EP2642060B1 - Fenster- oder Türflügel - Google Patents

Fenster- oder Türflügel Download PDF

Info

Publication number
EP2642060B1
EP2642060B1 EP13160348.2A EP13160348A EP2642060B1 EP 2642060 B1 EP2642060 B1 EP 2642060B1 EP 13160348 A EP13160348 A EP 13160348A EP 2642060 B1 EP2642060 B1 EP 2642060B1
Authority
EP
European Patent Office
Prior art keywords
profile
window
inner shell
corner angle
hollow chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13160348.2A
Other languages
English (en)
French (fr)
Other versions
EP2642060A1 (de
Inventor
Paulruedi Angehrn
Frank Hochuli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochuli Metallbau AG
Original Assignee
Hochuli Metallbau AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH00402/12A external-priority patent/CH706318A1/de
Priority claimed from CH00732/12A external-priority patent/CH706561B1/de
Application filed by Hochuli Metallbau AG filed Critical Hochuli Metallbau AG
Publication of EP2642060A1 publication Critical patent/EP2642060A1/de
Application granted granted Critical
Publication of EP2642060B1 publication Critical patent/EP2642060B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/54Fixing of glass panes or like plates

Definitions

  • the invention relates to a profile for a door or wing frame and a window or door wing with a wing frame with an inner shell with such a profile.
  • a window sash geometrically requires a certain sash width to be opened. The greater the depth, the greater the minimum radius required. The sash widths are specified in the renovation work, so that the latest generation of windows cannot be installed here.
  • Conventional metal window sash ( Fig. 1 ) have a casement 209 consisting of an inner shell 211, a mandatory outer shell 213 and multiple glazing 215, which is arranged between the inner and outer shell.
  • the multiple glazing 215 comprises two or three glass panes 217, 219 which are connected to one another at the edge by means of a spacer 221.
  • the space 223 between the glass panes can have an inert gas filling. This way you can be
  • This in Figure 1 window shown is a metal window in which the inner and outer shell made of one or more aluminum profiles 225.227, respectively. 229 is formed.
  • Inner shell and outer shell are held together by a glass fiber reinforced plastic seal 231, usually made of polyamide.
  • the polyamide seal 231 is with the aluminum profiles 225.227, respectively. 229 positively and / or non-positively connected, so that a load-bearing composite structure is created.
  • the multiple glazing 215 rests on a glass support 233, which is supported on the inner shell and the outer shell (profile 229).
  • the glass support 233 can be formed, for example, by a local piece of wood.
  • the sash frame 209 is still the weak point with regard to thermal conductivity, even in modern windows. There are usually cold bridges here, which noticeably increase the overall thermal conductivity coefficient of the window sash. Also sophisticated seals with several separate chambers, as in Fig. 1 air convection and thus heat exchange cannot be prevented. For this reason, the measured u-value of such windows differs depending on the installation position (horizontal or vertical). If the ideal installation position is deviated from, the u-value deteriorates by up to 30 to 50%.
  • the European patent application EP-A1-2 314 815 shows a window consisting of a window sash and a window frame.
  • the window casement comprises an inner and an outer profile, between which a double glazing is arranged.
  • the inner and outer profile are connected to each other by a seal.
  • the window frame also includes an inner and an outer profile, which are connected to each other via a seal.
  • an insulating profile is arranged on the inside of the outer profile, which according to a second embodiment can extend with one leg to the inner profile.
  • the insulating profile has a foamed core made of PVC and a coating made of a thermoplastic material such as PVC.
  • the profile mentioned has only an insulating and no static effect and is arranged in the window frame and not in the window casement.
  • the EP-A1-1 201 868 shows a window with a fixed window and a pivotable window casement. Both frames have inner and outer profiles, which are connected by a seal. According to an exemplary embodiment shown, an elongated channel with an undercut is provided on the inner profile of the window casement. In this channel an extension of a glass support is received, which extends below the multiple glazing. The glass support serves to absorb and remove the weight of the multiple glazing.
  • the WO 2011/032193 discloses a sash and a stick frame, which are each composed of an inner and an outer profile made of aluminum.
  • the inner and outer profile are connected to a profile bar by means of an insulating part.
  • the insulating part consists of a fine-pored, homogeneous polyurethane plastic with a thermal conductivity in the range of ⁇ ⁇ 0.024 W / mK, a compressive strength of 140 to 160 Kg / cm 3 and an impact resistance of about 25 mJ / mm2.
  • these partial profiles have anchoring strips for the absorption of the liquid polyurethane foam.
  • the DE-OS-10 2008 009 495 discloses a method for producing a profile strip with a foamed insulating core and a covering surrounding the insulating core, in which method first an insulating core is produced in a first molding tool and then extrusion-coated with a rigid coating in a second molding tool. Both the insulation core and the sheathing preferably consist of polyurethane.
  • the profile strip is used to manufacture a window sash and a window frame.
  • a fiber mat section made of CFRP fabric can be embedded in the cover at these points.
  • the entire profile strip also has a U- or S-shaped rail for reinforcement inside, which is completely embedded in the polyurethane core. This makes it possible to support the load of the glazing on the profile strip.
  • a window or a door consisting of a frame, a casement and a glazing inserted into the frame or casement.
  • the frame and casement consist of predefined mass cut to length and joined together at the corners to form the frame or sash profiles.
  • the frame or sash profiles have a core made of a closed-cell rigid foam, for example polystyrene foam, and a shell made of profiles which are connected to the core by means of gluing and pressing together.
  • the polystyrene foam of the core has a bulk density of approx. 45 kg / m3 and a thermal conductivity of 0.03 to 0.035 W / mK.
  • the compressive strength is 0.7 N / mm2.
  • the Swiss patent CH 552 123 A discloses a wing frame made of aluminum consisting of a room-side support frame and an outer support frame.
  • the supporting frame and the holding frame are connected to each other by means of aluminum brackets.
  • the support frame consists of an aluminum profile with a hollow chamber on which a groove with an undercut is provided on the window side. This groove serves to accommodate the brackets mentioned above.
  • the base of the bracket is covered with a plastic.
  • the EP 1 712 719 A1 discloses a window casement whose inner shell is made from an extruded aluminum profile. A polyamide seal is rolled into two grooves of the aluminum profile. Attached to it is a second seal that bears against the outside of the window and carries a drip rail.
  • the windows described at the beginning have in common that the glazing is accommodated at the edge between the inner shell and the outer shell.
  • the inner shell can also be formed by a glass retaining strip, which is attached to a profile. In the edge area, however, the flat side of the glazing is not connected to the inner shell.
  • the invention relates to a door or a window sash with a sash frame, which consists of an inner shell and an outer shell.
  • a filling e.g. multiple glazing with two, three or more panes of glass, is arranged between the inner and outer shell.
  • the inner and outer shell are thermally separated from one another by insulation, ie by a region of low thermal conductivity, in order to largely prevent heat exchange between the surroundings and the interior of the building.
  • the insulation usually in the form of a plastic profile or web, connects the inner to the outer shell. According to the present invention, however, it is also conceivable to dispense with the outer shell.
  • the filling is now connected to the inner shell by a form-fitting and / or material connection, so that the inner shell is additionally stiffened by the filling.
  • the weight is also removed directly through the inner shell.
  • the insulation between the inner and outer shell is due to a foamed, fine-pored plastic body with a ⁇ value of preferably ⁇ 0.05 W / m K and a compressive strength between 1 and 5 N / mm 2 , preferably between 1 and 3 N / mm 2 and particularly preferably realized between 1.4 and 2.3 N / mm 2 .
  • the filling is carried only by the inner shell and not additionally by the outer shell and / or the thermal insulation, as is usually the case with conventional sash frames.
  • the supporting function and insulation function are thus completely separated from one another.
  • the material connection and / or interlocking connection acting between the filling and the inner shell carries the weight of the filling practically completely away from the inner shell. This allows a fine-pored plastic with the above-mentioned physical properties to be used as insulation, because it no longer has an essential supporting function.
  • the glass retaining strip is integral with the profile of the inner shell. This means that the glass retaining strip is designed so that it can absorb and remove the weight of the glazing.
  • the integral connection can be realized, for example, by a peripheral, circumferential adhesive point. This can take up a strip of width between 1 and 6 cm, preferably between 2 to 5, and particularly preferably 2.5 to 4 cm on the flat sides of the filling.
  • a glass support element can be provided. By separating the load-bearing and insulation functions, the insulation only has to support the edge bond or the relatively light outer shell. With an integral window, the insulation only has to be able to support its own weight. On the other hand, the insulation should have such a pressure resistance that it is not compressed when the window sash is put down. Accordingly, an insulation body with low compressive strength and therefore an even better insulation value can be used as the insulation material.
  • a foamed fine-pored plastic with a compressive strength between 0.5 and 5 N / mm 2 and preferably between 1 and 3 N / mm 2 and particularly preferably between 1.4 and 2.3 N / mm 2 best meets these requirements.
  • polyamide seals which usually have several chambers, are no longer used.
  • window sashes or doors with a shallow depth and a low u-value can be produced. So with a thickness of the filling resp. the multiple glazing between 44 and 52 mm a depth of a window sash of less than 90 and preferably less than 85 mm, specifically between 78 and 82 mm can be achieved. This makes the window sash also suitable for renovations.
  • the positive connection is formed by a corner angle profile.
  • the corner angle profile is attached directly to the inner shell. Due to the fact that the corner angle profile lies against the filling on two side edges, the filling is fixed on the inner shell.
  • the corner angle profile can be made from an L-profile.
  • One leg of the L-profile can be fixed to the inner shell by means of screws or gluing or by means of a positive connection.
  • the other leg of the L-profile serves as a stop for the side edges of the filling, with the filling preferably also being jammed.
  • At least two corner angle profiles are arranged in two diagonally opposite corners of the window sash.
  • Such an arrangement of the corner angle profiles achieves a high degree of rigidity of the window sash, so that torsion of the frame is prevented, especially when the panel is additionally blocked.
  • the filling is clamped between the corner angle profiles and the inner shell is stiffened by the filling.
  • the corner angle profile is expediently arranged on the hinge side in the lower corner of the window sash. This allows the main load to be transferred directly to the hinges.
  • load-bearing corner angle profiles are provided in all four corners.
  • the corner angle profile also advantageously serves as mechanical securing of the filling or glazing.
  • an angle can be fastened or molded onto the corner angle profile.
  • the mechanical fuse ensures that the filling, resp. (Multiple) glazing cannot detach from the inner shell. It is also conceivable that that Corner angle profile on the inner surface, on which the filling strikes the corner angle profile, is corrugated.
  • the corner angle profile is preferably made of fiber-reinforced plastic, in particular of a plastic from the group of polyamides, polycarbonates, polyethers, polystyrenes, polyethylene, polypropylene, polyamide being preferred.
  • the plastic can also include a proportion of recycled material and / or expanded parts.
  • Fiber-reinforced plastic has a low thermal conductivity and can be manufactured with sufficient flexural strength so that such a corner profile can bear the load of the multiple glazing. Because the corner angle profile is advantageously not in contact with the outer shell, this does not result in any noticeable heat exchange.
  • the bending strength of the corner angle profile is advantageously greater than 2 N / mm2, preferably greater than 4 N / mm2 and particularly preferably greater than 15 N / mm2.
  • the legs of the corner angle profile advantageously have a length of less than 30 cm and preferably less than 20 cm and particularly preferably less than 8 cm. Any gap between the insulation and the multiple glazing - due to the thickness of the corner profile - can be filled with a sealing profile or a plastic foam.
  • the first leg of the corner angle profile expediently has a width which essentially corresponds to the thickness of the filling.
  • the insulation body is advantageously an expanded polystyrene particle foam or a foamed PET plastic. These plastics have excellent insulation properties and can be manufactured with the required strength.
  • the plastic can more suitably have a specific weight of ⁇ 180 kg / m3, preferably ⁇ 160 kg / m3, and particularly preferably ⁇ 130 kg / m3, but at least 80 kg / m3 (measured according to the current ISO standard 845 in force ).
  • the ⁇ value of the insulation body is preferably less than 0.08 W / m * K, preferably less than 0.06 W / m * K and particularly preferably less than 0.04 W / m * K.
  • the inner shell, insulation and an optional outer shell advantageously form a composite structure.
  • the insulation body can be glued and / or rolled or otherwise connected to the inner shell and to the outer shell, if there is one.
  • the insulation body expediently has a thickness of> 15 mm, preferably> 25 mm and particularly preferably> 35 mm.
  • the inner shell advantageously comprises a profile, in particular a metal, wood or plastic profile.
  • a profile in particular a metal, wood or plastic profile.
  • a support for the corner angle profile is preferably provided on the profile.
  • the load of the multiple glazing is introduced directly into the inner shell. It is advantageous at the front of the profile, i.e. facing away from the room, a second groove is provided in which the second leg of the angle profile is received.
  • a corner connector is preferably arranged in the profile (hollow chamber) of the inner shell adjacent to the first corner angle profile.
  • a hinge can be attached to this to transfer the weight of the window sash directly into the window frame.
  • a one-piece profile for the inner shell of a door or casement frame has a substantially rectangular hollow chamber which extends over the entire length of the profile.
  • the profile is characterized in that a first groove is provided on the outside of a first hollow chamber wall, the free leg of which runs parallel to the first hollow chamber wall and the groove opening of which is parallel to a second hollow chamber wall adjacent to the first hollow chamber wall.
  • a projection is provided on the outside of the first hollow chamber wall at a distance from the groove opening.
  • a hollow chamber wall is any wall that forms the hollow chamber space at least in certain areas.
  • the groove advantageously has undercuts for receiving the insulation.
  • the insulation is positively and non-detachably connectable to the profile.
  • the insulation can additionally be glued and / or rolled up to the profile.
  • a web parallel to the first hollow wall is expediently provided on the second hollow wall. This web can serve as a fastening web, e.g. for fastening the profile to a wooden frame.
  • an insertion groove for a seal can be provided at the free end of the web in order to seal the profile against a window or door frame.
  • the web can be an extension of the third chamber wall.
  • a fitting groove can also be provided on the second hollow chamber wall. This is used to hold fittings for opening, closing and swiveling door and window sashes. Further advantageous features can be found in the remaining description.
  • the insulation body preferably has a lamination made of synthetic resin in some areas.
  • an insulation body preferably a fine-pored plastic that is as stable as possible and has the smallest possible ⁇ -value
  • an excellent thermal separation of the outer and inner shell can be achieved without the structural principle of the conventional window mentioned at the outset having to be changed significantly.
  • the glass fiber reinforced polyamide seals present in conventional metal windows are replaced by a preferably laminated, fine-pored insulation body.
  • the lamination enables the fine-pored insulation body, which by itself does not have sufficient load-bearing capacity, to be reinforced to such an extent that the composite material produced can completely replace the conventional polyamide seals.
  • the lamination is provided with a fiber reinforcement.
  • the fiber reinforcement can be through a fiber fabric, mat, nets, aligned roving strands, mostly unidirectional or undirected fiber layers and the like can be formed. This means that the fiber reinforcement can be targeted to the main stress directions to be expected.
  • the majority of the fibers of the fiber reinforcement preferably extend transversely to the longitudinal extension of the profiles.
  • the lamination is advantageously integrally connected to the insulation body. This results in a stable bond between the insulation body and the fiber reinforcement.
  • the lamination is expediently provided on at least one side of the insulation body, namely either on that side which faces the filling or faces away from the filling.
  • a lamination on at least one side enables the plastic body to already perform the required supporting function.
  • the lamination on opposite sides of the plastic body namely on the long sides, which the filling or.
  • Multiple glazing facing and facing away should be provided.
  • the long sides mentioned can thus act as tension and pressure bars. From a production point of view, however, it can also make sense to provide the insulation body with a lamination on all sides or at least on all the long sides.
  • the lamination can extend at least partially onto the inner shell and preferably onto the outer shell.
  • the inner shell and optionally also the outer shell can thus be connected to the insulation body in a force-locking and preferably positive manner.
  • the one in the Figures 2 to 4 shown frame 9 of a window sash according to the invention has an inner shell 11 and an optional outer shell 13, which are thermally insulated.
  • the inner and outer shell are formed by metal profiles 15, 17, in particular aluminum profiles.
  • the metal profiles 15, 17 are connected to one another by means of thermal insulation.
  • the thermal insulation is formed by an insulation body, in particular a foamed, fine-pored plastic body 19, which is received in grooves 21, 23 of the profiles and is non-detachably connected.
  • the insulation body 19 is preferably rolled into the aluminum profiles, that is to say held in place by undercuts in the grooves 21, 23 and possibly glued (see below description of the Figures 7 to 10 ).
  • a first corner angle profile 25 is provided, which is fastened to the inner shell and / or is supported on the latter.
  • the corner angle profile 25 with the two legs 24, 26 arranged at right angles to one another is produced from an angle profile 27.
  • the angle section 27 has a first leg 29 in cross section, which as a support or stop for the multiple glazing (in the 2 to 4 not shown) and a second leg 31, which is form-fitting is preferably received in a groove 33 of the profile 15.
  • a projection 35 which is provided at a distance from the free leg 37 of the groove 33, serves as a support for the angle profile leg 29.
  • the distance between the end face 39 of the groove 33 and the projection 35 preferably corresponds to the thickness of the leg 29.
  • leg 37 is conceivable as long as it is ensured that the weight of the multiple glazing is essentially completely diverted to the inner shell 11.
  • the groove advantageously has a depth of at least 10 mm and preferably at least 15 mm. The fact that the corner angle profile 25 extends around the corner of the window sash frame results in a particularly rigid construction.
  • a corner connector 41 is provided adjacent to the corner angle profile 25 and is received in a hollow chamber 43 of the profile 15 ( Fig. 3 ).
  • the corner connector 41 is preferably a stable square profile with strong walls, so that a hinge 50 can be fastened to it by means of appropriate screws, rivets or the like (not shown in the figures) (see FIG. Fig. 4 ).
  • a fitting groove 44 is provided below the hollow chamber 43, which is used to hold conventional fittings.
  • a web 46 adjoins the wall of the profile 15 on the inside of the building, on the free end of which a sealing groove 48 is provided for receiving a plastic seal.
  • the corner angle profile 25 and the corner connector 41 are shown in more detail. It is important for the corner angle profile 25 that it has the smallest possible thermal conductivity coefficient. It is therefore preferably made of a fiber-reinforced plastic. Glass, carbon, natural, aramid fibers and fibers with similar properties can be considered as reinforcements.
  • the rigidity of the corner angle profile can be increased by appropriate orientation of the fibers in the longitudinal direction of the legs 29, 31 and by the use of rovings.
  • the length of the leg 29 is preferably selected such that there is no contact between the corner angle profile 25 and the outer shell 13.
  • a small air gap of 0.5 to 5 mm, preferably 1 to 2 mm, can also be present between the corner angle profile and the insulation 19. However, there is preferably no gap between the insulation and the side faces of the multiple glazing or filling.
  • a single corner angle profile 25 is to be provided in at least two corners of a window sash.
  • it can be provided in the two lower corners of a window sash or, according to the preferred embodiment, in two diagonally opposite corners of the window sash.
  • a corner profile should preferably be arranged on the hinge side in the lower corner.
  • the embodiment according to Fig. 7 shows a metal window in section.
  • the multiple glazing consists of triple glazing with an inner glass pane 45, a middle glass pane 47 and an outer glass pane 49, which panes are spaced apart from one another by spacer blocks 51.
  • compensating elements 53 such as compensating sticks, can be provided (blocking). It can be seen that the multiple glazing is firmly connected to the profile 15 by an adhesive layer 54.
  • the direct gluing with the profile 15 has the advantage that a glass support is no longer absolutely necessary, although one in the Figure 7 is still drawn.
  • a profile 57 serving as a weather protection profile is inserted into the outer profile 17 in a groove 55.
  • a seal 59 is provided which seals the outer shell and the outer glass pane 49 against one another.
  • the plastic core 63 which is preferably made of the same material as the insulation body 19, is firmly connected to an outer profile 65 and an inner profile 67.
  • a sealing profile 69 arranged on the inside on the outer profile 65 serves to seal a gap 64 present between the insulating body 19 and the plastic core 63.
  • the wall connection part 61 is attached and fastened in the reveal of a window opening (not shown in the figure).
  • the embodiment according to Figure 8 differs from the window according to Figure 7 in that the window frame 61 and the inner shell are partially made of wood on the room side.
  • the inner shell 11 consists of a wooden profile 70, in which a metal profile 72 is received in a fold 71.
  • the metal profile 72 is firmly connected to the outer shell 13 via the plastic body 19.
  • the metal profile 72 like the profile 15 ( Figure 7 ) a groove 33, which serves to receive the angle profile leg 31.
  • the interaction of groove 33 and projection 35 results in a positive fit with little play for the corner profile 25 used.
  • the glazing is permanently attached to the outside of the leg 37 by means of an adhesive layer 54.
  • Fig. 10 The variant according to Fig. 10 is characterized in that a window sash is combined with a fixed glazing. Otherwise, the structure is the same as for the window sash from Fig. 7 .
  • a double window sash is shown, the window sash of which can be opened in the same or opposite directions of rotation.
  • a middle cuff 73 is arranged, on which the upper sash strikes. Otherwise, this version corresponds to the one already described, so that it does not need to be discussed in more detail.
  • a composite insulation body is provided as insulation, comprising a fine-pored, dimensionally stable and pressure-resistant insulation body made of a material as described above and an optional lamination 74 made of a synthetic resin and an optional fiber reinforcement (in Figure 11 not apparent).
  • the lamination 74 is provided only on the longitudinal side 75 facing the filling 76 (here: multiple glazing) and on the side 77 facing away from the filling 76.
  • the lamination 74 is provided at least on all long sides of the insulation body 19.
  • the lamination extends into the grooves 21 of the metal profile 15 and preferably into the grooves 23 of the metal profile 17, where undercuts 79 or. 81 a positive connection is realized. It is conceivable that the insulation body is laminated only on the side surfaces oriented toward the inner profile 15 and the outer profile 57, including the projections.
  • the undercuts 79, 81 are formed by "rolling in", a method in which the plastic material is partially encompassed by deforming aluminum webs.
  • the composite insulation body can also withstand a large transverse tensile force in the longitudinal direction
  • at least the end face 83 of a first projection 87 connected to the body is firmly glued to the profile 15 of the inner shell 11.
  • the end face 89 of a second projection 91 can also be firmly glued to the profile 17 of the outer shell 13.
  • the projections 89, 91 can be made of the same or a different material as the composite insulation body.
  • the window frame 61 also preferably has a laminated insulation body 93.
  • the insulation body 93 can consist of the same material as the insulation body 19 and is also preferably rolled into the profiles 65, 67 by means of molded projections 103, 105.
  • the profile 67 has grooves 95, the side walls of which form undercuts 97.
  • the profile 65 has grooves 99, the side walls of which form undercuts 101.
  • the projections 103, 105 of the insulating body 93 are held in a form-fitting manner in the grooves 95.99.
  • two projections 103 and 105 are provided on the side walls 107, 109 of the plastic core 93, which are rolled into corresponding grooves 95.99.
  • the side walls 107, 109 are glued to the inner surfaces of the profiles 65, 67 at least in regions and preferably essentially over the entire area.
  • the projections 87, 91 respectively. 99,101 made of a different material than the rest of the plastic core 93.
  • the projections are formed by a polyamide profile.
  • the polyamide profile can in turn be extrusion-coated with the fine-pored material of the plastic core 93 or in some other way. be connected by positive locking or gluing.
  • all or at least most of the rebate volume between the window sash and the window frame is preferably filled by a sealing body 111.
  • a special feature of this window construction is that over at least half and preferably over at least 2/3 of the thickness of the plastic body 19
  • Plastic core 93 abuts or releases only a minimal gap of less than 3 mm and preferably less than 1 mm. This construction, which is an independent aspect of the invention, largely prevents heat exchange in the space between the casement and the window frame.
  • the sealing body 111 can be a co-extruded sealing profile with a first section 113 made of a first plastic and a second section 115 made of a second plastic.
  • the second plastic is preferably an elastomer, e.g. based on olefin or urethane, or a thermoplastic polyamide.
  • the second section 115 of the sealing body advantageously has a plurality of chambers 117 arranged one behind the other, which in their area fill the space between the casement and the window frame.
  • the sealing body 111 is received on the one hand in a sealing groove 119 provided in the profile 67 and on the other hand in a recess 121.
  • Fig. 12 differs from that of Fig. 11 essentially in that the plastic bodies 19, 93 are provided on all sides with a lamination 74. It can also be seen that the filling 76 rests on a glass support 123 which is supported on the one hand on the inner shell 15 and on the other hand on the outer shell 17.
  • Plastics whose properties correspond to the values given in at least one of the physical parameters below are preferably used as insulation.
  • the ideal values are in the following ranges: parameter standard dimension Area density ISO 845 Kg / m 3 100 to 210, preferably up to 160 Compressive strength ISO 844 N / mm 2 1.4 to 2.3 Print module vertical DIN 53421 N / mm 2 80 to 120 Vertical tensile strength ASTM C297 N / mm 2 2.0 to 2.8 Tensile module vertical ASTM C297 N / mm 2 100 to 180 Shear resistance ISO 1922 N / mm 2 0.75 to 1.3 Shear elongation ISO 1922 % 7 to 11 Thermal conductivity ISO 8301 W / m K 0.032 to 0.041 or max. 0.041

Description

  • Die Erfindung betrifft ein Profil für einen Tür- oder Flügelrahmen und einen Fensteroder Türflügel mit einem Flügelrahmen mit einer Innenschale mit einem solchen Profil.
  • Stand der Technik:
  • Mit Hochdruck sucht die herstellende Industrie von Metall-Verbund-Systemen (MVS für wärmegedämmte Aluprofile) derzeit nach Lösungen, den Energiebedarf an Gebäuden deutlich zu senken. In Deutschland besteht sogar eine Verordnung, gemäss welcher ab 2019 alle öffentlichen Gebäude als Plusenergie Gebäude zu bauen sind. Plusenergie Häuser sind die Fortsetzung von Passivhäusern. Passivhäuser haben keine Heizung mehr eingebaut. Plusenergiehäuser geben sogar noch Energie ab. Energie wird dabei aus latenter Wärme (Kochen, Duschen, Geräte, Menschen,...) und solaren Gewinnen (grosse Fenster, Warmwasserkollektoren und Photovoltaik) gewonnen, sowie durch Wärmerückgewinnung aus dem Luftwechsel beim Lüften und aus dem Abwasser gewonnen.
  • Gängige Fensterkonzepte sind nur durch Vergrösserung der Bautiefe in ihrer Wärmedämmung zu verbessern. Gegenwärtig ist die Branche daran, die derzeitige Bautiefe von 70mm auf 80mm zu erhöhen, und es gibt schon erste marktreife Fenstersysteme mit 90mm Bautiefe.
  • Grosse Bautiefen von Fensterprofilen sind in der Bearbeitung (präziser Zuschnitt, präzises Fügen) äusserst anspruchsvoll. Zudem führen grosse Bautiefen geometrisch zu Problemen. Weil an Fenstern der Drehpunkt exzentrisch angebracht ist, benötigt ein Fensterflügel geometrisch eine gewisse Flügelbreite, um sich öffnen zu lassen. Je grösser die Bautiefe, desto grösser wird der nötige minimale Radius. Im Sanierungsbau sind die Flügelbreiten vorgegeben, sodass hier gar keine Fenster neuester Generation eingebaut werden können.
  • Konventionelle Fensterflügel aus Metall (Fig. 1) besitzen einen Flügelrahmen 209 bestehend aus einer Innenschale 211, einer zwingenden Aussenschale 213 und einer Mehrfachverglasung 215, welche zwischen der Innen- und der Aussenschale angeordnet ist. Die Mehrfachverglasung 215 umfasst zwei oder drei Glasscheiben 217,219, welche randseitig mittels eines Distanzhalters 221 miteinander verbunden sind. Zur Reduzierung der Wärmeleitfähigkeit kann der Raum 223 zwischen den Glasscheiben eine Edelgasfüllung aufweisen. Auf diese Weise lassen sich
  • Mehrfachverglasungen mit einem Wärmeleitfähigkeitskoeffizienten < 0.5 W/m2 K herstellen, die jedoch relativ teuer sind.
  • Das in Figur 1 gezeigte Fenster ist ein Metallfenster, bei welchem die Innen- und Aussenschale aus einem oder mehreren Aluminiumprofilen 225,227 resp. 229 gebildet ist. Innenschale und Aussenschale sind durch eine glasfaserverstärkte Kunststoffdichtung 231, meist aus Polyamid, zusammengehalten. Die Polyamiddichtung 231 ist mit den Aluminiumprofilen 225,227 resp. 229 form- und/oder kraftschlüssig verbunden, sodass eine tragende Verbundstruktur geschaffen ist. Die Mehrfachverglasung 215 ruht dabei auf einem Glasauflager 233, welches sich auf der Innenschale und der Aussenschale (Profil 229) abstützt. Das Glasauflager 233 kann beispielsweise durch ein örtliches Holzstück gebildet sein.
  • Schwachstelle bezüglich Wärmeleitfähigkeit ist auch bei modernen Fenstern immer noch der Flügelrahmen 209. Hier bestehen meist Kältebrücken, die den Gesamtwärmeleitfähigkeitskoeffizienten des Fensterflügels merklich erhöhen. Auch ausgeklügelte Dichtungen mit mehreren voneinander getrennten Kammern, wie in Fig. 1 gezeigt, können Luftkonvektion und damit einen Wärmeaustausch nicht verhindern. Aus diesem Grund ist der gemessene u-Wert von solchen Fenstern je nach Einbaulage (horizontal oder vertikal) verschieden. Wird von der idealtypischen Einbaulage abgewichen, verschlechtert sich der u-Wert um bis zu 30 bis 50%.
  • Die europäische Patentanmeldung EP-A1-2 314 815 zeigt ein Fenster bestehend aus einem Fensterflügel und einem Fensterrahmen. Der Fensterflügelrahmen umfasst ein inneres und ein äusseres Profil, zwischen welchen eine Doppelverglasung angeordnet ist. Inneres und äusseres Profil sind über eine Dichtung miteinander verbunden. Der Fensterrahmen umfasst ebenfalls ein inneres und ein äusseres Profil, welche über eine Dichtung miteinander verbunden sind. Zwecks Isolation ist an der Innenseite des äusseren Profils ein isolierendes Profil angeordnet, welches gemäss einer zweiten Ausführungsform mit einem Schenkel bis zum inneren Profil reichen kann. Das isolierende Profil besitzt einen geschäumten Kern aus PVC und eine Beschichtung aus einem thermoplastischen Material wie PVC. Das erwähnte Profil hat ausschliesslich eine isolierende und keine statische Wirkung und ist im Fensterrahmen und nicht im Fensterflügelrahmen angeordnet.
  • Die EP-A1-1 201 868 zeigt ein Fenster mit einem feststehenden Fenster- und einem verschwenkbaren Fensterflügelrahmen. Beide Rahmen besitzen innere und äussere Profile, welche mittels einer Dichtung miteinander verbunden sind. Gemäss einem gezeigten Ausführungsbeispiel ist am inneren Profil des Fensterflügelrahmens ein länglicher Kanal mit einer Hinterschneidung vorgesehen. In diesem Kanal ist ein Fortsatz eines Glasauflagers aufgenommen, welches sich unterhalb der Mehrfachverglasung erstreckt. Das Glasauflager dient dazu, das Gewicht der Mehrfachverglasung aufzunehmen und abzutragen.
  • Die WO 2011/032193 offenbart einen Flügel- und einen Stockrahmen, welche jeweils aus einem Innen- und einem Aussenprofil aus Aluminium zusammengesetzt sind. Das Innen- und das Aussenprofil sind mittels eines Isolierteils zu einem Profilstab verbunden. Das Isolierteil besteht aus einem feinporigen, homogenen Polyurethan-Kunststoff mit einer Wärmeleitfähigkeit im Bereich von λ < 0.024 W/mK, einer Druckfestigkeit von 140 bis 160 Kg/cm3 und eine Schlagzähigkeit von etwa 25 mJ/mm2. Um die Aussen- und Innenprofile miteinander über die Isolierteile verbinden zu können, weisen diese Teilprofile Verankerungsleisten für die Aufnahme des flüssigen Polyurethanschaumes auf.
  • Die DE-OS-10 2008 009 495 offenbart ein Verfahren zur Herstellung einer Profilleiste mit einem geschäumten Dämmkern und einer den Dämmkern umgebenden Umhüllung, bei welchem Verfahren zuerst ein Dämmkern in einem ersten Formwerkzeug hergestellt und dann in einem zweiten Formwerkzeug mit einer starren Umhüllung umspritzt wird. Vorzugsweise bestehen sowohl Dämmkern als auch Umhüllung aus Polyurethan. Die Profilleiste dient der Herstellung eines Fensterflügels und eines Fensterrahmens. Um ein Ausbrechen der Umhüllung im Bereich der Beschlagteile beim Angriff höherer Zug- oder Druckkräfte zu verhindern, kann an diesen Stellen in die Umhüllung ein Fasermattenabschnitt aus CfK-Gewebe eingebettet sein. Die gesamte Profilleiste weist zudem zur Verstärkung im Innern eine U- oder S-förmige Schiene auf, welche vollständig im Polyurethankern eingebettet sind. Dadurch ist es möglich, die Last der Verglasung auf der Profilleiste abzustützen.
  • Aus der WO 97/22779 ist ein Fenster oder eine Tür bekannt, bestehend aus einem Blendrahmen, einem Flügelrahmen und einer in den Blendrahmen oder Flügelrahmen eingesetzter Verglasung. Die Blendrahmen und Flügelrahmen bestehen aus auf vorgegebene Masse abgelängte und durch Verbinden an den Ecken zu den Rahmen zusammengefügten Blendrahmen- bzw. Flügelrahmenprofilen. Die Blendrahmen- bzw. Flügelrahmenprofile besitzen einen Kern aus einem geschlossenzelligen Hartschaumstoff, z.B. Polystyrolschaumstoff und eine Schale aus Profilen, welche mittels Kleben und Zusammenpressen mit dem Kern verbunden werden. Der Polystyrolschaumstoff des Kerns hat eine Rohdichte von ca. 45 Kg/m3 und eine Wärmeleitfähigkeit von 0.03 bis 0.035 W/mK. Die Druckfestigkeit beträgt 0.7 N/mm2.
  • Das schweizerische Patent CH 552 123 A offenbart einen Flügelrahmen aus Aluminium bestehend aus einem raumseitigen Tragrahmen und einem aussenliegenden Halterahmen. Tragrahmen und Halterahmen sind mittels Halterungen aus Aluminium, miteinander verbunden. Der Tragrahmen besteht aus einem Aluminiumprofil mit einer Hohlkammer, an der fensterseitig eine Nut mit einer Hinterschneidung vorgesehen ist. Diese Nut dient der Aufnahme der oben erwähnten Halterungen. Zur Vermeidung einer Kältebrücke ist der Fuss der Halterung mit einem Kunststoff ummantelt.
  • Die EP 1 712 719 A1 offenbart einen Fensterflügelrahmen, dessen Innenschale aus einem stranggepressten Aluminiumprofil hergestellt ist. In zwei Nuten des Aluminiumprofils ist eine Polyamiddichtung eingerollt. Daran befestigt ist eine zweite Dichtung, die an der Aussenseite des Fensters anliegt und eine Tropfleiste trägt.
  • Den eingangs beschriebenen Fenstern ist gemeinsam, dass die Verglasung am Rand zwischen der Innenschale und der Aussenschale aufgenommen ist. Die Innenschale kann dabei auch durch eine Glashalteleiste gebildet sein, welche auf ein Profil aufgesteckt ist. Im Randbereich ist die Flachseite der Verglasung jedoch nicht mit der Innenschale verbunden.
  • Aufgabe
  • Ein Profil für Tür- oder Flügelrahmen zu schaffen, wobei die Türen oder Fenster einen niedrigen u-Wert bei niedriger Bautiefe aufweisen, und der u-Wert sich nicht in Abhängigkeit von der Einbaulage ändert. Es ist ausserdem ein Ziel der vorliegenden Erfindung, einen Fensterflügel vorzuschlagen, bei welchem auch bei kleiner Einbautiefe von ca. 80 mm ein geringer u-Wert erreichbar ist.
  • Beschreibung
  • Diese und weitere Ziele werden durch den Gegenstand gemäss Anspruch 1 erreicht. Vorteilhafte Ausgestaltungen des erfindungsgemässen Gegenstands sind in den Unteransprüchen definiert.
  • Die Erfindung betrifft eine Tür oder einen Fensterflügel mit einem Flügelrahmen, welcher aus einer Innenschale und einer Aussenschale besteht. Eine Füllung, z.B. eine Mehrfachverglasung mit zwei, drei oder mehr Glasscheiben, ist zwischen der Innenund der Aussenschale angeordnet. Innen- und Aussenschale sind durch eine Isolation, d.h. durch einen Bereich einer geringen thermischen Leitfähigkeit, thermisch getrennt voneinander, um einen Wärmeaustausch zwischen Umgebung und Gebäudeinnerem weitgehend zu verhindern. Die Isolation, meist in der Gestalt eines Kunststoffprofils oder -stegs, verbindet die Innen- mit der Aussenschale. Gemäss der vorliegenden Erfindung ist jedoch auch denkbar, auf die Aussenschale zu verzichten. Erfindungsgemäss ist nun die Füllung durch eine Formschluss- und/oder Stoffschlussverbindung mit der Innenschale verbunden, sodass die Innenschale durch die Füllung zusätzlich versteift ist. Auch wird das Gewicht dadurch unmittelbar durch die Innenschale abgetragen. Die Isolation zwischen der Innen- und der Aussenschale ist durch einen geschäumten, feinporigen Kunststoffkörper mit einem λ-Wert von vorzugsweise < 0.05 W/m K und einer Druckfestigkeit zwischen 1 und 5 N/mm2, vorzugsweise zwischen 1 und 3 N/mm2 und besonders bevorzugt zwischen 1.4 und 2.3 N/mm2 realisiert. Von Bedeutung am erfindungsgemässen Fensterflügel ist, dass die Füllung nur von der Innenschale und nicht zusätzlich von der Aussenschale und/oder der thermischen Isolation getragen ist, wie das bei konventionellen Flügelrahmen in der Regel der Fall ist. Beim erfindungsgemässen Fenster sind somit Tragfunktion und Isolationsfunktion voneinander völlig getrennt. Die zwischen der Füllung und der Innenschale wirkende Stoffschluss- und/oder Formschlussverbindung trägt das Gewicht der Füllung praktisch vollständig über die Innenschale ab. Dies erlaubt es, einen feinporigen Kunststoff mit den oben angegebenen physikalischen Eigenschaften als Isolation zu verwenden, weil diesem keine wesentliche Tragfunktion mehr zukommt. Im Unterschied zu konventionellen Fensterflügeln, wo eine Glashalteleiste auf das Profil der Innenschale aufgesteckt ist, ist beim erfindungsgemässen Fensterflügel die Glashalteleiste einstückig mit dem Profil der Innenschale. Das heisst, die Glashalteleiste ist so ausgeführt, dass sie das Gewicht der Verglasung aufnehmen und abtragen kann.
  • Die stoffschlüssige Verbindung kann beispielsweise durch eine randseitige, umlaufende Klebestelle realisiert sein. Diese kann ein Streifen einer Breite zwischen 1 und 6 cm, vorzugsweise zwischen 2 bis 5, und besonders bevorzugt 2,5 bis 4 cm an den Flachseiten der Füllung einnehmen. Zusätzlich kann ein Glasauflagerelement vorgesehen sein. Durch die Trennung von Trag- und Isolationsfunktion muss die Isolation nur noch den Randverbund oder die relativ leichte Aussenschale tragen. Bei einem Integralfenster muss die Isolation sogar nur das Eigengewicht tragen können. Auf der anderen Seite soll die Isolation eine solche Druckfestigkeit aufweisen, dass diese beim Abstellen des Fensterflügels nicht zusammengedrückt wird. Entsprechend kann als Isolationsmaterial ein Isolationskörper mit geringer Druckfestigkeit und dafür umso besserem Isolationswert eingesetzt werden. Die Erfinder haben gefunden, dass in diesem Fall beispielsweise ein geschäumter feinporiger Kunststoff mit einer Druckfestigkeit zwischen 0.5 und 5 N/mm2 und vorzugsweise zwischen 1 und 3 N/mm2 und besonders bevorzugt zwischen 1.4 und 2.3 N/mm2 diese Anforderungen am besten erfüllt. Beim erfindungsgemässen Fenster kommen somit keine Polyamiddichtungen, die meist mehrere Kammern besitzen, mehr zum Einsatz. Durch die direkte Befestigung der Verglasung an der Innenschale können Fensterflügel oder Türen mit geringer Bautiefe und einem kleinen u-Wert hergestellt werden. So kann bei einer Stärke der Füllung resp. der Mehrfachverglasung zwischen 44 und 52 mm eine Bautiefe eines Fensterflügels von weniger als 90 und vorzugsweise weniger als 85 mm, konkret zwischen 78 und 82 mm erreicht werden. Damit eignet sich der Fensterflügel auch für Renovierungen.
  • Gemäss einer bevorzugten Ausführungsform ist die Formschlussverbindung durch ein Eckwinkelprofil gebildet. Das Eckwinkelprofil ist dabei direkt an der Innenschale befestigt. Dadurch, dass das Eckwinkelprofil an zwei Seitenkanten an der Füllung anliegt, ist die Füllung an der Innenschale festgelegt. Das Eckwinkelprofil kann aus einem L-Profil hergestellt sein. Dabei kann der eine Schenkel des L-Profils an der Innenschale mittels Schrauben oder Verklebung oder mittels einer formschlüssigen Verbindung festgelegt sein. Der andere Schenkel des L-Profils dient als Anschlag für die Seitenkanten der Füllung, wobei vorzugsweise zusätzlich eine Verklotzung der Füllung erfolgt.
  • Gemäss einer besonders bevorzugten Ausführungsform sind wenigstens zwei Eckwinkelprofile in zwei diagonal gegenüberliegenden Ecken des Fensterflügels angeordnet. Durch eine solche Anordnung der Eckwinkelprofile erreicht man eine hohe Steifigkeit des Fensterflügels, sodass eine Torsion des Rahmens verhindert ist, insbesondere dann wenn die Füllung zusätzlich verklotzt wird. In diesem Fall ist die Füllung zwischen den Eckwinkelprofilen eingespannt, und die Innenschale wird durch die Füllung versteift. Zweckmässigerweise ist das Eckwinkelprofil scharnierseitig in der unteren Ecke des Fensterflügels angeordnet. Dadurch lässt sich die Hauptlast direkt in die Scharniere ableiten. In einer vorteilhaften Ausführungsform sind in allen vier Ecken lastabtragende Eckwinkelprofile vorgesehen.
  • Vorteilhaft dient das Eckwinkelprofil auch als mechanische Sicherung der Füllung oder Verglasung. Dazu kann am Eckwinkelprofil ein Winkel festgemacht oder angeformt sein. Die mechanische Sicherung gewährleistet, dass die Füllung, resp. (Mehrfach)-Verglasung sich nicht von der Innenschale lösen kann. Denkbar ist auch, dass das Eckwinkelprofil an der Innenfläche, an welcher die Füllung am Eckwinkelprofil anschlägt, eine Riffelung aufweist.
  • Vorzugsweise ist das Eckwinkelprofil aus faserverstärktem Kunststoff hergestellt, insbesondere aus einem Kunststoff aus der Gruppe der Polyamide, Polycarbonate, Polyether, Polystyrole, Polyethylen, Polypropylen, wobei Polyamid bevorzugt ist. Dabei kann der Kunststoff auch einen Anteil an Rezyklat und / oder Blähanteile umfassen. Faserverstärkter Kunststoff hat eine geringe Wärmeleitfähigkeit und kann mit einer ausreichenden Biegefestigkeit hergestellt werden, damit ein solches Eckprofil die Last der Mehrfachverglasung aufnehmen kann. Weil das Eckwinkelprofil mit der Aussenschale vorteilhafterweise nicht in Kontakt ist, kommt es durch dieses auch nicht zu einem merklichen Wärmeaustausch.
  • Vorteilhaft ist die Biegefestigkeit des Eckwinkelprofils grösser als 2 N/mm2, vorzugsweise grösser als 4 N/mm2 und besonders bevorzugt grösser als 15 N/mm2. Die Schenkel des Eckwinkelprofils haben vorteilhaft eine Länge von weniger als 30 cm und vorzugsweise weniger als 20 cm und besonders bevorzugt weniger als 8 cm. Ein allfälliger Spalt zwischen der Isolation und der Mehrfachverglasung - bedingt durch die Stärke des Eckprofils - kann mit einem Dichtungsprofil oder einem Kunststoffschaum ausgefüllt sein.
  • Zweckmässigerweise hat der erste Schenkel des Eckwinkelprofils eine Breite, welche im Wesentlichen der Stärke der Füllung entspricht.
  • Vorteilhaft ist der Isolationskörper ein expandierter Polystyrol-Partikelhartschaumstoff oder ein geschäumter PET Kunststoff. Diese Kunststoffe weisen exzellente Isolationseigenschaften auf und können mit der geforderten Festigkeit hergestellt werden. Zweckmässiger kann der Kunststoff ein spezifisches Gewicht von < 180 Kg/m3, vorzugsweise < 160 Kg/m3, und besonders bevorzugt < 130 Kg/m3, mindestens jedoch 80 Kg/m3 aufweisen (gemessen nach der aktuellen sich in Kraft befindenden ISO-Norm 845). Der λ-Wert des Isolationskörpers beträgt vorzugsweise weniger als 0.08 W/m * K, vorzugsweise weniger als 0.06 W/m* K und besonders bevorzugt weniger als 0.04 W/m * K.
  • Vorteilhaft bildet die Innenschale, Isolation und eine optionale Aussenschale eine Verbundstruktur. Dazu kann der Isolationskörper an der Innenschale und an der Aussenschale, wenn eine solche vorhanden ist, festgeklebt und/oder eingerollt oder anderweitig verbunden sein. Zweckmässigerweise hat der Isolationskörper eine Stärke von > 15 mm, vorzugsweise > 25 mm und besonders bevorzugt > 35 mm.
  • Vorteilhaft umfasst die Innenschale ein Profil, insbesondere ein Metall-, Holz- oder Kunststoffprofil. Eine Kombination verschiedener Materialien, wie Metall/Holz, Holz/Kunststoff oder Metall/Kunststoff, ist ebenso denkbar.
  • Vorzugsweise ist am Profil eine Auflage für das Eckwinkelprofil vorgesehen. Dadurch wird die Last der Mehrfachverglasung direkt in die Innenschale eingeleitet. Vorteilhaft ist an der Vorderseite des Profils, d.h. raumabgewandt, eine zweite Nut vorgesehen, in welcher der zweite Schenkel des Winkelprofils aufgenommen ist. Beim Zusammenbau des Fensterflügels kann das Eckwinkelprofil somit in das Profil der Innenschale eingeschoben werden.
  • Bei einem Metallflügelfenster ist vorzugsweise benachbart zum ersten Eckwinkelprofil ein Eckverbinder im Profil (Hohlkammer) der Innenschale angeordnet. Daran kann ein Scharnier befestigt sein, um das Gewicht des Fensterflügels direkt in den Fensterrahmen abzuleiten.
  • Ein einstückiges Profil für die Innenschale eines Tür- oder Flügelrahmens besitzt eine im Wesentlichen rechteckeckigen, über die ganze Länge des Profils sich erstreckenden Hohlkammer. Das Profil ist dadurch gekennzeichnet, dass aussenseitig an einer ersten Hohlkammerwand eine erste Nut vorgesehen ist, deren freier Schenkel parallel zur ersten Hohlkammerwand verläuft und deren Nutöffnung parallel zu einer zweiten, zur ersten Hohlkammerwand benachbarten Hohlkammerwand ist. Aussenseitig an der ersten Hohlkammerwand ist im Abstand von der Nutöffnung ein Vorsprung vorgesehen. Ausserdem ist auf der Seite der ersten Hohlkammerwand eine Nut für die Aufnahme einer Isolation vorhanden. Das erfindungsgemässe Profil hat den Vorteil, dass damit schmale Flügelrahmen mit hervorragenden Dämmeigenschaften (Wärme wie auch Schall) hergestellt werden können. Weil die Glashalteleiste (entsprechend dem Teil des Innenprofils, welcher sich seitlich und oberhalb der Auflage 35 befindet) einstückig mit dem Profil ausgebildet ist, kann die Verglasung mittels einer Klebeschicht an der Glashalteleiste resp. dem Schenkel 37 angeordnet sein. Als Hohlkammerwand ist im Rahmen der vorliegenden Beschreibung jede Wand bezeichnet, welche wenigstens bereichsweise den Hohlkammerraum bildet.
  • Vorteilhaft hat die Nut für die Aufnahme der Isolation Hinterschneidungen. Dadurch ist die Isolation formschlüssig und unlösbar mit dem Profil verbindbar ist. Die Isolation kann zusätzlich mit dem Profil verklebt und/oder eingerollt sein. Zweckmässigerweise ist an der zweiten Hohlkammerwand ein zur ersten Hohlkammerwand paralleler Steg vorgesehen. Dieser Steg kann als Befestigungssteg dienen, z.B. zur Befestigung des Profils an einem Holzrahmen. Bei einem Metall- oder Metall/Kunststofffenster kann am freien Ende des Stegs eine Einstecknut für eine Dichtung vorgesehen sein, um das Profil gegenüber einem Fenster- oder Türrahmen abzudichten. Dabei kann der Steg eine Verlängerung der dritten Kammerwand sein. An der zweiten Hohlkammerwand kann ausserdem eine Beschlagsnut vorgesehen sein. Diese dient der Aufnahme von Beschlägen zum Öffnen, Verschliessen und Verschwenken von Tür- und Fensterflügeln. Weitere vorteilhafte Merkmale sind der übrigen Beschreibung zu entnehmen.
  • Vorzugsweise hat der Isolationskörper eine bereichsweise Laminierung aus einem Kunstharz. Durch die Verwendung eines Isolationskörpers, vorzugsweise eines feinporigen, möglichst tragfähigen Kunststoffs mit einem möglichst kleinen λ-Wert, kann eine hervorragende thermische Trennung der Aussen- von der Innenschale erreicht werden, ohne dass das Bauprinzip des eingangs erwähnten konventionellen Fensters wesentlich geändert werden müsste. Die bei konventionellen Metallfenstern vorhandenen, glasfaserverstärkten Polyamiddichtungen sind erfindungsgemäss durch einen vorzugsweise laminierten, feinporigen Isolationskörper ersetzt. Durch die Laminierung kann der feinporige Isolationskörper, welcher für sich allein keine ausreichende Tragkraft hat, so weit verstärkt werden, dass der erzeugte Verbundwerkstoff die herkömmlichen Polyamiddichtungen vollumfänglich ersetzen kann.
  • Gemäss einer vorteilhaften Ausführungsform ist die Laminierung mit einer Faserverstärkung versehen. Die Faserverstärkung kann durch ein Fasergewebe, Matte, Netze, ausgerichtete Rovingstränge, mehrheitlich unidirektionale oder ungerichtete Faserschichten und Ähnlichem gebildet sein. Damit kann die Faserverstärkung zielgerichtet auf die zu erwartenden Hauptbeanspruchungsrichtungen ausgerichtet sein. Vorzugsweise erstrecken sich die Fasern der Faserverstärkung mehrheitlich quer zur Längserstreckung der Profile.
  • Vorteilhaft ist die Laminierung stoffschlüssig mit dem Isolationskörper verbunden. Dadurch ergibt sich ein stabiler Verbund zwischen dem Isolationskörper und der Faserverstärkung.
  • Zweckmässigerweise ist die Laminierung an wenigstens einer Seite des Isolationskörpers, nämlich entweder an jener, welche zur Füllung hin orientiert oder von der Füllung abgewandt ist, vorgesehen. Durch eine solche, mindestens einseitige Laminierung kann der Kunststoffkörper in vielen Fällen die geforderte Tragfunktion bereits erfüllen. Es ist jedoch denkbar, die Laminierung an einander gegenüberliegenden Seiten des Kunststoffkörpers, nämlich an den Längsseiten, welche der Füllung resp. Mehrfachverglasung zu- und abgewandt sind, vorzusehen. Damit können die erwähnten Längsseiten die Funktion von Zug- und Druckstegen einnehmen. Produktionstechnisch kann es jedoch auch sinnvoll sein, den Isolationskörper allseitig oder wenigstens an allen Längsseiten mit einer Laminierung zu versehen.
  • Zur Erreichung der erforderlichen Stabilität kann sich die Laminierung mindestens teilweise auf die Innenschale und vorzugsweise auf die Aussenschale erstrecken. Damit können die Innenschale und gegebenenfalls auch die Aussenschale kraft-und vorzugsweise formschlüssig mit dem Isolationskörper verbunden sein.
  • Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigt:
  • Figur 1:
    Im Schnitt ein herkömmliches Metallfenster bestehend aus einer Innen- und einer Aussenschale, welche durch ein Kunststoffprofil miteinander verbunden sind;
    Figur 2:
    die untere Ecke eines erfindungsgemässen Fensterflügels mit einem ersten Eckprofil als Glasauflager und einer geschäumten Kunststoffverbindung zwischen der Innen- und der Aussenschale im Schnitt und in perspektivischer Ansicht;
    Figur 3:
    Der Fensterflügel von Fig. 2 mit einem im Profil der Innenschale angeordneten Eckverbinder;
    Figur 4:
    der Fensterflügel von Fig. 2 von hinten und in perspektivischer Ansicht;
    Figur 5:
    das Eckprofil in Seitenansicht (a), in Stirnansicht (b) und in perspektivischer Ansicht (c);
    Figur 6:
    der Eckverbinder in Seitenansicht (a), in Stirnansicht (b) und in perspektivischer Ansicht (c);
    Fig. 7:
    ein Fensterflügel in Metallausführung mit Maueranschluss;
    Fig. 8:
    ein Holz-Metallfenster.
    Fig. 9:
    ein Doppelflügel im Grundriss; und
    Fig. 10:
    eine Festverglasung kombiniert mit einem erfindungsgemässen Fensterflügel;
    Fig. 11:
    ein zweites, alternatives Ausführungsbeispiel der Erfindung; und
    Fig. 12:
    ein drittes Ausführungsbeispiel der Erfindung.
  • Der in den Figuren 2 bis 4 gezeigte Rahmen 9 eines erfindungsgemässen Fensterflügels besitzt eine Innenschale 11 und eine optionale Aussenschale 13, welche thermisch isoliert miteinander verbunden sind. Innen- und Aussenschale sind durch Metallprofile 15,17, insbesondere Aluprofile, gebildet. Die Metallprofile 15,17 sind mittels einer thermischen Isolation miteinander verbunden. Die thermische Isolation ist durch einen Isolationskörper, insbesondere einem geschäumten feinporigen Kunststoffkörper 19, gebildet, welcher in Nuten 21,23 der Profile aufgenommen und unlösbar verbunden ist. Vorzugsweise ist der Isolationskörper 19 in die Aluprofile eingerollt, d.h. durch Hinterschneidungen in den Nuten 21,23 festgehalten und gegebenenfalls verklebt (s.unten Beschreibung zu den Figuren 7 bis 10).
  • Von Bedeutung ist nun, dass - im Unterschied zu konventionellen Fenstern - das Gewicht einer Mehrfachverglasung oder einer anderen Füllung ausschliesslich auf die Innenschale und vorzugsweise auf die Rahmenecke der Innenschale abgetragen ist. Zu diesem Zweck ist gemäss einem Ausführungsbeispiel ein erstes Eckwinkelprofil 25 vorgesehen, welches an der Innenschale befestigt ist und/oder sich an dieser abstützt. Gemäss der gezeigten bevorzugten Ausführungsform ist das Eckwinkelprofil 25 mit den zwei in einem rechten Winkel zueinander angeordneten Schenkeln 24,26 aus einem Winkelprofil 27 hergestellt. Das Winkelprofil 27 hat im Querschnitt einen ersten Schenkel 29, welcher als Auflager oder Anschlag für die Mehrfachverglasung (in den Fig. 2 bis 4 nicht gezeigt) dient, und einen zweiten Schenkel 31, welcher formschlüssig vorzugsweise in einer Nut 33 des Profils 15 aufgenommen ist. Ein Vorsprung 35, welcher im Abstand zum freien Schenkel 37 der Nut 33 vorgesehen ist, dient dabei als Auflager für den Winkelprofilschenkel 29. Der Abstand zwischen der Stirnseite 39 der Nut 33 und dem Vorsprung 35 entspricht dabei vorzugsweise der Stärke des Schenkels 29. Ein kürzerer Schenkel 37 ist jedoch denkbar, solange sichergestellt ist, dass das Gewicht der Mehrfachverglasung im Wesentlichen vollständig an die Innenschale 11 abgeleitet wird. Vorteilhaft hat die Nut eine Tiefe von wenigstens 10 mm und vorzugsweise wenigstens 15 mm. Dadurch, dass das Eckwinkelprofil 25 sich um die Ecke des Fensterflügelrahmens erstreckt, ergibt sich eine besonders steife Konstruktion.
  • Aus Stabilitätsgründen ist benachbart zum Eckwinkelprofil 25 ein Eckverbinder 41 vorgesehen, welcher in einer Hohlkammer 43 des Profils 15 aufgenommen ist (Fig. 3). Der Eckverbinder 41 ist vorzugsweise ein stabiles Vierkantprofil mit starken Wandungen, sodass ein Scharnier 50 mittels entsprechenden Schrauben, Nieten oder dergleichen (in den Figuren nicht gezeigt) daran befestigbar ist (s. Fig. 4).
  • Unterhalb der Hohlkammer 43 ist eine Beschlagsnut 44 vorgesehen, welche der Aufnahme von konventionellen Beschlägen dient. An die gebäudeinnenseitige Wand des Profils 15 schliesst ein Steg 46 an, an dessen freiem Ende eine Dichtungsnut 48 für die Aufnahme einer Kunststoffdichtung vorgesehen ist.
  • In den Figuren 5 und 6 sind das Eckwinkelprofil 25 und der Eckverbinder 41 näher im Detail gezeigt. Beim Eckwinkelprofil 25 ist von Bedeutung, dass dieses einen möglichst kleinen Wärmeleitfähigkeitskoeffizienten aufweist. Es ist deshalb vorzugsweise aus einem faserverstärkten Kunststoff hergestellt. Als Verstärkungen kommen Glas-, Kohle-, Natur-, Aramidfasern und Fasern mit ähnlichen Eigenschaften in Frage. Die Steifigkeit des Eckwinkelprofils kann durch entsprechende Orientierung der Fasern in Längsrichtung der Schenkel 29,31 und durch den Einsatz von Rovings erhöht werden. Vorzugsweise wird die Länge des Schenkels 29 so gewählt, dass kein Kontakt zwischen dem Eckwinkelprofil 25 und der Aussenschale 13 besteht. Auch kann zwischen dem Eckwinkelprofil und der Isolation 19 ein kleiner Luftspalt von 0.5 bis 5 mm, vorzugsweise 1 bis 2 mm vorhanden sein. Bevorzugt ist jedoch kein Spalt zwischen der Isolation und den Seitenflächen der Mehrfachverglasung oder Füllung vorhanden.
  • Ein einzelnes Eckwinkelprofil 25 ist mindestens in zwei Ecken eines Fensterflügels vorzusehen. Es kann beispielsweise in den beiden unteren Ecken eines Fensterflügels oder gemäss der bevorzugten Ausführungsvariante in zwei einander diagonal gegenüberliegenden Ecken des Fensterflügels vorgesehen sein. Gemäss der letztgenannten Variante ist ein Eckprofil scharnierseitig vorzugsweise in der unteren Ecke anzuordnen.
  • Die Ausführungsform gemäss Fig. 7 zeigt ein Metallfenster im Schnitt. Die Mehrfachverglasung besteht aus einer Dreifachverglasung mit einer inneren Glasscheibe 45, einer mittleren Glasscheibe 47 und einer äusseren Glasscheibe 49, welche Scheiben durch Distanzblöcke 51 voneinander beabstandet sind. Um Grössentoleranzen der Mehrfachverglasung in Länge, Breite und Einbaustärke auszugleichen, können Ausgleichselemente 53, wie Ausgleichshölzchen, vorgesehen sein (Verklotzung). Es ist ersichtlich, dass die Mehrfachverglasung durch eine Klebeschicht 54 mit dem Profil 15 fest verbunden ist. Die direkte Verklebung mit dem Profil 15 hat den Vorteil, dass ein Glasauflager nicht mehr zwingend nötig ist, obwohl ein solches in der Figur 7 noch eingezeichnet ist.
  • Im Aussenprofil 17 ist in einer Nut 55 ein als Wetterschutzprofil dienendes Profil 57 eingesteckt. Am oberen Ende des Profils ist eine Dichtung 59 vorgesehen, welche die Aussenschale und die äussere Glasscheibe 49 gegeneinander abdichtet.
  • Ein als Maueranschlussteil dienender Fensterrahmen 61, welcher ebenfalls einen Kern 63 aus geschäumtem Kunststoff besitzt, dient als Anschlag für den Fensterflügel. Der Kunststoffkern 63, welcher vorzugsweise aus dem gleichen Material ist wie der Isolationskörper 19, ist fest mit einem Aussenprofil 65 und einem Innenprofil 67 verbunden. Ein innenseitig am Aussenprofil 65 angeordnetes Dichtungsprofil 69 dient der Abdichtung eines zwischen dem Isolationskörper 19 und dem Kunststoffkern 63 vorhandenen Spaltes 64. Das Maueranschlussteil 61 wird in der Leibung einer Fensteröffnung (in der Figur nicht gezeigt) angeschlagen und befestigt.
  • Das Ausführungsbeispiel gemäss Figur 8 unterscheidet sich vom Fenster gemäss Figur 7 dadurch, dass der Fensterrahmen 61 und die Innenschale raumseitig teilweise aus Holz gefertigt ist. Die Innenschale 11 besteht aus einem Holzprofil 70, in welchem in einem Falz 71 ein Metallprofil 72 aufgenommen ist. Das Metallprofil 72 ist über den Kunststoffkörper 19 mit der Aussenschale 13 fest verbunden. Das Metallprofil 72 hat wie das Profil 15 (Figur 7) eine Nut 33, welche der Aufnahme des Winkelprofilschenkels 31 dient. Im Zusammenwirken von Nut 33 und Vorsprung 35 resultiert für das eingesetzte Eckprofil 25 ein Formschluss mit geringem Spiel. Auch in diesem Ausführungsbeispiel ist die Verglasung mittels einer Klebemittelschicht 54 an der Aussenseite des Schenkels 37 unlösbar verbunden.
  • Die Ausführungsvariante gemäss Fig. 10 ist dadurch gekennzeichnet, dass ein Fensterflügel mit einer Festverglasung kombiniert ist. Im Übrigen ist der Aufbau gleich wie beim Fensterflügel von Fig. 7.
  • In der Figur 9 ist ein Doppelfensterflügel gezeigt, dessen Fensterflügel sich in gleichen oder entgegengesetzten Drehrichtungen öffnen lassen. Am Fensterflügel, welcher in der Darstellung unten ist, ist eine Mittelstulpe 73 angeordnet, an welcher der obere Flügel anschlägt. Im Übrigen entspricht diese Ausführung den bereits beschriebenen, sodass nicht näher darauf eingegangen werden muss.
  • Gemäss einer zweiten Ausführungsform der Erfindung (Figur 11) ist als Isolation ein Verbundisolationskörper vorgesehen, umfassend einen feinporigen, formstabilen und druckfesten Isolationskörper aus einem Material wie oben beschrieben und einer optionalen Laminierung 74 aus einem Kunstharz und einer optionalen Faserverstärkung (in Figur 11 nicht ersichtlich). Im gezeigten Ausführungsbeispiel ist die Laminierung 74 nur an der der Füllung 76 (hier: Mehrfachverglasung) zugewandten Längsseite 75 und der der Füllung 76 abgewandten Seite 77 vorgesehen. Denkbar ist jedoch, dass die Laminierung 74 wenigstens an allen Längsseiten des Isolationskörpers 19 vorgesehen ist. Vorteilhaft, jedoch nicht zwingend, erstreckt sich die Laminierung bis in die Nuten 21 des Metallprofils 15 und vorzugsweise in die Nuten 23 des Metallprofils 17 hinein, wo durch Hinterschneidungen 79 resp. 81 ein Formschluss realisiert ist. Es ist denkbar, dass eine Laminierung des Isolationskörpers nur an den zum Innenprofil 15 und dem Aussenprofil 57 orientierten Seitenflächen, die Vorsprünge mit einschliessend, erfolgt. Die Hinterschneidungen 79,81 werden durch "Einrollen" gebildet, einem Verfahren, in welchem durch Verformen von Aluminiumstegen das Kunststoffmaterial teilweise umfasst wird.
  • Damit der Verbundisolationskörper auch in Längsrichtung einer grossen Querzugskraft widerstehen kann, ist mindestens die Stirnseite 83 eines mit dem Körper verbundenen, ersten Vorsprungs 87 mit dem Profil 15 der Innenschale 11 fest verklebt. Analog kann auch die Stirnseite 89 eines zweiten Vorsprungs 91 mit dem Profil 17 der Aussenschale 13 fest verklebt sein. Die Vorsprünge 89,91 können aus dem gleichen oder einem anderen Material wie der Verbundisolationskörper sein.
  • Wie der erfindungsgemässe Fensterflügel besitzt auch der Fensterrahmen 61 vorzugsweise einen laminierten Isolationskörper 93. Der Isolationskörper 93 kann aus demselben Material wie der Isolationskörper 19 bestehen und ist ebenfalls mittels angeformter Vorsprünge 103,105 vorzugsweise in die Profile 65,67 eingerollt. Das Profil 67 besitzt zu diesem Zweck Nuten 95, dessen Seitenwände Hinterschneidungen 97 bilden. Ebenso weist das Profil 65 Nuten 99 auf, dessen Seitenwände Hinterschneidungen 101 bilden. In den Nuten 95,99 sind die Vorsprünge 103, 105 des Isolationskörpers 93 formschlüssig gehalten.
  • Gemäss dem gezeigten Ausführungsbeispiel sind an den Seitenwänden 107, 109 des Kunststoffkerns 93 jeweils zwei Vorsprünge 103 resp.105 vorgesehen, welche in jeweils entsprechende Nuten 95,99 eingerollt sind. Denkbar ist jedoch auch, nur eine oder mehr als zwei Nuten 95,99 vorzusehen. Um eine feste Verbindung auch bezüglich von in Längsrichtung der Profile wirkender Kräfte zu erreichen, sind die Seitenwände 107, 109 mindestens bereichsweise und vorzugsweise im Wesentlichen ganzflächig mit den Innenflächen der Profile 65,67 verklebt.
  • Wie im gezeigten Ausführungsbeispiel dargestellt, können die Vorsprünge 87,91 resp. 99,101 aus einem anderen Material als der übrige Kunststoffkern 93 sein. Insbesondere ist denkbar, dass die Vorsprünge durch ein Polyamidprofil gebildet sind. Das Polyamidprofil kann wiederum mit dem feinporigen Material des Kunststoffkerns 93 umspritzt sein oder auf eine andere Art. z.B. durch Formschluss oder Verklebung verbunden sein.
  • Zur Erreichung eines möglichst hohen u-Werts ist vorzugsweise der ganze oder zumindest der grösste Teil des Falzraumvolumens zwischen dem Fensterflügel und dem Fensterrahmen durch einen Dichtungskörper 111 ausgefüllt. Eine Besonderheit dieser Fensterkonstruktion ist, dass über wenigstens die Hälfte und vorzugsweise über wenigstens 2/3 der Dicke des Kunststoffkörpers 19 der
  • Dichtungskörper 111 am Isolationskörper 19 resp. Kunststoffkern 93 anliegt oder nur einen minimalen Spalt von weniger als 3 mm und vorzugsweise weniger als 1 mm freigibt. Durch diese Konstruktion, welche einen unabhängigen Aspekt der Erfindung darstellt, kann ein Wärmeaustausch im Zwischenraum zwischen dem Flügelrahmen und dem Fensterrahmen weitgehend unterbunden werden.
  • Der Dichtungskörper 111 kann ein ko-extrudiertes Dichtungsprofil sein mit einem ersten Abschnitt 113 aus einem ersten Kunststoff und einem zweiten Abschnitt 115 aus einem zweiten Kunststoff. Der zweite Kunststoff ist dabei vorzugsweise ein Elastomer, z.B. auf Olefin- oder Urethanbasis, oder ein thermoplastisches Polyamid. Der zweite Abschnitt 115 des Dichtungskörpers weist vorteilhafterweise mehrere hintereinander angeordnete Kammern 117 auf, welche in ihrem Bereich den Zwischenraum zwischen dem Flügelrahmen und dem Fensterrahmen ausfüllen.
  • Der Dichtungskörper 111 ist einerseits in einer im Profil 67 vorgesehenen Dichtungsnut 119 und andererseits in einer Ausnehmung 121 formschlüssig aufgenommen.
  • Das Ausführungsbeispiel gemäss Fig. 12 unterscheidet sich von demjenigen von Fig. 11 im Wesentlichen dadurch, dass die Kunststoffkörper 19,93 allseitig mit einer Laminierung 74 versehen sind. Ausserdem ist erkennbar, dass die Füllung 76 auf einem Glasauflager 123 ruht, welches sich einerseits auf der Innenschale 15 und andererseits auf der Aussenschale 17 abstützt.
  • Als Isolation werden vorzugsweise Kunststoffe eingesetzt, deren Eigenschaften wenigstens in einem der unten stehenden physikalischen Parameter den angegebenen Werten entsprechen. Dabei ist in der fünften und sechsten Spalte der bevorzugte resp. bevorzugteste Bereich der Parameter angegeben.
    Parameter Norm Dimension
    Dichte ISO 845 Kg/m3 >80 >100 >145
    Druckfestigkeit ISO 844 N/mm2 >1.0 >1.4 >2
    Druckmodul senkrecht DIN 53421 N/mm2 > 70 > 80 > 100
    Zugfestigkeit senkrecht ASTM C297 N/mm2 >1.8 >2.1 >2.5
    Zugmodul senkrecht ASTM C297 N/mm2 > 90 >110 >150
    Schubfestigkeit ISO 1922 N/mm2 >0.7 > 0.9 >1.1
    Schubbruchdehnung ISO 1922 % < 12 < 10 < 9
    Wärmeleitfähigkeit ISO 8301 W/m K < 0.05 <0.044 >0.038
  • Bei einem bevorzugt eingesetzten Isolationskörper liegen die idealen Werte in den nachfolgend genannten Bereichen:
    Parameter Norm Dimension Bereich
    Dichte ISO 845 Kg/m3 100 bis 210, vorzugsweise bis 160
    Druckfestigkeit ISO 844 N/mm2 1.4 bis 2.3
    Druckmodul senkrecht DIN 53421 N/mm2 80 bis 120
    Zugfestigkeit senkrecht ASTM C297 N/mm2 2.0 bis 2.8
    Zugmodul senkrecht ASTM C297 N/mm2 100 bis 180
    Schubfestigkeit ISO 1922 N/mm2 0.75 bis 1.3
    Schubbruchdehnung ISO 1922 % 7 bis 11
    Wärmeleitfähigkeit ISO 8301 W/m K 0.032 bis 0.041 oder max. 0.041
  • Legende
  • 9
    Flügelrahmen
    11
    Innenschale
    13
    Aussenschale
    15
    Metallprofil der Innenschale
    17
    Metallprofil der Aussenschale
    19
    feinporiger Isolationskörper
    21
    Nute des Metallprofils 15
    23
    Nute des Metallprofils 17
    24,26
    Schenkel des Eckprofils
    25
    Eckwinkelprofil
    27
    Winkelprofil
    29
    erster Schenkel des Eckwinkelprofils
    31
    zweiter Schenkel des Eckwinkelprofils
    33
    Nut
    35
    Vorsprung, Auflage
    37
    freier Schenkel
    39
    Stirnseite der Wand 37
    41
    Eckverbinder
    43
    Hohlkammer
    44
    Beschlagsnut
    45
    innere Glasscheibe
    46
    Steg
    47
    mittlere Glasscheibe
    48
    Dichtungsnut
    49
    äussere Glasscheibe
    50
    Scharnier
    51
    Distanzblöcke
    53
    Ausgleichselemente
    54
    Klebeschicht
    55
    Nut
    57
    Profil
    59
    Dichtung
    61
    Fensterrahmen
    63
    Kunststoffkern
    64
    Spalt
    65
    Innenprofil des Fensterrahmens
    67
    Aussenprofil des Fensterrahmens
    69
    Dichtungsprofil
    70
    Holzprofil
    71
    Falz
    72
    Metallprofil
    73
    Mittelstulpe
    74
    Laminierung
    75
    der Füllung zugewandte Längsseite des Kunststoffkörpers
    76
    Füllung, z.B. Mehrfachverglasung
    77
    der Füllung abgewandte Längsseite des Kunststoffkörpers
    79
    Hinterschneidungen der Nut 21
    81
    Hinterschneidungen der Nut 23
    83
    Stirnseite des ersten Vorsprungs 87
    87
    erster Vorsprung
    89
    Stirnseite des zweiten Vorsprungs 91
    91
    zweiter Vorsprung
    93
    Kunststoffkörper mit Laminierung
    95
    Nut des Profils 67
    97
    Hinterschneidung
    99
    Nut des Profils 69
    101
    Hinterschneidung
    103,105
    Vorsprünge
    107,109
    Seitenwände des Kunststoffköprers 93
    111
    Dichtungskörper im Falz zwischen Fensterflügel und Fensterrahmen
    113
    erster Abschnitt des Dichtungskörpers
    115
    zweiter Abschnitt des Dichtungskörpers
    117
    Kammern des Dichtungskörpers
    119
    Dichtungsnut
    121
    Ausnehmung
    123
    Glasauflager
    209
    Flügelrahmen
    211
    Innenschale
    213
    Aussenschale
    215
    Mehrfachverglasung
    217
    innere Glasscheibe
    219
    äussere Glasscheibe
    221
    Distanzhalter
    223
    Raum
    225,227
    Aluminiumprofile der Innenschale
    229
    Aluminiumprofil der Innenschale
    231
    Polyamiddichtung
    233
    Glasauflager

Claims (14)

  1. Profil (15) für einen Tür- oder Flügelrahmen mit
    - einer im Wesentlichen rechteckeckigen, über die ganze Länge des Profils sich erstreckenden Hohlkammer (43),
    gekennzeichnet durch
    - eine aussenseitig an einer ersten Hohlkammerwand vorgesehenen ersten Nut (33), deren freier Schenkel (37) parallel zur ersten Hohlkammerwand verläuft und deren Nutöffnung parallel zu einer zweiten, zur ersten Hohlkammerwand benachbarten Hohlkammerwand ist,
    - einen aussenseitig an der ersten Hohlkammerwand im Abstand von der Nutöffnung vorgesehenen Vorsprung (35); und
    - eine auf der Seite der ersten Hohlkammerwand vorgesehenen zweiten Nut (21) für die Aufnahme einer Isolation.
  2. Profil nach Anspruch 1, dadurch gekennzeichnet, dass aussenseitig an der zweiten Hohlkammerwand benachbart zur ersten Hohlkammerwand eine Beschlagsnut (44) vorgesehen ist.
  3. Fenster- oder Türflügel mit
    - einem Flügelrahmen (9) mit einer Innenschale (11) mit einem Profil gemäss Anspruch 1 oder 2 und einer optionalen Aussenschale (13),
    - einer Füllung, beispielsweise einer Mehrfachverglasung oder einem Paneel, welche an der Innenschale (11) angeordnet ist,
    - einer der Innenschale (11) vorgesetzten Isolation, welche die Füllung umfangsseitig umgibt,
    wobei die Füllung durch eine Formschluss- und/oder Stoffschlussverbindung mit der Innenschale (11) verbunden ist, und die Isolation der Innenschale (11) durch einen geschäumten, feinporigen Kunststoffkörper (19) mit einem λ- Wert < 0.08 W/m K, vorzugsweise < 0.06 W/m K und besonders bevorzugt < 0.04 W/m K und einer Druckfestigkeit zwischen 1 und 5 N/mm2, vorzugsweise zwischen 1 und 3 N/mm2 und besonders bevorzugt zwischen 1.4 und 2.3 N/mm2 realisiert ist
    dadurch gekennzeichnet,
    dass ein Eckwinkelprofil (25) mit zwei in einem rechten Winkel zueinander angeordneten Schenkeln (24, 26) vorgesehen ist, wobei das Eckwinkelprofil (25) aus einem Winkelprofil (27) hergestellt ist, das einen ersten Schenkel (29) hat, welcher als Auflager oder Anschlag für die Mehrfachverglasung dient, und einen zweiten Schenkel (31), welcher formschlüssig in der Nut (33) des Profils (15) aufgenommen ist.
  4. Fenster- oder Türflügel nach Anspruch 3, dadurch gekennzeichnet, dass die formschlüssige Verbindung durch wenigstens zwei Eckwinkelprofile (25) realisiert ist, welche Eckwinkelprofile (25) in zwei aneinander diagonal gegenüberliegenden Ecken der Innenschale (11) angeordnet sind, wobei ein Eckwinkelprofil in der unteren, scharnierseitigen Ecke des Flügels vorgesehen ist.
  5. Fenster- oder Türflügel nach Anspruch 4, dadurch gekennzeichnet, dass ein erster Schenkel (29) des Eckwinkelprofils als Auflager für die Füllung dient und der andere Schenkel (31) an der Innenschale (11) angeordnet ist.
  6. Fenster- oder Türflügel nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Eckwinkelprofil (25) aus faserverstärktem Kunststoff, insbesondere Polyamid-Kunststoff, hergestellt ist.
  7. Fenster- oder Türflügel nach einem der Ansprüche 4 bis 6 dadurch gekennzeichnet, dass das Eckwinkelprofil (25) eine Biegefestigkeit > 2 N/mm2, vorzugsweise > 4 N/mm2 und besonders bevorzugt > 6 N/mm2 besitzt.
  8. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass der Isolationskörper (19) ein expandierter Polystyrol-Partikelhartschaumstoff oder ein geschäumter PET oder PUR Kunststoff ist, welcher vorzugsweise ein spezifisches Gewicht von < 180 Kg/m3, vorzugsweise < 160 Kg/m3, und besonders bevorzugt < 130 Kg/m3 hat.
  9. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Stoffschlussverbindung zwischen der Füllung und der Innenschale durch eine umlaufende Klebeverbindung realisiert ist.
  10. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass der Isolationskörper (19) an der Innenschale (11) festgeklebt und/oder eingerollt ist.
  11. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass eine Aussenschale (13) vorgesehen ist, welche am Isolationskörper (19) befestigt, z.B. festgeklebt oder eingerollt, ist.
  12. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, dass am Profil (15) der Innenschale (11) eine Auflage oder ein Vorsprung (35) für das Eckwinkelprofil vorgesehen ist.
  13. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 12, dadurch gekennzeichnet, dass an der Vorderseite des Profils (15) eine zweite Nut vorgesehen ist, in welcher der zweite Schenkel (31) des Eckwinkelprofils aufgenommen ist.
  14. Fenster- oder Türflügel nach einem der Ansprüche 3 bis 13, dadurch gekennzeichnet, dass benachbart zum ersten Eckwinkelprofil ein Eckverbinder (41) im Profil (15) der Innenschale (11) angeordnet ist.
EP13160348.2A 2012-03-21 2013-03-21 Fenster- oder Türflügel Active EP2642060B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00402/12A CH706318A1 (de) 2012-03-21 2012-03-21 Fenster- oder Türflügel.
CH00732/12A CH706561B1 (de) 2012-05-25 2012-05-25 Fenster- oder Türflügel.

Publications (2)

Publication Number Publication Date
EP2642060A1 EP2642060A1 (de) 2013-09-25
EP2642060B1 true EP2642060B1 (de) 2020-07-08

Family

ID=47891554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13160348.2A Active EP2642060B1 (de) 2012-03-21 2013-03-21 Fenster- oder Türflügel

Country Status (1)

Country Link
EP (1) EP2642060B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125922A1 (de) * 2016-12-30 2018-07-05 SCHÜCO International KG Fenster oder Tür mit einem Flügelrahmen mit einem Glasträger
CN107237802A (zh) * 2017-07-13 2017-10-10 朱紫娟 一种转角结构连接件
GB2574415B (en) * 2018-06-05 2020-08-12 Aanco Uk Ltd A bead for a frame member
US11959331B2 (en) * 2019-01-14 2024-04-16 Vkr Holding A/S Building aperture cover with VIG unit connected to fixation profile
AT522638B1 (de) * 2020-01-30 2020-11-15 Gs Tech Gmbh Profil
CN113958244A (zh) * 2021-10-19 2022-01-21 江苏利恒幕墙科技有限公司 一种内开内倒系统窗窗框及制作工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032193A2 (de) * 2009-09-16 2011-03-24 Alutechnik Matauschek Gmbh Isolierteil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH552123A (de) * 1973-01-08 1974-07-31 Eltreva Ag Fluegelrahmen aus metall fuer fenster oder tueren.
DE19546678C2 (de) 1995-12-15 2003-06-05 Eurotec Gmbh Fenster oder Tür aus Profilen
FR2746843B1 (fr) * 1996-03-28 1998-09-11 Alcan France Assemblage entre un panneau plan, notamment vitre, et un chassis de porte, fenetre ou analogue
IT1319254B1 (it) 2000-10-30 2003-09-26 Hydro Aluminium Systems Spa Profilato portante per un telaio di una finestra, elemento difissaggio di un vetro e guarnizione di tenuta, associati a detto
FR2884548B1 (fr) * 2005-04-14 2007-06-15 Norsk Hydro As Parclose pour ouvrant de type ouvrant cache
DE102008009495A1 (de) 2008-02-15 2009-08-20 Bbg Gmbh & Co. Kg Verfahren zur Herstellung einer Profilleiste, Formwerkzeug zur Verwendung in dem Verfahren und mit dem Verfahren hergestellte Profilleiste
FR2951767B1 (fr) 2009-10-26 2011-11-11 Ouest Alu Menuiserie pour baie de batiment, equipee de moyens pour renforcer l'isolation thermique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032193A2 (de) * 2009-09-16 2011-03-24 Alutechnik Matauschek Gmbh Isolierteil

Also Published As

Publication number Publication date
EP2642060A1 (de) 2013-09-25

Similar Documents

Publication Publication Date Title
EP0865559B1 (de) Fenster oder tür aus einem kern aus schaumstoff enthaltenden profilen
EP2106491B2 (de) Kunststoffprofil für fenster-, türen- und fassadenelemente
EP2642060B1 (de) Fenster- oder Türflügel
EP2666949B1 (de) Fenster- oder Türflügel
DE202005004338U1 (de) Wärmedämmleiste für einen Glasfalz
WO2008071445A1 (de) Armiertes kunststoffprofil für fenster-, türen- und fassadenelemente
AT511180B1 (de) Profilelement aus Kunststoff
EP2666948B1 (de) Rahmenanordnung für ein Sektionaltorpaneel
DE19743381A1 (de) Rahmenprofile zum Herstellen von Blendrahmen bzw. Flügelrahmen für Fenster oder Türen und Verfahren zum Herstellen von Rahmenprofilen
AT508293B1 (de) Formteil zur wärmedämmung einer leibung in einer wandöffnung
DE4410075A1 (de) Fenster
EP1127990B2 (de) Rahmenkonstruktion mit verbesserter Wärmedämmung
EP2657012B1 (de) Zargenfreie Brandschutz-Ganzglastür
DE102005021934A1 (de) Rahmen für ein Fenster oder eine Tür
EP2363567B1 (de) Rahmen eines Kunststofffensters oder einer Kunststofftür
EP2060725B1 (de) Zarge für den Einbau eines Fensters oder einer Tür
AT514289B1 (de) Tür
AT411286B (de) Wärmeisolierendes holzbauelement, insbesondere rahmenkantel, und fenster oder tür damit
DE20315913U1 (de) Rahmenprofil für ein Flächentragelement
CH706318A1 (de) Fenster- oder Türflügel.
DE202004005464U1 (de) Fenster oder Tür mit einer im Falzbereich angeordneten Mitteldichtung
DE19736860C2 (de) Wärmegedämmte Fassade mit Fensterbändern
EP2295695A2 (de) Fassadenelement
DE202015100996U1 (de) Zargenrahmen-Adapterprofil
EP4305266A1 (de) Fassadenkonstruktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140325

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014881

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014881

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013014881

Country of ref document: DE

Owner name: HOCHULI ADVANCED AG, CH

Free format text: FORMER OWNER: HOCHULI METALLBAU AG, WIGOLTINGEN, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210321

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1288625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230405

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN