EP2611522A1 - Dispositif et procédé pour générer une décharge à barrière dans un flux de gaz - Google Patents

Dispositif et procédé pour générer une décharge à barrière dans un flux de gaz

Info

Publication number
EP2611522A1
EP2611522A1 EP11760414.0A EP11760414A EP2611522A1 EP 2611522 A1 EP2611522 A1 EP 2611522A1 EP 11760414 A EP11760414 A EP 11760414A EP 2611522 A1 EP2611522 A1 EP 2611522A1
Authority
EP
European Patent Office
Prior art keywords
electrode
reactor space
discharge elements
discharge
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11760414.0A
Other languages
German (de)
English (en)
Inventor
Andreas Albrecht
Eckart Theophile
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relyon Plasma GmbH
Original Assignee
Reinhausen Plasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinhausen Plasma GmbH filed Critical Reinhausen Plasma GmbH
Publication of EP2611522A1 publication Critical patent/EP2611522A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • A61L2209/212Use of ozone, e.g. generated by UV radiation or electrical discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the invention relates to a device and a method for generating a barrier discharge in a gas stream comprising a reactor space which from an inflow side to a
  • Outflow of the gas can be flowed through, a first
  • Electrode a dielectric which shields the reactor space at least against the first electrode and a second
  • Electrode wherein the second and the first electrode are switchable to a voltage source.
  • the plasma treatment of air according to the principle of dielectrically impeded discharge, also known as barrier discharge known.
  • dielectrically impeded discharge also known as barrier discharge known.
  • Large volume non-thermal plasmas can be easily generated by the dielectrically impeded discharge.
  • the dielectric usually made of glass.
  • the dielectric impedes the movement of the electrodes and eventually interrupts them.
  • the electrodes are not only stopped in their movement to the anode by the dielectric, but dammed up, creating an opposing field to the
  • Barrier material in addition to the arrangement of the inner and outer electrode determine the Appearance of the discharge, which is characterized by the emergence of single discharges, the so-called filaments. These filaments occur for a short time in large numbers. They are normally distributed over the entire area of the plasma generating electrode.
  • Siemens tube As a plasma generator for the oxidative treatment of air in particular the so-called “Siemens tube” is used.
  • the Siemens tube consists of a tubular dielectric, preferably of quartz glass or boro-O-silicate.
  • the inner wall of the tubular dielectric is lined with an inner electrode.
  • Inner electrode is tight and possible without air gap on the inner glass surface.
  • an outer electrode is arranged, which is formed by a close-meshed, for example, steel mesh. Will now be a high alternating voltage of
  • the plasma at the inner electrode arises only in the outer layers of the air flow, the
  • Electrons, radicals and ions are present. Furthermore The plasma generates an intense UV radiation in the wavelength range ⁇ 300 nm, which can effectively break up the molecular bonds of air pollutants.
  • a problem in the plasma treatment of a gas stream according to the prior art is that the inner electrode by pollutants contained in the gas stream quickly
  • a generic device for the plasma-chemical conversion of exhaust gases in which a barrier discharge is generated in the flowing gas.
  • the device comprises a reactor space, which is flowed through in the longitudinal direction from an inflow side to an outflow side of the exhaust gas to be treated.
  • a dielectric is attached, which shields the reactor space from the first electrode.
  • a second electrode is disposed on the dielectric in the reactor space and as
  • the two electrodes with a
  • Gas discharge is thus generated primarily near the surface of the dielectric.
  • the exhaust gas flowing past is swirled by the perforated sheet and thereby briefly enters the excitation range of the plasma.
  • the second boundary of the reactor space is formed by a wall. No gas discharge is formed between the dielectric and the wall closing off the reactor space. As a result, depending on the distance of the wall more or less large parts of the gas flow does not come directly to the Plasma in contact and therefore flow untreated through the reactor space.
  • the gas flow passed through the reactor space only partially comes into direct contact with the plasma, while the remaining gas stream is enriched only with the ozone produced in the plasma and is thereby purified.
  • the invention is therefore based on the object to provide a device for generating a barrier discharge in a gas stream, in which a larger part of the guided through the reactor space gas stream, preferably the entire gas stream is briefly exposed to a plasma.
  • the discharge elements projecting at least partially into the reactor space are electrically separated from the upstream first electrode by the dielectric.
  • the second electrode also referred to as counterelectrode, is preferably located in or on the inner wall of the reactor space opposite to the one in the reactor space
  • the capacitive coupling of the discharge elements causes a uniform distribution of the filaments between the
  • Discharge elements and the counter electrode connected to the second electrode.
  • the complete galvanic decoupling of the discharge elements causes them to be capacitively raised to a level. This has the advantage that the gas discharge at one of the discharge elements does not affect the electrical potential of the adjacent discharge element
  • the second electrode is arranged to the discharge elements such that discharges occur between the discharge elements and the second electrode in the reactor space. Simultaneous ignition makes it possible to create a discharge curtain over the cross-section of the flow path through which the entire gas flow is passed while being exposed directly to the plasma.
  • An advantage of the arrangement is the local arrangement of the filaments. While with a planar dielectric barrier, the filaments from the entire surface (local electrodes are characterized by high contact resistance of
  • the discharge sites can be focused by the discharge elements.
  • the capacitive coupling of the discharge elements to the first electrode preferably takes place in that the
  • Discharge elements are arranged on the dielectric, which shields the reactor space against the first electrode. To the Gas discharge between the discharge elements and the second electrode to favor, are the discharge elements
  • the discharge between the discharge elements and the second electrode can be further improved by the fact that at least the projecting into the reactor space part of the
  • Discharge elements is formed pin-shaped, wherein the pins in the reactor chamber preferably terminate in a tip. As a result, a concentration or
  • the pin-shaped discharge elements allow a uniform distribution of the gas discharges in the direction of the second electrode. Furthermore, the distance between the free ends or tips of the pin-shaped discharge elements to the second electrode via the
  • Biegeformmaschine or bending punched parts are configured, the distance to the second electrode and the homogeneity of the discharge by their shape and arrangement can be improved.
  • the gas discharge elements can be connected during casting of the dielectric with this in one operation.
  • the dielectric In particular, the dielectric
  • discharge elements and / or the first and second electrodes are molded as an insert.
  • the discharge elements and the electrodes are made of conductive material, in particular copper, stainless steel or other electrically highly conductive materials.
  • Discharge elements can be prefabricated as stampings or bent moldings.
  • ceramic, glass, plastic or a composite material may be considered as a dielectric.
  • the second electrode becomes structurally advantageous
  • a dielectric also shields the reactor space from the second electrode. It can be the same thing
  • This one-piece dielectric can form part of a part of the
  • Reactor space gas guide means are arranged, which the
  • Preferred gas guidance means comprise a plurality of flow channels, in particular concentrically arranged with respect to the longitudinal axis of a tubular reactor space.
  • the discharge elements are either
  • Flow channels preferably all have one
  • Discharge elements with respect to the outputs of the flow channels or within the flow channels also preferably coincides in all flow channels.
  • the second electrode is preferably arranged as an annular electrode, which is arranged in the flow direction immediately behind the outputs concentric with these. If the discharge elements are arranged within the flow channels, the second electrode is preferably designed in several parts, and in each case a part of the second electrode is arranged in each flow channel. Each part of the second electrode must be connected to the voltage source.
  • each of them has a plan view of the flow cross-section
  • Discharge elements achieved a particularly uniform formation of the plasma.
  • Reactor space is achieved in that a tubular reactor space has a molded part, in particular a
  • Plastic injection molded part In the molding are the
  • Flow channels arranged for the gas flowing through the reactor space, so that this be in the flow channels be the flow of the reactor space from the inlet to Outflow side into one of the number of flow channels
  • all outlets are the
  • Reactor space is arranged adjacent to each outlet at least one discharge element.
  • the discharge elements are preferably on a concentric circle with
  • the second electrode surrounds all outlets of the
  • Figure 1 is a schematic view of an inventive
  • FIG. 2a shows the structure of a device according to the invention for installation in a gas line in section
  • FIG. 2b shows the device according to FIG. 1 in side view
  • Figure 3a shows another embodiment of a
  • FIG. 1 shows a device (1) for generating a
  • the reactor space is delimited on its underside by a laminar dielectric (5) which shields the reactor space from the plate-shaped first electrode (4a) attached to its underside.
  • the reactor space (3) is delimited by a further dielectric (6) which also shields the reactor space (3) against the second plate-shaped electrode (4b).
  • the second dielectric (6) serves to protect the second
  • the device (1) can also be carried out without the second dielectric (6).
  • pin-shaped discharge elements (7) are partially embedded in the dielectric (5) and partially protrude into the
  • the first and second electrodes (4a, 4b) are against one
  • Voltage source (8) connected to an AC voltage or pulsed DC voltage between lkV to 20 kV in one
  • Electrode (4b) the gas stream (2) is completely transiently transferred to the plasma.
  • the dielectric barrier in the form of the dielectric (5) causes all the pin-shaped discharge elements (7) to be raised to a charge level.
  • Discharge elements (7) does not change the electrical
  • Discharge elements (7) can take place.
  • Figure 2 shows an embodiment of a device according to the invention for installation in a pipeline, of the
  • Gas flow (2) is flowed through.
  • the gas stream (2) flows into the device (1) at the inflow side (3a) and flows out of the outflow side (3b) after the plasma treatment
  • the device (1) off.
  • the device (1) can be connected, for example, by flanges to the pipeline (not shown) at the inflow and outflow sides (3a, 3b). It can therefore swap quickly and easily, especially for cleaning purposes.
  • the reactor space (3) is of a hollow cylindrical tube (9) with circular cylindrical on the inflow and outflow (3a, 3b)
  • a shaped part (11) is arranged transversely to the flow direction of the gas flow (2) into the reactor space (3).
  • Concentric with the longitudinal axis (15) of the device (1) a total of 14 flow channels (12) are arranged in the molded part (11), which defines the gas flow (2) in the by the length of the flow channels (12)
  • a plate-shaped first electrode (4a) is arranged in the direction of the inflow side (3a) of the reactor chamber (3).
  • the longitudinal axis (15) of the device (1) passes through the center of the first electrode (4a).
  • the first electrode (4a) is in one
  • Flow channel (12) is in each case a pin-shaped
  • Discharge element (7) arranged in the molded part (11). A portion of each pin-shaped discharge element (7) is embedded in the molded part (11) of dielectric material, while the remaining portion (7a) projects into the reactor space (3). The section (7a) projecting into the reactor space (3) can be seen in FIG.
  • the pin-shaped discharge elements (7) are parallel to the axis and concentric with the longitudinal axis (15) embedded in the molded part (11).
  • the second electrode (4b) is formed as a ring electrode and abuts the inner surface of the tube (9) on the outflow side (3b).
  • Flow channel (12) defined flow cross-section of the flow channels (12) are the second electrode (4b) and the respective associated discharge element (7, 7a)
  • the existing of dielectric material bottom surface of the blind hole (16) shields the reactor space (3) against the first electrode (4a) in the blind hole (16).
  • the dead space opposite the flow direction in the blind hole (16) is also filled with dielectric material. From the side view according to FIG. 2 b, it can be seen that, before each outlet, the discharges (18) are similar to one
  • Discharge curtain between the discharge elements (7, 7a) and the outputs (17) surrounding the second electrode (4b) form.
  • the partial streams (13) of the gas stream (2) by acting as a gas guide means
  • Figures 3a, 3b show a further embodiment of a device (1) according to the invention, which is designed as an underbody device.
  • the housing comprising the reactor space (3) is from below on a plate, for example one
  • fan (21) receives, the fan wheel rotates about a not shown, vertical axis in the representation.
  • the fan (21) forces the gas flow of the air from the inflow side (3a) in the direction of the outflow side (3b) through the reactor space (3).
  • dielectric material shields the embedded first
  • plate-shaped electrode is configured.
  • the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b) extends over the entire width of the reactor space (3) on the outflow side (3b). Furthermore, it can be seen from FIG. 3 a, the plate-shaped second electrode (4b
  • Forming discharge elements (7, 7a) and the second electrode (4b) and the entire in part streams (13) divided gas stream (2) is passed through the plasma.
  • the purified gas stream (2) leaves the device (1) on the outflow side (3b). LIST OF REFERENCE NUMBERS

Abstract

L'invention concerne un dispositif et un procédé pour générer une décharge à barrière dans un flux de gaz comprenant une chambre de réacteur qui peut être parcourue par le gaz depuis un côté d'entrée jusqu'à un côté de sortie, une première électrode, un diélectrique qui protège la chambre de réacteur contre la première électrode et une deuxième électrode, la deuxième et la première électrode pouvant être connectées à une source de tension. L'invention a pour objet la brève exposition à un plasma d'une grande partie du flux de gaz guidé à travers la chambre de réacteur, de préférence de la totalité du flux de gaz. A cet effet, au moins deux éléments de décharge en matériau électroconducteur associés à la première électrode font saillie au moins en partie dans la chambre de réacteur, les éléments de décharge sont électriquement isolés les uns des autres et de la première et la deuxième électrode et la deuxième électrode est disposée par rapport aux éléments de décharge de telle manière que des décharges surviennent dans la chambre de réacteur entre les éléments de décharge et la deuxième électrode.
EP11760414.0A 2010-09-02 2011-08-03 Dispositif et procédé pour générer une décharge à barrière dans un flux de gaz Withdrawn EP2611522A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010044252.6A DE102010044252B4 (de) 2010-09-02 2010-09-02 Vorrichtung und Verfahren zur Erzeugung einer Barriereentladung in einem Gasstrom
PCT/EP2011/063358 WO2012028408A1 (fr) 2010-09-02 2011-08-03 Dispositif et procédé pour générer une décharge à barrière dans un flux de gaz

Publications (1)

Publication Number Publication Date
EP2611522A1 true EP2611522A1 (fr) 2013-07-10

Family

ID=44674755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11760414.0A Withdrawn EP2611522A1 (fr) 2010-09-02 2011-08-03 Dispositif et procédé pour générer une décharge à barrière dans un flux de gaz

Country Status (5)

Country Link
US (1) US8696996B2 (fr)
EP (1) EP2611522A1 (fr)
CN (1) CN103153435A (fr)
DE (1) DE102010044252B4 (fr)
WO (1) WO2012028408A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491772A (zh) * 2015-12-28 2016-04-13 苏州林信源自动化科技有限公司 一种等离子发生器放电电极

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030755B (zh) * 2014-03-06 2020-01-03 应用材料公司 含有重原子的化合物的等离子体减量
KR102259353B1 (ko) * 2014-07-16 2021-06-02 엘지전자 주식회사 살균 탈취 장치
WO2016147127A1 (fr) * 2015-03-19 2016-09-22 Woco Industrietechnik Gmbh Dispositif et procédé d'élimination d'impuretés
EP3120875B1 (fr) * 2015-07-20 2017-07-12 Hilgenberg GmbH Dispositif d'ionisation
DE102015216976A1 (de) * 2015-09-04 2017-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Erzeugung eines Plasma-Jets und Verfahren zur Oberflächenbehandlung
DE102015122155B4 (de) * 2015-12-17 2018-03-08 Jan-Christoph Wolf Verwendung einer Ionisierungsvorrichtung
CN105848399B (zh) * 2016-05-19 2018-08-14 北京交通大学 一种辉光放电射流等离子体生成结构
CN108541124A (zh) * 2018-04-27 2018-09-14 浙江大维高新技术股份有限公司 一种蜂窝结构低温等离子体发生装置及其使用方法
US10896771B2 (en) 2018-09-14 2021-01-19 Volt Holdings, LLC Power cable with an overmolded probe for power transfer to a non-thermal plasma generator and a method for constructing the overmolded probe
DE102019101063B4 (de) * 2019-01-16 2021-02-25 Cinogy Gmbh Plasma-Behandlungsanordnung und Verfahren zur Anpassung der Größe einer Auflagefläche der Plasma-Behandlungsanordnung an die Größe der zu behandelnden Oberfläche
CN112616235B (zh) * 2021-01-14 2023-06-30 深圳大学 二维钛化碳在生成大气压均匀介质阻挡放电中的应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3414121A1 (de) * 1984-04-14 1985-10-24 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren und vorrichtung zur reinigung von abgasen
JPS6134031A (ja) * 1984-07-26 1986-02-18 Nippon Paint Co Ltd 表面処理装置
US4737885A (en) * 1986-01-21 1988-04-12 Nippon Paint Co., Ltd. Plasma generator
DE19525754A1 (de) * 1995-07-14 1997-01-16 Siemens Ag Verfahren und Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
IL115130A (en) * 1995-09-01 1999-09-22 Israel State Method and device for ozone sterilization of objects
ATA24696A (de) * 1996-02-12 2000-10-15 Fleck Carl M Dr Vorrichtung zum reinigen von abgasen aus verbrennungskraftmaschinen
DE19717160A1 (de) 1996-04-23 1998-10-29 Fraunhofer Ges Forschung Vorrichtung zur Nachbehandlung von Abgas durch Kombination von Gasentladung und Katalysator
DE19635232A1 (de) * 1996-08-30 1998-03-05 Siemens Ag Verfahren und Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
US6119455A (en) 1996-08-30 2000-09-19 Siemens Aktiengesellschaft Process and device for purifying exhaust gases containing nitrogen oxides
DE19913614C1 (de) * 1999-03-25 2000-05-11 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Behandlung von strömenden Gasen, insbesondere von Abgasen
JP4292629B2 (ja) * 1999-06-28 2009-07-08 株式会社デンソー 内燃機関の排気浄化装置
JP2002346374A (ja) * 2001-05-23 2002-12-03 Daikin Ind Ltd 気体処理装置
KR20030075472A (ko) * 2002-03-19 2003-09-26 현대자동차주식회사 플라즈마 반응기 및 그 제조방법과 플라즈마 반응기가채용된 차량의 배기가스 저감장치
GB0221973D0 (en) * 2002-09-21 2002-10-30 Accentus Plc Non-thermal plasma reactor
AU2003292678A1 (en) * 2002-12-27 2004-07-29 Adtec Plasma Technology Co., Ltd. Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device
ES2670346T3 (es) * 2003-08-29 2018-05-30 Daikin Industries, Ltd. Dispositivo de descarga eléctrica y dispositivo de purificación de aire
JP2007234437A (ja) * 2006-03-02 2007-09-13 Trinc:Kk プラズマ放電式除電器
WO2008040154A1 (fr) * 2006-09-05 2008-04-10 Alphatech International Limited Traitement au plasma de diffusion et traitement de matériaux
CN201004732Y (zh) * 2007-02-02 2008-01-09 西安交通大学 一种大气压介质阻挡辉光放电等离子体发生装置
JP4747328B2 (ja) * 2008-07-31 2011-08-17 シャープ株式会社 イオン発生装置および電気機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012028408A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491772A (zh) * 2015-12-28 2016-04-13 苏州林信源自动化科技有限公司 一种等离子发生器放电电极

Also Published As

Publication number Publication date
DE102010044252B4 (de) 2014-03-27
US8696996B2 (en) 2014-04-15
WO2012028408A1 (fr) 2012-03-08
CN103153435A (zh) 2013-06-12
US20130177473A1 (en) 2013-07-11
DE102010044252A1 (de) 2012-03-08

Similar Documents

Publication Publication Date Title
DE102010044252B4 (de) Vorrichtung und Verfahren zur Erzeugung einer Barriereentladung in einem Gasstrom
DE3043176A1 (de) Vorrichtung und verfahren zur erzeugung von ozon
EP3562276B1 (fr) Dispositif de traitement de liquides assisté par plasma
DE102005045010B3 (de) Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
DE19518970C1 (de) Verfahren und Vorrichtung zur Behandlung von Abgas
DE102004029081A1 (de) Vorrichtung zur Bearbeitung eines Substrates mittels mindestens eines Plasma-Jets
DE102013004514B3 (de) Elektrodeneinrichtung für eine Plasmaentladung mit gleitendem Lichtbogen
WO2011110380A1 (fr) Procédé et agencement pour le traitement par plasma d'un flux gazeux
EP0602505B1 (fr) Appareil pour le traitement de liquides chargés de polluants par rayonnement UV
DE102015101315B3 (de) Plasmabehandlungsgerät und Verfahren zur Plasmabehandlung
DE10312309A1 (de) Verfahren und Vorrichtung zur Reinigung von Abluft
DE10330114A1 (de) Vorrichtung zur Reinigung schadstoffhaltiger Abluft
EP0147424B1 (fr) Dispositif de purification de gaz
DE102010011131A1 (de) Plasmaerzeuger
DE19717889C2 (de) Vorrichtung und Verfahren zur Zersetzung von giftigen Schadstoffen in Abgasen von Verbrennungsprozessen
DE19717887C1 (de) Verfahren und Vorrichtung zum Schadstoffabbau in Verbrennungsabgasen
EP1087830A1 (fr) Dispositif et procede pour le traitement de gaz en circulation, en particulier de gaz d'echappement
EP3261985B1 (fr) Ozoniseur à répartition de décharge dépendant de la position
DE102010060966B3 (de) Plasmaerzeuger
EP0715894A1 (fr) Installation de filtrage électrostatique
DE19648999A1 (de) Vorrichtung und Verfahren zur Behandlung von Oberflächen mittels Hochdruckplasma
DE10320805A1 (de) Vorrichtung zur Bearbeitung von zylindrischen, zumindest eine elektrisch leitende Ader aufweisenden Substraten
DE102016223583B3 (de) Verfahren und Vorrichtung zur Entfernung von Ruß aus Gas
DE19917510B4 (de) Reaktor und Verfahren für plasmachemisch induzierte Reaktionen
DE19503313C2 (de) Vorrichtung zur Ozonerzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140224