EP2598675B1 - Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique - Google Patents

Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique Download PDF

Info

Publication number
EP2598675B1
EP2598675B1 EP11743994.3A EP11743994A EP2598675B1 EP 2598675 B1 EP2598675 B1 EP 2598675B1 EP 11743994 A EP11743994 A EP 11743994A EP 2598675 B1 EP2598675 B1 EP 2598675B1
Authority
EP
European Patent Office
Prior art keywords
cathode block
hard material
coke
cathode
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11743994.3A
Other languages
German (de)
English (en)
Other versions
EP2598675A1 (fr
Inventor
Martin Kucher
Janusz Tomala
Frank Hiltmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2598675A1 publication Critical patent/EP2598675A1/fr
Application granted granted Critical
Publication of EP2598675B1 publication Critical patent/EP2598675B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a cathode block for an aluminum electrolytic cell and a method for its production.
  • the bottom of an electrolytic cell is typically formed by a cathode surface consisting of individual cathode blocks. From below, the cathodes are contacted via steel ingots, which are placed in corresponding elongated recesses in the bottom of the cathode blocks.
  • Cathode blocks are conventionally made by mixing coke with carbonaceous particles such as anthracite, carbon or graphite, compacting and carbonizing.
  • carbonaceous particles such as anthracite, carbon or graphite
  • a graphitizing step at higher temperatures follows, at which the carbonaceous particles and the coke are at least partially converted to graphite.
  • TiB 2 is introduced into an upper layer of a cathode block.
  • a cathode block This is for example in the DE 112006004078 T described.
  • Such a top layer which is a TiB 2 graphite composite, is in direct contact with the aluminum melt and thus crucial for the current injection from the cathode into the molten aluminum.
  • TiB 2 and similar hard materials cause an improvement in the wettability of the cathode in the graphitized state and thus better energy efficiency of the electrolysis process.
  • Hard materials can also increase the bulk density and hardness of Cathodes increase, which has a better wear resistance, especially compared to aluminum and Kryolitschmelzen result.
  • TiB 2 powders and similar hard material powders are difficult to process.
  • cathode blocks made with them which form a TiB 2 graphite composite layer completely or in their upper layer, tend to be inhomogeneities.
  • the object of the present invention is therefore to provide a TiB 2 graphite composite cathode which is readily wettable to aluminum melts, has good wear properties and is easy to produce, and a process for their preparation.
  • a cathode block for an aluminum electrolytic cell according to the invention which comprises a composite layer containing graphite and a hard material such as TiB 2 , is characterized in that the hard material is in a monomodal particle size distribution, the mean particle size of the distribution d 50 being between 10 and 20 microns, in particular between 12 and 18 microns, in particular between 14 and 16 microns.
  • the hard material powder used according to the invention has a particularly good flowability or flowability. This makes the hard material powder particularly well with conventional conveyors, for example, conveyed to a mixing apparatus.
  • the obtained cathode blocks have a very good homogeneity with respect to the distribution of the hard material powder in the coke in the green body and in the graphite in the graphitized cathode body.
  • the d 90 of the refractory hard material is preferably between 20 and 40 ⁇ m, in particular between 25 and 30 ⁇ m. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • the d 10 of the refractory hard material is between 2 and 7 microns, in particular between 3 and 5 microns. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • Span of the refractory hard material powder is advantageously between 0.65 and 3.80, in particular between 1.00 and 2.25. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • the composite layer forms the entire cathode block. This has the advantage that for the preparation of the cathode block a only green composition is necessary and accordingly only a single mixing step.
  • the cathode block may have at least two layers, wherein the composite layer forms the upper layer of the cathode block.
  • This top layer is in use of the cathode block according to the invention in direct contact with the melt of the electrolysis cell.
  • the cathode block preferably has at least one further layer which has less hard material powder than the upper layer or no hard material powder. This can reduce the amount of expensive hard material powder used.
  • the further layer is not in direct contact with the aluminum melt and therefore does not have to have good wettability and wear resistance.
  • the top layer may have a height which is 10 to 50%, in particular 15 to 45%, of the total height of the cathode block.
  • a small height of the topsheet, such as 20%, may be advantageous because a small amount of expensive hard material is needed.
  • a high height of the topsheet such as 40% may be advantageous because a layer having hard material has high wear resistance.
  • a cathode block according to the invention is prepared by a method comprising the steps of providing starting materials comprising coke, a hard material such as TiB 2 , and optionally another carbonaceous material, forming the cathode block, carbonizing and graphitizing, and cooling.
  • the coke comprises two types of coke, which have a different volume change behavior during carbonation and / or graphitization and / or cooling.
  • At least a portion of carbon in the cathode block is converted to graphite.
  • a cathode block produced by a method according to the invention has a bulk density of a carbon content of more than 1.68 g / cm 3 , particularly preferably more than 1.71 g / cm 3 , in particular up to 1.75 g / cm 3 .
  • a higher apparent density advantageously contributes to a longer service life. This may be due to the fact that more mass is present per unit volume of a cathode block, resulting in a given mass removal per unit time to a higher residual mass after a given removal period. On the other hand, it can be assumed that a higher bulk density with a corresponding corresponding lower porosity hampers an infiltration of electrolyte, which acts as a corrosive medium.
  • the second layer may have a bulk density of more than 1.80 g / cm 3 , for example, because of the addition of RHM after graphitization.
  • the two types of coke comprise a first type of coke and a second type of coke, the first type of coke having a greater shrinkage and / or expansion during carbonation and / or graphitization and / or cooling than the second type of coke.
  • the increased shrinkage and / or expansion is an advantageous embodiment of a different volume change behavior, which is probably particularly well suited to lead to a greater compression than when coke are mixed, which have an equal shrinkage and / or expansion.
  • the stronger shrinkage and / or expansion refers to any temperature range.
  • a different volume change behavior may be present during cooling.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume is at least 10% higher than that of the second coke, in particular at least 25% higher, in particular at least 50% higher.
  • the shrinkage from room temperature to 2000 ° C for the second type of coke 1.0 vol .-%, in the first coke variety, however, 1.1 vol .-%.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume at least 100% higher than that of the second coke, in particular at least 200% higher, in particular at least 300% higher.
  • the expansion from room temperature to 1000 ° C is 1.0% by volume for the second type of coke, and 4.0% by volume for the first type of coke.
  • the inventive method detects a 300% higher shrinkage and / or expansion.
  • a 300% higher shrinkage and / or expansion also includes the case that the second type of coke shrinks by 1.0% by volume, whereas the first type of coke expands by 2.0% by volume.
  • the second type of coke may have a greater shrinkage and / or expansion, as described above for the first coke variety.
  • a cathode block according to the invention is produced by a process comprising the steps of providing starting materials comprising coke, forming the cathode block, carbonizing and graphitizing, and cooling.
  • the coke preferably comprises two types of coke, with a different Volume change behavior during carbonization and / or graphitization and / or cooling lead to a densification of the cathode block of over 1.68 g / cm 3 .
  • different volume change behaviors of the two types of coke result in a compaction process during carbonization and / or graphitization and / or cooling that can prevent interlocking or otherwise blocking of individual coke particles due to similar shrinkage properties.
  • individual particles can presumably migrate to positions which are more favorable for compaction, and thus a higher packing density of the coke particles or the particles resulting therefrom in the further process than in conventional production processes can be achieved.
  • the advantages of a multi-layer block in which the layer facing the anode comprises a hard material are combined with the use of two types of coke with different volume change behavior.
  • the small differences in thermal expansion behavior during the heat treatment steps reduce production times and reject rates of the cathode blocks. Furthermore, therefore, advantageously the resistance to thermal stresses and resulting damage in the application is also increased.
  • At least one of the two types of coke is preferably a petroleum or coal tar coke.
  • the weight percent of the second coke variety in the total amount of coke is between 50% and 90%.
  • the different volume change behavior of the first and second types of coke has a particularly good effect on compression during carbonization and / or graphitization and / or cooling.
  • Conceivable quantity ranges of the second type of coke can be 50 to 60%, but also 60 to 80%, and 80 to 90%.
  • At least one carbonaceous material and / or pitch and / or additives are added to the coke. This can be both in terms of processability of the coke as well as the later properties of the produced cathode block.
  • the further carbonaceous material contains graphite-containing material;
  • the further carbonaceous material is graphite-containing material, such as graphite.
  • the graphite may be synthetic and / or natural graphite.
  • the carbonaceous material is advantageously 1 to 40% by weight, in particular from 5 to 30% by weight, based on the total amount of coke and carbonaceous material.
  • pitch in addition to the amount of coke and optionally carbonaceous material, which represents a total of 100 wt .-%, pitch in amounts of 5 to 40 wt .-%, in particular 15 to 30 wt .-% (based on 100 wt .-% the entire green mix). Pitch acts as a binder and serves to create a dimensionally stable body during carbonation.
  • Advantageous additives may be oil, such as press liquor oil, or stearic acid. These facilitate mixing of the coke and optionally the other components.
  • the coke comprises at least in one of the two layers, ie in the first and / or the second layer, two types of coke with a different volume change behavior during carbonization and / or graphitization and / or cooling to a densification of the resulting graphite of more than 1 , 68 g / cm 3 lead.
  • both layers or one of the two layers can thus be produced according to the invention with two different types of coke.
  • only the first layer can be produced according to the invention with two types of coke, while the second layer is produced with only one type of coke, but additionally contains TiB 2 as hard material.
  • the bulk densities and / or Expansion behavior of the two layers aligned which can advantageously increase the resistance of the layer compound.
  • FIG. 1 a particle size distribution of a TiB 2 powder used according to the invention: a) as a volume density distribution q 3 and b) as a volume sum distribution Q 3.
  • coke is mixed with pitch, mixed with TiB 2 powder having a monomodal particle size distribution and a d 50 of 15 ⁇ m, a d 90 of 30 ⁇ m and a d 10 of 5 ⁇ m.
  • the span value for this particle size distribution is 1.67.
  • the weight fraction of TiB 2 powder on the green mass is for example 10 to 30 wt .-%, such as 20 wt .-%.
  • the mixture is filled in a mold, which largely corresponds to the later form of the cathode blocks, and vibration-compressed or block-pressed.
  • the resulting green body is heated to a final temperature in a range of 2300 to 3000 ° C, in particular 2500 to 2900 ° C, such as 2800 ° C, wherein a carbonation step and then a graphitization occur, and then cooled.
  • the resulting cathode block has a very good wetting behavior and a very high resistance to wear compared to liquid aluminum and cryolite.
  • the mold is initially partially filled with a mixture of coke, graphite and TiB 2 and, if necessary, vibrationally precompressed. Subsequently, reference is made to the resulting starting layer, which at the later cathode represents the upper layer facing the anode and thus making direct contact with the molten aluminum will have a mixture of coke and graphite filled and in turn compacted.
  • the resulting upper starting layer at the later cathode represents the lower layer facing away from the anode.
  • This two-layer brick is carbonized and graphitized as in the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Ceramic Products (AREA)

Claims (15)

  1. Bloc cathodique pour une cellule d'électrolyse en aluminium, présentant une couche composite qui contient du graphite et un matériau dur, tel que par exemple du TiB2, caractérisé en ce que le matériau dur est présent dans une distribution granulométrique monomodale, dans lequel le d50 est compris entre 10 et 20 µm, en particulier entre 12 et 18 µm, en particulier entre 14 et 16 µm.
  2. Bloc cathodique selon la revendication 1, caractérisé en ce que le d90 du matériau dur est compris entre 20 et 40 µm, en particulier entre 25 et 30 µm.
  3. Bloc cathodique selon la revendication 1 ou 2, caractérisé en ce que le d10 du matériau dur est compris entre 2 et 7 µm, en particulier entre 3 et 5 µm.
  4. Bloc cathodique selon l'une ou plusieurs des revendications 1 à 3, caractérisé en ce que la répartition = (d90 - d10)/d50 de la distribution granulométrique de la poudre de matériau dur est comprise entre 0.65 et 3,80, en particulier entre 1,00 et 2,25.
  5. Bloc cathodique selon l'une ou plusieurs des revendications 1 à 4, caractérisé en ce que la couche composite forme la totalité du bloc cathodique.
  6. Bloc cathodique selon l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que le bloc cathodique présente tout au moins deux couches, dans laquelle la couche composite forme la couche supérieure du bloc cathodique.
  7. Bloc cathodique selon la revendication 6, caractérisé en ce que le bloc cathodique possède tout au moins une autre couche qui présente moins de poudre de matériau dur que la couche supérieure ou qui ne présente pas la moindre poudre de matériau dur.
  8. Bloc cathodique selon la revendication 6 ou 7, caractérisé en ce que la couche supérieure possède une épaisseur qui est comprise entre 10 et 50 %, en particulier entre 15 et 45 %, de l'épaisseur totale du bloc cathodique.
  9. Bloc cathodique selon l'une ou plusieurs des revendications 1 à 8, caractérisé en ce que l'épaisseur brute est supérieure à 1,68 g/cm3 dans tout au moins une couche du bloc cathodique, mesurée par rapport à la teneur en carbone.
  10. Bloc cathodique selon la revendication 9, caractérisé en ce que l'épaisseur brute est supérieure à 1,71 g/cm3.
  11. Procédé destiné à la fabrication d'un bloc cathodique, en particulier d'un bloc cathodique selon l'une ou plusieurs des revendications 1 à 10, présentant les étapes suivantes ; la mise à disposition des matériaux de base, comprenant du coke et le cas échéant un autre matériau contenant du carbone, et de la poudre de matériau dur, telle que par exemple de la poudre de TiB2; le mélange des matériaux de base ; le moulage du bloc cathodique ; la carbonisation et la graphitisation, ainsi que le refroidissement, caractérisé en ce que de la poudre de matériau dur est employée qui possède une distribution granulométrique monomodale et présente un d50 compris entre 10 et 20 µm, en particulier entre 12 et 18 µm, en particulier entre 14 et 16 µm.
  12. Procédé selon la revendication 11, caractérisé en ce qu'une poudre de matériau dur est employée qui possède un d90 compris entre 20 et 40 µm, en particulier entre 25 et 30 µm.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce que qu'une poudre de matériau dur est employée qui possède un d10 compris entre 2 et 7 µm, en particulier entre 3 et 5 µm.
  14. Procédé selon l'une ou plusieurs des revendications 11 à 13, caractérisé en ce qu'une poudre de matériau dur est employée, dont la distribution granulométrique possède une répartition = (d90 - d10)/d50 comprise entre 0,65 et 3,80, en particulier entre 1,00 et 2,25.
  15. Procédé selon la revendication 14, caractérisé en ce qu'un bloc cathodique est obtenu, avec une épaisseur brute d'une teneur en carbone de plus de 1,68 g/cm3, en particulier de plus de 1,71 g/cm3.
EP11743994.3A 2010-07-29 2011-07-29 Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique Active EP2598675B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010038669 DE102010038669A1 (de) 2010-07-29 2010-07-29 Kathodenblock für eine Aluminium-Elektrolysezelle und ein Verfahren zu seiner Herstellung
PCT/EP2011/063082 WO2012013772A1 (fr) 2010-07-29 2011-07-29 Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique

Publications (2)

Publication Number Publication Date
EP2598675A1 EP2598675A1 (fr) 2013-06-05
EP2598675B1 true EP2598675B1 (fr) 2017-03-08

Family

ID=44630342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11743994.3A Active EP2598675B1 (fr) 2010-07-29 2011-07-29 Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique

Country Status (8)

Country Link
EP (1) EP2598675B1 (fr)
JP (1) JP5714108B2 (fr)
CN (1) CN103038396B (fr)
CA (1) CA2805866C (fr)
DE (1) DE102010038669A1 (fr)
RU (1) RU2533066C2 (fr)
UA (1) UA109019C2 (fr)
WO (1) WO2012013772A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004014A1 (de) * 2011-02-11 2012-08-16 Sgl Carbon Se Kathodenblock mit einer Hartstoff enthaltenden Deckschicht
DE102011004013A1 (de) * 2011-02-11 2012-08-16 Sgl Carbon Se Graphitierter Kathodenblock mit einer abrasionsbeständigen Oberfläche
DE102012201468A1 (de) * 2012-02-01 2013-08-01 Sgl Carbon Se Verfahren zur Herstellung eines Kathodenblocks für eine Aluminium-Elektrolysezelle und einen Kathodenblock
DE102013202437A1 (de) * 2013-02-14 2014-08-14 Sgl Carbon Se Kathodenblock mit einer benetzbaren und abrasionsbeständigen Oberfläche
AU2015391979A1 (en) * 2015-04-23 2017-08-10 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" Aluminum electrolyzer electrode (variants)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL129768C (fr) * 1965-01-06
JPS5849483B2 (ja) * 1976-04-02 1983-11-04 東洋カ−ボン株式会社 アルミニウム電解槽用陰極炭素ブロック製造法
US4308114A (en) * 1980-07-21 1981-12-29 Aluminum Company Of America Electrolytic production of aluminum using a composite cathode
US4308115A (en) * 1980-08-15 1981-12-29 Aluminum Company Of America Method of producing aluminum using graphite cathode coated with refractory hard metal
US4376029A (en) * 1980-09-11 1983-03-08 Great Lakes Carbon Corporation Titanium diboride-graphite composits
JPS59500974A (ja) * 1982-06-03 1984-05-31 グレ−ト レ−クス カ−ボン コ−ポレ−シヨン アルミニウム還元電解槽の陰極素子
US4526669A (en) * 1982-06-03 1985-07-02 Great Lakes Carbon Corporation Cathodic component for aluminum reduction cell
US4582553A (en) * 1984-02-03 1986-04-15 Commonwealth Aluminum Corporation Process for manufacture of refractory hard metal containing plates for aluminum cell cathodes
JPH05263285A (ja) * 1992-03-17 1993-10-12 Nippon Light Metal Co Ltd アルミニウム電解用電極
ZA939468B (en) * 1992-12-17 1994-08-10 Comalco Alu Electrolysis cell for metal production
JP3977472B2 (ja) * 1997-01-23 2007-09-19 新日本テクノカーボン株式会社 低熱膨張係数を有する高密度等方性黒鉛材の製造方法
DE19714433C2 (de) * 1997-04-08 2002-08-01 Celanese Ventures Gmbh Verfahren zur Herstellung einer Beschichtung mit einem Titanborid-gehald von mindestens 80 Gew.-%
US6649040B1 (en) * 1998-11-17 2003-11-18 Alcan International Limited Wettable and erosion/oxidation-resistant carbon-composite materials
US7462271B2 (en) * 2003-11-26 2008-12-09 Alcan International Limited Stabilizers for titanium diboride-containing cathode structures
US20050253118A1 (en) * 2004-05-17 2005-11-17 Sgl Carbon Ag Fracture resistant electrodes for a carbothermic reduction furnace
CN100491600C (zh) 2006-10-18 2009-05-27 中国铝业股份有限公司 一种可湿润阴极炭块的制备方法
JP5154448B2 (ja) * 2006-12-22 2013-02-27 東洋炭素株式会社 黒鉛材料及びその製造方法
CN101158048A (zh) * 2007-08-03 2008-04-09 中国铝业股份有限公司 一种铝电解槽用石墨化可湿润阴极炭块及其生产方法
RU2371523C1 (ru) * 2008-06-23 2009-10-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Композиционный материал для смачиваемого катода алюминиевого электролизера

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2013532773A (ja) 2013-08-19
DE102010038669A1 (de) 2012-02-02
UA109019C2 (uk) 2015-07-10
EP2598675A1 (fr) 2013-06-05
CN103038396B (zh) 2016-08-03
CA2805866C (fr) 2015-07-21
CN103038396A (zh) 2013-04-10
JP5714108B2 (ja) 2015-05-07
RU2013108797A (ru) 2014-09-10
RU2533066C2 (ru) 2014-11-20
CA2805866A1 (fr) 2012-02-02
WO2012013772A1 (fr) 2012-02-02

Similar Documents

Publication Publication Date Title
DE1251962B (de) Kathode fur eine Elektrolysezelle zur Herstellung von Aluminium und Verfahren zur Herstellung derselben
EP2598675B1 (fr) Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique
EP2576870B1 (fr) Corps en carbone, procédé de fabrication d'un corps en carbone et utilisation dudit corps en carbone
DE102015222439B4 (de) Verfahren zur Herstellung von Graphitkörpern
DE3034359A1 (en) Process for producing high-density,high-strength carbon and graphite material
WO2012107400A2 (fr) Bloc cathodique au graphite, pourvu d'une surface résistante à l'abrasion
DE3506200A1 (de) Kathodenwanne fuer eine aluminium-elektrolysezelle und verfahren zur herstellung von deren seitenwand bildenden verbundkoerpern
EP2598674B1 (fr) Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium
EP2809833B1 (fr) Procédé de fabrication d'un bloc cathodique pour une cellule d'électrolyse de l'aluminium
EP2598673B1 (fr) Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium
EP2673401A2 (fr) Bloc cathodique au graphite, profilé en surface et pourvu d'une surface résistante à l'abrasion
WO2014124970A1 (fr) Bloc cathodique ayant une surface mouillable et résistant à l'abrasion
WO2014091023A1 (fr) Pierre latérale pour une paroi dans une cellule d'électrolyse servant à la réduction de l'aluminium
EP0068518B1 (fr) Procédé de fabrication de corps en carbone à partir de coke sans liant auxiliaire
AT208606B (de) Fester Stromleiter und Verfahren zu seiner Herstellung
WO2017046376A1 (fr) Fond servant de cathode destiné à la fabrication d'aluminium
DE102012218960B4 (de) Kathode umfassend Kathodenblöcke mit teilweise trapezförmigem Querschnitt
DE102011001834A1 (de) Neuartige kombinierte graphitierte heterotype Kathode zur Gewinnung von Aluminium und deren graphitierter Kathodenhemmblock
DE102016226122A1 (de) Neuartiger Kathodenblock
WO2014060422A2 (fr) Bloc cathodique présentant une section transversale trapézoïdale
DE102012218958A1 (de) Kathodenblock mit trapezförmigem Querschnitt
DE102012218959A1 (de) Kathodenblock mit trapezförmigem Querschnitt
DE202011109452U1 (de) Graphitelektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 873606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011798

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170308

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170308

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: SGL CFL CE GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170710

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011798

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

26N No opposition filed

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 873606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190801 AND 20190807

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: COBEX GMBH, DE

Ref country code: NO

Ref legal event code: CREP

Representative=s name: PLOUGMANN VINGTOFT, POSTBOKS 1003 SENTRUM, 0104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: TOKAI COBEX GMBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011798

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: COBEX GMBH, 65189 WIESBADEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240711

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240718

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 14