EP2532079A1 - Dispositif et procédé de mesure de courants dans un palier - Google Patents

Dispositif et procédé de mesure de courants dans un palier

Info

Publication number
EP2532079A1
EP2532079A1 EP10721693A EP10721693A EP2532079A1 EP 2532079 A1 EP2532079 A1 EP 2532079A1 EP 10721693 A EP10721693 A EP 10721693A EP 10721693 A EP10721693 A EP 10721693A EP 2532079 A1 EP2532079 A1 EP 2532079A1
Authority
EP
European Patent Office
Prior art keywords
capacitor
motor
measurement
coupling
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10721693A
Other languages
German (de)
English (en)
Inventor
Jörg HASSEL
Gerd Michaelis
Carsten Probol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2532079A1 publication Critical patent/EP2532079A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor

Definitions

  • bearing currents In machines, electric currents (bearing currents, English: Bearing Currents) can occur in bearings, which significantly reduce the life of these bearings. Bearing currents are electrical currents that take place in rolling or plain bearings of electrical machines.
  • bearing currents have been a well-known phenomenon for decades. They are not directly measurable in the field and lead to considerable effort for users or to high warranty costs for manufacturers. There is therefore great interest in a measuring method or on sensors that can measure bearing currents and evaluate them meaningfully.
  • Bearing currents have hitherto been quantitatively recorded using the complex method of conventional bearing current measurement, which requires a multiple conversion of the motor (reversing), or by means of direct voltage measurement by means of a contact brush.
  • the covered frequency range is typically in the one- or two-digit MHz range. A higher frequency range is not possible due to the boundary conditions of the assembly. Furthermore, a continuous monitoring is possible only to a limited extent. Measurement via the radiated electromagnetic field is very susceptible to misinterpretations due to coupled-in disturbances and hardly allows any quantification of the bearing currents. Despite the high suffering, no suitable solution was found for years. Stock flows can be quantified according to the prior art only by experts.
  • the measurement via the bearing voltage usually requires a coupling by means of a contact brush.
  • These contact brushes are not maintenance-free and / or expensive and therefore not suitable for continuous monitoring.
  • the installation of a contact brush is often only accepted by the customer for a short time.
  • Measurements in the GHz range are difficult to realize because line lengths of individual wires must be very short.
  • the measurement of the electromagnetic fields is generally sensitive to interference from the environment, eg. B. by the switching of converters. As a result, measurements by machine builders are not recognized. Furthermore, amplitude statements are hardly possible because the attenuation is not defined by the propagation.
  • the object of the invention is to provide a solution to the above problems. It is a measurement method and apparatus are specified, which allows a better assessment of the bearing currents. Furthermore, a method and a device are to be specified, which realizes a non-contact measurement of bearing currents. It is also the object of the invention to specify a measuring sensor and a method which is suitable for a long-term measurement of bearing currents.
  • the device for detecting a bearing current in an engine mount or a bearing in a motor-driven machine which leads a motor shaft or drive shaft, wherein the shaft is connected to a motor having a rotor and a housing at least partially surrounding the rotor and the motor shaft is connected to a coupling or a suitable for the measurement cultivation.
  • the measurement is carried out in a gap, in which at least one plate is introduced, which has a middle insulating layer and on the gap inner surfaces facing sides of the plate each good electrically conductive layers.
  • the measurement is carried out by at least one plate, which is introduced between the housing and coupling, and from a middle insulating layer and on the housing and the coupling ment facing sides of the plate each good electrically conductive layers consists.
  • the object is further achieved according to claim 11 by a method.
  • the motor shaft is connected to a coupling or a suitable for the measurement attachment, a present at shaft or bearing housing gap at least one plate is introduced, which has a middle insulating layer and on the gap inner surfaces facing sides of the plate each good electrically conductive layers.
  • the measurement is carried out on at least one plate, which is introduced between the housing and coupling, and a middle insulating layer and on the housing and the coupling side facing the plate each having well electrically conductive layers.
  • a contactless voltage measurement takes place via a series connection of capacitors.
  • the bearing voltage can be detected particularly well in the high frequency range in this way.
  • the bearing voltage can be detected with spectral components up to the GHz range outside the motor between the coupling and the motor housing by a non-contact voltage measurement. Furthermore, a very good signal-to-noise ratio between the bearing current signal and interference signals from the outside is due to the usually small or possibly by simple measures arbitrarily reducible distance between the engine clutch and the motor housing. The Measurement is therefore particularly resistant to interference and therefore suitable for practice.
  • the frequency range covered in conventional measurements has traditionally been in the one or two-digit MHz range; a higher frequency range was not possible due to the boundary conditions of the assembly.
  • the measurements are limited meaningful, due to the low frequency range or the sensitivity of the measurement of the radiated electromagnetic field against interferers from the outside.
  • the high frequency range is particularly important to assess the harmfulness of the bearing currents.
  • the new sensor is particularly suitable for this purpose.
  • Show 1 shows a cross section through a motor with coupling and the bearing voltage measurement according to the invention
  • FIG. 2 shows a possible construction of the bearing current sensor according to the invention
  • Figure 3 shows a cross section through an engine mount with sensor
  • Figure 1 shows a cross section through a conventional structure with a motor mounted on a foundation.
  • the engine is connected via a motor shaft and a clutch to a transmission which drives a working machine (for example a roller) via a further shaft.
  • the bearing voltage is between the motor shaft and the motor housing. Due to the usually large diameter of the motor shaft, the associated low inductance for a high-frequency current and the small distance between the motor coupling and the motor housing, the voltages between the motor and the clutch and between the motor and the housing are approximately the same. This results from the fact that the motor-side part of the clutch is usually conductively connected to the motor shaft.
  • FIG. 1 shows this circuit board of Figure 1 therefore again in detail, left in the plan view and right in cross section.
  • the circuit board can be realized with a certain characteristic impedance which allows accurate measurements by avoiding reflections, especially in the microwave frequency range.
  • a permanent magnet generates, via the dynamoelectric principle, an induced voltage in a coil which is used for the power supply.
  • the measuring signal which is typically in the range of a few volts, be rectified.
  • the voltage charges a capacitor. Possibly. can be transformed by an electrical or electronic circuit, the voltage high.
  • the capacitor such as an electrolytic or foil capacitor
  • the bearing current sensor makes measurements and discharges the capacitor. Then the cycle starts again.
  • a (usually longer) charging time alternates with a (usually shorter) measuring time.
  • the electronics of the bearing current sensor is designed to save energy. Then the voltage at the measuring capacitor in the lower frequency range, z. B. by series connection of a low-pass filter (for example, with 1 MHz cutoff frequency), without undue adulteration of the measurement signal taken. This is possible because the measurement signal of the bearing current sensor, in particular in the higher frequency range is significant for assessing the storage-damaging effect.
  • FIG. 3 shows a cross section through an engine mount with a bearing current sensor according to the invention.
  • the voltage across the engine mount is also approximately between the engine side of the clutch and the engine housing.
  • the coupling forms a plate capacitor together with the motor housing.
  • C L i is the air capacitor between the coupling and the coupling-side metallization of the circuit board.
  • C s is the inserted capacitor with a Di-elektrikum, z. B. FR4 printed circuit board material.
  • CLZ is the air condenser between the engine-side metallization and the engine housing. This results in a proportional relationship between bearing voltage and voltage at the measuring capacitor:
  • Sensor can be mounted under an optional safety hood between the engine and clutch. Also eliminates the use of a hand probe, the spreading over a rotating shaft.
  • the measuring signal is relatively insensitive to tolerances in the installed position. If the board is mounted off-center, z. CLI as CL2 shrinks. This causes compensation to some extent.
  • the senor is unilaterally on either the clutch or the engine. Then omitted C L i or C L2 .
  • the basic behavior remains the same, except that the measurement is then no longer potential-free, which may have a negative effect on immunity to interference.
  • the coupling is not suitable for the measurement. This is the case, for example, if the clutch is too small or too far away.
  • a metal disc can be mounted on the axle, which takes over the function of the plate capacitor, or vice versa, the potential of the motor housing are guided by an attachment closer to the clutch disc (which has the advantage that this is possible even with a rotating shaft) ,
  • a part of the circuit board is designed as a handle.
  • the senor measures the distance between the coupling and the sensor and between the motor and the sensor, for example via an optical or acoustic method. Based on the distances, the capacitances involved and thus the conversion factor between bearing voltage and voltage at the measuring capacitor can be calculated automatically.
  • the sensor directly measures the effect of air capacity over a defined test signal. For example, a resonant circuit containing the capacitance of the measuring capacitor and an inductance oscillates at a certain frequency.
  • the external capacitance (the air gap capacitors) detunes the resonant circuit and oscillates at a different frequency. This frequency is after
  • the prior art can be measured very accurately and inexpensively.
  • the known capacitance of the measuring capacitor can be ge ⁇ closed on the external capacitance and thus carried out the calibration of the conversion factor between the voltage at the measuring capacitor and the La ⁇ gerhard. Again, the values are determined either once with permanent storage or before defined measurements.
  • the sensor itself can z. B.
  • the sensor data can be transmitted by radio, wired, by portable memory card or by reading a display for digital data processing. There, the measurement data z. B. evaluated automatically and displayed in a histogram. The plant operation can be evaluated after a maintenance, z. This applies, for example, to correct engine grounding when the system is rebuilt. This prevents great economic damage to the operator of the plant.
  • FIGS. 4a to 4e show various constellations in which the method according to the invention or the device for detecting bearing currents according to the invention can be used.
  • the drive motor is on the left side, from this engine goes out a shaft.
  • the affected bearing is located in the engine.
  • the bearing is located in the driven machine on the right.
  • FIG. 4a shows a simple construction, in which the measuring gap lies between the motor and a coupling, as already shown in FIG.
  • the measuring gap is generated by a Anbauschei ⁇ be on the shaft, instead of a clutch.
  • a measurement of the bearing current can be carried out instead of the engine at the other end of the shaft, the work machine.
  • the gap between the clutch and the working machine is used in Figure 4d analogous to Figure 4a.
  • a suitable measuring gap is offered in FIG. 4e by means of a mounting plate on the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé de mesure et un dispositif qui permettent une meilleure analyse des courants dans un palier. L'invention concerne en outre un procédé et un dispositif qui réalisent une mesure sans contact des courants dans un palier. Une mesure de tension sans contact est réalisée grâce à un circuit en série de condensateurs. De cette manière, la tension du palier peut être particulièrement bien contrôlée, même aux fréquences élevées.
EP10721693A 2010-05-11 2010-05-11 Dispositif et procédé de mesure de courants dans un palier Ceased EP2532079A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/002905 WO2011141038A1 (fr) 2010-05-11 2010-05-11 Dispositif et procédé de mesure de courants dans un palier

Publications (1)

Publication Number Publication Date
EP2532079A1 true EP2532079A1 (fr) 2012-12-12

Family

ID=43428629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10721693A Ceased EP2532079A1 (fr) 2010-05-11 2010-05-11 Dispositif et procédé de mesure de courants dans un palier

Country Status (6)

Country Link
US (1) US9035664B2 (fr)
EP (1) EP2532079A1 (fr)
CN (1) CN102893503B (fr)
BR (1) BR112012028790A2 (fr)
RU (1) RU2550155C2 (fr)
WO (1) WO2011141038A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3154173A1 (fr) 2015-10-08 2017-04-12 ABB Schweiz AG Machine électrique avec mise à la masse active
CN105277861A (zh) * 2015-11-19 2016-01-27 南车株洲电机有限公司 电机轴承绝缘强度的测试方法
CN111448447B (zh) * 2017-11-03 2022-03-25 Abb瑞士股份有限公司 用于监测旋转电机的旋转轴的减摩轴承的布置结构
RU2713467C1 (ru) * 2018-10-18 2020-02-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный университет" Способ контроля электрического тока через подшипники электрической машины и трансформатор тока для его осуществления
CN109444741A (zh) * 2018-11-22 2019-03-08 黄茂连 一种直流电机转子测试设备
CN113960470B (zh) * 2021-08-24 2022-07-15 北京金风慧能技术有限公司 发电机轴电流的检测方法及装置
KR102571522B1 (ko) * 2023-07-05 2023-08-25 한국자동차연구원 전기차 구동모터 베어링의 전식수명 평가를 위한 등가회로모델링 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU114599A1 (ru) * 1957-06-24 1957-11-30 Ю.Н. Бобков Способ измерени подшипниковых токов в электрической машине
CH399963A (de) * 1962-05-22 1965-09-30 Bbc Brown Boveri & Cie Vorrichtung zum Überwachen von Lagern
DE1588983B1 (de) 1967-06-16 1971-01-07 Allianz Vorrichtung zur Vermeidung oder zumindest Minderung von Unipolarspannungen in umlaufenden Maschinen
SU1176419A1 (ru) 1984-03-21 1985-08-30 Рижский Краснознаменный Институт Инженеров Гражданской Авиации Им.Ленинского Комсомола Устройство контрол шарикоподшипников электрической машины
SU1197011A1 (ru) 1984-03-29 1985-12-07 Рижский Краснознаменный Институт Инженеров Гражданской Авиации Им.Ленинского Комсомола Устройство дл контрол подшипников электрической машины
RU2036462C1 (ru) 1991-11-12 1995-05-27 Ставропольский политехнический институт Способ интегральной оценки качества предварительно напряженных изгибаемых железобетонных элементов и устройство для его осуществления
US6140931A (en) * 1998-01-13 2000-10-31 Toshiba Kikai Kabushiki Kaisha Spindle state detector of air bearing machine tool
US6300701B1 (en) * 1999-02-23 2001-10-09 General Electric Canada Inc. Rogowski coil method of determination of bearing lubrication in dynamoelectric machines
US6297465B1 (en) 2000-05-25 2001-10-02 Eaton Corporation Two piece molded arc chute
DE10242310A1 (de) 2001-11-16 2003-07-10 Abb Patent Gmbh Lichtbogenlöschanordnung für ein elektrisches Schaltgerät
RU2242646C2 (ru) 2002-12-27 2004-12-20 Федеральное государственное унитарное предприятие НПП ВНИИЭМ Магнитный подшипник
DE102004056996A1 (de) 2004-11-25 2006-06-01 Siemens Ag Maschinenanordnung mit einer Maschine, die einen Grundkörper und einen Zusatzkörper aufweist
DE102005027670A1 (de) 2005-06-15 2007-01-11 Siemens Ag Anordnung und Verfahren zur Lagerstromüberwachung eines Elektromotors
EP1835598B1 (fr) 2006-03-13 2009-08-12 Aktiebolaget SKF Procédé et circuit pour indiquer une décharge électrique dans un palier d'un système d'entraînement électrique
US7705263B2 (en) 2008-04-15 2010-04-27 General Electric Company Arc chute assembly for a circuit breaker
FI20080438A0 (fi) 2008-07-15 2008-07-15 Abb Oy Menetelmä ja laitteisto laakerivirtojen mittaamiseksi sähkökoneessa
DE102008035613A1 (de) * 2008-07-25 2010-01-28 Siemens Aktiengesellschaft Verfahren und Anordnung zur Lagerstromüberwachung einer elektrischen Maschine
WO2011103883A1 (fr) 2010-02-24 2011-09-01 Siemens Aktiengesellschaft Procédé de détection de courants de palier entraînant une formation de plasma
EP2514078B1 (fr) * 2010-03-01 2019-05-01 Siemens Aktiengesellschaft Procédé pour surveiller la fonction de mise à la terre et utilisation du procédé

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011141038A1 *

Also Published As

Publication number Publication date
CN102893503B (zh) 2016-01-20
RU2012153247A (ru) 2014-06-20
CN102893503A (zh) 2013-01-23
RU2550155C2 (ru) 2015-05-10
WO2011141038A1 (fr) 2011-11-17
US20130049772A1 (en) 2013-02-28
BR112012028790A2 (pt) 2016-07-19
US9035664B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
EP2532079A1 (fr) Dispositif et procédé de mesure de courants dans un palier
EP2514078B1 (fr) Procédé pour surveiller la fonction de mise à la terre et utilisation du procédé
EP2513501B1 (fr) Module palier doté d'un capteur
EP1537390B1 (fr) Procede pour saisir des oscillations de la ligne d'arbres d'une machine electrique
EP2304866B1 (fr) Procédé et système pour contrôler le courant de palier d'une machine électrique
EP1537428B1 (fr) Procede et dispositif pour detecter des etincelles aux balais et de l'erosion par etincelles dans des machines electriques
EP2542865B1 (fr) Capteur de courant palier avec convertisseur d'énergie
DE102016114201A1 (de) Reinigungseinrichtung mit einer Detektionseinrichtung
EP1891404B1 (fr) Systeme de mesure de vibration
EP2630372A1 (fr) Dispositif de surveillance d'une pompe
AT9099U1 (de) Einrichtung zur messung des verlustfaktors
WO2015043619A1 (fr) Procédé et dispositif de surveillance d'état d'un système de propulsion comprenant un groupe moteur électrique
EP3507612B1 (fr) Dispositif pour établir le diagnostic d'une installation mécanique entraînée au moyen d'un moteur de commande électrique
DE102007020940B3 (de) Vorrichtung zum Erkennen und Überwachen von Schäden bei Wälzlagern
EP3788388B1 (fr) Dispositif capteur et procédé de détermination d'une tension alternative
DE102017110088A1 (de) Sensor, Sensormodul und Sensorbaukasten mit diesem Sensor
DE102005042085A1 (de) Vibrationsmesssystem
DE102004056996A1 (de) Maschinenanordnung mit einer Maschine, die einen Grundkörper und einen Zusatzkörper aufweist
DE4132533A1 (de) Verfahren und zugehoerige messanordnung zur bewertung des lichtbogens an gleitkontakten von elektrischen maschinen
EP1947418B1 (fr) Dispositif de mesure optique et procédé de détermination d'une déformation d'un conducteur électrique ainsi qu'utilisation du dispositif de mesure
DE202017106703U1 (de) Vorrichtung zur Überwachung von Wälzlagern
DE102017125890A1 (de) Verfahren zur Überwachung von Wälzlagern
DE102019205377B4 (de) Elektrische Maschine und Verfahren zum Ermitteln eines Fehlers einer elektrischen Maschine
DE102007046485A1 (de) Vorrichtung zur Zustandsüberwachung eines elektrisch leitenden Felgenbands, Radeinheit mit einer solchen Vorrichtung sowie Verfahren zur Zustandsüberwachung eines Felgenbands
DE102021006193A1 (de) Geber und Verfahren zum Überwachen eines elektrisch betriebenen Antriebssystems mittels eines Gebers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130703

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20191027