EP2664030A1 - Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente - Google Patents

Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente

Info

Publication number
EP2664030A1
EP2664030A1 EP11802519.6A EP11802519A EP2664030A1 EP 2664030 A1 EP2664030 A1 EP 2664030A1 EP 11802519 A EP11802519 A EP 11802519A EP 2664030 A1 EP2664030 A1 EP 2664030A1
Authority
EP
European Patent Office
Prior art keywords
substrate
substrates
slot
antenna
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11802519.6A
Other languages
German (de)
English (en)
Other versions
EP2664030B1 (fr
Inventor
Dominique Lo Hine Tong
Ali Louzir
Philippe Minard
Jean-François PINTOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP2664030A1 publication Critical patent/EP2664030A1/fr
Application granted granted Critical
Publication of EP2664030B1 publication Critical patent/EP2664030B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • the present invention relates to slot-type printed directional antennas, in particular Vivaldi type antennas.
  • Vivaldi type antennas are also relate to different systems that network said slot-type printed antennas so as to produce compact multibeam antenna systems that may also have orthogonal double polarization.
  • MIMO multiple input multiple output in English
  • MIMO multiple input multiple output in English
  • These multi-antenna transmission devices of the MIMO type have led to the development of directional antenna solutions.
  • the advantages of directivity are numerous. In fact, they reduce interference, improve the range of wireless links, reduce RF power, the complexity and cost of dissipation.
  • directive antennas can reduce the average exposure to electromagnetic radiation.
  • directional antennas by rejecting interference upstream of the reception chain, makes it possible in a MIMO system to reduce the complexity related to the management of nonlinearities, noise and the dynamics of the radio channel. frequency.
  • a solution based on directional antennas also makes it possible to simplify the processing of the digital signal, in particular the additional processing related to the cancellation of the signals interfering in the case of a MIMO solution using non-directive antennas.
  • the directional antennas are generally cumbersome and the networking of several directional antennas greatly increases this problem.
  • the printed guideline antennas are known flared slot type antennas such as Vivaldi type antennas.
  • Antennas of this type have the advantage of great flexibility in terms of directivity value. Indeed this value is fixed by the length of the profile and the width of the mouth.
  • these antennas also have great flexibility as regards the shape of the radiation pattern, the openings in the planes E and H can be adjusted by adjusting the shape and length of the profile as well as the opening of the mouth.
  • these antennas have a natural linear polarization, the direction of polarization being given by the plane of the substrate on which the antenna is etched.
  • a multi-sector antenna consisting of the networking of a plurality of Vivaldi antennas made on substrates arranged vertically and spaced at an angle. 360 ° from each other. These antennas are associated with an excitation system which can be in a horizontal plane supporting said substrates. This structure makes it possible to reduce the final diameter of the antenna system at the expense of the height and offers an additional degree of flexibility for the antenna system form factor. It has also been proposed in the French patent application no.
  • the present invention therefore seeks to reduce the size and volume of the systems described above by a factor of about two.
  • the subject of the present invention is a printed directional antenna of the flared slot type comprising a substrate provided with a ground plane in which the slot is etched in a profile having a longitudinal axis and a slot supply line, characterized in that the substrate comprises at least a first and a second part bent along an axis parallel to said axis and forming an angle A with respect to each other, a first part of the profile of the slot being etched in the first part of the substrate and a second part of the profile of the slot being etched in the second part of the substrate.
  • the angle is 90 °, that is, the two substrate portions are perpendicular to each other.
  • the ground plane is formed on a lower or outer face of said first and second parts of the substrate.
  • the present invention also relates to a printed slot-like printed directional antenna system comprising a first substrate and N second substrates, the N second substrates forming an angle A with respect to the first substrate, the first and the N second substrates delimiting N sectors, characterized in that, in at least one of the sectors, is realized a directional antenna as described above, the first portion being formed by the first substrate and the second portion being formed by one of the second substrates.
  • the present invention also relates to a flared slot type printed directional antenna system comprising a first substrate, a third substrate and N second substrates, the N second substrates forming an angle A with respect to the first substrate and an angle B with respect to the third substrate, the first substrate, the third substrate and the N second substrates delimiting N sectors, characterized in that in at least one of even or odd rank sectors is formed a directional antenna as described above, the first part being formed by the first substrate and the second portion being formed by one of the second substrates and in at least one of odd or even rank sectors is formed a directional antenna as described above the first portion being formed by the third substrate and the second part being formed by one of the second substrates.
  • angles A and B are equal to 90 ° so that the first and third substrates are perpendicular to the N second substrates.
  • the invention relates to a flared slot type printed directional antenna system
  • a flared slot type printed directional antenna system comprising a first substrate, a third substrate, the first and third substrates being of polygonal shape, and N second substrates, N corresponding to the number sides of the polygon, the N second substrates connecting the first substrate to the third substrate, characterized in that, at at least one of the connections between the first substrate or the third substrate and one of the second substrates, a directional antenna is formed as described above.
  • Figure 1 is a schematic perspective view of a printed antenna according to the present invention.
  • FIG. 2 is a sectional plane giving the polarization of the electric field according to the position of the horizontal profile relative to the vertical profile for antennas according to the principle of the present invention
  • Figure 3 is a perspective view showing a two-antenna system such as the antennas of Figure 1 networked according to the principle of the present invention.
  • Figures 4a and 4b are respectively a perspective representation of a four antenna system such as the antennas shown in Figure 1 networked in accordance with the present invention and a top plan view.
  • FIGS. 5a and 5b are two perspective views of an eight-antenna system such as the antennas shown in FIG. 1 networked according to the present invention, FIG. 5a being a view of the antennas folded on the lower horizontal plane. and Figure 5b is a view of the antennas folded on the upper horizontal plane.
  • Figure 6 is a perspective view of a six antenna system according to the present invention.
  • FIG. 7 is a view from above of the antenna system of FIG. 6.
  • FIG. 8 represents curves giving the adaptation and the insulation as a function of the frequency of the system represented in FIGS. 6 and 7.
  • FIGS. 9 and 10 represent, respectively as a function of frequency, the gain and directivity of the antennas made on the first substrate or on the third substrate, for the embodiment of FIGS.
  • FIG. 11 represents the radiation pattern with respect to the upper plane and the lower plane for the embodiment of FIGS. 6 and 7.
  • Figure 12 shows another embodiment of an eight-antenna system arranged in four sectors.
  • Figure 13 schematically shows a practical embodiment of the antenna of Figure 1.
  • FIG. 1 a particular embodiment of a flared slot type directional printed antenna in accordance with the present invention will be described.
  • the slot antenna described in this embodiment is a Vivaldi type antenna.
  • the present invention can be applied to other types of flared slot antennas known as "tapered slot antennas" in the English language.
  • the antenna according to the present invention comprises a substrate-forming element consisting of a first substrate part 1 and a second substrate part 2 which, in the embodiment shown, are arranged perpendicularly one to the other. More generally, the two parts 1 and 2 of the substrate may be folded along an axis Y Y and form between them an angle A different from 90 °. In general, the two substrate parts are formed by independent substrates and in the description of the substrate part or substrate have the same meaning.
  • an excitation micro-ribbon line 3 which is extended by a first part of the adaptation line 4a enabling the slot antenna to be fed by coupling electromagnetic, especially according to the Knorr principle.
  • a ground plane 5 On the underside of the first portion 1 of the substrate is a ground plane 5 in which is etched a portion 6 of the profile of the slot antenna.
  • the second part 2 of the substrate On the other hand, on the rear face of the second part 2 of the substrate is etched in the ground plane 7 the second part 8 of the profile of the antenna which is extended by a slot 9 ending in a short circuit 10.
  • the Vivaldi slot antenna is powered by electromagnetic coupling according to Knorr's known principle.
  • the rear face 5 of the first substrate portion 1 and the rear face 7 of the second substrate portion 2 are electrically connected.
  • the fold line OY between the first substrate portion 1 and the second substrate portion 2 is not made along the axis ss' of the slot 9 of the antenna Vivaldi but parallel and near this said axis.
  • a slot-type planar antenna in particular a Vivaldi antenna, naturally has a linear polarization, the direction of the polarization being given by the antenna plane.
  • the antenna is folded in two planes, most often orthogonal as shown in Figure 1, it results in an oblique polarization at approximately 45 ° approximately a plane connecting the two ends of the mouth of the antenna and collinear to the Y axis, longitudinal axis of symmetry.
  • FIG. 2 according to the fact that the horizontal profile of the antenna is made on one side 7 or the other 7 'of the second substrate portion 2, this results in an oblique linear polarization at approximately ⁇ 45 ° following two orthogonal planes.
  • a bias Yg for a profile at left of the vertical plane
  • a polarization Ed for a profile to the right of the vertical plane.
  • FIGS. 3, 4 and 5 of several embodiments of multi-sector antenna systems based on the use of Vivaldi-type directional printed antennas as shown in FIG.
  • FIG. 3 there is shown a system consisting of two antennas type Vivaldi folded. More particularly, this system comprises a first horizontal substrate 10 and two vertical second substrates 1 1a and 1 1b, interconnected along a common axis OZ and forming between them an angle C of 45 °.
  • ground planes 12a and 12b are produced in which a first portion of the Vivaldi type antenna is etched as shown in FIG. The second part of the Vivaldi type antenna is etched on the ground plane made on the underside of the first horizontal substrate 10 in the sector 10a.
  • each antenna has a polarization in a different sense.
  • One of the antennas has a horizontal profile to the right with respect to the vertical substrate 1 1 a and the other antenna has a horizontal profile on the left with respect to the vertical substrate 1 1 b. This results in an orthogonality of the polarizations, which allows a better decorrelation of the antennas.
  • the system comprises a first horizontal substrate 20 on which are fixed perpendicularly four second substrates 21a, 21b, 21c, 21d interconnected along a common axis OZ. These four second substrates delimit four sectors 20a, 20b, 20c and 20d on the first substrate.
  • folded Vivaldi type antennas as in the embodiment of FIG. 1, were made on each second substrate (21a, 21b, 21c, 21d) and the horizontal substrate ( 20) in the manner shown in FIG. 3.
  • the antennas are associated in pairs so that part of the antennas is etched in sectors 20a and 20c of the first substrate as shown in FIG. 4 (b).
  • the second antenna parts are etched on the surfaces of the second substrates external to these sectors, namely in the metallizations 22a, 22b, 22c, 22d made on the second substrates 21a, 21b, 21c, 21d.
  • the supply lines 23a, 23b and the lines not shown for the sector 20c are formed on the inner faces of the sectors of the second substrates concerned.
  • FIGS. 5a and 5b another embodiment of an antenna system according to the present invention making it possible to obtain better isolation between the antennas.
  • a third substrate parallel to the first substrate is used.
  • FIGS. 5a and 5b show an antenna system with eight antennas comprising a first horizontal substrate 30 on which eight second substrates 31a, 31b, 31c, 31d, 31e, 31f are mounted perpendicularly, 31 g, 31 h interconnected along an axis OZ and a third horizontal substrate 32 parallel to the first substrate 30.
  • This set determines eight sectors referenced a, b, c, d, e, f, g, h.
  • the substrates 30 and 32 could be made without being parallel, the N second substrates making an angle A with respect to the first substrate 30 and an angle B with respect to the third substrate 32.
  • Vivaldi printed directive antennas as shown in FIG. 1 have been used.
  • the antennas are respectively formed between the first substrate and one of the second substrates for the sectors of even rank, for example, and between the third substrate and one of the second substrates for odd-ranked sectors or vice versa.
  • the printed directional antenna is produced in the ground plane 33 of the third substrate 32 and in the plane of mass 34 of the second substrate 31a and is fed by the power supply line 35, whereas, as shown in FIG.
  • the printed directive antenna is etched in the ground plane 37 of the substrate 30 and in the ground plane 36 of the second substrate 31 h and is fed by the line 38.
  • the present invention makes it possible to obtain a multibeam antenna system much more compact in height than the systems of the prior art described in particular in the patents mentioned above.
  • the arrangement of the antenna profiles is carried out so as to maintain the orthogonality of the polarizations of the antennas, the excitations of the antennas being on the same side of the vertical substrates as shown in the figures.
  • FIGS. 6 to 11 A further embodiment of a six-antenna system according to the present invention will now be described with reference to FIGS. 6 to 11.
  • This system was designed to be simulated using the 3D electromagnetic solver by the finite element method ANSYS / HFSS.
  • the six-antenna system comprises a first substrate 40, six second substrates 41a, 41b, 41c, 41d, 41e, 41f and a third substrate 42, the substrates 40 and 42 being parallel to each other and the six second substrates being interconnected along an axis OZ and perpendicular to the two first and third substrates.
  • the six antennas are distributed alternately on the horizontal planes 40 and 42 and on the vertical planes around the OZ axis and the angular pitch between two vertical planes formed by the second substrates is 60 °. So more precise a Vivaldi antenna according to the present invention is therefore made in each odd sector using the first substrate 40 and for each even sector using the second substrate 42. There is therefore a first antenna etched in the ground plane 43.1 of the first substrate 40 and the ground plane 44.1 of the second substrate 41a and fed by the feed line 45.1.
  • the second antenna is made by etching the ground plane 43.2 on the third substrate 42 and the ground plane 44.2 on the second substrate 41b and then alternatively for the ground plane 43.3 of the first substrate 40 and the ground plane 44.3 on the second substrate 41c, 43.4 of the third substrate 42 and the ground plane 44.4 on the second substrate 41d, 43.5 of the first substrate 40 and the ground plane 44.5 on the second substrate 41e and 43.6 of the third substrate 42 and the ground plane 44.6 on the second substrate 41 f.
  • all of the antennas are powered separately as represented by the supply lines 45.1, 45.2, 45.3, 45.4, 45.5, 45.6 in FIG.
  • Substrates 40 and 42 are circular shaped substrates having a diameter of 88 millimeters and the six second substrates 41 to 41 have a rectangular shape with a height of 22 millimeters and a width of 33 millimeters.
  • FIGS. 9 and 10 represent the gain and the directivity of the antennas respectively made on the first substrate 40 FIG. 9 or on the third substrate 42 FIG. 10. The curves thus show a directivity greater than 5 dBi and a gain greater than 4 dBi, whatever the type antenna.
  • FIG. 9 shows the adaptation and isolation curves. There is therefore an adaptation of more than 15 dB in the WiFi band 802.1 1 a, namely the band between 5.15-5.85 GHz. There is also isolation between two contiguous antennas of more than 20 dB.
  • FIGS. 9 and 10 represent the gain and the directivity of the antennas respectively made on the first substrate 40 FIG. 9 or on the third substrate 42 FIG. 10. The curves thus show a directivity greater than 5 dBi and a gain greater than 4 dBi, whatever the type antenna.
  • FIG. 9 shows the adaptation and isolation curves. There is therefore an adaptation of more than 15 dB in the WiFi band 802.1 1 a, namely the band between 5.15-5.85 GHz
  • 11 represents the radiation diagram respectively of an antenna made with the first substrate and of an antenna made with the third substrate, thus a maximum of fields is observed on two oblique planes oriented by 45 ° with respect to the two planes. antennas formed of the first substrate 40 or the third substrate 42.
  • the first substrate 50 and the third substrate 52 parallel to the first substrate are both constituted by rectangles and the second substrates 51a, 51b, 51c, 51d form the faces of a rectangular parallelepiped.
  • the parallelepiped edges are used in this particular embodiment. More specifically, a first antenna is produced by etching the ground plane 53 provided on the face 51a of one of the second substrates and the ground plane 54 provided on the first substrate 50, while a second antenna is produced by etching the ground plane 53.2 provided on the upper part of the second substrate 51a and the ground plane 54.2 provided on the third substrate 52.
  • a set of two antennas of this type is produced on each second substrate 51b, 51c, 51 d as shown in FIG. 12, thus giving a four-sector antennal system and eight Vivaldi printed directive antennas, each pair of antennas in a given sector having orthogonal polarizations.
  • the first portion of substrate or first substrate 60 has along the axis XX 'forming a fold, a number of holes 62 metallized.
  • This portion of substrate 60 is provided in a known manner with a metallization 62 in which is formed the profile 63 of the Vivaldi type antenna part.
  • a feed line 64 On the upper face of the portion 60 is also metallized a feed line 64 as described with reference to FIG.
  • the second substrate portion or second substrate 65 is provided with a number of metallized pins 66, the number and shape of the pins 66 corresponding to the number and shape of the holes 61.
  • this second portion 65 is made the other part of the profile of the Vivaldi type antenna etched in a metallization 67.
  • the other side of the portion 65 receives the extension of the feed line 64 as described with reference to Figure 1.
  • the folded antenna structure is easily obtained by inserting the portion 65 provided with pins 66 in the metallized holes 62 of the portion 60.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

ANTENNE DIRECTIVE IMPRIMEE DE TYPE FENTE ET SYSTEME METTANT EN RESEAU PLUSIEURS ANTENNES DIRECTIVES IMPRIMEES DE TYPE FENTE La présente invention concerne les antennes directives imprimées de type fente, notamment les antennes de type Vivaldi. Elles concernent aussi différents systèmes mettant en réseau les dites antennes imprimées de type fente de manière à réaliser des systèmes d'antennes multifaisceaux compactes pouvant de plus présenter une double polarisation orthogonale.
Le développement croissant des systèmes de communication, notamment de communication sans fil, nécessite la mise en œuvre de dispositifs de plus en plus complexes et performants tout en gardant des coûts de fabrication les plus bas possible et un encombrement minimal. Pour répondre à ces contraintes, on utilise de plus en plus la technologie MIMO (multiple input multiple output en langue anglaise) qui met en œuvre un concept multi-antennes pour améliorer les performances de transmission tant en terme de débit que de robustesse, dans un environnement dominé, notamment par des interférences. Ces dispositifs de transmission multi- antennes de type MIMO ont entraîné le développement de solutions d'antennes directives. Les avantages de la directivité sont nombreux. En effet, ils permettent de réduire les interférences, d'améliorer la portée des liaisons sans fil, de réduire la puissance RF, à savoir la complexité et le coût liés à la dissipation. D'autre part les antennes directives permettent de réduire l'exposition moyenne au rayonnement électromagnétique.
De plus, l'utilisation d'antennes directives, en rejetant les interférences en amont de la chaîne de réception, permet dans un système MIMO de réduire la complexité liée à la gestion des non linéarités, au bruit et à la dynamique de la chaîne radio fréquence. Une solution à base d'antennes directives permet aussi de simplifier le traitement du signal numérique notamment les traitements supplémentaires liés à l'annulation des signaux interférents dans le cas d'une solution MIMO utilisant des antennes non directives. Toutefois les antennes directives sont en général encombrantes et la mise en réseau de plusieurs antennes directives augmente fortement ce problème.
Parmi les antennes directives imprimées ont connaît les antennes de type fente évasée telles que les antennes de type Vivaldi. Les antennes de ce type présentent l'avantage d'une grande flexibilité en termes de valeur de directivité. En effet cette valeur est fixée par la longueur du profil et la largeur de l'embouchure. D'autre part, ces antennes présentent aussi une grande flexibilité en ce qui concerne la forme du diagramme de rayonnement, les ouvertures dans les plans E et H pouvant être ajustées en jouant sur la forme et la longueur du profil ainsi que l'ouverture de l'embouchure. De plus, ces antennes présentent une polarisation naturelle linéaire, la direction de la polarisation étant donnée par le plan du substrat sur lequel est gravée l'antenne. Ainsi, l'on a déjà proposé dans différentes demandes de brevet d'utiliser la mise en réseau de N antennes de type Vivaldi pour obtenir des systèmes d'antennes multifaisceaux directifs. Dans la demande de brevet internationale n° WO2008/06531 1 au nom de Thomson Licensing, l'on a proposé une antenne multi-secteurs constituée par la mise en réseau de plusieurs antennes Vivaldi réalisées sur des substrats disposés verticalement et écartés d'un angle de 360° les uns des autres. Ces antennes sont associées à un système d'excitation qui peut se trouver dans un plan horizontal supportant les dits substrats. Cette structure permet de réduire le diamètre final du système d'antennes aux dépens de la hauteur et offre un degré de flexibilité supplémentaire pour le facteur de forme du système d'antennes. II a été aussi proposé dans la demande de brevet Française n°
0958692 déposée au nom de Thomson Licensing de combiner deux structures telles que décrites dans la demande précédente pour aboutir à un système d'antennes à double polarisation octogonale. En l'associant à une matrice de commutation de faisceaux permettant la sélection d'un certain nombre de faisceaux correspondant, par exemple, à l'ordre du système MIMO, cette solution d'antennes peut servir comme base pour un système MIMO, à antennes directives à double polarisation orthogonale.
Toutefois, malgré cette optimisation spatiale, l'encombrement des systèmes d'antennes décrit ci-dessus reste relativement important. La présente invention cherche donc à réduire l'encombrement et le volume des systèmes décrits ci-dessus d'un facteur environ égal à deux.
Ainsi, la présente invention a pour objet une antenne directive imprimée de type fente évasée comprenant un substrat muni d'un plan de masse dans lequel est gravée la fente selon un profil présentant un axe longitudinal et une ligne d'alimentation de la fente, caractérisée en ce que le substrat comporte au moins une première et une deuxième parties pliées selon un axe parallèle au dit axe et formant un angle A l'une par rapport à l'autre, une première partie du profil de la fente étant gravée dans la première partie du substrat et une deuxième partie du profil de la fente étant gravée dans la deuxième partie du substrat.
De préférence l'angle est un angle de 90°, à savoir les deux parties de substrat sont perpendiculaires l'une par rapport à l'autre.
Selon une autre caractéristique de la présente invention le plan de masse est réalisé sur une face inférieure ou externe des dites première et deuxième parties du substrat.
La présente invention concerne aussi un système d'antennes directives imprimées de type fente évasée comprenant un premier substrat et N second substrats, les N seconds substrats formant un angle A par rapport au premier substrat, le premier et les N seconds substrats délimitant N secteurs, caractérisé en ce que, dans au moins un des secteurs, est réalisée une antenne directive telle que décrite ci-dessus, la première partie étant formée par le premier substrat et la seconde partie étant formée par un des seconds substrats. La présente invention concerne aussi un système d'antennes directives imprimées de type fente évasée comprenant un premier substrat, un troisième substrat et N seconds substrats, les N seconds substrats formant un angle A par rapport au premier substrat et un angle B par rapport au troisième substrat, le premier substrat, le troisième substrat et les N seconds substrats délimitant N secteurs, caractérisé en ce que dans au moins un des secteurs de rang pair ou impair est réalisé une antenne directive telle que décrite ci-dessus, la première partie étant formée par le premier substrat et la seconde partie étant formée par un des seconds substrats et dans au moins un des secteurs de rang impair ou pair est réalisée une antenne directive telle que décrite ci-dessus la première partie étant formée par le troisième substrat et la seconde partie étant formée par un des seconds substrats.
Selon un mode de réalisation préférentiel, les angles A et B sont égaux à 90° de telle sorte que les premier et troisième substrats sont perpendiculaires aux N seconds substrats.
Selon un autre mode de réalisation, l'invention concerne un système d'antennes directives imprimées de type fente évasée comprenant un premier substrat, un troisième substrat, les premier et troisième substrats étant de forme polygonale, et N seconds substrats, N correspondant au nombre de cotés du polygone, les N seconds substrats connectant le premier substrat au troisième substrat , caractérisé en ce que, au niveau d'au moins une des connections entre le premier substrat ou le troisième substrat et un des seconds substrats, est réalisée une antenne directive telle que décrite ci- dessus. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée faite ci-après de différents modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :
La figure 1 est une vue en perspective schématique d'une antenne imprimée conforme à la présente invention.
La figure 2 est un plan de coupe donnant la polarisation du champ électrique selon la position du profil horizontal par rapport au profil vertical pour des antennes selon le principe de la présente invention,
La figure 3 est une vue en perspective représentant un système à deux antennes telles que les antennes de la figure 1 mises en réseau selon le principe de la présente invention.
Les figures 4a et 4b sont respectivement une représentation en perspective d'un système à quatre antennes telles que les antennes représentées à la figure 1 mises en réseau conformément à la présente invention et une vue en plan de dessus.
Les figures 5a et 5b sont deux vues en perspective d'un système à huit antennes telles que les antennes représentées à la figure 1 mises en réseau conformément à la présente invention, la figure 5a étant une vue sur les antennes pliées sur le plan horizontal inférieur et la figure 5b étant une vue sur les antennes pliées sur le plan horizontal supérieur.
La figure 6 est une vue en perspective d'un système à six antennes conforme à la présente invention.
La figure 7 est une vue de dessus du système d'antenne de la figure 6.
La figure 8 représente des courbes donnant l'adaptation et l'isolation en fonction de la fréquence du système représenté aux figures 6 et 7.
Les figures 9 et 10 représentent respectivement en fonction de la fréquence, le gain et la directivité des antennes réalisés sur le premier substrat ou sur le troisième substrat, pour le mode de réalisation des figures La figure 1 1 représente le diagramme de rayonnement par rapport au plan supérieur et au plan inférieur pour le mode de réalisation des figures 6 et 7.
La figure 12 représente un autre mode de réalisation d'un système à huit antennes disposées selon quatre secteurs.
La Figure 13 représente schématiquement un mode de réalisation pratique de l'antenne de la figure 1 .
Pour simplifier la description dans les figures relatives à un même mode de réalisation, les mêmes éléments portent les mêmes références.
On décrira tout d'abord avec référence à la figure 1 , un mode de réalisation particulier d'une antenne imprimée directive de type fente évasée conforme à la présente invention. L'antenne fente décrite dans ce mode de réalisation est une antenne de type Vivaldi. Toutefois, il est évident pour l'homme de l'art que la présente invention peut s'appliquer à d'autres types d'antennes fentes évasées connues sous le nom de « tapered slot antenna » en langue anglaise.
Comme représenté à la figure 1 , l'antenne conforme à la présente invention comporte un élément formant un substrat constitué d'une première partie 1 de substrat et d'une seconde partie 2 de substrat qui, dans le mode de réalisation représenté sont disposées perpendiculairement l'une à l'autre. De manière plus générale les deux parties 1 et 2 de substrat peuvent être pliées selon un axe O Y et former entre elles un angle A différent de 90°. En général, les deux parties de substrat sont formées par des substrats indépendants et dans la description partie de substrat ou substrat ont la même signification.
Comme représenté sur la figure 1 sur la face supérieure de la première partie du substrat 1 est imprimée une ligne micro ruban 3 d'excitation qui se prolonge par une première partie de la ligne d'adaptation 4a permettant l'alimentation de l'antenne fente par couplage électromagnétique, notamment selon le principe de Knorr. Sur la face inférieure de la première partie 1 du substrat est réalisé un plan de masse 5 dans lequel est gravée une partie 6 du profil de l'antenne fente. D'autre part, sur la face arrière de la deuxième partie 2 de substrat est gravée dans le plan de masse 7 la deuxième partie 8 du profil de l'antenne qui se prolonge par une fente 9 se terminant par un court circuit 10. Sur la face avant de cette deuxième partie 2 de substrat est imprimée la deuxième partie 4b de la ligne d'adaptation coupant la fente 9 à une longueur Λ//4 de son extrémité en court circuit et se terminant par exemple par un circuit ouvert sur une longueur de Am/4 (λί et λιτι étant respectivement les longueurs d'ondes guidées à la fréquence de fonctionnement de la fente et de la ligne microruban). Dans ce mode de réalisation comme mentionné ci-dessus, l'antenne fente de type Vivaldi est alimentée par couplage électromagnétique selon le principe connu de Knorr. Pour assurer un fonctionnement correct du dispositif, la face arrière 5 de la première partie 1 de substrat et la face arrière 7 de la deuxième partie 2 de substrat sont reliées électriquement. D'autre part, comme représentée sur la figure 1 , la ligne de pliage O Y entre la première partie 1 de substrat et la seconde partie 2 de substrat n'est pas réalisée selon l'axe s s' de la fente 9 de l'antenne Vivaldi mais parallèlement et à proximité de ce dit axe.
Il est connu de l'homme de l'art qu'une antenne planaire de type fente notamment une antenne Vivaldi, présente naturellement une polarisation linéaire, la direction de la polarisation étant donnée par le plan d'antenne. Ainsi selon ce nouveau concept où l'antenne est pliée suivant deux plans, le plus souvent orthogonaux comme représentée à la figure 1 , il en résulte une polarisation oblique à environ 45° suivant approximativement un plan reliant les deux extrémités de l'embouchure de l'antenne et colinéaire à l'axe Y, axe de symétrie longitudinale. Ainsi, comme représenté sur la figure 2 suivant que le profil horizontal de l'antenne est réalisée sur un côté 7 ou l'autre 7' de la seconde partie 2 de substrat, il en résulte une polarisation linéaire oblique à approximativement ± 45° suivant deux plans orthogonaux. Cela est représenté sur la figure 2 par une polarisation Yg pour un profil à gauche du plan vertical et une polarisation Ed pour un profil à droite du plan vertical.
On décrira maintenant avec référence aux figures 3, 4 et 5 plusieurs modes de réalisation de systèmes d'antennes multi-secteurs basés sur l'utilisation d'antennes imprimées directives de type Vivaldi telles que représentées à la figure 1 .
Ainsi, sur la figure 3, on a représenté un système constitué par deux antennes de type Vivaldi pliées. Plus particulièrement, ce système comporte un premier substrat 10 horizontal et deux seconds substrats 1 1 a et 1 1 b verticaux, interconnectés selon un axe commun OZ et faisant entre eux un angle C de 45°. Sur les surfaces externes des substrats 1 1 a et 1 1 b sont réalisés des plans de masse 12a et 12b dans lesquels est gravée une première partie de l'antenne de type Vivaldi comme représenté sur la figure 1 . La deuxième partie de l'antenne de type Vivaldi est gravée sur le plan de masse réalisé sur la face inférieure du premier substrat horizontal 10 dans le secteur 10a. D'autre part, les lignes d'alimentation 14a et 14b sont réalisées sur la face interne des deux seconds substrats 1 1 a, 1 1 b et se prolongent sur la face supérieure du premier substrat 10. Comme expliqué avec référence à la figure 2, dans ce cas chaque antenne bénéficie d'une polarisation dans un sens différent. L'une des antennes possède un profil horizontal à droite par rapport au substrat vertical 1 1 a et l'autre antenne possède un profil horizontal à gauche par rapport au substrat vertical 1 1 b. Il en résulte donc une orthogonalité des polarisations, ce qui permet une meilleure décorrélation des antennes.
On décrira maintenant avec référence aux figures 4, un autre mode de réalisation d'un système comportant quatre antennes de type Vivaldi telles que représentées à la figure 1 . Dans ce cas, le système comporte un premier substrat horizontal 20 sur lequel sont fixés perpendiculairement quatre seconds substrats 21 a, 21 b, 21 c, 21 d interconnectés selon un axe commun OZ. Ces quatre seconds substrats délimitent quatre secteurs 20a, 20b, 20c et 20d sur le premier substrat. Comme représenté sur la figure 4, des antennes de type Vivaldi pliées, comme sur le mode de réalisation de la figure 1 , ont été réalisées sur chaque second substrat (21 a, 21 b, 21 c, 21 d) et le substrat horizontal (20) de la manière représentée sur la figure 3. De manière plus précise, les antennes sont associées deux à deux de manière à ce qu'une partie des antennes soit gravée dans les secteurs 20a et 20c du premier substrat comme représenté sur la figure 4(b). Les deuxièmes parties d'antenne sont gravées sur les surfaces des seconds substrats externes à ces secteurs, à savoir dans les métallisations 22a, 22b, 22c, 22d réalisées sur les seconds substrats 21 a, 21 b, 21 c, 21d. Les lignes d'alimentation 23a, 23b et les lignes non représentées pour le secteur 20c sont réalisées sur les faces internes aux secteurs des seconds substrats concernés. On décrira maintenant avec référence aux figures 5a et 5b, un autre mode de réalisation d'un système antennaire conforme à la présente invention permettant d'obtenir une meilleure isolation entre les antennes. Dans ce cas, comme représenté sur les figures, on utilise un troisième substrat parallèle au premier substrat. De manière plus précise, sur les figures 5a et 5b on a représenté un système antennaire à huit antennes comportant un premier substrat horizontal 30 sur lequel sont montés perpendiculairement huit seconds substrats 31 a, 31 b, 31 c, 31d, 31 e, 31f, 31 g, 31 h interconnectés selon un axe OZ et un troisième substrat 32 horizontal parallèle au premier substrat 30. Cet ensemble détermine huit secteurs référencés a, b, c, d, e, f, g, h. Il est évident pour l'homme de l'art que les substrats 30 et 32 pourraient être réalisés sans être parallèles, les N seconds substrats faisant un angle A par rapport au premier substrat 30 et un angle B par rapport au troisième substrat 32. Comme représenté clairement sur les figures 5a et 5b, dans ce mode de réalisation, des antennes directives imprimées de type Vivaldi telles que représentées à la figure 1 ont été utilisées. Les antennes sont respectivement réalisées entre le premier substrat et un des seconds substrats pour les secteurs de rang pair, par exemple, et entre le troisième substrat et un des seconds substrats pour les secteurs de rang impair ou réciproquement. Ainsi, si l'on examine de manière plus particulière le secteur a délimité par les seconds substrats 31 a, 31 b sur la figure 5b, l'antenne directive imprimée est réalisée dans le plan de masse 33 du troisième substrat 32 et dans le plan de masse 34 du second substrat 31 a et est alimentée par la ligne d'alimentation 35, tandis que, comme représenté sur la figure 5a, pour le secteur h délimité par les seconds substrats 31 a et 31 h, l'antenne directive imprimée est gravée dans le plan de masse 37 du substrat 30 et dans le plan de masse 36 du second substrat 31 h et est alimentée par la ligne 38. Ainsi la présente invention permet d'obtenir un système d'antennes multifaisceaux beaucoup plus compact en hauteur que les systèmes de l'art antérieur décrit notamment dans les brevets mentionnés ci-dessus. D'autre part, la disposition des profils d'antennes est réalisée de manière à conserver l'orthogonalité des polarisations des antennes, les excitations des antennes se faisant du même côté des substrats verticaux comme représenté sur les figures.
On décrira maintenant, avec référence aux figures 6 à 1 1 , un autre mode de réalisation d'un système à six antennes conforme à la présente invention. Ce système a été réalisé pour être simulé à l'aide du solveur électromagnétique 3D par la méthode des éléments finis ANSYS/HFSS.
Comme représenté sur la figure 6, le système à six antennes comporte un premier substrat 40, six seconds substrats 41 a, 41 b, 41 c, 41 d, 41 e, 41 f et un troisième substrat 42, les substrats 40 et 42 étant parallèles l'un à l'autre et les six seconds substrats étant interconnectés selon un axe OZ et perpendiculaire aux deux premier et troisième substrats.
Comme représenté clairement sur les figures 6 et 7, les six antennes sont réparties alternativement sur les plans horizontaux 40 et 42 et sur les plans verticaux autours de l'axe OZ et le pas angulaire entre deux plans verticaux formés par les seconds substrats est de 60° . De manière plus précise une antenne Vivaldi conforme à la présente invention est donc réalisée dans chaque secteur impair en utilisant le premier substrat 40 et pour chaque secteur pair en utilisant le second substrat 42. On a donc une première antenne gravée dans le plan de masse 43.1 du premier substrat 40 et le plan de masse 44.1 du second substrat 41 a et alimenté par la ligne d'alimentation 45.1 . D'autre part, la seconde antenne est réalisée en gravant le plan de masse 43.2 sur le troisième substrat 42et le plan de masse 44.2 sur le second substrat 41 b puis alternativement pour le plan de masse 43.3 du premier substrat 40 et le plan de masse 44.3 sur le second substrat 41 c, 43.4 du troisième substrat 42 et le plan de masse 44.4 sur le second substrat 41 d, 43.5 du premier substrat 40 et le plan de masse 44.5 sur le second substrat 41 e et 43.6 du troisième substrat 42 et le plan de masse 44.6 sur le second substrat 41 f. Dans ce cas l'ensemble des antennes sont alimentées séparément comme représenté par les lignes d'alimentation 45.1 , 45.2, 45.3, 45.4, 45.5, 45.6 sur la figure7.
Le système décrit avec référence aux figures 6 et 7 a été simulé en utilisant pour les différents substrats 40, 41 a à 41 f et 42 un matériau connu sous la dénomination FR4 d'épaisseur 1 millimètre. Les substrats 40 et 42 sont des substrats de forme circulaire de diamètre 88 millimètres et les six seconds substrats 41 a à 41 f présentent une forme rectangulaire avec une hauteur de 22 millimètres et une largeur de 33 millimètres.
Les résultats des simulations électromagnétiques sont représentés sur les figures 8 à 1 1 . La figure 8 représente les courbes d'adaptation et d'isolation. On observe donc une adaptation de plus de 15 dB dans la bande WiFi 802.1 1 a, à savoir la bande comprise entre 5.15-5.85 GHz. On observe aussi une isolation entre deux antennes contigues de plus de 20 dB. Les figures 9 et 10 représentent le gain et la directivité des antennes respectivement réalisés sur le premier substrat 40 figure 9 ou sur le troisième substrat 42 figure 10. Les courbes montrent donc une directivité supérieure à 5 dBi et un gain supérieur à 4 dBi quelque soit le type d'antenne. La figure 1 1 représente le diagramme de rayonnement respectivement d'une antenne réalisée avec le premier substrat et d'une antenne réalisée avec le troisième substrat, on observe donc un maximum de champs sur deux plans obliques orientés de 45° par rapport aux deux plans des antennes formés du premier substrat 40 ou du troisième substrat 42.
On décrira maintenant avec référence à la figure 12 encore un autre mode de réalisation d'un système d'antennes conforme à la présente invention.
Dans ce cas, le premier substrat 50 et le troisième substrat 52 parallèle au premier substrat sont tous deux constitués par des rectangles et les seconds substrats 51 a, 51 b, 51 c, 51 d forment les faces d'un parallélépipède rectangle. Comme représenté sur la figure 12, pour réaliser huit antennes, on utilise dans ce mode de réalisation particulier, les arêtes du parallélépipède. De manière plus précise, une première antenne est réalisée en gravant le plan de masse 53 prévu sur la face 51 a d'un des seconds substrats et le plan de masse 54 prévu sur le premier substrat 50, tandis qu'une seconde antenne est réalisée en gravant le plan de masse 53.2 prévu sur la partie haute du second substrat 51 a et le plan de masse 54.2 prévu sur le troisième substrat 52. Un ensemble de deux antennes de ce type est réalisé sur chaque second substrat 51 b, 51 c, 51 d comme représenté sur la figure 12, donnant donc un système antennaire à quatre secteurs et à huit antennes directives imprimées de type Vivaldi, chaque paire d'antennes dans un secteur donné présentant des polarisations orthogonales.
On décrira maintenant succinctement avec référence à la figure 13, un mode de réalisation pratique d'une antenne directive imprimée de type fente évasée telle que représentée à la figure 1 . Dans ce cas, la première partie de substrat ou premier substrat 60 comporte le long de l'axe x x' formant pliure, un certain nombre de trous 62 métallisés. Cette partie de substrat 60 est munie de manière connue d'une métallisation 62 dans laquelle est réalisée le profil 63 de la partie d'antenne de type Vivaldi. Sur la face supérieure de la partie 60 est aussi métallisée une ligne d'alimentation 64 telle que décrit avec référence à la figure 1 . Comme représenté sur la figure 13, la seconde partie de substrat ou second substrat 65 est munie d'un certain nombre de picots 66 métallisés, le nombre et la forme des picots 66 correspondant au nombre et à la forme des trous 61 . De plus, sur cette seconde partie 65 est réalisée l'autre partie du profil de l'antenne de type Vivaldi gravée dans une métallisation 67. L'autre face de la partie 65 reçoit l'extension de la ligne d'alimentation 64 comme décrit avec référence à la figure 1 . Dans ce cas, la structure d'antenne pliée est facilement obtenue en insérant la partie 65 munie de picots 66 dans les trous 62 métallisés de la partie 60.

Claims

REVENDICATIONS
1 - Antenne directive imprimée de type fente évasée comprenant un substrat muni d'un plan de masse dans lequel est gravée la fente selon un profil présentant un axe longitudinal (oy) et une ligne d'alimentation (3) de la fente, caractérisée en ce que le substrat comporte au moins une première(1 ) et une deuxième parties (2) pliées selon un axe (ss') parallèle audit axe longitudinal et formant un angle A l'une par rapport à l'autre, une première partie (6) du profil de la fente étant gravée dans la première partie de substrat et une deuxième partie (8) du profil de la fente étant gravée dans la deuxième partie (2) du substrat.
2 - Antenne selon la revendication 1 , caractérisée en ce que l'angle A est un angle de 90°.
3 - Antenne selon la revendication 1 , caractérisée en ce que la ligne d'alimentation est une ligne en technologie micro-ruban réalisée sur la face du substrat opposée à la face recevant la fente.
4 - Antenne selon l'une des revendications 1 à 3, caractérisée en ce que le plan de masse (5,7) est réalisé sur une face inférieure ou externe des dites première et deuxième parties de substrat. 5 - Système d'antennes directives imprimées de type fente évasée comprenant un premier substrat (10,20) et N seconds substrats (1 1 a, 1 1 b ; 21 a, 21 b ;21 c,21 d), les N seconds substrats formant un angle A par rapport au premier substrat, le premier substrat et les N seconds substrats délimitant N secteurs, caractérisé en ce que, dans au moins un des secteurs est réalisée une antenne directive selon l'une des revendications 1 à 4, la première partie étant formée par le premier substrat et la seconde partie étant formée par un des seconds substrats. 6 - Système selon la revendication 5, caractérisé en ce qu'une antenne directive est réalisée dans chaque secteur de même rang, pair ou impair.
7 - Système d'antennes directives imprimées de type fente évasée comprenant un premier substrat (30 ; 40), un troisième substrat (32 ; 42) et N seconds substrats (31 a à 31 h ; 41 a à 41 f), les N seconds substrats formant un angle A par rapport au premier substrat et un angle B par rapport au troisième substrat, le premier substrat, le troisième substrat et les N second substrats délimitant N secteurs, caractérisé en ce que, dans au moins un des secteurs de rang pair ou impair est réalisée une antenne directive selon l'une des revendications 1 à 4, la première partie étant formée par le premier substrat et la seconde partie étant formée par un des seconds substrats et dans au moins un des secteurs de rang impair ou pair est réalisée une antenne directive selon l'une des revendications 1 à 4, la première partie étant formée par le troisième substrat et la seconde partie étant formée par un des autres seconds substrats. 8 - Système selon la revendication 7, caractérisé en ce que l'angle
A et l'angle B sont égaux à 90°.
9 - Système d'antennes directives imprimées de type fente évasée comprenant un premier substrat (50), un troisième substrat (52), les premier et troisième substrats étant de forme polygonale et N seconds substrats (51 a, 51 b, 51 c, 51 d), N correspondant au nombre de cotés du polygone , les N seconds substrats connectant le premier substrat au troisième substrat , caractérisé en ce que, au niveau d'au moins une des connections entre le premier substrat ou le troisième substrat et un des seconds substrats est réalisée une antenne directive selon l'une des revendications 1 à 4.
EP11802519.6A 2011-01-13 2011-11-30 Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente Not-in-force EP2664030B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150272A FR2970603A1 (fr) 2011-01-13 2011-01-13 Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente
PCT/FR2011/052822 WO2012095571A1 (fr) 2011-01-13 2011-11-30 Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente

Publications (2)

Publication Number Publication Date
EP2664030A1 true EP2664030A1 (fr) 2013-11-20
EP2664030B1 EP2664030B1 (fr) 2015-10-21

Family

ID=44512396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11802519.6A Not-in-force EP2664030B1 (fr) 2011-01-13 2011-11-30 Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente

Country Status (7)

Country Link
US (1) US20130285865A1 (fr)
EP (1) EP2664030B1 (fr)
JP (1) JP2014507858A (fr)
KR (1) KR20140004714A (fr)
CN (1) CN103597661A (fr)
FR (1) FR2970603A1 (fr)
WO (1) WO2012095571A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464958B (zh) * 2010-12-03 2014-12-11 Ind Tech Res Inst 天線結構及其所組成之多波束天線陣列
WO2015169394A1 (fr) * 2014-05-09 2015-11-12 Nokia Solutions And Networks Oy Configuration d'antenne améliorée
CN105680154B (zh) * 2014-11-20 2019-01-04 中国航空工业集团公司雷华电子技术研究所 一种可重构相控阵天线模块
US9577330B2 (en) * 2014-12-30 2017-02-21 Google Inc. Modified Vivaldi antenna with dipole excitation mode
CN106129593B (zh) * 2016-06-06 2018-10-02 合肥工业大学 一种二维宽角度扫描的全金属相控阵雷达天线单元
CN106450702B (zh) * 2016-11-23 2019-10-18 上海无线电设备研究所 一种宽带双线极化锥削槽天线
KR101952208B1 (ko) * 2017-06-29 2019-02-26 홍익대학교 산학협력단 힌지를 이용하여 편파 특성을 변경할 수 있는 안테나
JP6401835B1 (ja) * 2017-08-07 2018-10-10 株式会社ヨコオ アンテナ装置
JP6810004B2 (ja) * 2017-09-05 2021-01-06 Kddi株式会社 アンテナ装置
TWI677133B (zh) 2018-03-22 2019-11-11 國立交通大學 天線之信號線轉換結構
CN111987448B (zh) * 2020-09-18 2022-08-12 上海无线电设备研究所 一种双极化Vivaldi天线
TWI822148B (zh) * 2022-06-28 2023-11-11 國立臺北科技大學 穿戴式裝置的無線通訊天線
CN115224467B (zh) * 2022-08-03 2023-07-25 荣耀终端有限公司 包括天线的可折叠电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001834A (en) * 1975-04-08 1977-01-04 Aeronutronic Ford Corporation Printed wiring antenna and arrays fabricated thereof
JPS5735401A (en) * 1980-08-12 1982-02-26 Mitsubishi Electric Corp Electromagnetic wave lens element
GB2220303A (en) * 1988-06-29 1990-01-04 Philips Electronic Associated Dual polarised phased array antenna
SE500477C2 (sv) * 1992-11-20 1994-07-04 Jan Peter Edward Cassel Y-antenn
JP3216485B2 (ja) * 1995-08-04 2001-10-09 三菱電機株式会社 広帯域ノッチアンテナ
JP3445931B2 (ja) * 1998-04-15 2003-09-16 株式会社エヌ・ティ・ティ・ドコモ テーパースロットアンテナ
US6043785A (en) * 1998-11-30 2000-03-28 Radio Frequency Systems, Inc. Broadband fixed-radius slot antenna arrangement
US6414645B1 (en) * 2001-08-08 2002-07-02 The Boeing Company Circularly polarized notch antenna
US6876334B2 (en) * 2003-02-28 2005-04-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Wideband shorted tapered strip antenna
FR2873236A1 (fr) * 2004-07-13 2006-01-20 Thomson Licensing Sa Dispositif rayonnant omnidirectionnel large bande
US7444736B1 (en) * 2006-04-27 2008-11-04 Lockheed Martin Corporation Method for fabricating horn antenna
FR2909486A1 (fr) * 2006-12-01 2008-06-06 Thomson Licensing Sas Antenne multi secteurs
CN201017991Y (zh) * 2006-12-29 2008-02-06 黑龙江科技学院 一种3.1~10.6GHz Vivaldi超宽带天线
JP4772715B2 (ja) * 2007-03-09 2011-09-14 三菱電機株式会社 アンテナ装置
JP4924622B2 (ja) * 2009-01-21 2012-04-25 三菱電機株式会社 テーパスロットアンテナ及びこれを用いたテーパスロットアレイアンテナ装置
CN101707288B (zh) * 2009-11-13 2013-01-02 南京邮电大学 折叠式渐变槽线超宽带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012095571A1 *

Also Published As

Publication number Publication date
WO2012095571A1 (fr) 2012-07-19
US20130285865A1 (en) 2013-10-31
FR2970603A1 (fr) 2012-07-20
KR20140004714A (ko) 2014-01-13
EP2664030B1 (fr) 2015-10-21
CN103597661A (zh) 2014-02-19
JP2014507858A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
EP2664030B1 (fr) Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente
EP3073569B1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP2175523B1 (fr) Réseau réflecteur et antenne comportant un tel réseau réflecteur
EP1849213B1 (fr) Antenne dipole imprimee multibande
EP0783189A1 (fr) Antenne réseau plane hyperfréquence pour communiquer avec des satellites de télévision géostationnaires
WO2008065311A2 (fr) Antenne multi secteurs
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
CA2821242C (fr) Antenne et systeme d'antennes multifaisceaux comportant des sources compactes et systeme de telecommunication par satellite comportant au moins une telle antenne
CA2869648A1 (fr) Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
EP3843202B1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
FR2968846A1 (fr) Systeme d'antennes multifaisceaux
FR2953652A1 (fr) Systeme d'antennes multi secteurs
WO2021124170A1 (fr) Antenne à double polarisation
EP1188202B1 (fr) Dispositif d'emission et/ou de reception de signaux
FR2852150A1 (fr) Perfectionnement aux antennes a diversite de rayonnement
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
FR3102311A1 (fr) Antenne-reseau
EP4092831A1 (fr) Antenne à réseau de distribution lacunaire
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: NL

Ref legal event code: MP

Effective date: 20151021

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 757131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011020888

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151126

Year of fee payment: 5

Ref country code: GB

Payment date: 20151130

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151120

Year of fee payment: 5

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 757131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160122

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011020888

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

26N No opposition filed

Effective date: 20160722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011020888

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151021