählt aus der Gruppe
c1 ) der stickstoffhaltigen Flammschutzmittel
c2) der Stickstoff- und phosphorhaltigen Flammschutzmittel
c3) der phosphorhaltigen Flammschutzmittel ausgewählt aus der Gruppe der Phosphate, Phosphin- und Diphosphinsalze und deren Mischungen
und deren Mischungen.
2. Thermoplastische Zusammensetzung nach Anspruch 1 worin (b1) ein Polybutylente- rephthalat-Polyester-U rethan ist.
3. Thermoplastische Zusammensetzung nach einem der vorangehenden Ansprüche worin c1) ein stickstoffhaltiger Heterocyclus mit mindestens einem Stickstoffatom ist. 4. Thermoplastische Zusammensetzung nach einem der vorangehenden Ansprüche enthaltend (D) einen Verstärkungszusatz.
5. Thermoplastische Zusammensetzung nach einem der vorangehenden Ansprüche, enthaltend (A) ein Polybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyester-U rethan (b1), (C) Aluminiumdiethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren Mischungen.
6. Thermoplastische Zusammensetzung nach einem der vorangehenden Ansprüche, enthaltend (A) ein Polybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyether (b3), (C) Aluminiumdiethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren
Mischungen.
7. Thermoplastische Zusammensetzung nach einem der vorangehenden Ansprüche, enthaltend (A) ein Polybutylenterephthalat, (B) ein Polybutylenterephthalat-Polyester (b4), (C) Aluminiumdiethylphosphinat, Melamincyanurat, oder Melaminpolyphosphat oder deren
Mischungen.
8. Verwendung der thermoplastischen Zusammensetzung gemäß einem der vorangehenden Ansprüche als Überzugmittel.
9. Verwendung der thermoplastischen Zusammensetzung gemäß einem der Ansprüche 1 bis 9 zur Herstellungen von Fasern, Folien oder.
10. Fasern, Folien oder Formkörper enthaltend eine thermoplastische Zusammensetzung gemäß einem der Ansprüche 1 bis 9.
EP12700125.3A 2011-01-17 2012-01-11 Flammhemmende thermoplastische zusammensetzung Withdrawn EP2665773A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12700125.3A EP2665773A1 (de) 2011-01-17 2012-01-11 Flammhemmende thermoplastische zusammensetzung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11151122A EP2476730A1 (de) 2011-01-17 2011-01-17 Flammhemmende thermoplastische zusammensetzung
PCT/EP2012/050332 WO2012098035A1 (de) 2011-01-17 2012-01-11 Flammhemmende thermoplastische zusammensetzung
EP12700125.3A EP2665773A1 (de) 2011-01-17 2012-01-11 Flammhemmende thermoplastische zusammensetzung

Publications (1)

Publication Number Publication Date
EP2665773A1 true EP2665773A1 (de) 2013-11-27

Family

ID=44141027

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11151122A Ceased EP2476730A1 (de) 2011-01-17 2011-01-17 Flammhemmende thermoplastische zusammensetzung
EP12700125.3A Withdrawn EP2665773A1 (de) 2011-01-17 2012-01-11 Flammhemmende thermoplastische zusammensetzung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11151122A Ceased EP2476730A1 (de) 2011-01-17 2011-01-17 Flammhemmende thermoplastische zusammensetzung

Country Status (6)

Country Link
US (1) US20130310494A1 (de)
EP (2) EP2476730A1 (de)
KR (1) KR20140007816A (de)
CN (1) CN103476864A (de)
BR (1) BR112013017962A2 (de)
WO (1) WO2012098035A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987357B2 (en) 2011-05-27 2015-03-24 Basf Se Thermoplastic molding composition
KR102259248B1 (ko) * 2013-04-29 2021-06-01 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 할로겐-비함유 방염 tpu
KR20170032744A (ko) 2015-09-15 2017-03-23 한국건설기술연구원 파형 단면구조를 가진 시설물 화재보호용 배관 및 케이블 튜브 그 시공방법
KR20170032731A (ko) 2015-09-15 2017-03-23 한국건설기술연구원 파형 단면구조를 가진 차열차화 패브릭시트
KR20170032738A (ko) 2015-09-15 2017-03-23 한국건설기술연구원 고온 파형 단면 형상유지 구조를 이용한 방화용 덕트 보호 구조체 및 그 시공방법
KR20170032727A (ko) 2015-09-15 2017-03-23 한국건설기술연구원 고온 파형단면 형상유지 구조를 이용한 화재보강구조
JP6793725B6 (ja) * 2015-10-14 2020-12-23 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se ハロゲン不含難燃剤を有するポリエステルブレンド
KR101990407B1 (ko) * 2015-12-03 2019-06-18 주식회사 엘지화학 비할로겐 열가소성 수지 조성물 및 이를 포함하는 케이블
JP6737679B2 (ja) * 2016-09-30 2020-08-12 アイカ工業株式会社 難燃性樹脂組成物
WO2018210608A1 (de) * 2017-05-17 2018-11-22 Basf Se Schlagzähfeste polyestermischung
KR20210022745A (ko) * 2018-06-25 2021-03-03 바스프 에스이 난연성 열가소성 폴리우레탄
WO2021224136A1 (en) 2020-05-06 2021-11-11 Basf Se Flame retarded polyester blend
CN112812366B (zh) * 2020-12-30 2022-08-09 浙江新化化工股份有限公司 阻燃组合物及其应用、pbt复合材料及其制备方法
TW202313845A (zh) * 2021-09-16 2023-04-01 廣鑫複合材料股份有限公司 熱塑性聚氨酯組成物及可染色纖維

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651014A (en) 1969-07-18 1972-03-21 Du Pont Segmented thermoplastic copolyester elastomers
US4279801A (en) * 1975-07-02 1981-07-21 General Electric Company Thermoplastic molding compositions of a linear polyester and a poly(ester urethane)
CA2021286A1 (en) * 1989-08-18 1991-02-19 Michael D. Golder Polyester molding compositions having unexpected reduced water absorption properties
NL9300194A (nl) * 1993-02-01 1994-09-01 Gen Electric Polymeermengsel en daaruit gevormde voorwerpen.
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
DE10126718A1 (de) 2001-05-31 2002-12-05 Basf Ag Phosphor-Stickstoff-Kondensat, Verfahren zu dessen Herstellung und dessen Verwendung als Flammschutzmittel
DE10138298A1 (de) 2001-08-10 2003-02-27 Basf Ag Thermoplastische Polyurethane
US8188172B2 (en) 2003-12-17 2012-05-29 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
DE102004049342A1 (de) 2004-10-08 2006-04-13 Basf Ag Fließfähige Thermoplaste mit halogenfreiem Flammschutz
DE102005034999A1 (de) 2005-07-22 2007-01-25 Basf Ag Fließfähige Polyester mit Polyesterelastomeren
US7799838B2 (en) * 2006-07-26 2010-09-21 Sabic Innovative Plastics Ip B.V. Elastomer blends of polyesters and copolyetheresters derived from polyethylene terephthalate, method of manufacture, and articles therefrom
JP5085927B2 (ja) 2006-12-21 2012-11-28 ウィンテックポリマー株式会社 難燃性樹脂組成物
CN101857720B (zh) * 2010-03-10 2013-01-23 上海锦湖日丽塑料有限公司 一种高强耐热的热塑性聚氨酯组合物及其制备方法
US8853304B2 (en) * 2011-11-29 2014-10-07 Sabic Innovative Plastics Ip B.V. Polyester compositions and insert-molded articles made therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012098035A1 *

Also Published As

Publication number Publication date
BR112013017962A2 (pt) 2019-09-24
KR20140007816A (ko) 2014-01-20
WO2012098035A1 (de) 2012-07-26
US20130310494A1 (en) 2013-11-21
CN103476864A (zh) 2013-12-25
EP2476730A1 (de) 2012-07-18

Similar Documents

Publication Publication Date Title
EP2665773A1 (de) Flammhemmende thermoplastische zusammensetzung
EP2222767B1 (de) Halogenfreie flammhemmende thermoplastische polyurethane
EP3110882B1 (de) Flammgeschütztes thermoplastisches polyurethan
EP2046889B1 (de) Harte, halogenfreie, feuerfeste polyesterzusammensetzung
EP3362516B1 (de) Polyesterblend mit halogenfreiem flammschutz
JP2011512449A (ja) ハロゲン非含有難燃性tpu
WO1997039053A1 (de) Synergistische flammschutzmittel-kombination für thermoplastische polymere
EP3494153B1 (de) Transparente tpu blends mit pyrrolidon enthaltenden polyamiden
EP3337855B1 (de) Flammgeschütztes thermoplastisches polyurethan
DE102017215780A1 (de) Synergistische Flammschutzmittelkombinationen für Polymerzusammensetzungen und deren Verwendung
EP3337850B1 (de) Flammgeschütztes thermoplastisches polyurethan
TW201629152A (zh) 無鹵素阻燃性組成物
KR20070055886A (ko) 비할로겐 난연 열가소성 폴리우레탄 복합 수지 조성물
EP2697306B1 (de) Flammhemmende thermoplastische formmasse
DE102017215779B4 (de) Flammschutzmittelkombinationen für Polymerzusammensetzungen, sowie Polymerzusammensetzungen und deren Verwendung
DE3520661A1 (de) Schlagzaehe thermoplatische polyestermassen mit niedriger schmelzviskositaet, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von formkoerpern
DE102017215777A1 (de) Flammschutzmittelkombinationen für Polymerzusammensetzungen und deren Verwendung
EP0618266B1 (de) Thermoplastische Formmassen aus Polyalkylenterephthalat,thermoplastischem Polyurethan und kautschukelastischem Polymerisat
CN116601226A (zh) 阻燃热塑性聚氨酯
JP2023545247A (ja) 難燃性熱可塑性ポリウレタン
EP0776934A1 (de) Mit Phosphorigsäureestern stabilisierte Polymer-Formmassen
JP6291193B2 (ja) 非ハロゲン系難燃性樹脂組成物、非ハロゲン系難燃性樹脂成形体、およびこれらの製造方法
KR20180076699A (ko) 열가소성 난연 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
DE4314041A1 (de) Flammgeschützte thermoplastische Formmassen mit guter Temperaturbeständigkeit, Fließverhalten und Zähigkeit
KR20090072398A (ko) 열가소성 폴리에스테르계 엘라스토머 수지 조성물 및 이를이용하여 제조되는 성형품

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140412