EP2632046B1 - Treiberschaltung - Google Patents
Treiberschaltung Download PDFInfo
- Publication number
- EP2632046B1 EP2632046B1 EP11834106.4A EP11834106A EP2632046B1 EP 2632046 B1 EP2632046 B1 EP 2632046B1 EP 11834106 A EP11834106 A EP 11834106A EP 2632046 B1 EP2632046 B1 EP 2632046B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- transistor
- power
- control circuit
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K2017/066—Maximizing the OFF-resistance instead of minimizing the ON-resistance
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K2017/6875—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors using self-conductive, depletion FETs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0081—Power supply means, e.g. to the switch driver
Definitions
- the present invention relates to a driver circuit, and more particularly, when a half-bridge circuit is formed by using, as a switching element, a wide bandgap semiconductor, such as GaN or SiC, having a normally-on characteristic in which a threshold voltage is a negative voltage, or having a normally-off characteristic in which the threshold value is low such as about 2 V, the present invention relates to a circuit that feeds a negative gate voltage for turning off the switching element.
- a wide bandgap semiconductor such as GaN or SiC
- a wide bandgap semiconductor represented by GaN or SiC has excellent characteristics such as high-speed switching and low-on resistance, compared to a silicon semiconductor.
- an element using the wide bandgap semiconductor exhibits a normally-on characteristic in which a drain current flows even if a gate voltage is 0 V, or a normally-off characteristic in which a threshold voltage is low such as about 2 V.
- a driver circuit that feeds the negative gate voltage is needed.
- Non-Patent Document 1 describes a buffer circuit that is driven by negative gate/bias voltage.
- Patent Document 1 describes a semiconductor circuit for a switching element having a normally-on characteristic, or for a switching element having a normally-off characteristic in which the threshold voltage is low.
- a power supply circuit for generating a negative voltage that is to be fed to a high-side (high-voltage side) switching element, and a power supply circuit for generating a negative voltage that is to be fed to a low-side (low-voltage side) switching element are provided, wherein the high-voltage side of the high-side power supply circuit is connected to a positive terminal of the high-voltage power supply. Further, a control capacitor whose one end is connected to the low-voltage (negative voltage) side of the high-side power supply circuit is provided. The control circuit that controls on/off of the switching element is supplied with operating power supply from the control capacitor that is charged when the switching element is turned on.
- One example of the power supply circuit described is a negative voltage power supply formed such that electric current is flown through the capacitor via another switching element, and a zener diode is connected to the capacitor in parallel.
- Patent Document 2 describes a power converter that supplies a negative voltage to a high-side normally-on switching element by using a constant voltage diode (zener diode).
- Non-Patent Document 1 International Rectifier Japan Application Note AN-1120
- US 2007/0121356 A1 relates to an electronic apparatus having a load including: a power supply unit supplying a driving voltage to the load; an inverter unit switching the driving voltage; and a control voltage supply unit outputting a first control voltage lower than a reference voltage applied to one terminal of the inverter unit, and a second control voltage higher than the reference voltage, thus controlling the inverter unit.
- the electronic apparatus and power circuit are capable of improving a control voltage applied to an inverter unit to reduce the switching loss of the inverter unit.
- US 2007/0216469 A1 relates to a semiconductor circuit suitable for normally-on switching elements or switching elements low in threshold voltage.
- a negative power supply is charged by a high-voltage power supply.
- a high-voltage switch controls the advisability of applying a voltage to a high-voltage terminal. With deducing the power supply to power switching elements, the high-voltage switch is turned off, and even in the case where the voltage of the controlling circuits of the power switching elements is reduced, the power supply capacitors for the controlling circuits are charged by the high-voltage terminal thereby to operate the controlling circuits.
- a negative power source voltage generating circuit utilizes the energy charged to the capacitors from output terminals.
- a voltage terminal is inserted between the high-voltage terminal and a reference voltage terminal.; The negative power source voltage generating circuit is interposed between the voltage terminal and a plurality of the output terminals.
- JP 2010 035389 A relates to an inverter circuit.
- the inverter circuit is provided with an upper arm side drive circuit for applying either an upper arm positive or negative drive voltage as a gate voltage to the upper arm side switching element, and a lower arm side drive circuit for applying either a lower arm positive or negative drive voltage as a gate electrode to the lower arm side switching element.
- the inverter circuit is further provided with a positive voltage capacitor for supplying an upper arm positive drive voltage to the upper arm side drive circuit, and a negative voltage capacitor for supplying an upper arm negative drive voltage to the upper arm side drive circuit.
- Non-Patent Document 1 describes that an insulated power supply is needed on the high side.
- a high-side internal power supply circuit is configured such that the high-voltage side is connected to the positive terminal of the high-voltage power supply as described above, so that it might possibly cause short-circuit since electric current flows from the high-voltage power supply. Therefore, the high-side internal power supply circuit needs to be an insulated power supply to prevent the short-circuit.
- the high side and the low side respectively need a power supply.
- Patent Document 1 the high-side power supply is realized by using the switching element, the capacitor, and the zener diode, but it is difficult to produce a zener diode having high breakdown voltage, and this imposes a limitation on a range of a power-supply voltage.
- a FWD free wheel diode
- a lateral device doing a unipolar operation has a reverse conducting function in a normally-on FET, an absolute value of a reverse conducting on-set voltage is large due to the low gate voltage (in general, -10 V or less) when it is turned off. Therefore, the FWD has to be connected in parallel as in the case described above.
- the present invention is accomplished in view of the above-mentioned circumstance, and aims to provide a driver circuit that can supply a negative gate voltage required for driving a switching element, without causing an increase in size of the circuit and causing a complicated structure.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that the second transistor is a normally-on n-channel FET using a wide-gap' semiconductor, and the high-voltage-side power-supply terminal of the second control circuit is connected to the second power-supply voltage.
- the wide-gap semiconductor means a semiconductor material having a bandgap larger than that of silicon, and it is represented by, for example, a material such as SiC, GaN, or diamond, having a bandgap of 2.2 eV or more that is twice the bandgap of silicon of 1.12 eV.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that the switching element includes a MOSFET.
- driver circuit having the above characteristic according to the present invention is preferably configured such that on/off of the switching element is controlled based upon the second control signal.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that on/off of the switching element is controlled based upon a signal resulting from a logical AND of the input signal inputted to the second control circuit and a delay signal of the input signal.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that on/off of the switching element is controlled based upon a signal resulting from a logical AND of the input signal inputted to the second control circuit and the second control signal.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that, in a case where the first transistor is a normally-on n-channel FET, the third power-supply voltage is set to be a voltage by which a reverse conducting operation of the first transistor is possible, when the first transistor is turned off by the input of the first control signal.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that, in the case where the second transistor is a normally-on n-channel FET, the third power-supply voltage is set to be a voltage by which a reverse conducting operation of the second transistor is possible, when the second transistor is turned off by the input of the second control signal.
- the driver circuit having the above characteristic according to the present invention is preferably configured such that the third power-supply voltage is set such that a reverse conducting on-set voltage of at least either one of the first transistor and the second transistor falls within a range of -1.5 V to -3.0 V.
- the negative gate voltage can be supplied to the low-side control circuit (second control circuit), and the control terminal of the second transistor via the third power-supply voltage, the capacitor that supplies the third power-supply voltage can be charged via the switching element that becomes on when the second transistor is on, and the negative gate voltage can be supplied to the high-side control circuit (the first control circuit) and the first transistor.
- the driver circuit can supply the negative voltage to the high-side circuit without additionally providing an insulated power supply, whereby the driver circuit for making a drive control of the switching element using a wide-gap semiconductor can easily be formed.
- the low-on resistance and high-speed switching characteristic of the switching element using the wide-gap semiconductor can be obtained, resulting in that the high-speed operation and reduced power consumption of the driver circuit can be realized.
- Fig. 7 illustrating dependency of a reverse conducting characteristic (a change in current Id flowing between a drain and a source when a voltage Vds that is negative with respect to the source is applied to the drain side) of a normally-on FET, having a threshold voltage Vth of -2.5 V, on a gate voltage Vgs
- the reverse conducting on-set voltage falls within the range of -1.5 V to -3 V by setting the gate voltage Vgs to be applied in the off state to be within the range of -4 V to -5.5 V.
- the third power-supply voltage and the negative gate voltage supplied via the third power-supply voltage can be set in order that the transistor can make the reverse conducting operation with respect to an expected voltage fluctuation caused by noise.
- the third power-supply voltage and the negative gate voltage supplied via the third power-supply voltage can be set in order that reverse conducting operation is possible with a reverse conducting on-set voltage whose absolute value is low within the range of -1.5 V to -3.0 V.
- the driver circuit according to the present invention can surely make the reverse conducting operation without being provided with an FWD that has to be generally connected to the inverter switching element in parallel.
- Fig. 1 illustrates an example of a structure of a driver circuit 1 according to one embodiment of the present invention.
- the same components are identified by the same numerals in all figures used for the description of the following embodiments, and the name and function are the same, so that the similar description will not be repeated.
- the driver circuit 1 includes a high-side first control circuit 11, a low-side second control circuit 12, a capacitor 13, a control circuit power supply 14, a switching element 30, a first transistor 21 whose drain (one end of a pair of input-output terminals) is connected to a positive-voltage VDD (first power-supply voltage) supplied from a high-voltage power supply 5, and a second transistor 22 whose source (one end of a pair of input-output terminals) is connected to a ground potential VSS (second power-supply voltage).
- VDD positive-voltage voltage
- VSS second power-supply voltage
- a source (the other end of the pair of input-output terminals) of the first transistor 21 is connected to a drain (the other end of the pair of input-output terminals) of the second transistor 22, whereby a half-bridge circuit in which the first transistor 21 and the second transistor 22 are connected in series is formed.
- the first transistor 21 and the second transistor 22 are respectively a normally-on n-channel FET made of a wide-gap semiconductor having a threshold voltage Vth of about -3 V.
- the positive voltage VDD is about 400 V, for example.
- a positive terminal of the control circuit power supply 14 is connected to the ground potential VSS, whereby the potential on a negative terminal of the control circuit power supply 14 becomes a negative voltage VEE (third power-supply voltage) with respect to the VSS.
- the negative voltage VEE is supplied to a low-voltage-side power-supply terminal 12b of the second control circuit 12, and is used to control the second transistor 22 to be turned off.
- the negative voltage VEE is lower than the negative threshold voltage Vth of the first transistor 21 and the second transistor 22, and it is about -10 V, for example.
- the high-side first control circuit 11 includes a high-voltage-side power-supply terminal 11a and a low-voltage-side power-supply terminal 11b.
- the circuit 11 generates a first control signal 6 for controlling on/off of the first transistor 21 based upon the high-side input control signal 2, and outputs the resultant to the gate of the first transistor 21.
- the voltage on the high-voltage-side power-supply terminal 11a is outputted to the gate of the first transistor 21 as the control signal 6 for turning on the first transistor 21, and when the first transistor 21 is controlled to be turned off, the voltage on the low-voltage-side power-supply terminal 11b is outputted to the gate of the first transistor 21 as the control signal 6 for turning off the first transistor 21.
- the low-side second control circuit 12 includes a high-voltage-side power-supply terminal 12a and a low-voltage-side power-supply terminal 12b.
- the circuit 12 generates a second control signal 7 for controlling on/off of the second transistor 22 based upon the low-side input control signal 3, and outputs the resultant to the gate of the second transistor 22.
- the voltage on the high-voltage-side power-supply terminal 12a is outputted to the gate of the second transistor 22 as the control signal 7 for turning on the second transistor 22, and when the second transistor 22 is controlled to be turned off, the voltage on the low-voltage-side power-supply terminal 12b is outputted to the gate of the second transistor 22 as the control signal 7 for turning off the second transistor 22.
- One end of the capacitor 13 is connected to the negative voltage VEE via the switching element 30, while the other end is connected to the source of the first transistor 21, i.e., to a connection node of the first transistor 21 and the second transistor 22.
- One end of the capacitor 13 is also connected to the low-voltage-side power-supply terminal 11b of the first control circuit 11.
- the switching element 30 is controlled based upon the low-side input control signal 3, and is turned on upon the timing when the second transistor 22 is turned on, i.e, upon the timing when the potential on the output terminal 4 of the driver circuit 1 is the closest to the VSS. The switching element 30 is then turned off on the timing when the second transistor 22 is turned off.
- the switching element 30 When the switching element 30 is on, the first transistor 21 is off and the second transistor 22 is on. Therefore, current flows through the capacitor 13 from the control circuit power supply 14 via the switching element 30 and the second transistor 22, whereby the capacitor 13 is charged such that the side connected to the high-voltage-side power-supply terminal 11a becomes positive, and the side connected to the low-voltage-side power-supply terminal 11b becomes negative.
- the negative voltage VEE of the control circuit power supply 14 is inputted to the control terminal of the first transistor 21 via the switching element 30 and the low-voltage-side power-supply terminal 11b as the negative gate voltage for maintaining the first transistor 21 in the off state.
- the on/off of the first transistor 21, the second transistor 22, and the switching element 30 is controlled based upon the high-side input control signal 2 and the low-side input control signal 3 in order that the first transistor 21 is turned on, and the second transistor 22 and the switching element 30 are turned off. Since the first transistor 21 and the second transistor 22 are respectively the normally-on n-channel FET, each transistor is in on state when the voltage on the source terminal is applied to the gate as the voltage of the high-voltage-side power-supply terminal. In this case, the potential of the output terminal 4 rises near the positive voltage VDD, since the first transistor 21 is on.
- the capacitor 13 is separated from the control circuit power supply 14, and functions as the power supply of the first control circuit 11. Since the potential on the positive side of the capacitor 13 is the potential (i.e., the potential of the output terminal 4) of the connection node between the first transistor 21 and the second transistor 22, and the potential on the negative side becomes lower than the potential of the connection node, the voltage lower than the potential of the connection node can be supplied to the gate of the first transistor 21. As a result, the first transistor 21 can surely be turned off in the switching afterward.
- Fig. 2 is a circuit diagram illustrating an example of a structure of the driver circuit 1 according to the present invention, when the switching element 30 is realized by an n-channel MOSFET 31.
- the driver circuit 1a illustrated in Fig. 2 can adapt to a higher-speed switching by replacing the switching element 30 with the MOSFET 31. Thus the processing speed of the driver circuit can be increased.
- one end of the MOSFET 31 is connected to the negative voltage VEE lower than the ground voltage VSS.
- the MOSFET 31 when a voltage higher than the threshold voltage of the MOSFET 31 with the VEE being defined as a reference is inputted to the gate of the MOSFET 31 as the low-side input control signal 3, the MOSFET 31 is turned on, and when the voltage lower than the threshold voltage with the VEE being defined as a reference is inputted to the gate terminal of the MOSFET 31, the MOSFET 31 is turned off. It is obvious that not only the MOSFET but also the bipolar transistor can be used as the switching element 30, and an element composed of a wide-gap semiconductor can also be used.
- Fig. 3 illustrates a structure in which the control signal for turning on or off the MOSFET 31 is supplied from the output terminal of the second control circuit 12 in the driver circuit 1a, having the MOSFET 31 as the switching element 30, illustrated in Fig. 2 .
- the MOSFET 31 is turned on (off) on the timing when the second transistor 22 is turned on (off) in consideration of the signal delay of the low-side input control signal 3 generated in the second control circuit 12.
- This operation can prevent the MOSFET 31 from being turned on before the second transistor 22 is changed to on from the state in which the first transistor 21 is on and the second transistor 22 is off, and can prevent the MOSFET 31 from being turned on with the potential of the output terminal 4 being high.
- the negative voltage VEE is applied to one end of the capacitor 13 and the low-voltage-side power-supply terminal 11b of the first control circuit 11
- the voltage of the output terminal 4 is applied to the other end of the capacitor 13 and the high-voltage-side power-supply terminal 11a of the first control circuit 11.
- the MOSFET 31 keeps in its on state during the on state of the first transistor, the voltage of the output terminal 4 increases to the VDD in the worst case, whereby an unexpected high voltage might be applied to both ends of the capacitor 13 and the first control circuit 11.
- the driver circuit 1b illustrated in Fig. 3 can surely prevent the MOSFET 31 from being turned on with the first transistor 21 being on, i.e., with the potential of the output terminal 4 being high, with the result that the one having low breakdown voltage can be used as the capacitor 13. Accordingly, the driver circuit 1b can prevent the first control circuit 11 from stopping its operation.
- Fig. 4 is a circuit diagram illustrating another embodiment realizing the driver circuit according to the present invention
- Fig. 5 is a signal waveform chart of its operation.
- a driver circuit 1c illustrated in Fig. 4 a logical AND of the low-side input control signal 3 ( Fig. 5(a) ) and a delay signal ( Fig. 5(b) ) of the low-side input control signal 3 via the delay circuit 8 is calculated in an AND circuit 9, and the signal ( Fig. 5(c) ) of the logical AND is inputted to the gate of the MOSFET 31 as the control signal for turning on or off the MOSFET 31.
- the delay time in the delay circuit 8 is set to be equal to or longer than the signal delay time of the low-side input control signal 3 generated in the second control circuit 12.
- This structure can surely turn on the MOSFET 31 with the voltage of the output terminal 4 being low, and when the control signal for turning off the second transistor 22 is inputted to the low-side input control signal 3, the MOSFET 31 is immediately turned off. Accordingly, this structure can surely prevent that the MOSFET 31 is turned on with the voltage of the output terminal 4 being high.
- Fig. 6 is a circuit diagram illustrating still another embodiment realizing the driver circuit according to the present invention.
- a driver circuit 1d illustrated in Fig. 6 a logical AND of the low-side input control signal 3 and an output signal (the second control signal 7) of the second control circuit 12 is calculated, and the signal of the logical AND is inputted to the gate terminal of the MOSFET 31 as the control signal for turning on or off the MOSFET 31.
- the driver circuit 1d can surely prevent that the MOSFET 31 is turned on with the voltage of the output terminal 4 being high, like the above-mentioned driver circuit 1c.
- the negative voltage VEE can be supplied to the second control circuit 12, and the gate of the second transistor 22, the capacitor 13 can be charged via the switching element 30 (MOSFET 31) that becomes on when the second transistor is on, and the negative voltage can be supplied to the first control circuit 11 and the first transistor 21. Accordingly, these driver circuits can supply the negative voltage for turning off the first transistor 21 without being provided with an insulated power supply in addition to the control circuit power supply 14.
- the first transistor 21 and the second transistor 22 are the normally-on FET using the wide-gap semiconductor.
- the first transistor 21 and the second transistor 22 are the normally-off FET having a threshold voltage of about 2 V
- a power supply circuit for increasing the voltage of the high-voltage-side power-supply terminal 11a (12a) connected to the source of the transistor, to be not less than at least the threshold voltage of the transistor is additionally provided, and the increased voltage is inputted to the gate terminal, in order to turn on the first transistor 21 and the second transistor 22.
- Fig. 7 is a graph illustrating dependency of a reverse conducting characteristic (a change in current Id flowing between a drain and a source when a voltage Vds that is negative with respect to the source is applied to the drain side) of a normally-on FET, having a threshold voltage Vth of -2.5 V, on a gate voltage Vgs.
- the change in the characteristic is illustrated when the Vgs is increased by +0.5 V from -5 V from the left of the graph.
- the reverse conducting on-set voltage by which the reverse conducting state is attained is -2.5 V, -2.0 V, and -1.5 V, respectively, when the gate voltage Vgs applied in the off state is -5.0 V, -4.5 V, and -4.0 V.
- a value of a third power-supply voltage is adjusted in order that the reverse conducting on-set voltage falls within a range of -1.5 V to -3.0 V.
- the third power-supply voltage VEE is set to be within the range of -5.0 V to -4.0 V in order that the gate voltage Vgs supplied via the third power-supply voltage VEE falls within the range of -5.0 V to -4.0 V.
- the reverse conducting operation can be realized with the reverse conducting on-set voltage whose absolute value is reduced within the range of -1.5 V to -3.0 V.
- the forward voltage of a FWD generally used for an inverter is about 1.5 V to 3.0 V. Therefore, with the structure described above, the reverse conducting operation can surely be realized by using the driver circuit 1 (1a to 1d) according to the present invention without a need of the FWD that is generally required to be connected to the inverter switching element in parallel.
- the present invention is applicable to a driver circuit that supplies a voltage used for a control of a control terminal of a switching element, and when the driver circuit according to the present invention is used for the control of the switching element using a wide bandgap semiconductor such as GaN or SiC, a negative voltage can be supplied, with a simple structure, to a switching element having a normally-on characteristic, or a switching element having a normally-off characteristic having a low threshold voltage of about 2 V, in order to turn off the switching element.
Landscapes
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
- Dc-Dc Converters (AREA)
Claims (9)
- Treiberschaltung, die einen ersten Transistor (21), in welchem ein Ende eines Paars von Eingangs-Ausgangsanschlüssen mit einer ersten Stromversorgungsspannung (VDD) verbunden ist, und einen zweiten Transistor (22) enthält, in welchem ein Ende eines Paars von Eingangs-Ausgangsanschlüssen mit einer zweiten Stromversorgungsspannung (VSS) verbunden ist, die niedriger als die erste Stromversorgungsspannung (VDD) ist, wobei der erste Transistor (21) und der zweite Transistor (22) in Reihe geschaltet sind, wobei die Treiberschaltung (1) eine Spannung eines Zwischenknotens zwischen dem ersten Transistor (21) und dem zweiten Transistor (22) abgibt, wobei die Treiberschaltung umfasst:eine erste Steuerschaltung (11), die einen hochspannungsseitigen Stromversorgungsanschluss (11a) und einen niederspannungsseitigen Stromversorgungsanschluss (11b) enthält und die ein erstes Steuersignal (6) zum Steuern von Ein/Aus des ersten Transistors (21) an einen Steueranschluss des ersten Transistors (21) basierend auf einem Eingangssignal (2) abgibt;eine zweite Steuerschaltung (12), die einen hochspannungsseitigen Stromversorgungsanschluss (12a) und einen niederspannungsseitigen Stromversorgungsanschluss (12b) aufweist und die ein zweites Steuersignal (7) zum Steuern von Ein/Aus des zweiten Transistors (22) an einen Steueranschluss des zweiten Transistors (22) basierend auf einem zweiten Eingangssignal (3) abgibt;ein Schaltelement (30); undeinen Kondensator (13), der eine Stromversorgungsspannung erzeugt, die der ersten Steuerschaltung (11) bereitgestellt werden soll, wobeiein Ende des Kondensators (13) über das Schaltelement (30) mit einer dritten Stromversorgungsspannung (VEE), die niedriger als die zweite Stromversorgungsspannung (VSS) ist, verbunden ist und das andere Ende des Kondensators mit dem anderen Ende der Eingangs-Ausgangsanschlüsse des ersten Transistors (21) verbunden ist,die Spannung an einem Ende des Kondensators (13) dem niederspannungsseitigen Stromversorgungsanschluss (11b) der ersten Steuerschaltung (11) bereitgestellt wird,die dritte Stromversorgungsspannung (VEE) dem niederspannungsseitigen Stromversorgungsanschluss (12b) der zweiten Steuerschaltung (12) bereitgestellt wird,die erste Steuerschaltung (11) die dem niederspannungsseitigen Stromversorgungsanschluss (11b) der ersten Steuerschaltung (11) bereitgestellte Spannung als das erste Steuersignal (6) abgibt, wenn der erste Transistor (21) ausgeschaltet wird, unddie zweite Steuerschaltung (12) die dem niederspannungsseitigen Stromversorgungsanschluss (12b) der zweiten Steuerschaltung (12) bereitgestellte Spannung als das zweite Steuersignal (7) abgibt, wenn der zweite Transistor (22) ausgeschaltet wird,das Schaltelement (30) so gesteuert wird, dass es in einem Ein-Zustand ist, wenn der zweite Transistor (22) in einem Ein-Zustand ist, undder erste Transistor (21) ein normalerweise eingeschalteter n-Kanal-FET ist, der einen Halbleiter mit breiter Bandlücke nutzt,dadurch gekennzeichnet, dassder hochspannungsseitige Stromversorgungsanschluss (11a) der ersten Steuerschaltung (11) mit dem anderen Ende der Eingangs-Ausgangsanschlüsse des ersten Transistors (21) verbunden ist, unddie dritte Stromversorgungsspannung (VEE) so eingestellt wird, dass sie eine Spannung ist, durch welche ein rückwärts leitender Betrieb des ersten Transistors (21) möglich ist, wenn der erste Transistor (21) durch eine Eingabe des ersten Steuersignals (6) ausgeschaltet wird.
- Treiberschaltung, die einen ersten Transistor (21), in welchem ein Ende eines Paars von Eingangs-Ausgangsanschlüssen mit einer ersten Stromversorgungsspannung (VDD) verbunden ist, und einen zweiten Transistor (22) enthält, in welchem ein Ende eines Paars von Eingangs-Ausgangsanschlüssen mit einer zweiten Stromversorgungsspannung (VSS) verbunden ist, die niedriger als die erste Stromversorgungsspannung (VDD) ist, wobei der erste Transistor (21) und der zweite Transistor (22) in Reihe geschaltet sind, wobei die Treiberschaltung (1) eine Spannung eines Zwischenknotens zwischen dem ersten Transistor (21) und dem zweiten Transistor (22) abgibt, wobei die Treiberschaltung umfasst:eine erste Steuerschaltung (11), die einen hochspannungsseitigen Stromversorgungsanschluss (11a) und einen niederspannungsseitigen Stromversorgungsanschluss (11b) enthält und die ein erstes Steuersignal (6) zum Steuern von Ein/Aus des ersten Transistors (21) an einen Steueranschluss des ersten Transistors (21) basierend auf einem Eingangssignal (2) abgibt;eine zweite Steuerschaltung (12), die einen hochspannungsseitigen Stromversorgungsanschluss (12a) und einen niederspannungsseitigen Stromversorgungsanschluss (12b) aufweist und die ein zweites Steuersignal (7) zum Steuern von Ein/Aus des zweiten Transistors (22) an einen Steueranschluss des zweiten Transistors (22) basierend auf einem zweiten Eingangssignal (3) abgibt;ein Schaltelement (30); undeinen Kondensator (13), der eine Stromversorgungsspannung erzeugt, die der ersten Steuerschaltung (11) bereitgestellt werden soll, wobeiein Ende des Kondensators (13) über das Schaltelement (30) mit einer dritten Stromversorgungsspannung (VEE), die niedriger als die zweite Stromversorgungsspannung (VSS) ist, verbunden ist und das andere Ende des Kondensators mit dem anderen Ende der Eingangs-Ausgangsanschlüsse des ersten Transistors (21) verbunden ist,die Spannung an einem Ende des Kondensators (13) dem niederspannungsseitigen Stromversorgungsanschluss (11b) der ersten Steuerschaltung (11) bereitgestellt wird,die dritte Stromversorgungsspannung (VEE) dem niederspannungsseitigen Stromversorgungsanschluss (12b) der zweiten Steuerschaltung (12) bereitgestellt wird,die erste Steuerschaltung (11) die dem niederspannungsseitigen Stromversorgungsanschluss (11b) der ersten Steuerschaltung (11) bereitgestellte Spannung als das erste Steuersignal (6) abgibt, wenn der erste Transistor (21) ausgeschaltet wird, unddie zweite Steuerschaltung (12) die dem niederspannungsseitigen Stromversorgungsanschluss (12b) der zweiten Steuerschaltung (12) bereitgestellte Spannung als das zweite Steuersignal (7) abgibt, wenn der zweite Transistor (22) ausgeschaltet wird,das Schaltelement (30) so gesteuert wird, dass es in einem Ein-Zustand ist, wenn der zweite Transistor (22) in einem Ein-Zustand ist, undder erste Transistor (21) ein normalerweise eingeschalteter n-Kanal-FET ist, der einen Halbleiter mit breiter Bandlücke nutzt,der zweite Transistor (22) ein normalerweise eingeschalteter n-Kanal-FET ist,dadurch gekennzeichnet, dassder hochspannungsseitige Stromversorgungsanschluss (11a) der ersten Steuerschaltung (11) mit dem anderen Ende der Eingangs-Ausgangsanschlüsse des ersten Transistors (21) verbunden ist, unddie dritte Stromversorgungsspannung (VEE) so eingestellt wird, dass sie eine Spannung ist, durch welche ein rückwärts leitender Betrieb des zweiten Transistors (22) möglich ist, wenn der zweite Transistor (22) durch eine Eingabe des zweiten Steuersignals (7) ausgeschaltet wird.
- Treiberschaltung nach Anspruch 1, wobei
der zweite Transistor (22) ein normalerweise eingeschalteter n-Kanal-FET ist und
die dritte Stromversorgungsspannung (VEE) so eingestellt wird, dass sie eine Spannung ist, durch welche ein rückwärts leitender Betrieb des zweiten Transistors (22) möglich ist, wenn der zweite Transistor (22) durch eine Eingabe des zweiten Steuersignals (7) ausgeschaltet wird. - Treiberschaltung nach einem der Ansprüche 1 bis 3, wobei die dritte Stromversorgungsspannung (VEE) so eingestellt wird, dass eine Rückwärtsleitungs-Schwellenspannung zumindest eines des ersten Transistors (21) und des zweiten Transistors (22) in einen Bereich von -1,5 V bis -3,0 V fällt.
- Treiberschaltung nach einem der Ansprüche 1 bis 4, wobei
der zweite Transistor (22) ein normalerweise eingeschalteter n-Kanal-FET ist und
der hochspannungsseitige Stromversorgungsanschluss (12a) der zweiten Steuerschaltung (12) mit der zweiten Stromversorgungsspannung (VSS) verbunden ist. - Treiberschaltung nach einem der Ansprüche 1 bis 5, wobei das Schaltelement (30) ein MOSFET ist.
- Treiberschaltung nach Anspruch 6, wobei Ein/Aus des Schaltelements (30) basierend auf dem zweiten Steuersignal (7) gesteuert wird.
- Treiberschaltung nach Anspruch 6, wobei Ein/Aus des Schaltelements (30) basierend auf einem Signal gesteuert wird, das aus einem logischen UND des zweiten Eingangssignals (3), das in die zweite Steuerschaltung (12) eingespeist wird, und eines Verzögerungssignals des zweiten Eingangssignals (3) resultiert.
- Treiberschaltung nach Anspruch 7, wobei Ein/Aus des Schaltelements (30) basierend auf einem Signal gesteuert wird, das aus einem logischen UND des zweiten Eingangssignals (3), das in die zweite Steuerschaltung (12) eingespeist wird, und des zweiten Steuersignals (7) resultiert.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010233322 | 2010-10-18 | ||
JP2011106293A JP5200140B2 (ja) | 2010-10-18 | 2011-05-11 | ドライバ回路 |
PCT/JP2011/066831 WO2012053264A1 (ja) | 2010-10-18 | 2011-07-25 | ドライバ回路 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2632046A1 EP2632046A1 (de) | 2013-08-28 |
EP2632046A4 EP2632046A4 (de) | 2014-12-10 |
EP2632046B1 true EP2632046B1 (de) | 2018-06-20 |
Family
ID=45974989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11834106.4A Active EP2632046B1 (de) | 2010-10-18 | 2011-07-25 | Treiberschaltung |
Country Status (5)
Country | Link |
---|---|
US (1) | US8952730B2 (de) |
EP (1) | EP2632046B1 (de) |
JP (1) | JP5200140B2 (de) |
CN (1) | CN103168421B (de) |
WO (1) | WO2012053264A1 (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090306642A1 (en) * | 2008-06-10 | 2009-12-10 | Vankov Alexander B | Method for low temperature electrosugery and rf generator |
JP5910395B2 (ja) * | 2011-09-16 | 2016-04-27 | サンケン電気株式会社 | ドライブ回路 |
JP5236822B1 (ja) | 2012-01-30 | 2013-07-17 | シャープ株式会社 | ドライバ回路 |
JP6096681B2 (ja) * | 2014-01-20 | 2017-03-15 | 株式会社東芝 | 三相インバータ回路及びドライバ回路 |
WO2015116031A1 (en) * | 2014-01-28 | 2015-08-06 | Schneider Electric It Corporation | Bipolar gate driver |
WO2015182175A1 (ja) * | 2014-05-28 | 2015-12-03 | シャープ株式会社 | ドライバ回路 |
EP3151402B1 (de) * | 2014-05-30 | 2022-10-05 | Mitsubishi Electric Corporation | Treiberschaltung für ein leistungshalbleiterelement |
EP3001563B1 (de) * | 2014-09-25 | 2019-02-27 | Nexperia B.V. | Kaskodentransistorschaltung |
CN104935154B (zh) * | 2015-07-10 | 2017-06-27 | 上海灿瑞科技股份有限公司 | 一种降压转换器的自举电路 |
CN105322948B (zh) * | 2015-10-30 | 2018-07-27 | 无锡新洁能股份有限公司 | 半桥驱动电路 |
WO2018181212A1 (ja) * | 2017-03-30 | 2018-10-04 | ローム株式会社 | スイッチング回路 |
US10784768B2 (en) | 2018-02-09 | 2020-09-22 | Delta Electronics, Inc. | Conversion circuit and conversion circuitry |
US10734882B2 (en) | 2018-02-09 | 2020-08-04 | Delta Electronics, Inc. | Conversion circuit |
US10784770B2 (en) | 2018-02-09 | 2020-09-22 | Delta Electronics, Inc. | Conversion circuit |
US11309887B2 (en) | 2018-02-09 | 2022-04-19 | Delta Electronics, Inc. | Conversion circuit |
US20200153427A1 (en) * | 2018-11-09 | 2020-05-14 | Psemi Corporation | Driving D-Mode FETS in Half-Bridge Driver Configuration |
DE102019103005B3 (de) | 2019-02-07 | 2020-06-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Schaltung zu einer Gateansteuerung mit negativer Spannung |
US10734893B1 (en) | 2019-05-03 | 2020-08-04 | Psemi Corporation | Driving circuit for switches used in a charge pump |
US11451227B2 (en) * | 2020-04-30 | 2022-09-20 | Eaton Intelligent Power Limited | Control circuitry for power semiconductor switches using control signal feedback |
CN115910144B (zh) * | 2021-08-20 | 2024-06-21 | 长鑫存储技术有限公司 | 驱动电路、存储设备及驱动电路控制方法 |
CN114844493B (zh) * | 2022-05-20 | 2023-07-25 | 湖南炬神电子有限公司 | 一种双驱动级联器件的延时驱动电路 |
CN115118153B (zh) * | 2022-06-25 | 2023-03-24 | 北京金诺美科技股份有限公司 | 一种基于电荷泵的h桥驱动电路、驱动方法和装置 |
CN115865061B (zh) * | 2023-03-02 | 2023-05-12 | 康希通信科技(上海)有限公司 | 射频开关的辅助控制电路以及射频开关的逻辑转换电路 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035389A (ja) * | 2008-07-31 | 2010-02-12 | Daikin Ind Ltd | インバータ回路 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5120992A (en) * | 1991-07-03 | 1992-06-09 | National Semiconductor Corporation | CMOS output driver with transition time control circuit |
CN1233093C (zh) * | 2002-02-20 | 2005-12-21 | 松下电器产业株式会社 | 驱动电路 |
TW200525869A (en) * | 2004-01-28 | 2005-08-01 | Renesas Tech Corp | Switching power supply and semiconductor IC |
JP2006314154A (ja) * | 2005-05-06 | 2006-11-16 | Sumitomo Electric Ind Ltd | 電力変換器 |
US8384444B1 (en) * | 2005-09-03 | 2013-02-26 | Texas Instruments Incorporated | I/O driver with pass gate feedback controlled output driver |
KR100687936B1 (ko) | 2005-11-29 | 2007-02-27 | 삼성전자주식회사 | 전자기기 및 전원회로 |
JP2007288992A (ja) * | 2006-03-20 | 2007-11-01 | Hitachi Ltd | 半導体回路 |
JP4946508B2 (ja) | 2007-02-28 | 2012-06-06 | 株式会社日立製作所 | 半導体回路 |
TW201037949A (en) * | 2009-04-06 | 2010-10-16 | Anpec Electronics Corp | Electronic device for supplying DC power |
-
2011
- 2011-05-11 JP JP2011106293A patent/JP5200140B2/ja active Active
- 2011-07-25 CN CN201180050148.0A patent/CN103168421B/zh active Active
- 2011-07-25 EP EP11834106.4A patent/EP2632046B1/de active Active
- 2011-07-25 US US13/879,940 patent/US8952730B2/en active Active
- 2011-07-25 WO PCT/JP2011/066831 patent/WO2012053264A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035389A (ja) * | 2008-07-31 | 2010-02-12 | Daikin Ind Ltd | インバータ回路 |
Also Published As
Publication number | Publication date |
---|---|
JP5200140B2 (ja) | 2013-05-15 |
US20130200926A1 (en) | 2013-08-08 |
CN103168421A (zh) | 2013-06-19 |
EP2632046A1 (de) | 2013-08-28 |
US8952730B2 (en) | 2015-02-10 |
JP2012110205A (ja) | 2012-06-07 |
CN103168421B (zh) | 2016-06-22 |
EP2632046A4 (de) | 2014-12-10 |
WO2012053264A1 (ja) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2632046B1 (de) | Treiberschaltung | |
JP5236822B1 (ja) | ドライバ回路 | |
US8598916B2 (en) | Circuit having gate drivers having a level shifter | |
US8063613B2 (en) | Power converter driver with split power supply | |
US20070222485A1 (en) | Circuit for driving a semiconductor element | |
US20140062573A1 (en) | Level shift device | |
CN108075752B (zh) | 负载驱动电路 | |
US8829952B2 (en) | Gate drive circuit | |
JP2009518730A (ja) | 低電圧トランジスタを使用する高電圧電力スイッチ | |
US20150036252A1 (en) | Semiconductor driving device and semiconductor device | |
JP4618164B2 (ja) | スイッチ回路 | |
US9595967B2 (en) | Level shift circuit and driver circuit | |
US9742388B2 (en) | Driver circuit | |
US10056896B2 (en) | Switching element driving device | |
WO2014128942A1 (ja) | 半導体素子の駆動装置 | |
US9312848B2 (en) | Glitch suppression in an amplifier | |
US7692479B2 (en) | Semiconductor integrated circuit device including charge pump circuit capable of suppressing noise | |
US10601416B2 (en) | Gate drive device | |
US11196421B2 (en) | Logic circuit and circuit chip | |
US20180351344A1 (en) | Drive circuit | |
US10498337B2 (en) | Level shift device and IC device | |
US10659039B2 (en) | Semiconductor device | |
US11283442B2 (en) | Semiconductor device | |
WO2023107906A1 (en) | Multi-voltage bootstrapping drivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130430 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20141107 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H03K 17/06 20060101AFI20141103BHEP Ipc: H03K 17/687 20060101ALI20141103BHEP Ipc: H03M 1/08 20060101ALI20141103BHEP |
|
17Q | First examination report despatched |
Effective date: 20160519 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180329 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011049463 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1011282 Country of ref document: AT Kind code of ref document: T Effective date: 20180715 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180920 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180920 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180921 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1011282 Country of ref document: AT Kind code of ref document: T Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181020 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011049463 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180725 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180920 |
|
26N | No opposition filed |
Effective date: 20190321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180820 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180620 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180620 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602011049463 Country of ref document: DE Owner name: ROHM CO., LTD., JP Free format text: FORMER OWNER: SHARP KABUSHIKI KAISHA, OSAKA-SHI, JP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 14 |