EP2622685B1 - Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors - Google Patents

Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors Download PDF

Info

Publication number
EP2622685B1
EP2622685B1 EP11761578.1A EP11761578A EP2622685B1 EP 2622685 B1 EP2622685 B1 EP 2622685B1 EP 11761578 A EP11761578 A EP 11761578A EP 2622685 B1 EP2622685 B1 EP 2622685B1
Authority
EP
European Patent Office
Prior art keywords
antenna
electromagnetic radiation
band
zone
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11761578.1A
Other languages
English (en)
French (fr)
Other versions
EP2622685A1 (de
Inventor
Michaël Grelier
Michel Jousset
Stéphane Mallegol
Xavier Begaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2622685A1 publication Critical patent/EP2622685A1/de
Application granted granted Critical
Publication of EP2622685B1 publication Critical patent/EP2622685B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • H01Q11/083Tapered helical aerials, e.g. conical spiral aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas

Definitions

  • the invention applies to the field of circular polarization plane wired antennas for broadband transmitting or receiving devices. It relates to an antenna reflector for such an antenna, an antenna device comprising the reflector and the antenna, and a method of producing the antenna reflector.
  • the antennas must have a wide operating frequency band, for example of the order of the decade, that is to say a frequency band whose maximum frequency is at least ten times the minimum frequency.
  • Planar circular polarization antennas such as spiral antennas are part of these broadband antennas.
  • a spiral antenna generally consists of a dielectric substrate on which is etched a radiating element.
  • the radiating element comprises at least two spirally wound strands and the inner ends of which are supplied with current. Depending on the number of strands and the phase of the current in each strand, the electromagnetic radiation of the spiral antenna is different.
  • the width of the frequency band depends on the inner and outer diameters of the spiral.
  • a plane wire antenna has a plane of symmetry and thus radiates throughout the space, in particular in the two directions orthogonal to the plane of the antenna.
  • antennas must not interfere with other nearby systems. Therefore, they are very often specified to radiate in a half-space.
  • the antenna is associated with a reflector that converts the bidirectional radiation into a unidirectional radiation. From a practical point of view, this reflector also plays a role of support for stiffening the antenna and supply current.
  • the document DE 100 34 547 A1 describes a broadband antenna reflector.
  • the reflector comprises an electrical conducting plane disposed at a distance from the antenna equal to one quarter of the average wavelength of the radiation that it emits or receives. At such a distance, the electric field of the reflected back radiation is in phase with the electric field of the forward radiation.
  • the main disadvantage of this solution is that the distance can be optimally adjusted only for a single wavelength. The electric field of the radiation emitted or received at wavelengths distant from this average wavelength may therefore be disturbed, thereby limiting the bandwidth of the antenna.
  • Another disadvantage of this solution is that a quarter of the wavelength quickly represents a significant distance for the low frequencies, which generates an overall thickness for the relatively large antenna.
  • the electrical conductor plane allows the propagation of surface currents and reflection and diffraction phenomena occur at the edge of the antenna, thereby generating spurious radiation.
  • the antenna reflector comprises an Artificial Magnetic Conductive (AMC) type structure arranged under the plane of the antenna on the side of the rear radiation.
  • a conventional CMA structure includes a dielectric substrate, electrical conductive patterns periodically disposed on a first surface of the dielectric substrate and a uniform electrical conductor plane forming a ground plane on a second surface of the dielectric substrate. Each conductive pattern can be connected to the ground plane by vias, generally called “vias” in the Anglo-Saxon literature.
  • a CMA structure has the property of reflecting the electric field of the rear radiation in phase with the electric field of the forward radiation. It can therefore be positioned as close to the antenna and allow a reduction in the thickness of the antenna device comprising the antenna and the CMA structure.
  • a CMA structure may also have the property of prohibiting the propagation of electromagnetic waves in certain directions of the plane in which the conductive patterns are arranged, which prevents generating parasitic radiation.
  • This is called electromagnetic band gap (EIB) structure.
  • EIB electromagnetic band gap
  • the properties of a type structure BIE or CMA occur only in a certain frequency band, called either BIE band or CMA band depending on the case.
  • This frequency band in particular its central frequency and its low and high cutoff frequencies, depend on the shape and dimensions of the conductive patterns, as well as the thickness and the relative permittivity of the dielectric substrate of the structure.
  • the bandwidth is very small. that is to say, much lower than the octave.
  • the constraints on the thickness make current antennas comprising a BIE or CMA reflector do not allow to operate over a wide frequency band, greater than the decade.
  • the reflector may comprise several reflection zones each capable of reflecting, with a phase difference between two values surrounding the value of zero degrees, the electric field of the rear electromagnetic radiation whose frequency is within a sub-frequency band. Each reflection zone is then able to come opposite a zone of the antenna capable of emitting electromagnetic radiation in the sub-frequency band considered, at a distance making it possible to reflect the electric field of the rear electromagnetic radiation. substantially in phase with the electric field of the front electromagnetic radiation.
  • the reflector may comprise several reflection zones each capable of reflecting, with a phase difference of about 180 degrees, the electric field of the rear electromagnetic radiation whose frequency is within a sub-frequency band.
  • Each reflection zone is then able to come opposite a zone of the antenna capable of emitting electromagnetic radiation in the sub-frequency band considered, at a distance making it possible to reflect the electric field of the rear electromagnetic radiation. substantially in phase with the electric field of the front electromagnetic radiation.
  • the first frequency subband corresponds to the highest frequencies of the predetermined frequency band.
  • the reflector can thus be placed at a distance from the antenna substantially equal to one quarter of the wavelength of the central frequency of this sub-frequency band, or relatively close to the antenna.
  • the frequency sub-bands considered as a whole substantially cover the entire predetermined frequency band.
  • the electric field of the rear electromagnetic radiation can thus be in phase with the electric field of the front electromagnetic radiation over the entire frequency band of the antenna.
  • the reflector may comprise a substrate of dielectric material and a ground plane formed on a first surface of the substrate, the first reflection zone being formed on a second surface of the substrate by an electrically conductive pattern, the other reflection zone or zones being each formed on the second surface of the substrate by a set of electrical conductive patterns arranged in a non-contiguous manner.
  • the first and second surfaces of the substrate are substantially flat and parallel to each other.
  • the second surface of the substrate has a conical shape.
  • the electrical conductive patterns of the sets forming reflection zones able to reflect the electric field of the rear electromagnetic radiation with a phase difference between two values surrounding the zero degree value can be electrically connected to the ground plane.
  • the two angle values surrounding the value of zero degrees are substantially equal to -120 degrees and +120 degrees.
  • the invention also relates to an antenna device comprising a circular polarized plane wire antenna capable of emitting electromagnetic radiation over a predetermined frequency band and an antenna reflector according to the invention.
  • the invention has the particular advantage that it allows to maintain a reflection coefficient close to the value one over a wide frequency band, nominally over the entire operating frequency band of the antenna.
  • a perfect electrical conductor, or PEC for "Perfect Electric Conductor” according to the English expression is a structure whose surface has an infinite electrical conductivity. The tangential electric field on this surface is always zero. An incident electric field meeting the surface is reflected in phase opposition, regardless of its frequency. For the rest of the description, electrical conductors are considered to be perfect electrical conductors.
  • a perfect magnetic conductor, or PMC for "Perfect Magnetic Conductor” according to the English expression is a structure having a surface on which the tangential magnetic field is always zero. An incident magnetic field meeting this surface vanishes, while the incident electric field is reflected in phase. Structures with perfect magnetic conductor properties can not be realized physically.
  • a surface having electromagnetic properties close to a perfect magnetic conductor in a given frequency band is a surface for which the phase of the reflection coefficient at the frequencies considered is between two values around 0 °.
  • the phase of the reflection coefficient is for example between -120 and 120 degrees.
  • a surface having electromagnetic properties adjacent to a perfect magnetic conductor in a given frequency band is generally referred to as a high impedance surface for that frequency band.
  • the figure 1 represents an example of an antenna device 1 comprising a spiral antenna 2 and an antenna reflector 3 according to the invention.
  • the spiral antenna 2 is able to transmit on a predetermined frequency band, called operating frequency band ⁇ F. It can emit electromagnetic radiation in two directions orthogonal to its plane. Electromagnetic radiation propagating in the opposite direction to antenna reflector 3 is referred to as forward radiation, and electromagnetic radiation propagating in the opposite direction is referred to as back radiation.
  • the spiral antenna 2 comprises a dielectric substrate 21 and two electrical conductor strands 22a and 22b forming the radiating element of the spiral antenna 2.
  • the dielectric substrate 21 is for example an epoxy plate of the printed circuit type. It comprises an upper surface 24 and a lower surface 25 substantially flat and parallel.
  • the conductive strands 22a and 22b have an identical length and are mutually wound around a central point O to form a spiral 26 on the upper surface 24.
  • the first strand 22a extends between an inner end A and an outer end B of the spiral 26.
  • the second strand 22b extends between an inner end C and an outer end D of the spiral 26.
  • the spiral antenna 2 also comprises means for supplying the radiating element, not shown.
  • the two strands 22a and 22b are powered at their inner ends A and C by microwave signals in phase opposition.
  • the strands 22a and 22b can be printed or etched on the upper surface 24. They can also be formed in an electrically conductive material and fixed on the upper surface 24.
  • each conductive strand has a constant thickness and a constant spacing with respect to the other strand.
  • the invention also applies to any type of circular polarized plane wire antenna. It applies in particular to equiangular spiral antennas, also called logarithmic spiral antennas, in which the width of the strands and the spacing between the strands increase with the distance from the center of the spiral.
  • the spiral antenna of the figure 1 has two electrical conductor strands.
  • the invention also applies to antennas having a different number of strands.
  • the antenna reflector forming the subject of the invention uses the operating properties of planar wire antennas.
  • the radiating element of such an antenna when excited, emits electromagnetic radiation from a localized operating zone, related to the relative arrangement of the strands and to the phase shift of the current flowing in the different strands.
  • This operating zone has the particularity of varying according to the frequency according to a law specific to each type of plane wire antenna.
  • the antenna reflector according to the invention on which an antenna is intended to be mounted, thus comprises at least two reflection zones whose electromagnetic properties adapt to the electromagnetic radiation emitted locally by the antenna.
  • a first reflection zone has electromagnetic properties of an electrical conductor, in particular in a first frequency sub-band ⁇ F1.
  • This frequency sub-band ⁇ F1 corresponds, for example, to high frequencies of the operating frequency band ⁇ F in which the plane wire antenna emits.
  • a second reflection zone has electromagnetic properties close to a perfect magnetic conductor in a second frequency sub-band ⁇ F2.
  • This second frequency sub-band ⁇ F2 corresponds for example to lower frequencies than those of the first frequency sub-band ⁇ F1.
  • the antenna reflector thus comprises reflection zones of two different types, namely at least one reflection zone having electromagnetic properties of an electrical conductor, and at least one reflection zone having electromagnetic properties close to a conductor. perfect magnetic.
  • the antenna reflector may also comprise additional zones having either electromagnetic properties of an electrical conductor (reflection zones of the first type) or electromagnetic properties close to a perfect magnetic conductor (reflection zones of the second type) in other frequency sub-bands.
  • these different frequency sub-bands are determined so as to cover, with the first frequency sub-band ⁇ F1, the entire operating frequency band ⁇ F.
  • the zones having electromagnetic properties of an electrical conductor are alternated with areas having electromagnetic properties adjacent to a perfect magnetic conductor.
  • the antenna reflector 3 comprises a dielectric substrate 31, a ground plane 32 carried by a lower surface 33 of the dielectric substrate 31, and three sets 341, 342, 343 of electrical conductive patterns 34 carried by an upper surface 35 of the substrate dielectric 31.
  • the dielectric substrate 31 may be a printed circuit type epoxy plate whose upper 35 and lower 33 surfaces are substantially flat and parallel.
  • the conductive patterns 34 can then be printed or etched on the upper surface 35 of the dielectric substrate 31. More generally, they can be made by any conventional technique of producing printed circuits. They can also be formed in an electrically conductive material and fixed on the upper surface 35.
  • Each set 341, 342, 343 of conductive patterns 34 is configured to form a reflection zone whose electromagnetic properties may differ from those of other areas to adapt to the electromagnetic radiation to reflect locally.
  • the first set 341 of conductive patterns 34 has only one conductive pattern in the form of a disc.
  • the conductive disc 36 thus forms a first reflection zone 341A whose electromagnetic properties are similar to those of an electrical conductor.
  • This zone 341A therefore belongs to the first type of reflection zone.
  • the conductive disk 36 has electromagnetic properties of an electrical conductor at least in the first frequency sub-band ⁇ F1.
  • the antenna reflector 3 can thus be placed at a distance relatively close to the spiral antenna 2.
  • the distance considered between the antenna reflector 3 and the spiral antenna 2 may be the distance between the upper surface 35 of the dielectric substrate 31 of the antenna reflector 3 and the upper surface 24 of the dielectric substrate 21 of the spiral antenna 2, called the height h.
  • the height h may be substantially equal to an odd integer multiple of quarter wavelengths of the center frequency of the first frequency sub-band ⁇ F1 ((2.N + 1) . ⁇ / 4, where N is a natural integer), the reflected rear electromagnetic radiation being in phase with the incident radiation at the upper surface 24 of the dielectric substrate 21 of the spiral antenna 2.
  • the height h is for example substantially equal to a quarter of the length of the wave of the center frequency of the first frequency sub-band ⁇ F1.
  • the second set 342 of conductive patterns 34 comprises a plurality of non-contiguous electrical conductor patterns 34 disposed on the upper surface 35 so as to generally form an annular reflection zone 342A surrounding the conductive disk 36 and whose center is substantially coincident with the center of the disk
  • the third set 343 of conductive patterns 34 comprises a plurality of non-contiguous conducting patterns 34 generally forming an annular reflection zone 343A of diameter greater than the diameter of the annular zone 342A formed by the second set 342 of conducting patterns 34.
  • the conductive patterns 34 of the second and third assemblies 342 and 343 may be electrically connected to the ground plane 32, for example via metallized holes made in the dielectric substrate 31 of the antenna reflector 3.
  • Each set 342 and 343 of conductive patterns 34 thus form a reflection zone pr showing electromagnetic properties close to a perfect magnetic conductor.
  • the geometric shape and the dimensions of the conductive patterns 34 are determined in such a way that each annular reflection zone 342A and 343A, intended locally to form a reflector for the operating zone of the spiral antenna 2 in a frequency sub-band ⁇ F2 or ⁇ F3, has electromagnetic properties close to a perfect magnetic conductor at least in this frequency sub-band ⁇ F2 or ⁇ F3.
  • the reflection zones 342A and 343A thus belong to the second type of reflection zone.
  • the antenna reflector 3 may also include other reflection zones whose electromagnetic properties are similar to those of a electrical conductor (reflection zones of the first type).
  • reflection zones are provided to come at a distance from the antenna 2 so as to be able to reflect the electric field of the rear electromagnetic radiation substantially in phase with the electric field of the front electromagnetic radiation at the level of the upper surface 24 of the antenna 2.
  • the height, or distance, between these reflection zones and the antenna 2 should be substantially equal to an even integer multiple of quarter-wavelengths of the center frequency of the respective frequency sub-band (2 .N. ⁇ / 4, where N is a natural number).
  • the height may differ according to the near field emitted by the antenna 2, as explained below.
  • the figure 2 illustrates possible steps of the method of producing an antenna reflector according to the invention for a flat wire antenna.
  • a spiral antenna such as that shown in FIG. figure 1 .
  • the method nevertheless applies to any type of plane wire antenna with circular polarization.
  • the electromagnetic radiation emitted by the spiral antenna 2 alone that is to say without the antenna reflector 3
  • the electromagnetic radiation is characterized for at least two frequencies belonging to the operating frequency band ⁇ F of the spiral antenna 2. It is of course possible to characterize the electromagnetic radiation on two frequency subbands belonging to the operating frequency band ⁇ F.
  • the electromagnetic radiation is characterized for the frequency sub-bands ⁇ F1, ⁇ F2 and ⁇ F3.
  • amplitude and phase distributions of electromagnetic fields emitted by the spiral antenna 2 are determined in the near-field zone in a plane substantially parallel to the plane of the spiral antenna 2, in this case the upper surface 24.
  • the conducting strands 22a and 22b of the spiral antenna 2 are fed at their inner ends A and C with electric currents of the same amplitudes and generally having a phase difference of 180 degrees.
  • the electromagnetic radiation emitted by the spiral antenna 2 has a maximum amplitude when the currents flowing in the strands 22a and 22b are locally in phase.
  • the electromagnetic radiation emitted by the spiral antenna 2 at a given frequency has a maximum amplitude in a zone forming a circular ring whose average diameter is substantially equal to the wavelength of the electromagnetic radiation divided by the number Pi.
  • the minimum distance d Emin can separate the spiral antenna 2 of an electrical conductor without altering the amplitude distribution of the electromagnetic radiation emitted by the spiral antenna 2 in the sub-frequency band ⁇ F1 is determined.
  • the amplitude distribution is for example considered in the near-field area.
  • the distance considered is for example the height h between the upper surface 35 of the dielectric substrate 31 of the antenna reflector 3 and the upper surface 24 of the dielectric substrate 21 of the spiral antenna 2.
  • the step 102 can be carried out over a wide frequency band, for example over the entire operating frequency band ⁇ F. In practice, it is essentially to determine the minimum distance to separate the spiral antenna 2 from the reflection zone 341A having electromagnetic properties of an electrical conductor. Step 102 is therefore performed at least for the frequency sub-band ⁇ F1.
  • the Figures 3a and 3b are two examples of amplitude distributions of the electromagnetic radiation emitted by a spiral antenna 2 at a given frequency in a plane belonging to the near-field area parallel to the plane of the spiral antenna 2.
  • the first distribution, represented on the figure 3a is relative to a distance between the spiral antenna 2 and the antenna reflector 3 for which the electromagnetic radiation is not altered;
  • the second distribution, represented on the figure 3b is relative to a distance for which the electromagnetic radiation is altered.
  • circular rings 301 to 305 corresponding to different amplitudes of the electrical energy density are distinguished.
  • the rings 301 and 305, 302 and 304, and 303 have, for example, average amplitudes respectively equal to 2.10 -7 J / m 3 , 6.10 -7 J / m 3 , and 1.5.10 -6 J / m 3 .
  • the ring 303 thus corresponds to the operating zone of the spiral antenna 2 at the given frequency.
  • the annular shape of the amplitude distribution makes it possible to deduce that the electromagnetic radiation is not altered.
  • a first zone 306 has an average amplitude substantially equal to 2.10 -7 J / m 3 .
  • Two zones 307a and 307b have an average amplitude substantially equal to 2.5 ⁇ 10 -6 J / m 3
  • two zones 308a and 308b have an average amplitude substantially equal to 5.5 ⁇ 10 -6 J / m 3 .
  • the fact that the zones having a maximum amplitude do not form a continuous annular zone makes it possible to deduce that the electromagnetic radiation is impaired.
  • the altered or unaltered character of the electromagnetic radiation must be examined according to the geometry of the antenna considered. In the case of a spiral antenna, the discriminant form is a circular ring.
  • a third step 103 of the method of producing an antenna reflector 3 according to the invention the minimum distance Bmin that can separate the spiral antenna 2 from a perfect magnetic conductor without altering the amplitude distribution of the electromagnetic radiation transmitted by the spiral antenna 2 at least in one of the frequency sub-bands ⁇ F2 and ⁇ F3 is determined.
  • the amplitude distribution is for example considered in the near-field area.
  • the distance considered can also be the height h.
  • Step 103 can be performed over a wide frequency band, for example over the entire operating frequency band ⁇ F. In practice, it is essentially to determine the minimum distance d Bmin to separate the spiral antenna 2 from the reflection zones 342A and 343A whose electromagnetic properties are similar to those of a perfect magnetic conductor.
  • Step 103 is therefore preferably performed for the frequency sub-bands ⁇ F2 and ⁇ F3. Where appropriate, it is performed for each of the frequency sub-bands considered outside the frequency sub-band ⁇ F1.
  • a fourth step 104 the shape and the dimensions of the first reflection zone 341A, having electromagnetic properties of an electrical conductor in the frequency sub-band ⁇ F1 (reflection zone of the first type), are determined in such a way as to this reflection zone 341A comes in the vicinity of the operating zone of the spiral antenna 2 in this frequency sub-band ⁇ F1.
  • Step 104 essentially consists of determining the diameter of the conductive disk 36.
  • a fifth step 105 the shape and the dimensions of the reflection zones 342A and 343A, having electromagnetic properties close to a perfect magnetic conductor in the respective frequency sub-bands ⁇ F2 and ⁇ F3 (reflection zones of the second type), are also determined so that each reflection zone 342A and 343A comes in the vicinity of the operating zone of the spiral antenna 2 in the respective frequency sub-band ⁇ F2 or ⁇ F3.
  • the step 105 essentially consists in determining the internal and external diameters of the reflection zones 342A and 343A as well as the lengths of the arcs radially delimiting the conducting patterns 34.
  • the step 105 consists in determining the location and the surface of the conductive patterns 34 so that each set of conductive patterns forms a surface having electromagnetic properties adjacent to a perfect magnetic conductor in a sub-frequency band.
  • steps 104 and 105 it is considered that a reflection zone comes in the vicinity of an operating zone of the spiral antenna 2 when it makes it possible to reflect the electromagnetic radiation emitted by this operating zone in the direction of radiation. desired.
  • the steps of the method of producing the antenna reflector 3 can be performed in a different order, as long as the first step 101 is performed before the steps 104 and 105.
  • Step 105 may for example be performed by adaptation of conventional CMA structures.
  • a conventional CMA structure comprises a dielectric substrate, a ground plane carried by a first surface of the dielectric substrate, and rectangular electrical conductor patterns arranged in a regular matrix and carried by a second surface of the dielectric substrate.
  • the thickness of the dielectric substrate of the conventional CMA structure is preferably chosen to be equal to the thickness of the dielectric substrate 31 of the antenna reflector 3.
  • a CMA structure has electromagnetic properties close to a perfect magnetic conductor in a sub-band determined frequency.
  • a first substep it is determined, for each sub-frequency band outside the frequency sub-band ⁇ F1, the dimensions (length and width) of the conductive patterns of a conventional CMA structure making it possible to form a surface having properties close to a perfect magnetic conductor in the sub-frequency band considered.
  • the surfaces of the conductive patterns forming the reflector are larger and larger as one moves away from the center of the antenna reflector 3.
  • the conductive patterns of the conventional CMA structures are adapted to the corresponding operating zone of the spiral antenna 2, each adapted conductive pattern 34 retaining substantially the same surface as that in the conventional CMA structure.
  • the conductive patterns 34 thus take an annular shape generally, as shown in FIG. figure 1 .
  • a phase diagram is created resulting from the combination of different phase diagrams each associated with one of the conventional CMA structures considered.
  • the figure 4 represents an example of such a phase diagram. Phases of the reflection coefficient of the various conventional CMA structures are plotted on a first graph as a function of the radius of the spiral antenna 2; the operating frequencies of the spiral antenna 2 are plotted on a second graph as a function of the radius of the spiral antenna 2.
  • a fourth substep from the phase diagram of the figure 4 at least one set 342 of conductive patterns 34 for reflecting incident electromagnetic radiation with a phase shift substantially equal to zero degrees.
  • several sets of conductive patterns 34 for example the two sets 341 and 342, are chosen so as to cover different operating zones of the spiral antenna 2 without the conductive patterns 34 covering between different assemblies.
  • the antenna reflector 3 obtained by the method according to the invention is intended to receive a spiral antenna 2 at a minimum distance for which neither the first reflection zone 341A, nor the reflection zones 342A and 343A alter the electromagnetic radiation. .
  • the minimum distance preferably corresponds to the maximum between the distances d Emin and d Bmin determined in steps 102 and 103.
  • the electromagnetic radiation emitted both in the sub-frequency band frequency band ⁇ F1 and in the frequency sub-band ⁇ F2 may be in phase with the corresponding reflected electromagnetic radiation in the near-field area.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (13)

  1. Antennenreflektor, an dem eine kreispolarisierte planare Drahtantenne (2) montiert werden kann, die elektromagnetische Strahlung in zwei Richtungen orthogonal zur Ebene der Antenne (2) auf einem vorbestimmten Frequenzband emittieren kann, wobei der Antennenreflektor (3) dadurch gekennzeichnet ist, dass er Folgendes umfasst:
    ■ wenigstens eine Reflexionszone (341A) eines ersten Typs, wobei jede der Zonen eines ersten Typs ein elektrisches Feld der so genannten hinteren elektromagnetischen Strahlung mit einer Phasenverschiebung nahe 180 Grad reflektieren kann, deren Frequenz in einem ersten Subband des Frequenzbandes liegt, wobei jede der Reflexionszonen (341A) eines ersten Typs gegenüber einer Zone der Antenne (2) liegen kann, die eine elektromagnetische Strahlung im ersten entsprechenden Frequenzsubband emittieren kann, in einer Distanz, die es zulässt, dass das elektrische Feld der hinteren reflektierten elektromagnetischen Strahlung im Wesentlichen phasengleich mit dem elektrischen Feld der so genannten vorderen elektromagnetischen Strahlung ist; und
    ■ wenigstens eine Reflexionszone (342A, 343A) eines zweiten Typs, wobei jede der Zonen eines zweiten Typs das elektrische Feld der hinteren elektromagnetischen Strahlung, deren Frequenz in einem zweiten Subband des Frequenzbandes liegt, mit einer Phasenverschiebung zwischen zwei Winkelwerten um den Null-Grad-Winkel herum reflektieren kann, wobei jede der Reflexionszonen (342A, 343A) eines zweiten Typs gegenüber einer Zone der Antenne (2) liegen kann, die eine elektromagnetische Strahlung im zweiten entsprechenden Frequenzsubband emittieren kann, in einer Distanz, die es zulässt, dass das elektrische Feld der hinteren reflektierten elektromagnetischen Strahlung im Wesentlichen phasengleich mit dem elektrischen Feld der vorderen elektromagnetischen Strahlung ist.
  2. Reflektor nach Anspruch 1, der mehrere Reflexionszonen (342A, 343A) des zweiten Typs umfasst, wobei jede der Reflexionszonen (342A, 343A) gegenüber einer Zone der Antenne (2) liegen kann, die eine elektromagnetische Strahlung im betrachteten Frequenzsubband emittieren kann, in einer Distanz, die es zulässt, dass das elektrische Feld der hinteren elektromagnetischen Strahlung im Wesentlichen phasengleich mit dem elektrischen Feld der vorderen elektromagnetischen Frontstrahlung reflektiert wird.
  3. Reflektor nach Anspruch 1 oder 2, der eine einzelne Reflexionszone (341A) des ersten Typs in der Mitte der ein oder mehreren anderen Reflexionszonen (342A, 343A) des zweiten Typs umfasst.
  4. Reflektor nach Anspruch 3, wobei das Frequenzsubband der Reflexionszone (341A) des ersten Typs den höchsten Frequenzen des vorbestimmten Frequenzbands entspricht.
  5. Reflektor nach einem der vorherigen Ansprüche, wobei sich die Frequenzsubbänder der verschiedenen Reflexionszonen (341A, 342A, 343A) voneinander unterscheiden und, gemeinsam betrachtet, im Wesentlichen das gesamte vorbestimmte Frequenzband abdecken.
  6. Reflektor nach einem der vorherigen Ansprüche, der ein Substrat (31) aus dielektrischem Material und eine Grundplatte (32) umfasst, die auf einer ersten Fläche (33) des Substrats (31) ausgebildet ist, wobei die ein oder mehreren Reflexionszonen (341A) des ersten Typs jeweils auf einer zweiten Fläche (35) des Substrats (31) durch ein elektrisches Leitungsmuster (34, 36) gebildet werden, wobei die ein oder mehreren anderen Reflexionszonen (342A, 343A) des zweiten Typs jeweils auf der zweiten Fläche (35) des Substrats (31) durch einen Satz (342, 343) von elektrischen Leitungsmustern (34) gebildet werden, die auf eine nicht verbundene Weise angeordnet sind.
  7. Reflektor nach Anspruch 6, wobei die erste und die zweite Fläche (33, 35) des Substrats (31) im Wesentlichen flach und parallel zueinander sind.
  8. Reflektor nach Anspruch 6, wobei die zweite Fläche (35) des Substrats (31) eine konische Gestalt hat.
  9. Antennenreflektor nach einem der Ansprüche 6 bis 8, wobei die elektrischen Leitungsmuster (34) der Sätze (342, 343), die die Reflexionszonen (342A, 343A) des zweiten Typs bilden, elektrisch mit der Grundplatte (32) verbunden sind.
  10. Reflektor nach einem der vorherigen Ansprüche, wobei die zwei Winkelwerte um den Null-Grad-Wert im Wesentlichen gleich -120 Grad und +120 Grad sind.
  11. Antennenvorrichtung, die eine kreispolarisierte planare Drahtantenne (2) umfasst, die eine elektromagnetische Strahlung auf einem vorbestimmten Frequenzband emittieren kann, und einen Antennenreflektor (3) nach einem der vorherigen Ansprüche.
  12. Verfahren zum Erzeugen eines Antennenreflektors (3) für eine kreispolarisierte planare Drahtantenne (2), die eine elektromagnetische Strahlung in zwei Richtungen orthogonal zur Ebene der Antenne (2) auf einem vorbestimmten Frequenzband emittieren kann, dadurch gekennzeichnet, dass es die folgenden Schritte beinhaltet:
    ■ einen Schritt (101) des Ermittelns, in einer Nahfeldzone, einer Amplitudenverteilung einer elektromagnetischen Strahlung, die von der Antenne (2) in Abwesenheit des Antennenreflektors (3) emittiert werden kann, für wenigstens ein erstes und ein zweites Frequenzsubband, die zu dem vorbestimmten Frequenzband gehören;
    ■ einen Schritt (104) des Ermittelns von Form und Abmessungen einer ersten Reflexionszone (341A) des Antennenreflektors (3), der ein elektrisches Feld der so genannten hinteren elektromagnetischen Strahlung, deren Frequenz im ersten Frequenzsubband liegt, mit einer Phasenverschiebung nahe 180 Grad reflektieren kann, so dass diese erste Reflexionszone (341A) gegenüber der Zone der Antenne (2) liegen kann, wo die elektromagnetische Strahlung, die von der Antenne (2) im ersten Frequenzsubband emittiert werden kann, die stärkste Amplitude hat, in einer Distanz, die es zulässt, dass das elektrische Feld der hinteren reflektierten elektromagnetischen Strahlung im Wesentlichen phasengleich mit dem elektrischen Feld der sogenannten vorderen elektromagnetischen Strahlung ist; und
    ■ einen Schritt (105) des Ermitteins von Form und Abmessungen einer zweiten Reflexionszone (342A) des Antennenreflektors (3), der das elektrische Feld der hinteren elektromagnetischen Strahlung, deren Frequenz im zweiten Frequenzsubband liegt, mit einer Phasenverschiebung zwischen zwei Winkelwerten um den Null-Grad-Wert herum reflektieren kann, so dass diese zweite Reflexionszone (342A) gegenüber der Zone der Antenne (2) liegen kann, wo die elektromagnetische Strahlung, die von der Antenne (2) im zweiten Frequenzsubband emittiert werden kann, die stärkste Amplitude hat, in einer Distanz, die es zulässt, dass das elektrische Feld der hinteren reflektierten elektromagnetischen Strahlung im Wesentlichen phasengleich mit dem elektrischen Feld der vorderen elektromagnetischen Strahlung ist.
  13. Verfahren nach Anspruch 12, das ferner die folgenden Schritte beinhaltet:
    ■ einen Schritt des Ermittelns einer Mindestdistanz dEmin, die die Antenne (2) der ersten Reflexionszone (341A) von dem Antennenreflektor (3) trennen kann, ohne die Amplitudenverteilung der von der Antenne (2) im ersten Frequenzsubband emittierten elektromagnetischen Strahlung erheblich zu verändern;
    ■ einen Schritt des Ermittelns einer Mindestdistanz dBmin, die die Antenne (2) der zweiten Reflexionszone (342A) von dem Antennenreflektor (3) trennen kann, ohne die Amplitudenverteilung der von der Antenne (2) im zweiten Frequenzsubband emittierten elektromagnetischen Strahlung erheblich zu verändern.
EP11761578.1A 2010-10-01 2011-09-23 Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors Active EP2622685B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003900A FR2965669B1 (fr) 2010-10-01 2010-10-01 Reflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du deflecteur d'antenne
PCT/EP2011/066563 WO2012041770A1 (fr) 2010-10-01 2011-09-23 Reflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du reflecteur d'antenne

Publications (2)

Publication Number Publication Date
EP2622685A1 EP2622685A1 (de) 2013-08-07
EP2622685B1 true EP2622685B1 (de) 2014-08-06

Family

ID=44248060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761578.1A Active EP2622685B1 (de) 2010-10-01 2011-09-23 Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors

Country Status (5)

Country Link
US (1) US9755317B2 (de)
EP (1) EP2622685B1 (de)
ES (1) ES2496891T3 (de)
FR (1) FR2965669B1 (de)
WO (1) WO2012041770A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034785A (ja) * 2013-08-09 2015-02-19 Tdk株式会社 遠方電磁界推定方法および装置ならびに近傍電磁界測定装置
US9989666B2 (en) * 2014-04-02 2018-06-05 Baker Hughes, A Ge Company, Llc Imaging of earth formation with high frequency sensor
US10591592B2 (en) 2015-06-15 2020-03-17 Humatics Corporation High-precision time of flight measurement systems
US9768837B2 (en) * 2015-12-17 2017-09-19 Humatics Corporation Radio-frequency localization techniques and associated systems, devices, and methods
JP6686617B2 (ja) 2016-03-28 2020-04-22 Tdk株式会社 放射妨害波測定装置
EP3504751B1 (de) * 2016-08-29 2022-11-23 Arralis Holdings Limited Zirkular polarisierte mehrbandantenne
US10903556B2 (en) * 2016-09-21 2021-01-26 Lockheed Martin Corporation Up-down zigzag additive spiral antenna
US10714823B2 (en) * 2017-01-26 2020-07-14 Arizona Board Of Regents On Behalf Of Arizona State University Low-profile, wideband, high gain spiral radiating element above an artificial magnetic conductor ground plane
CN107257009A (zh) * 2017-03-15 2017-10-17 杭州泽济电子科技有限公司 抗金属标签天线及标签
US11495886B2 (en) * 2018-01-04 2022-11-08 The Board Of Trustees Of The University Of Alabama Cavity-backed spiral antenna with perturbation elements
FR3080959B1 (fr) * 2018-05-04 2021-06-25 Thales Sa Antenne filaire large bande
US12080415B2 (en) 2020-10-09 2024-09-03 Humatics Corporation Radio-frequency systems and methods for co-localization of medical devices and patients
CN112928488A (zh) * 2021-01-25 2021-06-08 西安电子科技大学 一种基于扇形周期高阻抗表面的低剖面圆极化导航天线
US11664589B2 (en) * 2021-03-10 2023-05-30 Synergy Microwave Corporation 5G MIMO antenna array with reduced mutual coupling
FR3131108B1 (fr) * 2021-12-21 2023-12-22 Thales Sa Antenne filaire amelioree a large bande de frequences.

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1370691A (fr) * 1963-07-04 1964-08-28 Csf Antenne unidirectionnelle à large bande
US3745585A (en) * 1972-03-29 1973-07-10 Gte Sylvania Inc Broadband plane antenna with log-periodic reflectors
JPS5783901A (en) * 1980-11-13 1982-05-26 Nippon Telegr & Teleph Corp <Ntt> Antenna for circular polarized wave
GB2132022B (en) * 1982-05-21 1985-07-24 Decca Ltd Radio frequency antenna and radio direction finding apparatus incorporating such antenna
US4608572A (en) * 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
GB2254192B (en) * 1989-05-12 1994-01-12 Marconi Gec Ltd Antenna apparatus
US5351063A (en) * 1993-05-19 1994-09-27 The United States Of America As Represented By The Secretary Of The Army Ultra-wideband high power photon triggered frequency independent radiator with equiangular spiral antenna
US5990849A (en) * 1998-04-03 1999-11-23 Raytheon Company Compact spiral antenna
US6219006B1 (en) * 1999-02-17 2001-04-17 Ail Systems, Inc. High efficiency broadband antenna
US6067058A (en) * 1999-03-03 2000-05-23 Lockhead Martin Corporation End-fed spiral antenna, and arrays thereof
DE10034547A1 (de) * 2000-07-14 2002-01-24 Univ Karlsruhe Breitbandantenne
NO20030347D0 (no) * 2003-01-23 2003-01-23 Radionor Comm As Antenneelement og gruppeantenne
JP2007096868A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 反射板および該反射板を備えたリフレクタアンテナ
JP4853329B2 (ja) * 2007-02-28 2012-01-11 株式会社豊田中央研究所 電波反射板及びアンテナ
US7855689B2 (en) * 2007-09-26 2010-12-21 Nippon Soken, Inc. Antenna apparatus for radio communication
FR2922687B1 (fr) * 2007-10-23 2011-06-17 Thales Sa Antenne compacte a large bande.
EP2073312B1 (de) * 2007-12-18 2011-04-20 Rohde & Schwarz GmbH & Co. KG Antennenkoppler
TWI376054B (en) * 2008-12-12 2012-11-01 Univ Nat Taiwan Antenna module
FR2957462B1 (fr) * 2010-03-09 2015-06-26 Thales Sa Dispositif d'antenne comportant une antenne plane et un reflecteur d'antenne large bande et procede de realisation du reflecteur d'antenne
JP2011211420A (ja) * 2010-03-29 2011-10-20 Toshiba Corp スパイラルアンテナ

Also Published As

Publication number Publication date
ES2496891T3 (es) 2014-09-22
FR2965669B1 (fr) 2012-10-05
EP2622685A1 (de) 2013-08-07
US20130249762A1 (en) 2013-09-26
FR2965669A1 (fr) 2012-04-06
US9755317B2 (en) 2017-09-05
WO2012041770A1 (fr) 2012-04-05

Similar Documents

Publication Publication Date Title
EP2622685B1 (de) Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP1172885B1 (de) Kurzgeschlossene Streifenleiterantenne und Zweiband-Übertragungsanordnung damit
EP1407512B1 (de) Antenne
EP0961344A1 (de) Funkkommunikationseinrichtung und eine Schlitz-Schleifenantenne
EP3469657B1 (de) Breitbanddrahtantenne mit widerstandsmustern mit variablem widerstand
EP1979987B1 (de) Antenne mit zirkularer oder linearer polarisation
FR2922687A1 (fr) Antenne compacte a large bande.
EP1225655B1 (de) Dualband Planarantenne und diese enthaltendes Gerät
EP2365584B1 (de) Antennenvorrichtung mit einer Planarantenne und einem Breitbandreflektor sowie ein Herstellungsverfahren des Reflektors
CA2489776C (fr) Antenne a brins a polarisation circulaire
EP2147479B1 (de) Antenne mit geneigten strahlerelementen
WO2007004035A1 (fr) Systeme d&#39;antennes passives de protection biologique
EP2293385B1 (de) Selbstausrichtende Antenne mit Kreispolarisierung
FR3003702A1 (fr) Antenne filaire amelioree a large bande de frequences.
FR3003701A1 (fr) Antenne filaire amelioree a large bande de frequences.
EP3692598A1 (de) Antenne mit teilweise gesättigtem dispersivem ferromagnetischem substrat
EP4203185B1 (de) Verbesserte breitbandige drahtantenne
CA2800949C (fr) Antenne compacte a large bande a double polarisation lineaire
EP3942649B1 (de) Kompakte richtantenne, vorrichtung mit einer solchen antenne
EP3537540A1 (de) Elektromagnetische entkoppelung
FR2668859A1 (fr) Dispositif pour engendrer un rayonnement electromagnetique mettant en óoeuvre une antenne a double resonance.
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
FR3031396A1 (fr) Antenne pour radar, structure d&#39;antenne et radar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011008945

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0019100000

Ipc: H01Q0015140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 15/14 20060101AFI20140130BHEP

INTG Intention to grant announced

Effective date: 20140306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 681406

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011008945

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2496891

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 681406

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011008945

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 13

Ref country code: GB

Payment date: 20230817

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 13

Ref country code: DE

Payment date: 20230816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231005

Year of fee payment: 13