EP2629011A1 - Brennstoffdüse - Google Patents

Brennstoffdüse Download PDF

Info

Publication number
EP2629011A1
EP2629011A1 EP13002599.2A EP13002599A EP2629011A1 EP 2629011 A1 EP2629011 A1 EP 2629011A1 EP 13002599 A EP13002599 A EP 13002599A EP 2629011 A1 EP2629011 A1 EP 2629011A1
Authority
EP
European Patent Office
Prior art keywords
fuel
nozzle
flower
synthesis gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13002599.2A
Other languages
English (en)
French (fr)
Inventor
Giacomo Colmegna
Ulrich Wörz
Jaap Van Kampen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08017128A external-priority patent/EP2169308A1/de
Priority claimed from EP08017127A external-priority patent/EP2169307A1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13002599.2A priority Critical patent/EP2629011A1/de
Publication of EP2629011A1 publication Critical patent/EP2629011A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the invention relates to a fuel nozzle, comprising a nozzle tube and a nozzle outlet opening, wherein the nozzle tube is in communication with a fuel supply line for supplying a fuel into the nozzle tube, wherein the fuel from the nozzle outlet opening is injected into an air flow, which surrounds the fuel nozzle substantially annular , And a reaching to the nozzle outlet opening first nozzle tube section is formed flower-shaped in such a way that a substantially coaxial injection of the fuel in the air flow is feasible, wherein the nozzle outlet opening has a closed, conical flower scar.
  • synthesis gas can in principle be made from solid, liquid and gaseous educts.
  • synthesis gas can in principle be made from solid, liquid and gaseous educts.
  • coal gasification biomass gasification
  • coke gasification
  • premix combustion is becoming increasingly important also in the combustion of low calorific gases.
  • Premix burners typically include a premix zone in which air and fuel are mixed before passing the mixture into a combustion chamber. There, the mixture burns, producing a hot gas under elevated pressure. This hot gas is forwarded to the turbine. In connection with the operation of Vormischbrennern it comes Above all, it is important to keep the nitrogen oxide emissions low and to avoid a flashback.
  • Synthesis gas premix burners are characterized by the fact that synthesis gases are used as fuel in them. Compared with the traditional turbine fuels natural gas and petroleum, which consist essentially of hydrocarbon compounds, the combustible components of the synthesis gas are essentially carbon monoxide and hydrogen. Depending on the gasification process and the overall plant concept, the calorific value of the synthesis gas is about 5 to 10 times smaller than that of natural gas.
  • the quality of mixing between synthesis gas and combustion air at the flame front is an important influencing variable for avoiding temperature peaks and thus for minimizing the formation of thermal nitrogen oxides.
  • a spatially good mixture of combustion air and synthesis gas is particularly difficult due to the high volume flows of required synthesis gas and the correspondingly large spatial extent of the mixing area.
  • the lowest possible production of nitrogen oxides is an essential requirement for combustion, in particular for combustion in the gas turbine plant of a power plant.
  • the formation of nitrogen oxides increases exponentially rapidly with the combustion flame temperature. In an inhomogeneous mixture of fuel and air results in a certain distribution of flame temperatures in the combustion area. The maximum temperature of such a distribution determined by the said exponential relationship of nitrogen oxide formation and flame temperature significantly the amount of undesirable nitrogen oxides formed.
  • the object of the invention is to provide a fuel nozzle, in particular for the supply of synthesis gas, which leads to a lower nitrogen oxide formation during combustion.
  • a fuel nozzle comprising a nozzle tube and a nozzle outlet opening, wherein the nozzle tube is in communication with a fuel supply line for supplying a fuel into the nozzle tube, wherein the fuel from the nozzle outlet opening into an air stream, which the fuel nozzle substantially annular surrounds, is injected, and a reaching to the nozzle outlet opening first nozzle tube section is shaped like a flower in such a way that a substantially coaxial injection of the fuel in the air flow is feasible, wherein the nozzle outlet opening has a closed, conical flower scar.
  • the invention is based on the fact that, especially for large volume flows of fuel such as synthesis gas, large injection sequences must be made available, which is associated with high pressure losses. Furthermore, however, in order to achieve good NOx values, especially the premix mode with a good mixing is necessary. However, the swirling elements used in the prior art and the inflow of the fuel stream transverse to the air flow lead to a significantly undesirable pressure loss, which in turn leads to poor NOx values.
  • the invention is based on the recognition that an increase in the contact area between the synthesis gas stream causes a significant improvement in the mixing. This effect is particularly important if the fuel flow and the air flow have different flow velocity. Due to the flower-shaped design of first nozzle pipe section this is caused. Due to the flower-shaped configuration of the first nozzle pipe section, a second flow field, ie desired calculable turbulences, is additionally formed on the profile trailing edges, which in turn improves mixing. This is also particularly advantageous if the fuel flow and the air flow have different flow velocity.
  • the flower-shaped embodiment according to the invention of the first nozzle tube section further enables coaxial injection of the fuel into the air flow. As a result, undesirably high pressure losses are avoided. This allows operation of the nozzle in the premix mode, even at high volume flows of fuel, such as this is the case with synthesis gas.
  • the nozzle outlet opening of the fuel nozzle now has a closed, conically formed flower scar.
  • the flower scar which is arranged symmetrically around the center of the designed as a flower nozzle orifice, a continuous area mixing of the fuel and the air is enforced. This is especially for the fuel, which would be passed through the central region of the nozzle exit opening, an advantage.
  • Due to the design of the nozzle outlet opening with a flower hub quasi the contact surface between fuel and air is further increased, which has a positive effect on the mixing.
  • the flower scar preferably runs pointedly in the direction of flow.
  • the flower scar is double-conical.
  • boundary layer separation can be avoided and reduce the risk of flashback by return areas.
  • the flower scar has notches. These notches are attached to the flower hub in correspondence with the individual petals or in correspondence with the profile trailing edges. These notches essentially serve to provide a smooth passage for the fuel, i. the exit of the fuel from the fuel nozzle takes place without unwanted and unpredictable turbulence. Thus, boundary layer separation can be avoided and the risk of flashback by return areas can be reduced.
  • the notches are applied in a straight line in the direction of flow and / or twisted.
  • a swirl during the injection can be impressed on the air flow or the fuel flow.
  • the first nozzle pipe section preferably tapers in the flow direction. As a result, an increase in the flow rate of the fuel is achieved.
  • the flower shape of the first nozzle tube section is sawtooth-like. Predictable turbulences are formed in the flow field by the saw teeth, which causes a better mixing of the fuel with the air flow. However, since coaxial injection continues to be assured, no increase in pressure loss occurs in this embodiment of the fuel nozzle.
  • a second nozzle tube section may be present, to which the first nozzle tube section adjoins in the flow direction, wherein the second nozzle tube section tapers in the flow direction.
  • the sawtooth-like first nozzle tube section connects in the horizontal direction to the second nozzle tube section.
  • the sawtooth-like first nozzle tube section adjoins the second nozzle tube section inclined relative to the horizon. This increases the flow rate of the fuel.
  • the flower scar is connected to a substantially coaxial to the nozzle tube extending pipe for the supply of high calorific fuel and has at least one tangential and / or axial inlet opening.
  • the arrangement, the number, and the diameter of the inlet openings can vary. Since the high calorie fuel feed within the synthesis gas feed (high calorie fuel feed is annularly surrounded by the synthesis gas feed), these are preferably tangential and axial inlet ports, i. Holes.
  • both the inlet openings for high-calorie fuel and the feed itself only require a small diameter, since the volume flow of the high-calorie fuel is substantially lower than that of the synthesis gas. This fact contributes to the supply of high calorific fuel causing little or no disturbance in the air stream during synthesis gas operation.
  • the at least one tangential inlet opening is arranged on the flower web between two petals of the flower-shaped synthesis gas injection.
  • the fuel nozzle is present in a burner.
  • a burner This is in particular a synthesis gas burner operated in a premix mode.
  • the burner can be designed as a two- or multi-fuel burner, which can also be operated with, for example, natural gas in Vormischmodus.
  • the burner is present in a gas turbine.
  • the synthesis gas can in principle be made from solid, liquid and gaseous educts.
  • the coal gasification should be mentioned.
  • Coal is converted in a mixture of partial oxidation and gasification with water vapor to a mixture of CO and hydrogen.
  • the use of other solids such as biomass and coke should be mentioned in principle.
  • Different crude oil distillates can be used as the liquid reactants for synthesis gas.
  • the most important gaseous educt is natural gas.
  • Fig. 1 shows a fuel nozzle. This has a nozzle tube 2 and a nozzle outlet opening 10.
  • the nozzle tube 2 is in communication with a fuel supply line (not shown) which supplies fuel to the nozzle tube 2.
  • the fuel is injected from the nozzle outlet opening 10 into an air stream 8, which surrounds the fuel nozzle in an annular manner.
  • the reaching to the nozzle outlet opening 10 first nozzle tube section 4 is formed like a flower 6 and although such that a substantially coaxial injection of the fuel into the air stream 4 is feasible.
  • the synthesis gas is guided inside the nozzle tube 2.
  • Fig. 2 shows a cross section of such a nozzle outlet opening 10 with six individual flowers.
  • the number of flowers is mainly dependent on the individual burner types or gas turbine types and may vary.
  • the nozzle tube section 4 and the nozzle outlet opening 10 provide by their inventive flower-shaped configuration 6 a larger contact area between synthesis gas stream and air stream 8 ago.
  • an improved mixing between synthesis gas and air stream 8 is achieved without increased pressure loss.
  • This embodiment is particularly advantageous if the air stream 8 and the synthesis gas stream have different flow velocities.
  • this flower-shaped embodiment 6 has the significant advantage that a second flow field is formed, in particular at the profile trailing edges of the individual flowers. Here vortex structures are formed. This also contributes significantly to improving the mixing, especially when there is a significant difference in the flow rates of the synthesis gas and the air stream 8.
  • Fig. 3 shows by way of example as a diagram, the improved interference of a flower-shaped fuel nozzle, here in the FIG. 3 indicated at b, as compared to a fuel nozzle, here for example an annular, tapered nozzle tube according to the prior art (in FIG. 3 indicated with a).
  • the non-mixing degree is indicated on the y-axis.
  • the flower-shaped fuel nozzle has a higher mixing, but due to the coaxial injection with lower pressure loss.
  • Fig. 4 shows an embodiment of a fuel nozzle according to the invention. This has at the flower-shaped nozzle outlet opening 10 centrally a conical flower hub 14.
  • the flower hub 14 may be single conical or double conical be educated. This has the advantage that a smooth transition of the two streams is ensured in each other. Furthermore, this embodiment prevents a boundary layer separation or the formation of return flow areas, which can cause a flashback.
  • notches 16 can be made in the conical flower hub 14. These are advantageously on the one hand in their radial extension and attachment in accordance with the individual flowers attached, that is, the notch 16 and the flowers face each other. This achieves a smooth exit surface for the synthesis gas. On the other hand, further indentations 16 are provided, which lie opposite the profile trailing edges 20 and in their radial width essentially coincide with them. These achieve a smooth exit surface for the air flow 8.
  • the notches 16 may be rectilinear in the flow direction or wound so as to achieve a turbulence of the air or the fuel.
  • Fig. 5 shows an alternative fuel nozzle in which the flower shape has 8 tapered flowers, that is essentially formed like a sawtooth.
  • these saw teeth 22 are attached to a first pipe section 4.
  • This first pipe section 4 may have a constant pipe diameter in the flow direction (ie, the saw teeth 22 are substantially horizontal) or in Flow direction is tapered (ie the saw teeth 22 are inclined relative to the horizon line 26, Fig. 6 ).
  • a second pipe section 24, to which the first pipe section 4 adjoins in the flow direction, can be tapered in the direction of flow for better injection.
  • the design of the fuel nozzle with saw teeth 22 desired turbulence in the flow field to be generated, which in turn improves the mixing between synthesis gas and air stream 8.
  • Fig. 7 An embodiment of the inventive fuel nozzle with a second fuel supply is shown. Since the synthesis gas inlet openings must ensure a large volume flow, the fuel nozzle is formed in the shape of a flower 6 with respect to the synthesis gas according to the invention.
  • Tangential natural gas inlet openings 16 are placed between two petals 18.
  • the point of contact or the line of contact of two petals 18 with each other is referred to below as flower spike 19.
  • Fig. 7 has six tangential natural gas inlet openings 16 and an axial natural gas inlet openings 17. Depending on the burner and gas turbine, both the number and the arrangement may vary.
  • the natural gas inlet openings 16, 17 are essentially round, and can be produced by means of bores.
  • the synthesis gas supply and the flower-shaped synthesis gas inlet opening 6 as well as the natural gas supply 30 with the natural gas inlet 16,17 are designed so that a Pressure loss below 25 dp / p is achieved with the same heat input in terms of synthesis and natural gas.
  • Fig. 8 schematically shows the natural gas supply 30. Since the volume flow of natural gas is much lower than that for synthesis gas, the diameter of the natural gas supply 30 is substantially lower than the synthesis gas supply. In order to switch from synthesis gas to natural gas operation or vice versa, it is only necessary to interrupt the synthesis gas or natural gas supply 30. This can be achieved without hardware changes.
  • any other high-calorie burner material can be used, for example fuel oil.
  • the flower shape 6 of the synthesis gas inlet port is merely an example, other forms for syngas inlet port are also conceivable.
  • synthesis gas burners should be operable not only with a fuel, but possibly with different fuels, such as oil, natural gas and / or coal gas optional or even in combination to increase security of supply and flexibility in operation.
  • synthesis gas burners should be operable not only with a fuel, but possibly with different fuels, such as oil, natural gas and / or coal gas optional or even in combination to increase security of supply and flexibility in operation.
  • this invention it is possible to use the same nozzle for natural gas (or diluted natural gas) or synthesis gas. This simplifies the design of the burner and significantly reduces component components.
  • the fuel nozzle presented here is not limited only to the operation with synthesis gas, but it can be operated advantageously with any fuel. To emphasize this advantage especially with high-volume fuel flow.
  • the fuel nozzle according to the invention is particularly suitable in premix operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

Die Erfindung betrifft eine Brennstoffdüse für eine koaxiale Eindüsung eines Brennstoffs in einen die Brennstoffdüse ringförmig umgebenden Luftstrom (8), umfassend ein Düsenrohr (2) und eine Düsenaustrittsöffnung (10), wobei das Düsenrohr (2) mit einer Brennstoffzufuhrleitung in Verbindung steht zum Zuführen eines Brennstoffs in das Düsenrohr (2), wobei ein bis zur Düsenaustrittsöffnung (10) reichender erster Düsenrohrabschnitt (4) blütenförmig (6) ausgebildet ist und die Düsenaustrittsöffnung (10) eine konisch ausgebildete Blütennarbe (14) aufweist, und wobei die Blütennarbe (14) mit einem koaxial zum Düsenrohr (2) verlaufenden Rohr (30) für die Zufuhr hochkalorischen Brennstoffs verbunden ist und zumindest eine in radialer und axialer Richtung geneigte (16) oder/und axiale (17) Einlassöffnung aufweist.

Description

  • Die Erfindung betrifft eine Brennstoffdüse, umfassend ein Düsenrohr und eine Düsenaustrittsöffnung, wobei das Düsenrohr mit einer Brennstoffzufuhrleitung in Verbindung steht zum Zuführen eines Brennstoffs in das Düsenrohr, wobei der Brennstoff aus der Düsenaustrittsöffnung in einen Luftstrom, welcher die Brennstoffdüse im Wesentlichen ringförmig umgibt, eingedüst wird, und ein bis zur Düsenaustrittsöffnung reichender erster Düsenrohrabschnitt blütenförmig ausgebildet ist und zwar dergestalt, dass eine im wesentlichen koaxiale Eindüsung des Brennstoffs in den Luftstrom durchführbar ist, wobei die Düsenaustrittsöffnung eine geschlossene, konisch ausgebildete Blütennarbe aufweist.
  • Der Preisanstieg von Erdgas macht die Weiterentwicklung von alternativen Brennstoffen notwendig. Dies ist beispielsweise niederkalorisches Brenngas nachfolgend auch als Synthesegas bezeichnet. Die Herstellung von Synthesegas kann prinzipiell aus festen, flüssigen und gasförmigen Edukten erfolgen. Bei der Herstellung von Synthesegas aus festen Edukten ist vor allem die Kohlevergasung, Biomassenvergasung und die Koksvergasung zu nennen.
  • Im Hinblick auf zunehmend strengere Anforderungen an den Ausstoß von Stickoxiden gewinnt die Vormischverbrennung auch bei der Verbrennung von niederkalorischen Gasen zunehmend an Bedeutung.
  • Vormischbrenner umfassen typischerweise eine Vormischzone, in der Luft und Brennstoff vermischt werden, bevor das Gemisch in eine Brennkammer geleitet wird. Dort verbrennt das Gemisch, wobei ein unter erhöhtem Druck stehendes Heißgas erzeugt wird. Dieses Heißgas wird zur Turbine weitergeleitet. Im Zusammenhang mit dem Betrieb von Vormischbrennern kommt es vor allem darauf an, die Stickoxidemissionen gering zu halten und einen Flammenrückschlag zu vermeiden.
  • Synthesegas-Vormischbrenner zeichnen sich dadurch aus, dass in ihnen Synthesegase als Brennstoff verwendet werden. Verglichen mit den klassischen Turbinenbrennstoffen Erdgas und Erdöl, die im Wesentlichen aus Kohlenwasserstoffverbindungen bestehen, sind die brennbaren Bestandteile der Synthesegase im Wesentlichen Kohlenmonoxid und Wasserstoff. Abhängig vom Vergasungsverfahren und dem Gesamtanlagenkonzept ist der Heizwert des Synthesegases etwa 5- bis 10-mal kleiner als der von Erdgas.
  • Bedingt durch den geringen Heizwert müssen demzufolge hohe Volumenströme an Brenngas in die Brennkammer eingeleitet werden. Dies hat zur Folge, dass für die Verbrennung von niederkalorischen Brennstoffen, wie zum Beispiel Synthesegasen, deutlich größere Eindüsquerschnitte notwendig sind als bei herkömmlichen hochkalorischen Brenngasen. Um niedrige NOx-Werte zu erzielen ist jedoch notwendig Synthesegas in einem Vormischbetrieb zu verbrennen.
  • Neben der stöchiometrischen Verbrennungstemperatur des Synthesegases ist die Mischungsgüte zwischen Synthesegas und Verbrennungsluft an der Flammenfront eine wesentliche Einflussgröße zur Vermeidung von Temperaturspitzen und somit zur Minimierung der thermischen Stickoxidbildung. Eine räumlich gute Mischung von Verbrennungsluft und Synthesegas ist aufgrund der hohen Volumenströme an erforderlichem Synthesegas und der entsprechend großen räumlichen Ausdehnung des Mischungsgebiets besonders schwierig. Andererseits ist eine möglichst geringe Stickoxidproduktion schon aus Gründen des Umweltschutzes und entsprechenden gesetzlichen Richtlinien für Schadstoffemission eine wesentliche Anforderung an die Verbrennung, insbesondere an die Verbrennung in der Gasturbinenanlage eines Kraftwerks. Die Bildung von Stickoxiden erhöht sich exponentiell rapide mit der Flammentemperatur der Verbrennung. Bei einer inhomogenen Mischung von Brennstoff und Luft ergibt sich eine bestimmte Verteilung der Flammentemperaturen im Verbrennungsbereich. Die Maximaltemperatur einer solchen Verteilung bestimmen nach dem genannten exponentiellen Zusammenhang von Stickoxidbildung und Flammentemperatur maßgeblich die Menge der gebildeten unerwünschten Stickoxide.
  • Um eine hinreichende Vermischung zwischen Brennstoff und Luft zu gewährleisten, ist eine ausreichende Eindringtiefe der einzelnen Brennstoffstrahlen in den Luftmassenstrom notwendig. Im Vergleich zu hochkalorischen Brennergasen wie Erdgas sind jedoch entsprechend größere, freie Eindüsquerschnitte erforderlich. Dies hat zur Folge, dass die Brennstoffstrahlen die Luftströmung empfindlich stören, was letztendlich zu einer lokalen Ablösung der Luftströmung in Nachlaufgebiet der Brennstoffstrahlen führt. Die sich ausbildenden Rückströmgebiete innerhalb des Brenners sind unerwünscht und insbesondere bei der Verbrennung von hoch reaktivem Synthesegas unbedingt zu vermeiden. Im Extremfall führen diese lokalen Rückströmgebiete innerhalb der Mischzone des Brenners zu einem Flammenrückschlag in die Vormischzone und somit zu einer Brennerschädigung.
  • Auch die hohe Reaktivität von Synthesegas, insbesondere bei hohem Wasserstoffanteil erhöht die Gefahr eines Flammenrückschlags.
  • Weiterhin führen die größeren Eindüsquerschnitte, welche für das Synthesegas notwendig sind, zumeist zu einer schlechten Vormischung von Luft und Synthesegas, woraus eben jene hohen, unerwünschten NOx-Werte erzielt werden.
    Durch den hohen Volumenstrom werden zudem häufig Druckverluste bei der Eindüsung erzielt.
  • Die Durchmischung von Synthesegas mit Luft wird beispielsweise mit Verwirbelungselementen, wie z.B. in der EP 1 645 807 A1 , vorgenommen oder mit einer Eindüsung des Gases quer zum Luftstrom. Diese führen jedoch zu einem erheblichen unerwünschten Druckverlust und können unerwünschte Nachlaufgebiete welche zu Flammenrückschlag führen hervorrufen.
  • Ausgehend von dieser Problematik ist die Aufgabe der Erfindung eine Brennstoffdüse, insbesondere für die Zufuhr von Synthesegas, anzugeben, die bei der Verbrennung zu einer niedrigeren Stickoxidbildung führt.
  • Diese Aufgabe wird durch die Angabe einer Brennstoffdüse gelöst, umfassend ein Düsenrohr und eine Düsenaustrittsöffnung, wobei das Düsenrohr mit einer Brennstoffzufuhrleitung in Verbindung steht zum Zuführen eines Brennstoffs in das Düsenrohr, wobei der Brennstoff aus der Düsenaustrittsöffnung in einen Luftstrom, welcher die Brennstoffdüse im wesentlichen ringförmig umgibt, eingedüst wird, und ein bis zur Düsenaustrittsöffnung reichender erster Düsenrohrabschnitt blütenförmig ausgebildet ist und zwar dergestalt, dass eine im wesentlichen koaxiale Eindüsung des Brennstoffs in den Luftstrom durchführbar ist, wobei die Düsenaustrittsöffnung eine geschlossene, konisch ausgebildete Blütennarbe aufweist.
  • Die Erfindung geht von der Tatsache aus, dass gerade für große Volumenströme an Brennstoff wie beispielsweise Synthesegas große Eindüsequerschnitte zur Verfügung gestellt werden müssen, was mit hohen Druckverlusten verbunden ist. Weiterhin ist jedoch um gute NOx-Werte zu erzielen, gerade der Vormischmodus mit einer guten Vermischung notwendig. Die im Stand der Technik genutzten Verwirbelungselemente sowie die Einströmung des Brennstroms quer zum Luftstrom führen jedoch zu einem erheblich unerwünschten Druckverlust, der wiederum zu schlechten NOx-Werten führt.
  • Die Erfindung geht dabei von der Erkenntnis aus, dass eine Vergrößerung der Kontaktfläche zwischen Synthesegasstrom eine wesentliche Verbesserung der Durchmischung hervorruft. Dieser Effekt ist insbesondere dann wesentlich, wenn der Brennstoffstrom und der Luftstrom unterschiedliche Strömungsgeschwindigkeit aufweisen. Durch die blütenförmige Ausgestaltung des ersten Düsenrohrabschnitts wird dies hervorgerufen. Durch die blütenförmige Ausgestaltung des ersten Düsenrohrabschnitts wird zudem an den Profilhinterkanten ein zweites Strömungsfeld, d.h. gewünschte berechenbare Verwirbelungen ausgebildet, was wiederum die Durchmischung verbessert. Auch dies ist insbesondere dann von Vorteil, wenn der Brennstoffstrom und der Luftstrom unterschiedliche Strömungsgeschwindigkeit aufweisen. Die erfindungsgemäße blütenförmige Ausgestaltung des ersten Düsenrohrabschnitts ermöglicht weiterhin eine koaxiale Eindüsung des Brennstoffs in den Luftstrom. Dadurch werden unerwünscht hohe Druckverluste vermieden. Dies erlaubt ein betreiben der Düse im Vormischmodus, auch bei hohen Volumenströmen an Brennstoff, wie z.B. dies bei Synthesegas der Fall ist.
  • Erfindungsgemäß weist die Düsenaustrittsöffnung der Brennstoffdüse nun eine geschlossene, konisch ausgebildete Blütennarbe auf. Durch die Blütennarbe, welche symmetrisch um die Mitte der als Blüte ausgestalteten Düsenaustrittsöffnung angeordnet ist, wird eine durchgängig flächige Vermischung des Brennstoffs und der Luft erzwungen. Dies ist vor allem für den Brennstoff, welcher durch den mittigen Bereich der Düsenaustrittsöffnung geführt würde, von Vorteil. Durch die Ausgestaltung der Düsenaustrittsöffnung mit einer Blütennabe wird quasi die Kontaktfläche zwischen Brennstoff und Luft weiter erhöht, was sich positiv auf die Durchmischung auswirkt. Es ist jedoch weiterhin eine koaxiale Einströmung des Brennstoffs in den Luftstrom möglich, wodurch trotz der verbesserten Durchmischung lediglich ein vernachlässigbarer Druckverlust entsteht.
  • Bevorzugt läuft die Blütennarbe in Strömungsrichtung spitz zu.
  • Bevorzugt ist die Blütennarbe doppel-konisch ausgebildet. Dadurch lassen sich Grenzschichtablösungen vermeiden sowie die Gefahr des Flammenrückschlags durch Rücklaufgebiete reduzieren.
  • In bevorzugter Ausgestaltung weist die Blütennarbe Einkerbungen auf. Diese Einkerbungen sind auf der Blütennabe in Korrespondenz mit den einzelnen Blütenblättern angebracht oder aber in Korrespondenz mit den Profilhinterkanten. Diese Einkerbungen dienen im Wesentlichen dazu einen glatten Durchgang für den Brennstoff zu schaffen, d.h. der Austritt des Brennstoffes aus der Brennstoffdüse erfolgt ohne unerwünschte und unberechenbare Verwirbelungen. Somit können Grenzschichtablösungen vermieden werden und die Gefahr des Flammenrückschlags durch Rücklaufgebiete reduziert werden.
  • Vorteilhafterweise sind die Einkerbungen geradlinig in Strömungsrichtung und/oder verwunden aufgebracht. Dadurch kann dem Luftstrom oder dem Brennstoffstrom ein Drall bei der Eindüsung aufgeprägt werden.
  • Bevorzugt verjüngt der erste Düsenrohrabschnitt sich in Strömungsrichtung. Dadurch wird eine Erhöhung der Strömungsgeschwindigkeit des Brennstoffs erzielt.
  • Bei einem alternativen Düsenrohr mit offener Nabe ist die Blütenform des ersten Düsenrohrabschnitts sägezähnartig ausgebildet. Durch die Sägezähne werden berechenbare Verwirbelungen in dem Strömungsfeld ausgebildet, welche eine bessere Durchmischung des Brennstoffs mit dem Luftstrom hervorrufen. Da jedoch eine koaxiale Eindüsung weiterhin gewährleitstet ist, erfolgt bei dieser Ausgestaltung der Brennstoffdüse keine Erhöhung des Druckverlusts.
  • Dabei kann ein zweiter Düsenrohrabschnitt vorhanden sein, an welchen sich der erste Düsenrohrabschnitt in Strömungsrichtung anschließt, wobei der zweite Düsenrohrabschnitt sich in Strömungsrichtung verjüngt. Dadurch kann eine weitere Erhöhung der Strömungsgeschwindigkeit des Brennstoffs erzielt werden.
  • Der sägezahnartige erste Düsenrohrabschnitt schließt sich in horizontaler Richtung dem zweiten Düsenrohrabschnitt an. Dabei schließt sich der sägezahnartige erste Düsenrohrabschnitt gegenüber dem Horizont geneigt dem zweiten Düsenrohrabschnitt an. Dadurch wird die Strömungsgeschwindigkeit des Brennstoffs erhöht.
  • Bevorzugt ist die Blütennarbe mit einem im Wesentlichen koaxial zum Düsenrohr verlaufenden Rohr für die Zufuhr hochkalorischen Brennstoffs verbunden und weist zumindest eine tangentiale oder/und axiale Einlassöffnung auf.
  • Je nach Ausgestaltung des Brenners können dabei die Anordnung, die Anzahl, und der Durchmesser der Einlassöffnungen variieren. Da sich die Zufuhr für hochkalorischen Brennstoff innerhalb der Synthesegaszufuhr (Zufuhr für hochkalorischen Brennstoff wird ringförmig von der Synthesegaszufuhr umgeben) handelt es sich dabei bevorzugt um tangentiale und axiale Einlassöffnungen, d.h. Bohrungen.
  • Hierbei ist zu beachten, dass sowohl die Einlassöffnungen für hochkalorischen Brennstoff als auch die Zufuhr selber nur einen geringen Durchmesser benötigen, da der Volumenstrom des hochkalorischen Brennstoffes gegenüber dem des Synthesegases wesentlich geringer ist. Diese Tatsache trägt dazu bei, dass die Zufuhr für hochkalorischen Brennstoff keine oder nur geringe Störung im Luftstrom bei Synthesegasbetrieb hervorruft.
  • In bevorzugter Ausgestaltung ist die zumindest eine tangentiale Einlassöffnung am Blütensteg zwischen zwei Blütenblättern der blütenförmigen Synthesegaseindüsung angeordnet. Somit wird sichergestellt, dass die Eindüserichtung des z.B. Erdgases im wesentlichen quer zum Luftstrom erfolgt. Dies entspricht der bevorzugten Eindüserichtung eines herkömmlichen vorgemischten Erdgasbrenners. Dadurch ist eine gute Durchmischung des Erdgases mit dem Luftstrom gewährleistet, so dass niedrige NOx-Werte erzielt werden können. Diese niedrigen NOx-Werte müssen auch entsprechend den Vorschriften in einem Synthesegasbrenner gewährleistet sein, wenn dieser mit hochkalorischem Brennstoff wie Erdgas betrieben wird, auch wenn dieses Erdgas lediglich eine "backup" Funktion darstellt.
  • In bevorzugter Ausgestaltung ist die Brennstoffdüse in einem Brenner vorhanden. Dies ist insbesondere ein Synthesegasbrenner, welcher in einem Vormischmodus betrieben wird. Der Brenner kann dabei als Zwei- oder Mehrstoffbrenner ausgelegt sein, welcher zudem mit beispielsweise Erdgas im Vormischmodus betrieben werden kann. Vorteilhafterweise ist der Brenner in einer Gasturbine vorhanden.
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung werden nun anhand der Zeichnungen näher beschrieben.
  • Darin zeigt in vereinfachter und nicht maßstäblicher Darstellung:
  • Fig. 1
    eine Brennstoffdüse,
    Fig. 2
    einen Querschnitt durch die Brennstoffdüse,
    Fig. 3
    ein Diagramm für den Vermischungsgrad,
    Fig. 4
    eine Brennstoffdüse nach der Erfindung mit Blütennabe,
    Fig. 5
    eine alternative Brennstoffdüse mit horizontalen Sägezähnen,
    Fig. 6
    eine alternative Brennstoffdüse mit geneigten Sägezähnen,
    Fig. 7
    eine vergrößerte Darstellung der erfindungsgemäßen Brennstoffzufuhr mit einer Zweitbrennstoffzufuhr und
    Fig. 8
    schematisch eine Zweitbrennstoffzufuhr (Erdgaszufuhr).
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Aufgrund des hohen Erdgaspreises wird die derzeitige Entwicklung von Gasturbinen in Richtung alternative Brennstoffe wie zum Beispiel Synthesegas gefördert. Die Herstellung von Synthesegas kann prinzipiell aus festen, flüssigen und gasförmigen Edukten erfolgen. Bei der Herstellung von Synthesegas aus festen Edukten ist vor allem die Kohlevergasung zu nennen. Kohle wird hierbei in einer Mischung aus partieller Oxidation und Vergasung mit Wasserdampf zu einem Gemisch aus CO und Wasserstoff umgesetzt. Neben Kohle ist prinzipiell auch der Einsatz anderer Feststoffe wie z.B. Biomasse und Koks zu nennen. Als flüssige Edukte für Synthesegas können unterschiedliche Rohöldestillate eingesetzt werden, als wichtigstes gasförmiges Edukt ist Erdgas zu nennen. Hierbei ist jedoch zu beachten, dass der niedrige Heizwert bei Synthesegas zur Folge hat, dass wesentlich höhere Volumenströme der Brennkammer zur Verbrennung zugeführt werden müssen, als dies bei z.B. Erdgas der Fall ist. Dies hat zur Folge, dass große Eindüsequerschnitte für den Volumenstrom des Synthesegases bereit gestellt werden müssen. Diese führen jedoch zu einer schlechten Vormischung von Luft und Synthesegas, woraus eben hohe, unerwünschte NOx-Werte erzielt werden. Durch den hohen Volumenstrom werden zudem häufig Druckverluste bei der Eindüsung erzielt.
  • Um eine gute Durchmischung zu erzielen werden Verwirbelungselemente genutzt oder das Synthesegas quer zum Luftstrom eingeströmt. Daraus resultiert jedoch ein erheblicher unerwünschter Druckverlust. Weiterhin können Nachlaufgebiete ausgebildet werden, welche zu einem Flammenrückschlag führen.
    Dies wird nun mithilfe der Erfindung vermieden.
  • Fig. 1 zeigt eine Brennstoffdüse. Diese weist ein Düsenrohr 2 und einer Düsenaustrittsöffnung 10 auf. Das Düsenrohr 2 steht dabei mit einer Brennstoffzufuhrleitung (nicht gezeigt) in Verbindung, welche Brennstoff dem Düsenrohr 2 zuführt. Der Brennstoff wird aus der Düsenaustrittsöffnung 10 in einen Luftstrom 8, welcher die Brennstoffdüse ringförmig umgibt, eingedüst. Der bis zur Düsenaustrittsöffnung 10 reichende erste Düsenrohrabschnitt 4 ist blütenförmig 6 ausgebildet und zwar dergestalt, dass eine im Wesentlichen koaxiale Eindüsung des Brennstoffs in den Luftstrom 4 durchführbar ist. Das Synthesegas wird dabei innerhalb des Düsenrohrs 2 geführt.
  • Fig. 2 zeigt einen Querschnitt einer solchen Düsenaustrittsöffnung 10 mit sechs einzelnen Blüten. Die Anzahl der Blüten ist dabei vor allem von den einzelnen Brennertypen bzw. Gasturbinentypen abhängig und kann variieren. Der Düsenrohrabschnitt 4 und die Düsenaustrittsöffnung 10 stellen durch ihre erfindungsgemäße blütenförmige Ausgestaltung 6 eine größere Kontaktfläche zwischen Synthesegasstrom und Luftstrom 8 her. Dadurch wird eine verbesserte Vermischung zwischen Synthesegas und Luftstrom 8 ohne erhöhten Druckverlust erzielt. Diese Ausgestaltung ist insbesondere von Vorteil, wenn der Luftstrom 8 und der Synthesegasstrom unterschiedliche Strömungsgeschwindigkeiten aufweisen. Weiterhin hat diese blütenförmige Ausgestaltung 6 den wesentlichen Vorteil, dass sich ein zweites Strömungsfeld ausbildet, insbesondere an den Profilhinterkanten der einzelnen Blüten. Hier werden Wirbelstrukturen ausgebildet. Auch dies trägt wesentlich dazu bei, die Vermischung zu verbessern, insbesondere wenn ein wesentlicher Unterschied in den Strömungsgeschwindigkeiten des Synthesegases und des Luftstroms 8 vorliegt.
  • Fig. 3 zeigt beispielhaft als Diagramm die verbesserte Einmischung einer blütenförmig ausgebildeten Brennstoffdüse, hier in der Figur 3 mit b angegeben, im Vergleich zu einer Brennstoffdüse, hier zum Beispiel ein ringförmiges, sich verjüngendes Düsenrohr nach dem Stand der Technik (in der Figur 3 mit a angegeben). Dabei ist auf der y-Achse der Nicht-Vermischungsgrad angegeben. Die blütenförmige Brennstoffdüse weist eine höhere Vermischung auf, jedoch aufgrund der koaxialen Eindüsung mit niedrigerem Druckverlust.
  • Fig. 4 zeigt eine Ausgestaltung einer erfindungsgemäßen Brennstoffdüse. Diese weist an der blütenförmigen Düsenaustrittsöffnung 10 mittig eine konische Blütennabe 14 auf. Dabei kann die Blütennabe 14 einfach-konisch oder doppel-konisch ausgebildet sein. Dies hat den Vorteil, dass ein glatter Übergang der beiden Ströme ineinander gewährleistet ist. Weiterhin verhindert diese Ausgestaltung eine Grenzschichtablösung oder die Ausbildung von Rückströmungsgebieten, welche einen Flammenrückschlag hervorrufen können.
  • Vorteilhafterweise können in der konischen Blütennabe 14 Einkerbungen 16 angebracht sein. Diese sind vorteilhafterweise zum einen in ihrer radialen Ausdehnung und Anbringung in Übereinstimmung mit den einzelnen Blüten angebracht, das heißt die Einkerbung 16 und die Blüten liegen sich gegenüber. Damit wird eine glatte Austrittsfläche für das Synthesegas erzielt. Zum anderen sind weitere Einkerbungen 16 angebracht, welche den Profilhinterkanten 20 gegenüberliegen und in ihrer radialen Breite im Wesentlichen mit diesen übereinstimmt. Diese erzielen eine glatte Austrittsfläche für den Luftstrom 8. Die Einkerbungen 16 können geradlinig in Strömungsrichtung oder aber verwunden sein, um so eine Verwirbelung der Luft bzw. des Brennstoffs zu erzielen.
  • Mit der Ausgestaltung einer Blütennabe 14 wird also die Vermischung in der Mitte der blütenförmigen 6 Brennstoffdüse (also um die Eindüseachsen herum) verbessert. Mithilfe der Blütennabe 14 wird somit auch in der Blütenmitte eine Vermischung des Synthesegasstroms mit dem Luftstrom 8 erzielt, in dem nochmals die Kontaktfläche zwischen Synthesegasstrom und Luftstrom 8 vergrößert wird. Dadurch ist eine durchgängig flächige Durchmischung möglich. Aufgrund der koaxialen Eindüsung ist der Druckverlust trotz der flächigen und damit sehr guten Durchmischung jedoch gering.
  • Fig. 5 zeigt eine alternative Brennstoffdüse bei der die Blütenform 8 spitz zulaufende Blüten aufweist, das heißt im Wesentlichen sägezahnartig ausgebildet ist. Dabei sind diese Sägezähne 22 an einem ersten Rohrabschnitt 4 angebracht. Dieser erste Rohrabschnitt 4 kann dabei in Strömungsrichtung einen gleichbleibenden Rohrdurchmesser aufweisen (d.h. die Sägezähne 22 sind im Wesentlichen horizontal) oder aber in Strömungsrichtung verjüngt sein (d.h. die Sägezähne 22 sind gegenüber der Horizontlinie 26 geneigt, Fig. 6). Ein zweiter Rohrabschnitt 24, an den sich der erste Rohrabschnitt 4 in Strömungsrichtung anschließt, kann zur besseren Eindüsung in Strömungsrichtung verjüngt sein. Durch die Ausgestaltung der Brennstoffdüse mit Sägezähnen 22 sollen gewünschte Verwirbelungen im Strömungsfeld erzeugt werden, was wiederum die Vermischung zwischen Synthesegas und Luftstrom 8 verbessert.
  • Auch hier ist jedoch aufgrund der koaxialen Eindüsung der Druckverlust trotz der flächigen und damit sehr guten Durchmischung jedoch gering.
  • In Fig. 7 ist eine Ausführungsform der erfinderischen Brennstoffdüse mit Zweitbrennstoffzufuhr dargestellt. Da die Synthesegaseinlassöffnungen einen großen Volumenstrom gewährleisten müssen, ist die Brennstoffdüse in Bezug auf das Synthesegas nach der Erfindung blütenförmig 6 ausgebildet.
  • Tangentiale Erdgaseinlassöffnungen 16 sind zwischen zwei Blütenblätter 18 gesetzt. Der Berührungspunkt bzw. die Berührungslinie zweier Blütenblatter 18 miteinander wird dabei nachfolgend als Blütensteg 19 bezeichnet. Das bedeutet, dass der Erdgasstrom 33 unmittelbar in den Luftstrom 8 eingedüst werden kann, ohne dass sich dazwischen ein Blütenblatt 18 befindet. Dadurch wird gewährleistet, dass das Erdgas im Wesentlichen quer zum Luftstrom 8 eingedüst wird. Fig. 7 weist dabei sechs tangentiale Erdgaseinlassöffnungen 16 und eine axiale Erdgaseinlassöffnungen 17 auf. Je nach Brenner und Gasturbine kann sowohl die Anzahl als auch die Anordnung variieren. Die Erdgaseinlassöffnungen 16,17 sind dabei im Wesentlichen rund, und mittels Bohrung herstellbar.
  • Die Synthesegaszufuhr und deren blütenförmige 6 Synthesegaseinlassöffnung als auch die Erdgaszufuhr 30 mit den Erdgaseinlassöffnung 16,17 sind dabei so ausgestaltet, dass ein Druckverlust unter 25 dp/p bei gleichem Wärmeintrag im Hinblick auf Synthese- und Ergas erzielt wird.
  • Fig. 8 zeigt schematisch die Erdgaszufuhr 30. Da der Volumenstrom des Erdgases wesentlich geringer ist als der für Synthesegas ist der Durchmesser der Erdgaszufuhr 30 wesentlich geringer als die Synthesegaszufuhr. Um von Synthesegas auf Erdgasbetrieb bzw. umgekehrt, umzustellen, ist es lediglich notwendig die Synthesegas- bzw. Erdgaszufuhr 30 zu unterbrechen. Dies kann ohne Hardwareänderungen erzielt werden.
  • Anstatt Erdgas kann auch jeder andere hochkalorische Brennerstoff verwendet werden, beispielsweise Heizöl. Ebenso ist die Blütenform 6 der Synthesegaseinlassöffnung lediglich ein Beispiel, andere Formen für Synthesegaseinlassöffnung sind ebenfalls vorstellbar.
  • Mit der erfindungsgemäßen Brennstoffdüse wird eine gute Durchmischung zwischen volumenreichen Synthesegas und Luft ermöglicht. Aufgrund der koaxialen Eindüsung ist jedoch der Druckverlust gering. Entstehende Druckverluste, die beispielsweise durch das alleinige Anbringen von Verwirbelungselementen hervorgerufen werden, sind dadurch vermieden. Dadurch wird ein betreiben im Vormischmodus gefördert, was sich wiederum positiv auf die NOx-Werte auswirkt.
  • Mit der erfindungsgemäßen Brennstoffdüse ist es auch möglich eine sogenannte Backup-Brennstoff Leitung zu integrieren, da Synthesegas-Brenner jeweils nicht nur mit einem Brennstoff, sondern möglichst mit verschiedenen Brennstoffen, beispielsweise Öl, Erdgas und/oder Kohlegas wahlweise oder sogar in Kombination betreibbar sein sollen, um die Versorgungssicherheit und Flexibilität beim Betrieb zu erhöhen. Mittels dieser Erfindung ist es möglich dieselbe Düse für Erdgas (bzw. verdünntes Erdgas) oder Synthesegas zu benutzen. Dies vereinfacht die Bauweise des Brenners und reduziert Bauteilkomponenten wesentlich.
  • Die hier vorgestellte Brennstoffdüse ist jedoch nicht nur auf das Betreiben mit Synthesegas beschränkt, vielmehr kann sie mit jedem Brennstoff vorteilhaft betrieben werden. Dieser Vorteil besonders bei volumenreichen Brennstoffstrom hervorzuheben. Besonders eignet sich die erfindungsgemäße Brennstoffdüse im Vormischbetrieb.

Claims (4)

  1. Brennstoffdüse für eine im Wesentlichen koaxiale Eindüsung eines Brennstoffs in einen die Brennstoffdüse im Wesentlichen ringförmig umgebenden Luftstrom (8), umfassend ein Düsenrohr (2) und eine Düsenaustrittsöffnung (10) zum Eindüsen des Brennstoffs in den Luftstrom (8), wobei das Düsenrohr (2) mit einer Brennstoffzufuhrleitung in Verbindung steht zum Zuführen eines Brennstoffs in das Düsenrohr (2), wobei ein bis zur Düsenaustrittsöffnung (10) reichender erster Düsenrohrabschnitt (4) blütenförmig (6) ausgebildet ist und
    die Düsenaustrittsöffnung (10) eine konisch ausgebildete Blütennarbe (14) aufweist,
    dadurch gekennzeichnet, dass die Blütennarbe (14) mit einem im Wesentlichen koaxial zum Düsenrohr (2) verlaufenden Rohr (30) für die Zufuhr hochkalorischen Brennstoffs verbunden ist und zumindest eine in radialer und axialer Richtung geneigte (16) oder/und axiale (17) Einlassöffnung aufweist.
  2. Brennstoffdüse nach Anspruch 1,
    dadurch gekennzeichnet, dass die zumindest in radialer und axialer Richtung geneigte Einlassöffnung (16) an einem Blütensteg (19) zwischen zwei Blütenblättern (18) der blütenförmigen (6) Düsenaustrittsöffnung (10) angeordnet ist.
  3. Brenner mit einer Brennstoffdüse nach einem der vorhergehenden Ansprüche.
  4. Gasturbine mit einem Brenner nach Anspruch 3.
EP13002599.2A 2008-09-29 2009-09-25 Brennstoffdüse Withdrawn EP2629011A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13002599.2A EP2629011A1 (de) 2008-09-29 2009-09-25 Brennstoffdüse

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08017128A EP2169308A1 (de) 2008-09-29 2008-09-29 Brennstoffzufuhr und Verfahren zur Brennstoffeindüsung
EP08017127A EP2169307A1 (de) 2008-09-29 2008-09-29 Brennstoffdüse
EP13002599.2A EP2629011A1 (de) 2008-09-29 2009-09-25 Brennstoffdüse
EP09783434.5A EP2329189B1 (de) 2008-09-29 2009-09-25 Brennstoffdüse

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP09783434.5 Division 2009-09-25
EP09783434.5A Division-Into EP2329189B1 (de) 2008-09-29 2009-09-25 Brennstoffdüse

Publications (1)

Publication Number Publication Date
EP2629011A1 true EP2629011A1 (de) 2013-08-21

Family

ID=41228273

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13002599.2A Withdrawn EP2629011A1 (de) 2008-09-29 2009-09-25 Brennstoffdüse
EP09783434.5A Not-in-force EP2329189B1 (de) 2008-09-29 2009-09-25 Brennstoffdüse

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09783434.5A Not-in-force EP2329189B1 (de) 2008-09-29 2009-09-25 Brennstoffdüse

Country Status (6)

Country Link
US (1) US8959922B2 (de)
EP (2) EP2629011A1 (de)
JP (2) JP5312599B2 (de)
CN (1) CN102165258B (de)
RU (1) RU2506497C2 (de)
WO (1) WO2010034819A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068922A1 (en) * 2014-10-30 2016-05-06 Siemens Aktiengesellschaft Pilot burner and method for stabilizing a pilot flame in a combustor subject to combustion dynamics
WO2017003649A1 (en) * 2015-06-30 2017-01-05 General Electric Company Fuel nozzle assembly

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435537B2 (en) * 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance
EP2604919A1 (de) 2011-12-12 2013-06-19 Siemens Aktiengesellschaft Brennstoffdüse für zwei Brennstoffe
US20130244187A1 (en) * 2012-03-19 2013-09-19 Honeywell International Inc. HIGH EFFICIENCY LOW NOx EMISSION BURNER APPARATUS
US9200808B2 (en) * 2012-04-27 2015-12-01 General Electric Company System for supplying fuel to a late-lean fuel injector of a combustor
CN102889614A (zh) * 2012-10-24 2013-01-23 哈尔滨东安发动机(集团)有限公司 直流喷嘴
US20140144152A1 (en) * 2012-11-26 2014-05-29 General Electric Company Premixer With Fuel Tubes Having Chevron Outlets
US20140144141A1 (en) * 2012-11-26 2014-05-29 General Electric Company Premixer with diluent fluid and fuel tubes having chevron outlets
FR3007801B1 (fr) * 2013-07-01 2018-01-05 Arianegroup Sas Element d'injection
US20160061452A1 (en) * 2014-08-26 2016-03-03 General Electric Company Corrugated cyclone mixer assembly to facilitate reduced nox emissions and improve operability in a combustor system
WO2016085494A1 (en) * 2014-11-26 2016-06-02 Siemens Aktiengesellschaft Fuel lance with means for interacting with a flow of air and improve breakage of an ejected liquid jet of fuel
CN104566467B (zh) * 2014-12-31 2018-02-23 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种防回火型喷嘴
CN104791788B (zh) * 2015-04-01 2017-12-08 深圳智慧能源技术有限公司 高效文丘里燃烧器
CN104764016A (zh) * 2015-04-01 2015-07-08 深圳智慧能源技术有限公司 文丘里混合器的喷嘴结构
US10392284B2 (en) * 2015-04-16 2019-08-27 Praxair Technology, Inc. Combustion method for low velocity reactant streams
CN105757716B (zh) * 2016-02-22 2019-04-30 中国科学院工程热物理研究所 一种用于预混燃烧的喷嘴、喷嘴阵列和燃烧器
JP6634909B2 (ja) * 2016-03-18 2020-01-22 三浦工業株式会社 ベンチュリノズル及び該ベンチュリノズルを備える燃料供給装置
CN105698172B (zh) * 2016-04-11 2017-11-28 徐州科融环境资源股份有限公司 一种花瓣形分级燃烧燃气低氮燃烧器
CN106402857A (zh) * 2016-08-31 2017-02-15 北京北机机电工业有限责任公司 一种用于喷射装置的点火喷嘴
CN107023828B (zh) * 2017-05-22 2024-04-16 北京醇能科技有限公司 一种用于气态燃料混合器的喷嘴
US10927804B2 (en) 2017-06-07 2021-02-23 Ford Global Technologies, Llc Direct fuel injector
US20190056108A1 (en) * 2017-08-21 2019-02-21 General Electric Company Non-uniform mixer for combustion dynamics attenuation
CN107843467A (zh) * 2017-11-16 2018-03-27 南京航空航天大学 适用于安全检查的射流式气体感应系统及方法
CN107957066B (zh) * 2017-12-22 2024-07-02 上海齐耀热能工程有限公司 点火枪
CN110801948A (zh) * 2018-08-05 2020-02-18 大连理工大学 一种带扭转式8字形喷孔的喷嘴
EP3689818A1 (de) * 2019-01-31 2020-08-05 Casale Sa Reaktor und verfahren zur teiloxidation
CN111442266A (zh) * 2020-05-08 2020-07-24 中国科学院工程热物理研究所 一体化设计的富氢燃烧室头部
DE102020003357B4 (de) 2020-06-03 2024-06-27 SDT Industrial Technology UG (haftungsbeschränkt) Die Vorrichtung zur Luft-Desinfektion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901445A (en) * 1974-11-08 1975-08-26 Pullman Inc Gas burner - lance construction
JPH08145361A (ja) * 1994-11-16 1996-06-07 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン用燃料噴射弁
WO1999006767A1 (de) * 1997-07-31 1999-02-11 Siemens Aktiengesellschaft Brenner
EP1391653A2 (de) * 2002-08-21 2004-02-25 Rolls-Royce Plc Vorrichtung zur Kraftstoffeinspritzung
EP1645807A1 (de) 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners
US20080078180A1 (en) * 2006-09-29 2008-04-03 Durbin Mark D Methods and apparatus for injecting fluids into a turbine engine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB173901A (de)
US2121948A (en) 1935-05-11 1938-06-28 Western Electric Co Burner
US3866413A (en) * 1973-01-22 1975-02-18 Parker Hannifin Corp Air blast fuel atomizer
US5048433A (en) * 1988-03-31 1991-09-17 University Of Florida Radiation enhancement in oil/coal boilers converted to natural gas
US5235813A (en) * 1990-12-24 1993-08-17 United Technologies Corporation Mechanism for controlling the rate of mixing in combusting flows
JPH0712758A (ja) 1993-06-23 1995-01-17 Hitachi Medical Corp X線検出装置
DE4411623A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4411622A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
US5622054A (en) * 1995-12-22 1997-04-22 General Electric Company Low NOx lobed mixer fuel injector
JPH09222228A (ja) 1996-02-16 1997-08-26 Toshiba Corp ガスタービン燃焼器
WO1998028574A2 (de) * 1996-12-20 1998-07-02 Siemens Aktiengesellschaft Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement
JPH1162622A (ja) 1997-08-22 1999-03-05 Toshiba Corp 石炭ガス化複合発電設備およびその運転方法
US6122916A (en) * 1998-01-02 2000-09-26 Siemens Westinghouse Power Corporation Pilot cones for dry low-NOx combustors
JP2002364812A (ja) * 2001-06-06 2002-12-18 Osaka Gas Co Ltd 燃焼装置
JP3924136B2 (ja) * 2001-06-27 2007-06-06 三菱重工業株式会社 ガスタービン燃焼器
US20030058737A1 (en) * 2001-09-25 2003-03-27 Berry Jonathan Dwight Mixer/flow conditioner
US6866503B2 (en) 2003-01-29 2005-03-15 Air Products And Chemicals, Inc. Slotted injection nozzle and low NOx burner assembly
US20060156734A1 (en) * 2005-01-15 2006-07-20 Siemens Westinghouse Power Corporation Gas turbine combustor
RU2291977C1 (ru) * 2005-09-14 2007-01-20 Владимир Викторович Черниченко Соосно-струйная форсунка
ATE493615T1 (de) * 2006-08-14 2011-01-15 Siemens Ag Verbrennungssystem insbesondere für eine gasturbine
CN101131235A (zh) * 2007-09-12 2008-02-27 北京科技大学 一种可实现钢坯加热过程超低氧化烧损的燃烧器
EP2362148A1 (de) * 2010-02-23 2011-08-31 Siemens Aktiengesellschaft Brennstoffinjektor und Drallvorrichtung mit lappenartigem Mischer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901445A (en) * 1974-11-08 1975-08-26 Pullman Inc Gas burner - lance construction
JPH08145361A (ja) * 1994-11-16 1996-06-07 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン用燃料噴射弁
WO1999006767A1 (de) * 1997-07-31 1999-02-11 Siemens Aktiengesellschaft Brenner
EP1391653A2 (de) * 2002-08-21 2004-02-25 Rolls-Royce Plc Vorrichtung zur Kraftstoffeinspritzung
EP1645807A1 (de) 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners
US20080078180A1 (en) * 2006-09-29 2008-04-03 Durbin Mark D Methods and apparatus for injecting fluids into a turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068922A1 (en) * 2014-10-30 2016-05-06 Siemens Aktiengesellschaft Pilot burner and method for stabilizing a pilot flame in a combustor subject to combustion dynamics
WO2017003649A1 (en) * 2015-06-30 2017-01-05 General Electric Company Fuel nozzle assembly
US10458655B2 (en) 2015-06-30 2019-10-29 General Electric Company Fuel nozzle assembly

Also Published As

Publication number Publication date
CN102165258A (zh) 2011-08-24
US8959922B2 (en) 2015-02-24
JP5487280B2 (ja) 2014-05-07
JP2012504219A (ja) 2012-02-16
US20110232289A1 (en) 2011-09-29
CN102165258B (zh) 2014-01-22
EP2329189A1 (de) 2011-06-08
EP2329189B1 (de) 2016-01-13
WO2010034819A1 (de) 2010-04-01
RU2506497C2 (ru) 2014-02-10
RU2011117317A (ru) 2012-11-10
JP2013040769A (ja) 2013-02-28
JP5312599B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
EP2329189B1 (de) Brennstoffdüse
EP1723369B1 (de) Vormischbrenner sowie verfahren zur verbrennung eines niederkalorischen brenngases
EP2329196B1 (de) Brenner und verfahren zum betrieb eines brenners
EP2116766B1 (de) Brenner mit Brennstofflanze
EP1504222B1 (de) Vormischbrenner
DE69210715T2 (de) Brenner mit geringer NOx-Produktion
EP1336800B1 (de) Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens
EP0902233B1 (de) Kombinierte Druckzerstäuberdüse
DE3854666T2 (de) Gasturbinenbrenner.
EP0625673B1 (de) Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
EP1436546B1 (de) Brenner für synthesegas
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP2023041A1 (de) Vormischbrenner und Verfahren zum Betrieb eines Vormischbrenners
DE102010017778A1 (de) Vorrichtung zur Brennstoffeinspritzung bei einer Turbine
DE102006003577A1 (de) Brennkammer einer Gasturbine
EP2161502A1 (de) Vormischbrenner zur Verbrennung eines niederkalorischen sowie hochkalorischen Brennstoffes
EP2232147B1 (de) Brenner und verfahren zur verringerung von selbstinduzierten flammenschwingungen
EP1840465A2 (de) Brennersystem mit gestufter Brennstoff-Eindüsung
DE102004027702A1 (de) Injektor für Flüssigbrennstoff sowie gestufter Vormischbrenner mit diesem Injektor
DE102005038662B4 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
EP3250857B1 (de) Brenneranordnung
EP2169307A1 (de) Brennstoffdüse
DE2548790A1 (de) Brennerkopf fuer gas-geblaesebrenner fuer alle gasarten
DE1955510C3 (de) Gasbrenner für Industriefeuerungen
DE102021123513A1 (de) Brenner und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2329189

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140222