US20090306642A1 - Method for low temperature electrosugery and rf generator - Google Patents

Method for low temperature electrosugery and rf generator Download PDF

Info

Publication number
US20090306642A1
US20090306642A1 US12/136,683 US13668308A US2009306642A1 US 20090306642 A1 US20090306642 A1 US 20090306642A1 US 13668308 A US13668308 A US 13668308A US 2009306642 A1 US2009306642 A1 US 2009306642A1
Authority
US
United States
Prior art keywords
probe
bursts
tissue
circuit
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/136,683
Inventor
Alexander B. Vankov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Advanced Energy LLC
Original Assignee
Peak Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peak Surgical Inc filed Critical Peak Surgical Inc
Priority to US12/136,683 priority Critical patent/US20090306642A1/en
Assigned to PEAK SURGICAL, INC. reassignment PEAK SURGICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VANKOV, ALEXANDER B.
Assigned to VENTURE LENDING & LEASING V, INC. reassignment VENTURE LENDING & LEASING V, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEAK SURGICAL, INC.
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. SECURITY AGREEMENT Assignors: PEAK SURGICAL, INC.
Publication of US20090306642A1 publication Critical patent/US20090306642A1/en
Assigned to MEDTRONIC ADVANCED ENERGY LLC reassignment MEDTRONIC ADVANCED ENERGY LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PEAK SURGICAL, INC.
Priority to US13/963,335 priority patent/US9018983B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed

Definitions

  • This invention relates to electrosurgery for biological tissue.
  • electrosurgery The field of electrosurgery is well known, see for instance, Palanker U.S. Pat. No. 7,238,185 and Palanker, et al. U.S. Pat. No. 6,780,178 both incorporated herein in their entireties.
  • application of a voltage to an electrode is useful for cutting, ablating and fulgurating biological tissue. This is generally known as electrosurgery.
  • the voltage is applied as a train of high frequency pulses in the radio frequency (RF) range to a probe in contact with the tissue.
  • RF radio frequency
  • a problem with electrosurgery is preventing excessive application of heat to the tissue being cut, fulgurated, dessicated, etc. since this tends to produce undesirable affects such as charring and collateral tissue damage. This is typically caused by high temperatures induced by the application of the electrical energy.
  • tissue coagulation for denaturation of blood and vascular tissue (veins and arteries) followed by occlusions of the blood vessels.
  • dessication occurs below or close to 100° C. and fulguration at higher temperatures above 100° C.
  • a high temperature during fulguration outside the immediate area being treated results in undesirable tissue charring and buildup of debris on the electrosurgical probe, which decreases its efficiency of coagulation. This may also result in adhesion of charred tissue to the probe and damage to the areas of the probe with low melting temperatures such as plastic components. Typically this might require cleaning of the probe after each session of coagulation.
  • high temperature may result in smoke obscuring the surgical field, especially for laparoscopic procedures.
  • a method and apparatus for pulsed applications of heat in electrosurgery provide sufficient peak temperature for tissue coagulation (and “blend” cutting) and allow for cooling of tissue between the application of electrical energy pulses, so avoiding excessive heating.
  • groups of pulse bursts are separated by a time interval sufficient for cooling both the probe and immediately neighboring tissue to close to ambient temperature.
  • this is achieved by using RF high power groups of pulse bursts, such as power levels of 300 W or higher during on time and zero during off time, the groups of bursts being of high frequency such as 100 kHz to 5000 kHz and each group of bursts having a duty cycle in the range of 1% to 50%.
  • Duty cycle refers to the ratio of time when RF power is applied to the rated load to the full duration of the group of bursts.
  • a sine wave has a 100% duty cycle.
  • the sine wave cycles (on time) occupy a short time in each burst, with a substantial part of each burst having no RF energy present (off time).
  • a number of such bursts are grouped together, with an interval of at least 1 millisecond between each group of bursts, to allow for tissue cooling.
  • Each burst of pulses has enough electrical power to rapidly heat the tissue to temperatures adequate for coagulation.
  • the active portion of the electrosurgery probe itself is typically of relatively small size to provide a short cooling time.
  • the probe is bare metal or metal covered with a layer of insulation, with the layer of insulation defining an opening at the edge where the electrical pulses are actually applied to the tissue for coagulation and cutting and further defining a number of spaced apart small openings on its side surfaces (flat portions), each having a diameter for instance of 0.02 mm to 0.10 mm for extensive coagulation.
  • an RF pulse generator for low temperature electrosurgery tissue cutting.
  • This pulse generator provides square wave alternating positive and negative pulses with a fast switching time and a pulse amplitude of up to 1000 Volts peak to peak.
  • the particular circuit disclosed here also referred to as a pulse generator or radio frequency generator in the field, is based on a conventional half bridge inverter with high power transistors serving as high and low side switches.
  • each channel of the inverter (there being a positive pulse voltage channel and a negative pulse voltage channel) is provided with a gate driver circuit driving the gate of each switching transistor.
  • an input terminal of the gate driving circuit is negative biased and also coupled to ground via a resistance.
  • each channel also includes a current driver (booster) with a disable function to provide protection of the circuit in short circuit conditions.
  • boost current driver
  • FIGS. 1 a, 1 b, 1 c show a set of high power groups of bursts indicating the nature of the electrical energy applied to the probe in accordance with the invention for 3 types of coagulation respectively spray, pinpoint, and blend.
  • FIG. 2 shows a graph of thermal relaxation time vs. probe size.
  • FIG. 3 is a planar view of a portion of an electrosurgical probe showing the openings defined on the side surfaces of the probe through the insulation layer.
  • FIG. 4 a is a schematic circuit diagram of a RF generator in accordance with the invention.
  • FIG. 4 b shows an output waveform of the RF generator.
  • FIG. 5 a shows the potential problem of noise in the present RF generator.
  • FIG. 5 b shows how the problem of noise is overcome in accordance with the present RF generator.
  • FIG. 6 shows a schematic diagram of a protection circuit used with the RF generator of FIG. 4 a.
  • the present description is directed to high voltage RF electrical energy applied to an electrosurgical probe for tissue coagulation and cutting.
  • the electrosurgery probe itself may be of the types disclosed here or in the above described patent applications or other types as known in the field.
  • the probe has a relatively small surface area at its active electrode portion (tip) to minimize heating of the tissue being treated.
  • the probe may be uninsulated (bare metal) or partly covered with a high dielectric insulating layer.
  • the probe may be mono or bi-polar.
  • the probe is immersed in the tissue being operated on, which has naturally occurring fluid present or some type of liquid is provided immediately around the probe in the surgical field. In other uses for, e.g., fulguration no liquid is present.
  • the present method is intended primarily for use with electrosurgical coagulation, but can be used for simultaneous tissue cutting and coagulation.
  • tissue coagulation purposes some amount of charring is in fact desirable since that is the intent of coagulation (to seal tissue).
  • tissue charring is undesirable beyond the immediate area being coagulated.
  • the goal is to maintain a relatively low probe temperature and hence minimize heat transfer to the surrounding tissue while still accomplishing coagulation or dessication or fulguration.
  • the present method is directed to what is sometimes called “cold coagulation.”
  • the edge of the probe is intended for both cutting and coagulation, and the flat (side) portion thereof with “dimples” (the openings) serves for coagulation only.
  • the flat portion of the probe sends an electrical arc to the walls of the wound to heat and close the blood vessels.
  • the dimples help the electrical arc to reach all blood vessels, as in an uninsulated probe, but the small diameter of the dimples advantageously provides a short thermal relaxation time and, as a result, low temperature during pulsed coagulation.
  • the present invention is directed to use of high rated power RF (above 300 W) during the pulse on time. Since power depends on the load, the rated load is by definition the load where the maximum (rated) power can be achieved.
  • a typical voltage here (both positive and negative) is up to 12,000 Volts peak to peak under open circuit conditions. A typical waveform for this condition is a damped sine wave.
  • the RF power has a carrier frequency of approximately 460 KHz, so the duration of each period (pulse) is approximately 2.2 microseconds.
  • the on time RF pulses can be sine waves, but usually a sine wave is good only for pure cutting.
  • periods of pulses are clustered in each burst with no RF energy between them.
  • there is only one period per burst but this is not limiting; there may be 2, 3, or more pulses per burst as shown respectively in FIGS. 1 a, 1 b, 1 c for different types of coagulation.
  • the repetition rate for the bursts is e.g. 30 KHz.
  • a typical frequency for the groups of burst is 25 Hz.
  • a group of these bursts defines the on time, followed by the off time.
  • the duty cycle of each group is in the range of 1% to 50%. That is, only 1% to 50% of the total time during each group of bursts is actually occupied by RF energy and the remainder is of zero voltage applied to the load, as shown in FIGS. 1 , 1 a, 1 b, 1 c.
  • a number of such pulse bursts may also be grouped together.
  • the off time between each group of bursts is about 1 millisecond or more to allow further cooling of the probe and associated tissue.
  • the on time can be from 100 microseconds to 10 ms, followed by the off time off interval, at least 1 ms in duration. This modulation further reduces the duty cycle by a factor of 0.01 to 0.9.
  • the open circuit waveform is, e.g., a damped sine wave at the carrier frequency (such as 460 kHz in FIG. 1 c ) which shrinks to a sine wave cycle as shown in FIG. 1 a at a low impedance load.
  • the amplitude (voltage) of these pulses decreases with the resistance of the load in such a way that the average RF power achieves a maximum at a so called “rated load”, typically 100 to 1000 Ohm.
  • the number of pulses in a pulse burst determines the rated load, roll-off points on the load curve, the type of the surgical mode (called in the field for instance blend, desiccation, fulguration), and the length of the spark.
  • the repetition rate of the pulse bursts is typically 20 to 60 kHz (indicated as fburst of 30 kHz in FIG. 1 b ).
  • the purpose of these bursts is not a cooling of the tissue during the burst off time, since tissue temperature cannot decrease during mere tens of microseconds. Instead the off time allows for collapse of undesirable vapor bubbles formed on or near the probe, arising during the pulse on time. Otherwise due to the vapor bubbles the tissue experiences problematic “micro explosions” of the bubbles, repulsing tissue from the probe, and precluding effective coagulation.
  • the pulse bursts are grouped together, with a time interval between them (determined by the burst duty cycle) longer than the thermal relaxation time for a particular probe.
  • r is the characteristic size of the electrode in ⁇ m
  • c heat capacity
  • density
  • k thermal conductivity of liquid as plotted in FIG. 2 .
  • the thermal relaxation time is 70 ⁇ s, but for 1 mm probe this value is 0.7 seconds. So, a small probe electrode is generally required here.
  • the small probe can coagulate only a small area adjacent to the probe electrode.
  • a spark (arc) length of 1 mm and a point electrode that is 0.1 mm in diameter, one can coagulate a spot of tissue 2.1 mm in diameter.
  • Multiple small electrodes, representing small openings in the probe insulation are introduced on the flat portion of the blade and spaced apart to coagulate a large solid area of tissue.
  • the spark circles should overlap to cover the whole tissue surface.
  • the size of the individual electrodes (the openings) is small enough to provide fast cooling.
  • low average tissue temperature can be achieved.
  • the probe provides shallow strong coagulation with a safe temperature of the probe.
  • FIG. 3 shows a partial view of a side surface of the associated probe 30 in which the overlying insulating layer 34 defines a pattern of openings (dimples) 36 a, 36 b, 36 c, etc. to expose the underlying metal 40 of the electrode of probe 30 .
  • the size of each opening is shown as about 0.05 mm by 0.05 mm (each being approximately a square), however, this size and shape are not limiting.
  • the spacing between openings (center to center) is in the range of 0.2 to 1.0 mm, not limiting.
  • the metal edge 42 of probe 30 is also exposed through the overlying insulating layer 34 .
  • the actual materials of the probe metal 40 and insulation 34 are conventional as explained in the above referenced patents and as well known in the field.
  • the associated equipment has variable outputs and can be adjusted by the operator to provide pulses of various frequencies and timing durations so that the present pulse regime is thereby accomplished.
  • This pulse regime may depend on probe size, the nature of the surgical procedure being undertaken such as fulguration, dessication, coagulation, and other factors as determined by the operator (surgeon).
  • a typical range of correct frequencies for the pulses is 100 KHz to 5 MHz, of which the above described 460 KHz is merely illustrative.
  • the probe and the associated tissue may be kept below or above 100° C., depending on what is required for the particular surgical procedure being undertaken.
  • the relatively low temperature of the probe-tissue interface results in reduced adhesion of the charred tissue to the probe, decreasing smoke and providing better performance for coagulation.
  • an RF generator 50 for e.g. pulsed cutting of tissue (see circuit diagram FIG. 4 a ), compatible with a pulsed coagulation method and probe described above.
  • Such an RF generator is believed to be novel for electrosurgery, where out coupling typically represents a transformer, although generally RF generators are well known in the electronics field for generating high frequency electrical signals.
  • Such RF generators typically are half bridge inverters.
  • the present RF generator has only capacitors in series with the load as required by regulatory rules (for a capacitance ⁇ 5 nF), and the usual RF transformer is omitted.
  • Associated waveforms are described in Palanker U.S. Pat. No.
  • the present RF generator for tissue cutting may be a part of a system producing also coagulation waveforms according to FIG. 1 to combine cutting and coagulation ability for a single probe.
  • the present RF generator apparatus or circuit 50 conventionally includes a half bridge inverter with high power Field Effect Transistors (FET) Q 2 , Q 1 used as respective low and high side switches.
  • FET Field Effect Transistors
  • the amount of time for each switch (transistors Q 1 , Q 2 ) to turn on or off is important.
  • the switching transistors should be capable of switching in less than approximately 10% of the period of the output pulse. For a 4 MHz frequency pulse this requires that each transistor's Q 1 , Q 2 gate terminal be charged/discharged in less than 25 nanoseconds.
  • the effective gate capacitance or input capacitance of such field effect transistors Q 1 , Q 2 includes the gate-source capacitance and the gate-drain capacitance, also referred to as Miller capacitance.
  • the total gate charge required to charge the gate of a typical field effect transistor from 0V to 3V (enough to switch the transistor) is 80 nC. This total charge includes the Miller charge required to discharge the gate-drain capacitance when the transistor switches from the off state with a drain-source voltage of 450V, to the on state.
  • the gate driver circuits 52 , 54 in this generator are selected to provide a 20 amp maximum current, but this is merely illustrative.
  • the electrical charge injected in the tissue from the probe must be close to zero to minimize undesirable muscle stimulation.
  • the electrical charge injected in the tissue from the probe must be close to zero to minimize undesirable muscle stimulation.
  • two channels 58 , 60 are used, e.g., connected to two Direct Current (DC) power supplies (not shown), one providing +500V and the second providing ⁇ 500V output signals at respectively nodes 115 , 117 .
  • the output terminal 112 (to the probe) for generator 50 therefore is connected at a midpoint node 66 between the two channels 58 , 60 . Voltage at this terminal 66 therefore swings between positive and negative voltages as described further below.
  • the current driving for the gate of each switching transistor Q 1 , Q 2 is provided here with a radio frequency isolated independent driving direct current power supply.
  • the RF isolation is required because the gate of each transistor Q 1 , Q 2 is referenced to the source of the transistor, which switches with slew rates of more than 30 Volt/nanosecond.
  • the high side driving reference point 66 has to have a minimum coupling capacitance and leakage inductance to the ground of the drivers 52 , 54 .
  • Transformers 78 , 80 are provided as is conventional in each channel 58 , 60 for galvanic isolation and level shifting required for each switching transistor Q 1 , Q 2 .
  • An advantage of this is at the high-side gate driver circuit 52 does not require a floating power supply since the power to transistor Q 1 is coupled through the transformer 78 .
  • the leakage inductance of the windings of each transformer 78 , 80 makes it difficult to obtain the rapid rise of the current required and causes excessive ringing which must be suppressed. Improved operation is obtained here by using a large sinusoidal drive current since the leakage inductance of the transformers 78 , 80 along with the input capacitance of each transistor Q 1 , Q 2 can be included in a resonant circuit.
  • the sine wave output of the resonant circuit has higher amplitude than the transistor switching threshold voltage, to minimize switching time.
  • fast switching results in shorter high voltage swings on the source/drain terminals of the switching transistors Q 1 , Q 2 .
  • Short intense transients therefore travel back from the mid-point 66 of the half bridge to the gate terminals of transistors Q 1 , Q 2 due to the Miller capacitance into the output of each gate driver circuit 52 , 54 from each of the transformers 78 , 80 .
  • Each gate driver circuit 52 , 54 has a 0.6 Ohm output resistance in both high and low output voltage regimes. Therefore the energy of the transient goes mostly to the low voltage ground as indicated in FIG. 5 a and causes ringing.
  • This undesirable ringing may affect the input of the gate driver circuits 52 , 54 causing simultaneously opening and closure of the switching transistors Q 1 , Q 2 which, of course, must be avoided.
  • a negative bias voltage as shown of ⁇ 1V is applied to the input (“In”) terminal of each gate driver circuit 52 , 54 .
  • the same input terminal of each gate driver circuit 52 , 54 is also coupled to ground via a low resistance (22 Ohm) resistor 80 , 82 .
  • 22 Ohm resistors 86 , 88 are coupled across the primary and/or secondary windings of each transformer 78 , 80 to damp ringing.
  • inductances of the primary and secondary windings of each transformer 78 , 80 are chosen to be minimal e.g. 1.6 microH.
  • the inductance of the ground path to the input terminal of each gate driver circuit 52 , 54 is minimized with short and wide leads.
  • a DC/DC converter 90 , 92 is coupled to the input terminal of each gate driver circuit 52 , 54 to create the above mentioned negative direct current bias of ⁇ 1 Volt to that input terminal and effectively discriminate noise at the input terminal of each gate driver circuit 52 , 54 .
  • FIG. 4 a effectively the negative input bias at the input terminal “In” of each gate driver circuit 52 , 54 is ⁇ 1 Volt in this example.
  • the input control signals 100 , 102 applied to each input terminal 106 , 108 of the two channels of the RF generator and shown as a set of square waves which determines timing for the pulse bursts and pulses as explained above.
  • the input control signals are generated conventionally.
  • the RF generator output terminal 112 labeled “pulse out” which is connected to the probe.
  • FIG. 4 b shows an output waveform (at node 112 ) of the RF generator 50 .
  • a high voltage ground terminal 116 connected to the probe ground terminal or to a return line connected to the patient.
  • the remaining circuit elements in FIG. 4 a are conventional; in some cases component numbers or values are shown, but these are only exemplary.
  • FIG. 5 a shows via waveforms how the circuit of FIG. 4 would have an accumulation of noise on a low voltage ground resulting in an uncontrollable wave form, e.g., due to ringing.
  • the horizontal axis here refers to time and the vertical axis is the voltage at the input terminal of each gate driver.
  • the horizontal broken line at 3 Volt is the threshold voltage at the input terminal of the gate drivers 52 , 54 .
  • FIG. 4 b shows how the above described negative bias of ⁇ 1 Volt applied to that same input terminal (and also shown as the horizontal broken line in FIG. 5 b ) reduces the amount of noise compared to FIG. 4 a at the In terminal to the gate driver circuits 52 , 54 .
  • Also provided in one embodiment in the circuit of FIG. 4 a is over current protection to prevent damage to the switching transistors and/or the other components. Typically failure of such a RF generator is caused by excessive currents flowing either through the switching transistors or into the output terminal.
  • Various conventional protection circuits are known and an example is shown in FIG. 6 which would be coupled conventionally to generator 50 . These protection circuits typically include current transformer sensors connected either to the return patient cable (ground to the patient, e.g., at node 116 ) or to the high voltage lines at node 112 .
  • the circuit of FIG. 4 a since it has two channels 58 , 60 would typically have two such protection circuits, one coupled to each channel 58 , 60 .

Abstract

Method and apparatus for electrosurgery including tissue coagulation using very high voltage pulses of electrical energy applied to the electrosurgical probe. This minimizes heating of the surrounding tissue in the probe and is especially suitable for precise and limited coagulation and fulguration without excessive tissue charring or other damage. The power at rated load of the applied pulses to the probe is typically over 300 W and the duration of the on time is very short, so each group of pulse bursts is of relatively low duty cycle. An RF generator is also provided for delivering electrical energy to an electrosurgical probe with the proper characteristics, including fast switching times.

Description

    FIELD OF THE INVENTION
  • This invention relates to electrosurgery for biological tissue.
  • BACKGROUND OF THE INVENTION
  • The field of electrosurgery is well known, see for instance, Palanker U.S. Pat. No. 7,238,185 and Palanker, et al. U.S. Pat. No. 6,780,178 both incorporated herein in their entireties. Briefly, application of a voltage to an electrode is useful for cutting, ablating and fulgurating biological tissue. This is generally known as electrosurgery. Typically the voltage is applied as a train of high frequency pulses in the radio frequency (RF) range to a probe in contact with the tissue.
  • A problem with electrosurgery is preventing excessive application of heat to the tissue being cut, fulgurated, dessicated, etc. since this tends to produce undesirable affects such as charring and collateral tissue damage. This is typically caused by high temperatures induced by the application of the electrical energy.
  • Some highly localized high temperature is required during, for instance, tissue coagulation (sealing) for denaturation of blood and vascular tissue (veins and arteries) followed by occlusions of the blood vessels. Typically dessication occurs below or close to 100° C. and fulguration at higher temperatures above 100° C. A high temperature during fulguration outside the immediate area being treated results in undesirable tissue charring and buildup of debris on the electrosurgical probe, which decreases its efficiency of coagulation. This may also result in adhesion of charred tissue to the probe and damage to the areas of the probe with low melting temperatures such as plastic components. Typically this might require cleaning of the probe after each session of coagulation. Also, high temperature may result in smoke obscuring the surgical field, especially for laparoscopic procedures.
  • SUMMARY
  • In accordance with this invention, a method and apparatus for pulsed applications of heat in electrosurgery provide sufficient peak temperature for tissue coagulation (and “blend” cutting) and allow for cooling of tissue between the application of electrical energy pulses, so avoiding excessive heating. Typically groups of pulse bursts are separated by a time interval sufficient for cooling both the probe and immediately neighboring tissue to close to ambient temperature.
  • In one embodiment this is achieved by using RF high power groups of pulse bursts, such as power levels of 300 W or higher during on time and zero during off time, the groups of bursts being of high frequency such as 100 kHz to 5000 kHz and each group of bursts having a duty cycle in the range of 1% to 50%. Duty cycle refers to the ratio of time when RF power is applied to the rated load to the full duration of the group of bursts. According to this definition a sine wave has a 100% duty cycle. For coagulation and blend cutting electrosurgery, the sine wave cycles (on time) occupy a short time in each burst, with a substantial part of each burst having no RF energy present (off time). A number of such bursts are grouped together, with an interval of at least 1 millisecond between each group of bursts, to allow for tissue cooling. Each burst of pulses has enough electrical power to rapidly heat the tissue to temperatures adequate for coagulation.
  • The active portion of the electrosurgery probe itself is typically of relatively small size to provide a short cooling time. Moreover the probe is bare metal or metal covered with a layer of insulation, with the layer of insulation defining an opening at the edge where the electrical pulses are actually applied to the tissue for coagulation and cutting and further defining a number of spaced apart small openings on its side surfaces (flat portions), each having a diameter for instance of 0.02 mm to 0.10 mm for extensive coagulation.
  • Also provided in accordance with the invention is an RF pulse generator for low temperature electrosurgery tissue cutting. This pulse generator provides square wave alternating positive and negative pulses with a fast switching time and a pulse amplitude of up to 1000 Volts peak to peak. The particular circuit disclosed here, also referred to as a pulse generator or radio frequency generator in the field, is based on a conventional half bridge inverter with high power transistors serving as high and low side switches. In order to overcome the well known problem of Miller capacitance, each channel of the inverter (there being a positive pulse voltage channel and a negative pulse voltage channel) is provided with a gate driver circuit driving the gate of each switching transistor. Moreover an input terminal of the gate driving circuit is negative biased and also coupled to ground via a resistance. Further, each channel also includes a current driver (booster) with a disable function to provide protection of the circuit in short circuit conditions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 a, 1 b, 1 c show a set of high power groups of bursts indicating the nature of the electrical energy applied to the probe in accordance with the invention for 3 types of coagulation respectively spray, pinpoint, and blend.
  • FIG. 2 shows a graph of thermal relaxation time vs. probe size.
  • FIG. 3 is a planar view of a portion of an electrosurgical probe showing the openings defined on the side surfaces of the probe through the insulation layer.
  • FIG. 4 a is a schematic circuit diagram of a RF generator in accordance with the invention.
  • FIG. 4 b shows an output waveform of the RF generator.
  • FIG. 5 a shows the potential problem of noise in the present RF generator.
  • FIG. 5 b shows how the problem of noise is overcome in accordance with the present RF generator.
  • FIG. 6 shows a schematic diagram of a protection circuit used with the RF generator of FIG. 4 a.
  • DETAILED DESCRIPTION High Voltage Electrosurgery
  • The present description is directed to high voltage RF electrical energy applied to an electrosurgical probe for tissue coagulation and cutting. It is understood that the electrosurgery probe itself may be of the types disclosed here or in the above described patent applications or other types as known in the field. Typically the probe has a relatively small surface area at its active electrode portion (tip) to minimize heating of the tissue being treated. The probe may be uninsulated (bare metal) or partly covered with a high dielectric insulating layer. The probe may be mono or bi-polar. In some applications the probe is immersed in the tissue being operated on, which has naturally occurring fluid present or some type of liquid is provided immediately around the probe in the surgical field. In other uses for, e.g., fulguration no liquid is present.
  • The present method is intended primarily for use with electrosurgical coagulation, but can be used for simultaneous tissue cutting and coagulation. For tissue coagulation purposes some amount of charring is in fact desirable since that is the intent of coagulation (to seal tissue). However, tissue charring is undesirable beyond the immediate area being coagulated. The goal is to maintain a relatively low probe temperature and hence minimize heat transfer to the surrounding tissue while still accomplishing coagulation or dessication or fulguration. Hence the present method is directed to what is sometimes called “cold coagulation.”
  • The edge of the probe is intended for both cutting and coagulation, and the flat (side) portion thereof with “dimples” (the openings) serves for coagulation only. As the probe edge cuts through the tissue, the flat portion of the probe sends an electrical arc to the walls of the wound to heat and close the blood vessels. The dimples help the electrical arc to reach all blood vessels, as in an uninsulated probe, but the small diameter of the dimples advantageously provides a short thermal relaxation time and, as a result, low temperature during pulsed coagulation.
  • This is accomplished here by applying high power RF groups of bursts with relatively long off times and thus relatively low duty cycles compared to conventional electrosurgical coagulation. While equipment limitations may prevent use of RF power levels above 300 W given current materials and electrical components, ultimately this is not limiting. Hence generally, the present invention is directed to use of high rated power RF (above 300 W) during the pulse on time. Since power depends on the load, the rated load is by definition the load where the maximum (rated) power can be achieved. A typical voltage here (both positive and negative) is up to 12,000 Volts peak to peak under open circuit conditions. A typical waveform for this condition is a damped sine wave.
  • In one embodiment the RF power has a carrier frequency of approximately 460 KHz, so the duration of each period (pulse) is approximately 2.2 microseconds. The on time RF pulses can be sine waves, but usually a sine wave is good only for pure cutting. For blended cut and coagulation purposes, periods of pulses are clustered in each burst with no RF energy between them. In one embodiment, there is only one period per burst but this is not limiting; there may be 2, 3, or more pulses per burst as shown respectively in FIGS. 1 a, 1 b, 1 c for different types of coagulation. The repetition rate for the bursts is e.g. 30 KHz. A typical frequency for the groups of burst is 25 Hz. A group of these bursts defines the on time, followed by the off time. Hence the duty cycle of each group (during on time) is in the range of 1% to 50%. That is, only 1% to 50% of the total time during each group of bursts is actually occupied by RF energy and the remainder is of zero voltage applied to the load, as shown in FIGS. 1, 1 a, 1 b, 1 c. A number of such pulse bursts may also be grouped together. Typically the off time between each group of bursts is about 1 millisecond or more to allow further cooling of the probe and associated tissue. The on time can be from 100 microseconds to 10 ms, followed by the off time off interval, at least 1 ms in duration. This modulation further reduces the duty cycle by a factor of 0.01 to 0.9.
  • The open circuit waveform is, e.g., a damped sine wave at the carrier frequency (such as 460 kHz in FIG. 1 c) which shrinks to a sine wave cycle as shown in FIG. 1 a at a low impedance load. The amplitude (voltage) of these pulses decreases with the resistance of the load in such a way that the average RF power achieves a maximum at a so called “rated load”, typically 100 to 1000 Ohm. The time T between pulse centers corresponds to the inverse of the carrier frequency (for example T=1/460 kHz). The number of pulses in a pulse burst determines the rated load, roll-off points on the load curve, the type of the surgical mode (called in the field for instance blend, desiccation, fulguration), and the length of the spark. The repetition rate of the pulse bursts is typically 20 to 60 kHz (indicated as fburst of 30 kHz in FIG. 1 b). The purpose of these bursts is not a cooling of the tissue during the burst off time, since tissue temperature cannot decrease during mere tens of microseconds. Instead the off time allows for collapse of undesirable vapor bubbles formed on or near the probe, arising during the pulse on time. Otherwise due to the vapor bubbles the tissue experiences problematic “micro explosions” of the bubbles, repulsing tissue from the probe, and precluding effective coagulation.
  • In the present method therefore for coagulation the pulse bursts are grouped together, with a time interval between them (determined by the burst duty cycle) longer than the thermal relaxation time for a particular probe. The thermal relaxation time t can be assessed as t=r2cρ/π2k=r20.7 μs/μm2, where r is the characteristic size of the electrode in μm, c is heat capacity, ρ is density, and k is thermal conductivity of liquid as plotted in FIG. 2. For instance, for a 10 μm effective probe electrode size the thermal relaxation time is 70 μs, but for 1 mm probe this value is 0.7 seconds. So, a small probe electrode is generally required here.
  • The small probe can coagulate only a small area adjacent to the probe electrode. With a spark (arc) length of 1 mm and a point electrode that is 0.1 mm in diameter, one can coagulate a spot of tissue 2.1 mm in diameter. Multiple small electrodes, representing small openings in the probe insulation are introduced on the flat portion of the blade and spaced apart to coagulate a large solid area of tissue. The spark circles should overlap to cover the whole tissue surface. The size of the individual electrodes (the openings) is small enough to provide fast cooling. At pulsed mode as described above, low average tissue temperature can be achieved. As a result, the probe provides shallow strong coagulation with a safe temperature of the probe.
  • FIG. 3 shows a partial view of a side surface of the associated probe 30 in which the overlying insulating layer 34 defines a pattern of openings (dimples) 36 a, 36 b, 36 c, etc. to expose the underlying metal 40 of the electrode of probe 30. In this case the size of each opening is shown as about 0.05 mm by 0.05 mm (each being approximately a square), however, this size and shape are not limiting. The spacing between openings (center to center) is in the range of 0.2 to 1.0 mm, not limiting. Also conventionally the metal edge 42 of probe 30 is also exposed through the overlying insulating layer 34. The actual materials of the probe metal 40 and insulation 34 are conventional as explained in the above referenced patents and as well known in the field.
  • Typically the associated equipment (RF generator) has variable outputs and can be adjusted by the operator to provide pulses of various frequencies and timing durations so that the present pulse regime is thereby accomplished. This pulse regime may depend on probe size, the nature of the surgical procedure being undertaken such as fulguration, dessication, coagulation, and other factors as determined by the operator (surgeon). A typical range of correct frequencies for the pulses is 100 KHz to 5 MHz, of which the above described 460 KHz is merely illustrative. In accordance with this approach, the probe and the associated tissue may be kept below or above 100° C., depending on what is required for the particular surgical procedure being undertaken. Advantageously the relatively low temperature of the probe-tissue interface results in reduced adhesion of the charred tissue to the probe, decreasing smoke and providing better performance for coagulation.
  • RF Generator
  • Also disclosed here is an RF generator 50 for e.g. pulsed cutting of tissue (see circuit diagram FIG. 4 a), compatible with a pulsed coagulation method and probe described above. Such an RF generator is believed to be novel for electrosurgery, where out coupling typically represents a transformer, although generally RF generators are well known in the electronics field for generating high frequency electrical signals. Such RF generators typically are half bridge inverters. The present RF generator has only capacitors in series with the load as required by regulatory rules (for a capacitance <5 nF), and the usual RF transformer is omitted. Associated waveforms are described in Palanker U.S. Pat. No. 7,238,185, incorporated herein by reference in its entirety, and represent a true bipolar square wave. The present RF generator for tissue cutting may be a part of a system producing also coagulation waveforms according to FIG. 1 to combine cutting and coagulation ability for a single probe.
  • In accordance with similar circuits, the present RF generator apparatus or circuit 50 conventionally includes a half bridge inverter with high power Field Effect Transistors (FET) Q2, Q1 used as respective low and high side switches. In such an RF switching generator or power supply the amount of time for each switch (transistors Q1, Q2) to turn on or off is important. For proper performance the switching transistors should be capable of switching in less than approximately 10% of the period of the output pulse. For a 4 MHz frequency pulse this requires that each transistor's Q1, Q2 gate terminal be charged/discharged in less than 25 nanoseconds.
  • As well known in the field, the effective gate capacitance or input capacitance of such field effect transistors Q1, Q2 includes the gate-source capacitance and the gate-drain capacitance, also referred to as Miller capacitance. The total gate charge required to charge the gate of a typical field effect transistor from 0V to 3V (enough to switch the transistor) is 80 nC. This total charge includes the Miller charge required to discharge the gate-drain capacitance when the transistor switches from the off state with a drain-source voltage of 450V, to the on state. If the entire charge is to be delivered in a 25 nanosecond period as indicated above, then the gate driver circuit which provides the signal to the gate must apply an average current of 80 nC/25 ns=3.2 amps with a peak current as high as 12 amps. To meet this, the gate driver circuits 52, 54 in this generator are selected to provide a 20 amp maximum current, but this is merely illustrative.
  • For typical electrosurgery applications, the electrical charge injected in the tissue from the probe must be close to zero to minimize undesirable muscle stimulation. Thus it is important to have balanced positive and negative portions of the pulsed current provided to the probe. In the present RF generator therefore two channels 58, 60 are used, e.g., connected to two Direct Current (DC) power supplies (not shown), one providing +500V and the second providing −500V output signals at respectively nodes 115, 117. The output terminal 112 (to the probe) for generator 50 therefore is connected at a midpoint node 66 between the two channels 58, 60. Voltage at this terminal 66 therefore swings between positive and negative voltages as described further below.
  • The current driving for the gate of each switching transistor Q1, Q2 is provided here with a radio frequency isolated independent driving direct current power supply. The RF isolation is required because the gate of each transistor Q1, Q2 is referenced to the source of the transistor, which switches with slew rates of more than 30 Volt/nanosecond. The high side driving reference point 66 has to have a minimum coupling capacitance and leakage inductance to the ground of the drivers 52, 54.
  • Transformers 78, 80 are provided as is conventional in each channel 58, 60 for galvanic isolation and level shifting required for each switching transistor Q1, Q2. An advantage of this is at the high-side gate driver circuit 52 does not require a floating power supply since the power to transistor Q1 is coupled through the transformer 78. The leakage inductance of the windings of each transformer 78, 80 makes it difficult to obtain the rapid rise of the current required and causes excessive ringing which must be suppressed. Improved operation is obtained here by using a large sinusoidal drive current since the leakage inductance of the transformers 78, 80 along with the input capacitance of each transistor Q1, Q2 can be included in a resonant circuit.
  • In this case the sine wave output of the resonant circuit has higher amplitude than the transistor switching threshold voltage, to minimize switching time. However, fast switching results in shorter high voltage swings on the source/drain terminals of the switching transistors Q1, Q2. Short intense transients therefore travel back from the mid-point 66 of the half bridge to the gate terminals of transistors Q1, Q2 due to the Miller capacitance into the output of each gate driver circuit 52, 54 from each of the transformers 78, 80. Each gate driver circuit 52, 54 has a 0.6 Ohm output resistance in both high and low output voltage regimes. Therefore the energy of the transient goes mostly to the low voltage ground as indicated in FIG. 5 a and causes ringing. This undesirable ringing may affect the input of the gate driver circuits 52, 54 causing simultaneously opening and closure of the switching transistors Q1, Q2 which, of course, must be avoided. In order to increase signal to noise discrimination level and avoid ringing, a negative bias voltage as shown of −1V is applied to the input (“In”) terminal of each gate driver circuit 52, 54. Additionally in this case the same input terminal of each gate driver circuit 52, 54 is also coupled to ground via a low resistance (22 Ohm) resistor 80, 82. Also, 22 Ohm resistors 86, 88 are coupled across the primary and/or secondary windings of each transformer 78, 80 to damp ringing. Also, to decrease quality factor of the resonant circuit, inductances of the primary and secondary windings of each transformer 78, 80 are chosen to be minimal e.g. 1.6 microH. With the input capacitance of the MOSFET Q1, Q2 (1 nF) resonant frequency of the contour f=1/(2π(LC)0.5)=4 MHz is equal to the operation frequency. The inductance of the ground path to the input terminal of each gate driver circuit 52, 54 is minimized with short and wide leads. Also, a DC/ DC converter 90, 92 is coupled to the input terminal of each gate driver circuit 52, 54 to create the above mentioned negative direct current bias of −1 Volt to that input terminal and effectively discriminate noise at the input terminal of each gate driver circuit 52, 54.
  • As shown in FIG. 4 a, effectively the negative input bias at the input terminal “In” of each gate driver circuit 52, 54 is −1 Volt in this example. In the left hand portion of FIG. 4 a are shown (as waveforms) the input control signals 100, 102 applied to each input terminal 106, 108 of the two channels of the RF generator and shown as a set of square waves which determines timing for the pulse bursts and pulses as explained above. The input control signals are generated conventionally. Conventionally in the far right hand portion of FIG. 4 a is the RF generator output terminal 112 labeled “pulse out” which is connected to the probe. FIG. 4 b shows an output waveform (at node 112) of the RF generator 50. Also provided is a high voltage ground terminal 116 connected to the probe ground terminal or to a return line connected to the patient. The remaining circuit elements in FIG. 4 a are conventional; in some cases component numbers or values are shown, but these are only exemplary.
  • FIG. 5 a shows via waveforms how the circuit of FIG. 4 would have an accumulation of noise on a low voltage ground resulting in an uncontrollable wave form, e.g., due to ringing. The horizontal axis here refers to time and the vertical axis is the voltage at the input terminal of each gate driver. The horizontal broken line at 3 Volt is the threshold voltage at the input terminal of the gate drivers 52, 54. FIG. 4 b shows how the above described negative bias of −1 Volt applied to that same input terminal (and also shown as the horizontal broken line in FIG. 5 b) reduces the amount of noise compared to FIG. 4 a at the In terminal to the gate driver circuits 52, 54.
  • Also provided in one embodiment in the circuit of FIG. 4 a is over current protection to prevent damage to the switching transistors and/or the other components. Typically failure of such a RF generator is caused by excessive currents flowing either through the switching transistors or into the output terminal. Various conventional protection circuits are known and an example is shown in FIG. 6 which would be coupled conventionally to generator 50. These protection circuits typically include current transformer sensors connected either to the return patient cable (ground to the patient, e.g., at node 116) or to the high voltage lines at node 112. The circuit of FIG. 4 a since it has two channels 58, 60 would typically have two such protection circuits, one coupled to each channel 58, 60.
  • This description is illustrative and not limiting. Further modifications and improvements will be apparent to those skilled in the art in light of this disclosure and are intended to fall within the scope of the pending claims.

Claims (10)

1. A method of coagulating tissue, comprising the acts of:
applying groups of bursts of pulsed electrical energy to a probe in contact with the tissue;
each group of bursts having a power of at least 300 W at a rated load during an on time and zero during an off time, the RF groups of bursts being of frequency in a range of 100 kHz to 5000 kHz and each group of bursts having a duty cycle in a range of 1% to 50%;
applying a plurality of the bursts in succession;
and providing an interval between successive pluralities of the bursts of at least 1 msec.
2. The method of claim 1, wherein a temperature of the probe remains below 100° C.
3. The method of claim 1, wherein a tip of the probe is of metal with an insulation layer thereover, the insulation defining on a side of the probe a plurality of openings to expose the metal.
4. The method of claim 3, wherein each opening has a diameter in the range of 0.02 mm to 0.010 mm.
5. The method of claim 3, wherein at an edge of the probe the insulation defines an opening to expose the metal.
6. Electrosurgery apparatus, comprising:
a probe adapted to be applied to tissue; and
a source of electrical energy electrically coupled to the probe, the source applying groups of bursts of pulsed electrical energy to the probe;
each group of bursts having a power of at least 300 W at rated load during an on time and zero during an off time, the RF groups of bursts being of frequency in a range of 100 kHz to 5000 kHz and each group of bursts having a duty cycle in a range of 1% to 50%;
the source applying a plurality of the bursts in succession;
and the source providing an interval between successive pluralities of the bursts of at least 1 msec.
7. A circuit to generate high frequency signals, comprising:
a first channel and a second channel, each including a switching transistor, an output terminal of each transistor being coupled to a common output node;
a control terminal of each transistor being coupled to an output terminal of a driver; and
an input terminal of each driver being coupled to a source of a negative voltage bias;
wherein the first channel provides positive going signals at the common output node and the second channel provides negative going signals at the common output node.
8. The circuit of claim 7, further comprising coupling the input terminal of each driver to ground.
9. The circuit of claim 8, further comprising:
a current driver circuit having an output terminal coupled to the input terminal of each driver.
10. The circuit of claim 8, further comprising a current protection circuit coupled to each channel.
US12/136,683 2008-06-10 2008-06-10 Method for low temperature electrosugery and rf generator Abandoned US20090306642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/136,683 US20090306642A1 (en) 2008-06-10 2008-06-10 Method for low temperature electrosugery and rf generator
US13/963,335 US9018983B2 (en) 2008-06-10 2013-08-09 Circuit to generate high frequency signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/136,683 US20090306642A1 (en) 2008-06-10 2008-06-10 Method for low temperature electrosugery and rf generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/963,335 Division US9018983B2 (en) 2008-06-10 2013-08-09 Circuit to generate high frequency signals

Publications (1)

Publication Number Publication Date
US20090306642A1 true US20090306642A1 (en) 2009-12-10

Family

ID=41400980

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/136,683 Abandoned US20090306642A1 (en) 2008-06-10 2008-06-10 Method for low temperature electrosugery and rf generator
US13/963,335 Active US9018983B2 (en) 2008-06-10 2013-08-09 Circuit to generate high frequency signals

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/963,335 Active US9018983B2 (en) 2008-06-10 2013-08-09 Circuit to generate high frequency signals

Country Status (1)

Country Link
US (2) US20090306642A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039832A1 (en) * 2002-05-03 2008-02-14 Palanker Daniel V Method and apparatus for plasma-mediated thermo-electrical ablation
US8177783B2 (en) 2006-11-02 2012-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US8361068B2 (en) 2000-03-06 2013-01-29 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8632537B2 (en) 2009-01-05 2014-01-21 Medtronic Advanced Energy Llc Electrosurgical devices for tonsillectomy and adenoidectomy
US8979842B2 (en) 2011-06-10 2015-03-17 Medtronic Advanced Energy Llc Wire electrode devices for tonsillectomy and adenoidectomy
EP3860316A1 (en) * 2020-01-30 2021-08-04 Erbe Elektromedizin GmbH Plasmas, media, species, systems, methods
US11596467B2 (en) 2020-02-04 2023-03-07 Covidien Lp Articulating tip for bipolar pencil
US11648046B2 (en) 2020-04-29 2023-05-16 Covidien Lp Electrosurgical instrument for cutting tissue
US11684413B2 (en) 2020-05-22 2023-06-27 Covidien Lp Smoke mitigation assembly for bipolar pencil
US11696795B2 (en) 2018-07-13 2023-07-11 Medtronic Advanced Energy Llc Amplitude modulated waveform circuitry for electrosurgical devices and systems, and related methods
US11712285B2 (en) 2020-04-23 2023-08-01 Covidien Lp Dual-threaded tensioning mechanism for bipolar pencil
US11779394B2 (en) 2020-01-30 2023-10-10 Covidien Lp Single-sided low profile end effector for bipolar pencil
US11864817B2 (en) 2020-02-13 2024-01-09 Covidien Lp Low profile single pole tip for bipolar pencil
US11864818B2 (en) 2020-06-12 2024-01-09 Covidien Lp End effector assembly for bipolar pencil
US11864815B2 (en) 2020-02-06 2024-01-09 Covidien Lp Electrosurgical device for cutting tissue

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US9956029B2 (en) 2014-10-31 2018-05-01 Medtronic Advanced Energy Llc Telescoping device with saline irrigation line
WO2017052606A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Psttm device with free magnetic layers coupled through a metal layer having high temperature stability
KR102476353B1 (en) 2016-07-26 2022-12-09 삼성전자주식회사 Designed waveform generator for semiconductor equipment, plasma processing apparatus, method of controlling plasma processing apparatus, and method of manufacturing semiconductor device
CN114945337A (en) 2019-11-06 2022-08-26 因赛特福仪器公司 Systems and methods for cutting tissue

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US39358A (en) * 1863-07-28 Improvement in raking and binding apparatus for reaping
US3799168A (en) * 1972-02-28 1974-03-26 R Peters Electro-surgical handle
US3970088A (en) * 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4034762A (en) * 1975-08-04 1977-07-12 Electro Medical Systems, Inc. Vas cautery apparatus
US4074718A (en) * 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4161950A (en) * 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4202337A (en) * 1977-06-14 1980-05-13 Concept, Inc. Bipolar electrosurgical knife
US4211230A (en) * 1978-07-31 1980-07-08 Sybron Corporation Electrosurgical coagulation
US4248231A (en) * 1978-11-16 1981-02-03 Corning Glass Works Surgical cutting instrument
US4429694A (en) * 1981-07-06 1984-02-07 C. R. Bard, Inc. Electrosurgical generator
US4438766A (en) * 1981-09-03 1984-03-27 C. R. Bard, Inc. Electrosurgical generator
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4589411A (en) * 1985-02-08 1986-05-20 Aaron Friedman Electrosurgical spark-gap cutting blade
US4590934A (en) * 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4593691A (en) * 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
US4597388A (en) * 1983-12-15 1986-07-01 Trutek Research, Inc. Apparatus for removing cataracts
US4655215A (en) * 1985-03-15 1987-04-07 Harold Pike Hand control for electrosurgical electrodes
US4674499A (en) * 1980-12-08 1987-06-23 Pao David S C Coaxial bipolar probe
US4674498A (en) * 1983-07-06 1987-06-23 Everest Medical Corporation Electro cautery surgical blade
US4682596A (en) * 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US4805616A (en) * 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4901709A (en) * 1987-07-07 1990-02-20 Siemens Aktiengesellschaft Shock wave source
US4927420A (en) * 1988-11-14 1990-05-22 Colorado Biomedical, Inc. Ultra-sharp tungsten needle for electrosurgical knife
US4936301A (en) * 1987-06-23 1990-06-26 Concept, Inc. Electrosurgical method using an electrically conductive fluid
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US4943290A (en) * 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US5080660A (en) * 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
US5088997A (en) * 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5108391A (en) * 1988-05-09 1992-04-28 Karl Storz Endoscopy-America, Inc. High-frequency generator for tissue cutting and for coagulating in high-frequency surgery
US5217457A (en) * 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5300068A (en) * 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5318563A (en) * 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5382247A (en) * 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US5395363A (en) * 1993-06-29 1995-03-07 Utah Medical Products Diathermy coagulation and ablation apparatus and method
US5423814A (en) * 1992-05-08 1995-06-13 Loma Linda University Medical Center Endoscopic bipolar coagulation device
US5496314A (en) * 1992-05-01 1996-03-05 Hemostatic Surgery Corporation Irrigation and shroud arrangement for electrically powered endoscopic probes
US5599346A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment system
US5647871A (en) * 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5766170A (en) * 1991-06-07 1998-06-16 Hemostatic Surgery Corporation Electrosurgical endoscopic instruments and methods of use
US5766153A (en) * 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
US5860976A (en) * 1996-01-30 1999-01-19 Utah Medical Products, Inc. Electrosurgical cutting device
US5873855A (en) * 1992-01-07 1999-02-23 Arthrocare Corporation Systems and methods for electrosurgical myocardial revascularization
US5891142A (en) * 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6047700A (en) * 1998-03-30 2000-04-11 Arthrocare Corporation Systems and methods for electrosurgical removal of calcified deposits
US6053172A (en) * 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US6056746A (en) * 1995-06-23 2000-05-02 Gyrus Medical Limited Electrosurgical instrument
US6059783A (en) * 1997-06-26 2000-05-09 Kirwan Surgical Products, Inc. Electro-surgical forceps which minimize or prevent sticking of tissue
US6066134A (en) * 1992-01-07 2000-05-23 Arthrocare Corporation Method for electrosurgical cutting and ablation
US6066137A (en) * 1997-10-03 2000-05-23 Megadyne Medical Products, Inc. Electric field concentrated electrosurgical electrode
US6174309B1 (en) * 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6183469B1 (en) * 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US6190381B1 (en) * 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US6210404B1 (en) * 1998-10-28 2001-04-03 John H. Shadduck Microjoule electrical discharge catheter for thrombolysis in stroke patients
US6228081B1 (en) * 1999-05-21 2001-05-08 Gyrus Medical Limited Electrosurgery system and method
US6228084B1 (en) * 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US20020026186A1 (en) * 1995-06-07 2002-02-28 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US6352535B1 (en) * 1997-09-25 2002-03-05 Nanoptics, Inc. Method and a device for electro microsurgery in a physiological liquid environment
US6355032B1 (en) * 1995-06-07 2002-03-12 Arthrocare Corporation Systems and methods for selective electrosurgical treatment of body structures
US6358248B1 (en) * 1995-02-22 2002-03-19 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6364877B1 (en) * 1995-06-23 2002-04-02 Gyrus Medical Limited Electrosurgical generator and system
US20020052599A1 (en) * 2000-10-31 2002-05-02 Gyrus Medical Limited Electrosurgical system
US6398779B1 (en) * 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US6494881B1 (en) * 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6530924B1 (en) * 2000-11-03 2003-03-11 Alan G. Ellman Electrosurgical tonsilar and adenoid electrode
US6533781B2 (en) * 1997-12-23 2003-03-18 Team Medical Llc Electrosurgical instrument
US6544261B2 (en) * 1995-06-07 2003-04-08 Arthrocare Corporation Systems and methods for electrosurgical treatment of submucosal tissue
US20030069573A1 (en) * 2001-10-09 2003-04-10 Kadhiresan Veerichetty A. RF ablation apparatus and method using amplitude control
US6679269B2 (en) * 1995-07-28 2004-01-20 Scimed Life Systems, Inc. Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US20040049251A1 (en) * 2002-07-14 2004-03-11 Knowlton Edward W. Method and apparatus for surgical dissection
US6726683B1 (en) * 1967-11-09 2004-04-27 Robert F. Shaw Electrically heated surgical cutting instrument
US6749608B2 (en) * 2002-08-05 2004-06-15 Jon C. Garito Adenoid curette electrosurgical probe
US6837887B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
US20050021028A1 (en) * 2003-06-18 2005-01-27 Daniel Palanker Electro-adhesive tissue manipulator
US6991631B2 (en) * 2000-06-09 2006-01-31 Arthrocare Corporation Electrosurgical probe having circular electrode array for ablating joint tissue and systems related thereto
US7004941B2 (en) * 2001-11-08 2006-02-28 Arthrocare Corporation Systems and methods for electrosurigical treatment of obstructive sleep disorders
US7169143B2 (en) * 1993-05-10 2007-01-30 Arthrocare Corporation Methods for electrosurgical tissue treatment in electrically conductive fluid
US7179255B2 (en) * 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
US7182762B2 (en) * 2003-12-30 2007-02-27 Smith & Nephew, Inc. Electrosurgical device
US7186234B2 (en) * 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US7192428B2 (en) * 1995-06-07 2007-03-20 Arthrocare Corporation Systems for epidermal tissue ablation
US7195627B2 (en) * 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
US7195630B2 (en) * 2003-08-21 2007-03-27 Ethicon, Inc. Converting cutting and coagulating electrosurgical device and method
US20080027428A1 (en) * 2003-02-14 2008-01-31 Palanker Daniel V Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US20080039832A1 (en) * 2002-05-03 2008-02-14 Palanker Daniel V Method and apparatus for plasma-mediated thermo-electrical ablation
US7357802B2 (en) * 2003-02-14 2008-04-15 The Board Of Trustees Of The Leland Stanford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US20080140066A1 (en) * 2006-11-02 2008-06-12 Davison Paul O Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493017A (en) * 1983-01-24 1985-01-08 Reliance Electric Company Single drive transformer with regenerative winding for p.w.m. supply having alternately conducting power devices
US4937470A (en) * 1988-05-23 1990-06-26 Zeiler Kenneth T Driver circuit for power transistors
US5371423A (en) * 1992-12-14 1994-12-06 Siemens Aktiengesellschaft Tri-state-capable driver circuit
US5959493A (en) * 1996-05-06 1999-09-28 Cassista; Philip A. Totem pole driver circuit
US6897707B2 (en) * 2003-06-11 2005-05-24 Northrop Grumman Corporation Isolated FET drive utilizing Zener diode based systems, methods and apparatus
US7965522B1 (en) * 2008-09-26 2011-06-21 Arkansas Power Electronics International, Inc. Low-loss noise-resistant high-temperature gate driver circuits
US20130063184A1 (en) * 2010-09-09 2013-03-14 Aegis Technology, Inc High temperature operation silicon carbide gate driver
JP5200140B2 (en) * 2010-10-18 2013-05-15 シャープ株式会社 Driver circuit
JP5959901B2 (en) * 2012-04-05 2016-08-02 株式会社日立製作所 Semiconductor drive circuit and power conversion device

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US39358A (en) * 1863-07-28 Improvement in raking and binding apparatus for reaping
US6726683B1 (en) * 1967-11-09 2004-04-27 Robert F. Shaw Electrically heated surgical cutting instrument
US3799168A (en) * 1972-02-28 1974-03-26 R Peters Electro-surgical handle
US3970088A (en) * 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4161950A (en) * 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4034762A (en) * 1975-08-04 1977-07-12 Electro Medical Systems, Inc. Vas cautery apparatus
US4074718A (en) * 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4202337A (en) * 1977-06-14 1980-05-13 Concept, Inc. Bipolar electrosurgical knife
US4211230A (en) * 1978-07-31 1980-07-08 Sybron Corporation Electrosurgical coagulation
US4248231A (en) * 1978-11-16 1981-02-03 Corning Glass Works Surgical cutting instrument
US4674499A (en) * 1980-12-08 1987-06-23 Pao David S C Coaxial bipolar probe
US4805616A (en) * 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4429694A (en) * 1981-07-06 1984-02-07 C. R. Bard, Inc. Electrosurgical generator
US4438766A (en) * 1981-09-03 1984-03-27 C. R. Bard, Inc. Electrosurgical generator
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4590934A (en) * 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4674498A (en) * 1983-07-06 1987-06-23 Everest Medical Corporation Electro cautery surgical blade
US4593691A (en) * 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
US4597388A (en) * 1983-12-15 1986-07-01 Trutek Research, Inc. Apparatus for removing cataracts
US4682596A (en) * 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US4589411A (en) * 1985-02-08 1986-05-20 Aaron Friedman Electrosurgical spark-gap cutting blade
US4655215A (en) * 1985-03-15 1987-04-07 Harold Pike Hand control for electrosurgical electrodes
US4936301A (en) * 1987-06-23 1990-06-26 Concept, Inc. Electrosurgical method using an electrically conductive fluid
US4943290A (en) * 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4901709A (en) * 1987-07-07 1990-02-20 Siemens Aktiengesellschaft Shock wave source
US5108391A (en) * 1988-05-09 1992-04-28 Karl Storz Endoscopy-America, Inc. High-frequency generator for tissue cutting and for coagulating in high-frequency surgery
US4927420A (en) * 1988-11-14 1990-05-22 Colorado Biomedical, Inc. Ultra-sharp tungsten needle for electrosurgical knife
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5088997A (en) * 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5217457A (en) * 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5080660A (en) * 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
US5766170A (en) * 1991-06-07 1998-06-16 Hemostatic Surgery Corporation Electrosurgical endoscopic instruments and methods of use
US20070129715A1 (en) * 1992-01-07 2007-06-07 Arthrocare Corporation System and method for epidermal tissue ablation
US6066134A (en) * 1992-01-07 2000-05-23 Arthrocare Corporation Method for electrosurgical cutting and ablation
US5873855A (en) * 1992-01-07 1999-02-23 Arthrocare Corporation Systems and methods for electrosurgical myocardial revascularization
US6032674A (en) * 1992-01-07 2000-03-07 Arthrocare Corporation Systems and methods for myocardial revascularization
US7201750B1 (en) * 1992-01-07 2007-04-10 Arthrocare Corporation System for treating articular cartilage defects
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5300068A (en) * 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5496314A (en) * 1992-05-01 1996-03-05 Hemostatic Surgery Corporation Irrigation and shroud arrangement for electrically powered endoscopic probes
US5423814A (en) * 1992-05-08 1995-06-13 Loma Linda University Medical Center Endoscopic bipolar coagulation device
US5318563A (en) * 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5891095A (en) * 1993-05-10 1999-04-06 Arthrocare Corporation Electrosurgical treatment of tissue in electrically conductive fluid
US20070112348A1 (en) * 1993-05-10 2007-05-17 Arthrocare Corporation Methods for electrosurgical tissue treatment between spaced apart electrodes
US5766153A (en) * 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US7169143B2 (en) * 1993-05-10 2007-01-30 Arthrocare Corporation Methods for electrosurgical tissue treatment in electrically conductive fluid
US20020052600A1 (en) * 1993-05-10 2002-05-02 Davison Terry S. Electrosurgical apparatus and methods for ablating tissue
US5395363A (en) * 1993-06-29 1995-03-07 Utah Medical Products Diathermy coagulation and ablation apparatus and method
US5599346A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment system
US5382247A (en) * 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US6358248B1 (en) * 1995-02-22 2002-03-19 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US5647871A (en) * 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US6837887B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
US6190381B1 (en) * 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US7179255B2 (en) * 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
US6053172A (en) * 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US20020026186A1 (en) * 1995-06-07 2002-02-28 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US6544261B2 (en) * 1995-06-07 2003-04-08 Arthrocare Corporation Systems and methods for electrosurgical treatment of submucosal tissue
US6355032B1 (en) * 1995-06-07 2002-03-12 Arthrocare Corporation Systems and methods for selective electrosurgical treatment of body structures
US7192428B2 (en) * 1995-06-07 2007-03-20 Arthrocare Corporation Systems for epidermal tissue ablation
US6364877B1 (en) * 1995-06-23 2002-04-02 Gyrus Medical Limited Electrosurgical generator and system
US6056746A (en) * 1995-06-23 2000-05-02 Gyrus Medical Limited Electrosurgical instrument
US6679269B2 (en) * 1995-07-28 2004-01-20 Scimed Life Systems, Inc. Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US20070149966A1 (en) * 1995-11-22 2007-06-28 Arthrocare Corporation Electrosurgical Apparatus and Methods for Treatment and Removal of Tissue
US20080004621A1 (en) * 1995-11-22 2008-01-03 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US7186234B2 (en) * 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US5860976A (en) * 1996-01-30 1999-01-19 Utah Medical Products, Inc. Electrosurgical cutting device
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
US5891142A (en) * 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6059783A (en) * 1997-06-26 2000-05-09 Kirwan Surgical Products, Inc. Electro-surgical forceps which minimize or prevent sticking of tissue
US6183469B1 (en) * 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US6352535B1 (en) * 1997-09-25 2002-03-05 Nanoptics, Inc. Method and a device for electro microsurgery in a physiological liquid environment
US6494881B1 (en) * 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6066137A (en) * 1997-10-03 2000-05-23 Megadyne Medical Products, Inc. Electric field concentrated electrosurgical electrode
US6533781B2 (en) * 1997-12-23 2003-03-18 Team Medical Llc Electrosurgical instrument
US6047700A (en) * 1998-03-30 2000-04-11 Arthrocare Corporation Systems and methods for electrosurgical removal of calcified deposits
US6398779B1 (en) * 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US6210404B1 (en) * 1998-10-28 2001-04-03 John H. Shadduck Microjoule electrical discharge catheter for thrombolysis in stroke patients
US20080015565A1 (en) * 1998-11-20 2008-01-17 Arthrocare Corporation Electrosurgical apparatus and methods for ablating tissue
US6174309B1 (en) * 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6228084B1 (en) * 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6228081B1 (en) * 1999-05-21 2001-05-08 Gyrus Medical Limited Electrosurgery system and method
US6991631B2 (en) * 2000-06-09 2006-01-31 Arthrocare Corporation Electrosurgical probe having circular electrode array for ablating joint tissue and systems related thereto
US20020052599A1 (en) * 2000-10-31 2002-05-02 Gyrus Medical Limited Electrosurgical system
US6530924B1 (en) * 2000-11-03 2003-03-11 Alan G. Ellman Electrosurgical tonsilar and adenoid electrode
US20030069573A1 (en) * 2001-10-09 2003-04-10 Kadhiresan Veerichetty A. RF ablation apparatus and method using amplitude control
US7004941B2 (en) * 2001-11-08 2006-02-28 Arthrocare Corporation Systems and methods for electrosurigical treatment of obstructive sleep disorders
US20080039832A1 (en) * 2002-05-03 2008-02-14 Palanker Daniel V Method and apparatus for plasma-mediated thermo-electrical ablation
US20040049251A1 (en) * 2002-07-14 2004-03-11 Knowlton Edward W. Method and apparatus for surgical dissection
US6749608B2 (en) * 2002-08-05 2004-06-15 Jon C. Garito Adenoid curette electrosurgical probe
US7195627B2 (en) * 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
US20080027428A1 (en) * 2003-02-14 2008-01-31 Palanker Daniel V Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7357802B2 (en) * 2003-02-14 2008-04-15 The Board Of Trustees Of The Leland Stanford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US20080125774A1 (en) * 2003-02-14 2008-05-29 Palanker Daniel V Method for electrosurgery with enhanced electric field and minimal tissue damage
US7736361B2 (en) * 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US20050021028A1 (en) * 2003-06-18 2005-01-27 Daniel Palanker Electro-adhesive tissue manipulator
US20080119842A1 (en) * 2003-06-18 2008-05-22 The Board Of Trustees Of The Leland Stanford Junior University Electro-adhesive tissue manipulation method
US7195630B2 (en) * 2003-08-21 2007-03-27 Ethicon, Inc. Converting cutting and coagulating electrosurgical device and method
US7182762B2 (en) * 2003-12-30 2007-02-27 Smith & Nephew, Inc. Electrosurgical device
US20080140066A1 (en) * 2006-11-02 2008-06-12 Davison Paul O Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361068B2 (en) 2000-03-06 2013-01-29 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US20080039832A1 (en) * 2002-05-03 2008-02-14 Palanker Daniel V Method and apparatus for plasma-mediated thermo-electrical ablation
US8177783B2 (en) 2006-11-02 2012-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US8414572B2 (en) 2006-11-02 2013-04-09 Medtronic Advanced Energy Llc Electrosurgery apparatus with partially insulated electrode and exposed edge
US8323276B2 (en) 2007-04-06 2012-12-04 The Board Of Trustees Of The Leland Stanford Junior University Method for plasma-mediated thermo-electrical ablation with low temperature electrode
US8632537B2 (en) 2009-01-05 2014-01-21 Medtronic Advanced Energy Llc Electrosurgical devices for tonsillectomy and adenoidectomy
US8979842B2 (en) 2011-06-10 2015-03-17 Medtronic Advanced Energy Llc Wire electrode devices for tonsillectomy and adenoidectomy
US11696795B2 (en) 2018-07-13 2023-07-11 Medtronic Advanced Energy Llc Amplitude modulated waveform circuitry for electrosurgical devices and systems, and related methods
EP3860316A1 (en) * 2020-01-30 2021-08-04 Erbe Elektromedizin GmbH Plasmas, media, species, systems, methods
CN113262037A (en) * 2020-01-30 2021-08-17 厄比电子医学有限责任公司 Plasma, medium, substance, system, method
US11779394B2 (en) 2020-01-30 2023-10-10 Covidien Lp Single-sided low profile end effector for bipolar pencil
US11596467B2 (en) 2020-02-04 2023-03-07 Covidien Lp Articulating tip for bipolar pencil
US11864815B2 (en) 2020-02-06 2024-01-09 Covidien Lp Electrosurgical device for cutting tissue
US11864817B2 (en) 2020-02-13 2024-01-09 Covidien Lp Low profile single pole tip for bipolar pencil
US11712285B2 (en) 2020-04-23 2023-08-01 Covidien Lp Dual-threaded tensioning mechanism for bipolar pencil
US11648046B2 (en) 2020-04-29 2023-05-16 Covidien Lp Electrosurgical instrument for cutting tissue
US11684413B2 (en) 2020-05-22 2023-06-27 Covidien Lp Smoke mitigation assembly for bipolar pencil
US11864818B2 (en) 2020-06-12 2024-01-09 Covidien Lp End effector assembly for bipolar pencil

Also Published As

Publication number Publication date
US20140002142A1 (en) 2014-01-02
US9018983B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
US9018983B2 (en) Circuit to generate high frequency signals
US8709006B2 (en) System and method for applying plasma sparks to tissue
US4429694A (en) Electrosurgical generator
EP2777577B1 (en) Crest-factor control of phase-shifted inverter
US8323276B2 (en) Method for plasma-mediated thermo-electrical ablation with low temperature electrode
EP0517243B1 (en) High frequency electrosurgical apparatus employing constant voltage
CA2308881C (en) Electrosurgery system and method
US9522038B2 (en) Crest factor enhancement in electrosurgical generators
US8177783B2 (en) Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US9028481B2 (en) System and method for measuring current of an electrosurgical generator
AU2011203069B2 (en) Current-fed push-pull converter with passive voltage clamp
US8668690B2 (en) Apparatus and method for optimal tissue separation
JP2014528748A (en) Electrosurgical device with real-time RF tissue energy control
JP2002538881A (en) Method and apparatus for pulsed plasma electrosurgery in a liquid medium
US9522039B2 (en) Crest factor enhancement in electrosurgical generators
US11696795B2 (en) Amplitude modulated waveform circuitry for electrosurgical devices and systems, and related methods
WO2023239966A1 (en) Apparatus, systems and methods for soft tissue ablation
Koninckx et al. Electrosurgery for the Gynaecologist: Cutting and Coagulating with One Instrument and One Setting

Legal Events

Date Code Title Description
AS Assignment

Owner name: PEAK SURGICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VANKOV, ALEXANDER B.;REEL/FRAME:021602/0396

Effective date: 20080918

AS Assignment

Owner name: VENTURE LENDING & LEASING V, INC., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:PEAK SURGICAL, INC.;REEL/FRAME:022896/0639

Effective date: 20090612

Owner name: VENTURE LENDING & LEASING V, INC.,CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:PEAK SURGICAL, INC.;REEL/FRAME:022896/0639

Effective date: 20090612

AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: SECURITY AGREEMENT;ASSIGNOR:PEAK SURGICAL, INC.;REEL/FRAME:023364/0272

Effective date: 20091002

Owner name: MEDTRONIC, INC.,MINNESOTA

Free format text: SECURITY AGREEMENT;ASSIGNOR:PEAK SURGICAL, INC.;REEL/FRAME:023364/0272

Effective date: 20091002

AS Assignment

Owner name: MEDTRONIC ADVANCED ENERGY LLC, MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:PEAK SURGICAL, INC.;REEL/FRAME:029681/0273

Effective date: 20110926

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION