EP2630372A1 - Dispositif de surveillance d'une pompe - Google Patents
Dispositif de surveillance d'une pompeInfo
- Publication number
- EP2630372A1 EP2630372A1 EP11758208.0A EP11758208A EP2630372A1 EP 2630372 A1 EP2630372 A1 EP 2630372A1 EP 11758208 A EP11758208 A EP 11758208A EP 2630372 A1 EP2630372 A1 EP 2630372A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- unit
- sensor
- component
- signal
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000011156 evaluation Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 239000002986 polymer concrete Substances 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
Definitions
- the invention relates to a device and a method for monitoring rotating components in centrifugal pumps or systems comprising centrifugal pumps.
- Centrifugal pumps are used in a variety of systems, where they are sometimes exposed to very harsh conditions. The condition of a centrifugal pump, in particular the impeller, must therefore be closely monitored depending on the application to avoid damage to the centrifugal pump or the entire system.
- DE 40 055 03 A1 shows a device for monitoring an impeller by means of a light transmitter and an optical probe. This form of monitoring requires stationary centering of the light emitter and sensor on the leading edges of the wings. However, this monitoring method is only suitable for a centrifugal pump, which promotes an optically transparent medium.
- a vacuum pump with a pump stator and a pump rotor wherein the pump rotor contains a transponder.
- sensors, a microcontroller and a memory are arranged in the rotor, which are connected to the transponder.
- a reader arranged in the stator reads the sensor data from the rotor from the transponder.
- the solution provides a device for monitoring rotating components in centrifugal pumps or systems comprising centrifugal pumps, wherein the signal transmission is acoustic, using sound waves.
- This allows a simple and secure transmission of signals from a monitored rotating component.
- liquid and solid sound-conducting media are provided on the transmission path between a first unit, the transmitting unit, and a second unit, the receiver unit.
- the advantage here is that the sound along a path is feasible and the characteristics of the way are clearly determinable.
- the phase transitions of sound between solid and liquid media may be taken into account during transmission.
- a corresponding coding of the signal takes into account losses at the phase transitions.
- the first unit has a setpoint memory, are stored in the comparison values for the measured sensor signals, in this setpoint memory thresholds can be stored, which are compared with the measured values. If a threshold is reached, a corresponding signal is sent to the receiver unit.
- Deterioration of the transmitted signal is prevented by selecting the frequency for transmitting information other than frequencies of system noise.
- System noise is understood to mean all acoustic emissions of the centrifugal pump and the components connected to it.
- the combination of different components leads to natural frequencies of the system, which depend specifically on the individual configuration of the system. This measure prevents misinterpretations in the analysis of the received signals.
- the transmission becomes insensitive to interference from the system noise mentioned above.
- an acoustic wave sensor for detecting ambient noise is provided in the second unit.
- the ambient noise can be separated from the transmitted signal, which improves the signal information.
- the first unit is integrated into a component, in particular if it is cast into the component.
- the surface of the component thus also protects the transmitting device. Due to the acoustic transmission, it is possible to integrate the first unit in a metallic component, since the acoustic signal transmission in metals works well.
- the second unit which comprises the receiver, into a metallic housing or to mount it on the outside of the housing.
- the first unit is equipped with a power supply, which in the simplest case is a battery. Generators can also be provided which gain electrical energy from the movement of the component, from vibrations or temperature gradients.
- the self-sufficient supply of energy to the first unit is particularly important if it is encapsulated encapsulated in the component. In this case, the power supply must be ensured over the lifetime of the component.
- the sensor of the first unit is designed in one embodiment of the invention for detecting component properties of the centrifugal pump or the system, for example, machine temperature, mechanical pressure or stress or component fracture.
- component properties of the centrifugal pump or the system for example, machine temperature, mechanical pressure or stress or component fracture.
- a targeted monitoring of individual components is possible.
- component fractions are by appropriate fracture sensors, as running through the component Wires are executed, easily detectable, since a break in the wire in case of component break is detected by a simple short circuit of the wire.
- operating parameters can be detected by a sensor. With the centrifugal pump these are, for example, speed, power requirement or service life. This allows further monitoring of the components whose condition can be highly dependent on these parameters.
- the senor detects properties of the pumped medium.
- the viscosity, temperature or concentration of the medium can be determined, which are then evaluated by the microprocessor. Its analysis results are transmitted to the outside world.
- a method for monitoring components with an aforementioned device in which a query of the at least one sensor takes place in cyclically recurring intervals.
- the measured sensor data are compared with setpoints from the setpoint memory and when a threshold value is exceeded, a signal is sent to the receiving unit.
- the receiving unit continuously receives noises and filters specifically for possible transmission noise, namely, the frequencies and pulse shapes that can be generated. If a signal is detected, this is evaluated and either displayed on a display and / or stealge leads to a higher-level system control.
- the invention further comprises an impeller of a centrifugal pump, which is equipped with the device for component monitoring. This simple and cost-effective device allows contactless monitoring of the impeller, wherein in the contact or wireless signal transmission neither properties of the pumped medium nor e- electromagnetic influences from the environment of the centrifugal pump must be taken into account.
- the impeller is made of a polymer material, in particular of polymer concrete or mineral casting. These materials are cast cold, so that a special protection of the cast-in first unit is not necessary.
- FIG. 1 shows a device for monitoring rotating components in circular pumps or systems comprising centrifugal pumps, consisting of a first unit 1 which is fixedly connected to the component to be monitored. connected is.
- a first unit 1 which is fixedly connected to the component to be monitored. connected is.
- the first unit directly into the component. This is useful, for example, if the component consists of a cast material which can be cast at low temperatures, for example a polymer material, in particular polymer concrete or mineral casting.
- the fully configured, self-sufficient and wirelessly designed first unit is poured, for example, in a centrifugal pump impeller.
- the component itself is not shown for the sake of simplicity.
- the first unit 1 comprises a sensor 2 for detecting component properties, which is connected to the sensor unit 3 with the first unit 1.
- sensors 2 come For example, temperature, pressure and / or material sensors or others into consideration.
- a fracture sensor is indicated, which consists of at least one wire, which veriäuft by fracture-prone areas of the component. If the component forms a crack at a point through which the wire passes, the wire will break as the crack progresses and the electrical conduction along this wire will be interrupted. In this way it is easier to detect cracks in the component. In the case of several wires connected in parallel, a progression of cracking can also be observed.
- a microprocessor 4 for analyzing sensor signals directly evaluates the data recorded by the sensor 2 and forwards the analysis result to a transmitting unit 5 for transmission to a receiver spatially separated from the monitored component.
- the frequency of the sensor query depends on the probability of an expected event. It significantly influences the energy requirement. A low check frequency will result in long battery life and will be further improved if the system is put into sleep mode or paused during the pauses between two polls.
- the component monitoring by the acoustic data transmission according to the invention represents the safest and most cost-effective variant within the structure used.
- the signal 8 can be embodied as an acoustic message telegram which can contain different frequencies, pulse sequences or combinations thereof. By repeating the same signal, transmission errors can be avoided.
- the design of the sound generator, which forms the transmitting unit 5 in this embodiment depends strongly on the information to be transmitted, the frequencies used and the surrounding conveying medium, since this must be run through by the signal 8. It should be noted that the signal in an embedded first unit must first leave the component, with a transition between the solid component and the liquid or solids-laden medium takes place.
- FIG. 1 further shows a second unit 9, which is equipped with a receiver unit 10. This is installed in use with a centrifugal pump in or on the pump housing. Depending on the load of the pumped medium, the receiver unit must be provided with protection. As with the first unit 1, it may be advisable to pour the second unit 9 directly into the pump housing.
- the receiver 10 is tuned to the transmitter 5 with respect to its detectable frequency range.
- the detected signals are fed to an evaluation unit 11.
- the evaluation result can be displayed in the embodiment shown directly on the pump, for which a corresponding display means 12 is provided.
- the display can be acoustic or optical. Alternatively, it is possible to forward the evaluation result to a higher-level system control, for which purpose the connection 13 is provided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11758208T PL2630372T3 (pl) | 2010-10-22 | 2011-09-21 | Urządzenie do kontroli pompy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010049138A DE102010049138A1 (de) | 2010-10-22 | 2010-10-22 | Vorrichtung zur Pumpenüberwachung |
PCT/EP2011/066396 WO2012052246A1 (fr) | 2010-10-22 | 2011-09-21 | Dispositif de surveillance d'une pompe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2630372A1 true EP2630372A1 (fr) | 2013-08-28 |
EP2630372B1 EP2630372B1 (fr) | 2015-11-18 |
Family
ID=44654120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11758208.0A Active EP2630372B1 (fr) | 2010-10-22 | 2011-09-21 | Dispositif de surveillance d'une pompe |
Country Status (10)
Country | Link |
---|---|
US (1) | US20130230381A1 (fr) |
EP (1) | EP2630372B1 (fr) |
CN (1) | CN103249952B (fr) |
BR (1) | BR112013009576B1 (fr) |
DE (1) | DE102010049138A1 (fr) |
DK (1) | DK2630372T3 (fr) |
MX (1) | MX2013004444A (fr) |
PL (1) | PL2630372T3 (fr) |
RU (1) | RU2559104C2 (fr) |
WO (1) | WO2012052246A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013017828B4 (de) * | 2013-10-24 | 2015-05-13 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Überwachung einer in einem extrakorporalen Blutkreislauf oder einer in einem Dialysatkreislauf angeordneten Impellerpumpe und Blutbehandlungsvorrichtung |
WO2015160656A1 (fr) * | 2014-04-16 | 2015-10-22 | Flsmidth A/S | Procédés et appareil de surveillance continue de l'usure dans des circuits de flottation |
DE102016121105A1 (de) * | 2016-11-04 | 2018-05-09 | Endress+Hauser Conducta Gmbh+Co. Kg | Schnittstelle für einen Messumformer |
DE102017223189A1 (de) * | 2017-12-19 | 2019-06-19 | KSB SE & Co. KGaA | Mehrpumpenanlage und Verfahren zu deren Betrieb |
CN111237209B (zh) * | 2020-02-17 | 2021-08-03 | 苏州欣皓信息技术有限公司 | 水泵转轮稳定性监测方法、装置、电子设备和存储介质 |
AT17666U3 (de) * | 2020-03-31 | 2022-12-15 | Tdk Electronics Ag | Akustisches Übertragungssystem, Primärschaltung, Sekundärschaltung, Verfahren zum Übertragen und Verwendung eines akustischen Übertragungssystems |
CN112879314B (zh) * | 2021-01-21 | 2023-08-29 | 西北农林科技大学 | 一种离心泵后泵腔压力分析装置 |
CN113295939B (zh) * | 2021-03-29 | 2023-01-31 | 一汽奔腾轿车有限公司 | 一种真空泵电磁兼容测试系统及其控制方法 |
DE102022130126A1 (de) | 2022-11-15 | 2024-05-16 | KSB SE & Co. KGaA | Verfahren zur sensorbasierten Überwachung wenigstens einer rotierenden Arbeitsmaschine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753221A (en) * | 1971-08-05 | 1973-08-14 | Bertea Corp | Acoustic control system |
JPS59190743A (ja) * | 1983-04-13 | 1984-10-29 | Matsushita Seiko Co Ltd | 壁掛型機器のリモ−トコントロ−ル装置 |
US4680584A (en) * | 1985-05-03 | 1987-07-14 | The United States Of America As Represented By The Secretary Of The Navy | Acoustic prelaunch weapon communication system |
IT1228845B (it) | 1989-02-22 | 1991-07-05 | Nuovo Pignone Spa | Rilevatore-misuratore in continuo della cavitazione nelle pompe dinamiche. |
DE3920185A1 (de) * | 1989-06-21 | 1991-01-10 | Oplaender Wilo Werk Gmbh | Kreiselpumpe oder luefter |
RU2090853C1 (ru) * | 1993-08-06 | 1997-09-20 | Павел Анатольевич Давыдов | Способ виброакустической диагностики машинного оборудования |
DE19630990A1 (de) * | 1996-07-31 | 1998-02-19 | Siemens Ag | Informationsübertragungsanordnung |
DE19947129A1 (de) * | 1999-09-30 | 2001-04-05 | Siemens Ag | Diagnosesystem und -verfahren, insbesondere für ein Ventil |
US6435810B1 (en) * | 2000-10-20 | 2002-08-20 | Delphi Technologies, Inc. | Wear resistant fuel pump |
BR0202248B1 (pt) * | 2001-04-23 | 2014-12-09 | Schlumberger Surenco Sa | Sistema de comunicação submarina e método utilizável com um poço submarino |
US6626042B2 (en) * | 2001-06-14 | 2003-09-30 | Honeywell International Inc. | Communication for water distribution networks |
DE102004010348A1 (de) * | 2004-03-03 | 2005-09-22 | Meri Entsorgungstechnik für die Papierindustrie GmbH | Verschleißerfassung durch Transponderzerstörung |
DE102005041500A1 (de) * | 2005-09-01 | 2007-03-08 | Leybold Vacuum Gmbh | Vakuumpumpe |
CN2918811Y (zh) * | 2006-02-24 | 2007-07-04 | 江苏新腾宇泵阀设备有限公司 | 带全程监控装置的磁力泵 |
DE102007038419B4 (de) * | 2007-08-14 | 2012-08-23 | Epcos Ag | Vorrichtung und Verfahren zur Übertragung von Messdaten |
RU2353925C1 (ru) * | 2007-09-27 | 2009-04-27 | Борис Максович Бржозовский | Устройство для бесконтактного высокоточного измерения физико-технических параметров объекта |
US7696893B2 (en) * | 2007-10-05 | 2010-04-13 | General Electric Company | Apparatus and related method for sensing cracks in rotating engine blades |
DE102008019472A1 (de) * | 2008-04-17 | 2009-10-22 | Oerlikon Leybold Vacuum Gmbh | Vakuumpumpe |
-
2010
- 2010-10-22 DE DE102010049138A patent/DE102010049138A1/de not_active Withdrawn
-
2011
- 2011-09-21 PL PL11758208T patent/PL2630372T3/pl unknown
- 2011-09-21 WO PCT/EP2011/066396 patent/WO2012052246A1/fr active Application Filing
- 2011-09-21 BR BR112013009576-8A patent/BR112013009576B1/pt active IP Right Grant
- 2011-09-21 RU RU2013123455/06A patent/RU2559104C2/ru active
- 2011-09-21 EP EP11758208.0A patent/EP2630372B1/fr active Active
- 2011-09-21 CN CN201180050630.4A patent/CN103249952B/zh active Active
- 2011-09-21 MX MX2013004444A patent/MX2013004444A/es active IP Right Grant
- 2011-09-21 DK DK11758208.0T patent/DK2630372T3/en active
-
2013
- 2013-04-19 US US13/866,664 patent/US20130230381A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2012052246A1 * |
Also Published As
Publication number | Publication date |
---|---|
PL2630372T3 (pl) | 2016-05-31 |
BR112013009576B1 (pt) | 2021-06-29 |
CN103249952B (zh) | 2016-01-20 |
BR112013009576A8 (pt) | 2018-07-31 |
US20130230381A1 (en) | 2013-09-05 |
RU2559104C2 (ru) | 2015-08-10 |
RU2013123455A (ru) | 2014-11-27 |
BR112013009576A2 (pt) | 2016-07-12 |
EP2630372B1 (fr) | 2015-11-18 |
WO2012052246A1 (fr) | 2012-04-26 |
CN103249952A (zh) | 2013-08-14 |
MX2013004444A (es) | 2013-07-29 |
DE102010049138A1 (de) | 2012-04-26 |
DK2630372T3 (en) | 2016-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2630372B1 (fr) | Dispositif de surveillance d'une pompe | |
EP2730906B1 (fr) | Dispositif et procédé de surveillance de l'état d'un palier à roulement | |
DE102012102726A1 (de) | Bürstenabnutzungsdetektorsystem mit drahtlosem Sensor | |
EP3116635B1 (fr) | Dispositif d'agitation d'eaux usées | |
CN108755831B (zh) | 一种基于物联网技术的电铲斗齿脱落实时监测报警方法及报警装置 | |
DE102016218897A1 (de) | Lagerkäfig mit Antenne und Verfahren zum Detektieren eines Ausfalls eines Lagerkäfigs | |
DE19824362A1 (de) | Verfahren zur Funktionsüberwachung eines Sensorbausteins sowie Sensorbaustein zur Durchführung des Verfahrens | |
DE102018211833A1 (de) | Sensoranordnung zum Erfassen von Betriebsparametern eines Elektromotors sowie entsprechender Elektromotor | |
DE102009002762A1 (de) | Gerät zur Überwachung einer oder mehrerer Prozessgrößen | |
EP1637890B1 (fr) | Procédé pour la détermination sans contact de la vitesse d'un moteur électrique | |
WO2011141038A1 (fr) | Dispositif et procédé de mesure de courants dans un palier | |
DE102010040525A1 (de) | Vorrichtung und Verfahren zur Verschleißüberwachung einer Bürste eines Kommutatorsystems in einer elektrischen Maschine | |
DE19616859B4 (de) | Einrichtung und Verfahren zur Überwachung einer Messgröße an einer in einem Gehäuse angeordneten und sich relativ zu dem Gehäuse bewegenden Maschinenkomponente | |
EP3055671A1 (fr) | Ensemble capteur servant à déterminer des propriétés d'un lubrifiant, élément de machine et agencement de machine | |
WO2008102003A2 (fr) | Dispositif comprenant un élément de contact électrique et élément de contact électrique | |
DE102018107158B4 (de) | Messsystem und Messverfahren zum Ermitteln eines Verschleißes eines Bremsbelags einer Reibungsbremse | |
DE102018208880A1 (de) | Vorrichtung zum Filtern einer Flüssigkeit und Verfahren zum Erfassen eines Zustands zumindest eines Filterelements | |
DE102010013213A1 (de) | Lagerbaugruppe mit Lager | |
EP1299929B1 (fr) | Systeme de transmission capable d'autodiagnostic | |
DE19620954A1 (de) | Anordnung zur Verschleißüberwachung von Förderrohren, Rohrweichen und dergleichen Bauteilen | |
DE102007037447A1 (de) | Druckregelgerät | |
DE102010022892A1 (de) | Verfahren zur Erfassung einer Lagerverkippung eines Wälzlagers und Wälzlager hierzu | |
EP3543537A1 (fr) | Groupe pompe ainsi que procédé de surveillance d'alimentation en liquide dans un dispositif d'étanchéité dans un groupe pompe | |
DE102017110088A1 (de) | Sensor, Sensormodul und Sensorbaukasten mit diesem Sensor | |
WO2022117146A1 (fr) | Unité de capteur pour la formation d'un nœud de capteur dans un réseau de capteurs sans fil et réseau de capteurs sans fil comprenant ledit nœud de capteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130325 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150519 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 761729 Country of ref document: AT Kind code of ref document: T Effective date: 20151215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011008355 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160218 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160218 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160318 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160218 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20160400284 Country of ref document: GR Effective date: 20160414 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011008355 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160921 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 761729 Country of ref document: AT Kind code of ref document: T Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20160930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011008355 Country of ref document: DE Owner name: KSB SE & CO. KGAA, DE Free format text: FORMER OWNER: KSB AKTIENGESELLSCHAFT, 67227 FRANKENTHAL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110921 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20190828 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20190926 Year of fee payment: 9 Ref country code: PL Payment date: 20190905 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200918 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200921 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230927 Year of fee payment: 13 Ref country code: DE Payment date: 20231012 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210921 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240923 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240924 Year of fee payment: 14 |