EP2598674B1 - Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium - Google Patents

Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium Download PDF

Info

Publication number
EP2598674B1
EP2598674B1 EP11738711.8A EP11738711A EP2598674B1 EP 2598674 B1 EP2598674 B1 EP 2598674B1 EP 11738711 A EP11738711 A EP 11738711A EP 2598674 B1 EP2598674 B1 EP 2598674B1
Authority
EP
European Patent Office
Prior art keywords
coke
cathode block
layer
cathode
graphitising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11738711.8A
Other languages
German (de)
English (en)
Other versions
EP2598674A1 (fr
Inventor
Martin Kucher
Janusz Tomala
Frank Hiltmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sgl Cfl Ce GmbH
Original Assignee
Sgl Cfl Ce GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Cfl Ce GmbH filed Critical Sgl Cfl Ce GmbH
Publication of EP2598674A1 publication Critical patent/EP2598674A1/fr
Application granted granted Critical
Publication of EP2598674B1 publication Critical patent/EP2598674B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a method of manufacturing a cathode block for an aluminum electrolytic cell.
  • One known method of producing metallic aluminum is the Hall-Heroult process.
  • the bottom of an electro-lyse cell is formed by a cathode surface consisting of individual cathode blocks. From below, the cathodes are contacted via steel ingots, which are placed in corresponding elongated recesses in the bottom of the cathode blocks.
  • Cathode blocks are conventionally made by mixing coke with carbonaceous particles such as anthracite, carbon or graphite, compacting and carbonizing.
  • carbonaceous particles such as anthracite, carbon or graphite
  • a graphitization step follows at higher temperatures where the carbonaceous particles and coke are at least partially converted to graphite.
  • TiB 2 is introduced into an upper layer of a cathode block.
  • a top layer which is a TiB 2 graphite composite
  • TiB 2 and similar hard ceramic materials cause an improvement in the wettability of the cathode in the graphitized state and thus a better energy efficiency of the electrolysis process.
  • Ceramic hard materials can also increase the density and increase the hardness of cathodes, which results in better wear resistance, in particular compared with aluminum and cryolite melts. Hard materials are also referred to as RHM (refractory hard material).
  • TiB 2 powders and similar hard material powders lose some of their wettability and wear resistance during a graphitization process.
  • Other known from the prior art method for producing a cathode block are in the publications US Pat. No. 4,308,115 . US 4,376,029 A and CN 101 158 048 A described.
  • the object of the present invention is therefore to provide a simple process for producing a TiB 2 graphite composite cathode, which is readily wettable to aluminum melts and has good wear properties, and a corresponding cathode block.
  • the graphitization process has progressed so far that a high thermal and electrical conductivity of the carbonaceous material is given.
  • the graphitization step is carried out at an average heating rate between 90 K / h and 200 K / h.
  • the graphitization temperature is maintained for a period between 0 and 1 h. At these heating rates or holding periods, particularly good results are achieved with regard to graphitization and preservation of the hard material.
  • a duration of the temperature treatment may be 10 to 28 hours up to the time of commencement of the cooling.
  • the composite with hard material and graphite or graphitized carbon forms the entire cathode block.
  • the cathode block has at least two layers, wherein the composite layer forms the second layer of the cathode block. This second layer is in direct contact with the melt of the electrolysis cell.
  • the cathode block preferably has at least one further layer (referred to below as the first layer) which has less hard material powder than the upper layer or no hard material powder. This can reduce the amount of expensive hard material powder used.
  • the first layer is not in direct contact with the aluminum melt and therefore does not have to have good wettability and wear resistance.
  • the second layer has a height which amounts to 10 to 50%, in particular 15 to 45%, of the total height of the cathode block. A small height of the second layer, such as about 20%, may be advantageous because a small amount of expensive hard material is needed.
  • a larger height of the second layer such as 40%, may be advantageous since a layer having a hard material has high wear resistance.
  • the coke comprises two types of coke, which have a different volume change behavior during carbonation and / or graphitization and / or cooling.
  • the carbon content of the cathode block preferably condenses to a bulk density of more than 1.68 g / cm 3 , in particular of more than 1.71 g / cm 3 , in particular up to 1.75 g / cm 3 .
  • a higher apparent density advantageously contributes to a longer service life. This may be due to the fact that more mass is present per unit volume of a cathode block, resulting in a given mass removal per unit time to a higher residual mass after a given removal period. On the other hand, it can be assumed that a higher bulk density with a corresponding corresponding lower porosity hampers an infiltration of electrolyte, which acts as a corrosive medium.
  • the second layer always has a high apparent density of more than 1.80 g / cm 3 , for example, because of the addition of hard material after graphitization, it is advantageous if the first layer also has a high density after graphitization Bulk density of according to the invention over 1.68 g / cm 3 .
  • the small differences in thermal expansion behavior and bulk densities during the heat treatment steps reduce production times and reject rates of the cathode blocks. Furthermore, therefore, advantageously the resistance to thermal stresses and resulting damage in the application is also increased.
  • the two types of coke include a first type of coke and a second type of coke, the first type of coke having a greater shrinkage and / or expansion during carbonation and / or graphitization and / or cooling than the second type of coke.
  • the increased shrinkage and / or expansion is an advantageous embodiment of a different volume change behavior, which is probably particularly well suited to lead to a greater compression than when coke are mixed, which have an equal shrinkage and / or expansion.
  • the stronger shrinkage and / or expansion refers to any temperature range.
  • a different volume change behavior may be present during cooling.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume is at least 10% higher than that of the second coke, in particular at least 25% higher, in particular at least 50% higher.
  • the shrinkage from room temperature to 2000 ° C for the second type of coke 1.0 vol .-%, in the first coke variety, however, 1.1 vol .-%.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume at least 100% higher than that of the second coke, in particular at least 200% higher, in particular at least 300% higher.
  • the expansion from room temperature to 1000 ° C for the second type of coke 1.0 vol .-%, in the first coke variety, however, 4.0 vol .-%.
  • the inventive method detects a 300% higher shrinkage and / or expansion.
  • a 300% higher shrinkage and / or expansion also includes the case that the second type of coke shrinks by 1.0% by volume, whereas the first type of coke expands by 2.0% by volume.
  • the second type of coke may have a greater shrinkage and / or expansion, as described above for the first coke variety.
  • At least one of the two types of coke is preferably a petroleum or coal tar coke.
  • the weight percent of the second coke variety in the total amount of coke is between 50% and 90%.
  • the different volume change behavior of the first and second types of coke has a particularly good effect on compression during carbonization and / or graphitization and / or cooling.
  • Conceivable advantageous quantitative ranges of the second type of coke can be 50 to 60%, but also 60 to 80%, and 80 to 90%.
  • At least one carbonaceous material and / or pitch and / or additives are added to the coke. This can be advantageous both in terms of the processability of the coke and the subsequent properties of the cathode block produced.
  • the further carbonaceous material contains graphite-containing material;
  • the further carbonaceous material is graphite-containing material, such as graphite.
  • the graphite can be synthetic and / or natural graphite be.
  • the carbonaceous material is advantageously 1 to 40% by weight, in particular from 5 to 30% by weight, based on the total amount of coke and carbonaceous material.
  • pitch in addition to the amount of coke and optionally carbonaceous material, which represents a total of 100 wt .-%, pitch in amounts of 5 to 40 wt .-%, in particular 15 to 30 wt .-% (based on 100 wt .-% the entire green mix). Pitch acts as a binder and serves to create a dimensionally stable body during carbonation.
  • Advantageous additives may be oil, such as press auxiliary oil, or stearic acid. These facilitate mixing of the coke and optionally the other components.
  • the coke comprises at least in one of the two layers, ie in the first and / or the second layer, two types of coke, which have a different volume change behavior during carbonation and / or graphitization and / or cooling.
  • This can presumably lead to a compression of the resulting graphite of more than 1.70 g / cm 3 , in particular more than 1.71 g / cm 3 .
  • both layers or one of the two layers can thus be produced according to the invention with two different types of coke.
  • the first layer can be produced according to the invention with two types of coke, while the second layer is produced with only one type of coke, but additionally contains TiB 2 as hard material.
  • the expansion behavior of the two layers are adjusted, which can advantageously increase the life of the layers.
  • the multilayer block has more than two layers.
  • one can any number of layers are produced according to the invention each with two types of coke different volume change behavior.
  • first and second cokes are separately ground, separated into grain size fractions, and mixed together with pitch together with, for example, 15 to 25 weight percent, such as 20 weight percent TiB 2 .
  • the weight fraction of the first coke may be, for example, 10 to 20% by weight or 40 to 45% by weight of the total amount of coke.
  • the mixture is filled into a mold that largely corresponds to the later shape of the cathode blocks and vibration-compressed or block-pressed.
  • the resulting green body is heated to a final temperature in a range of 2300 to 3000 ° C, such as 2600 or 2800 ° C, with a graphitization step, and then cooled.
  • the resulting cathode block has a bulk density of 1.68 g / cm 3 and a very high wear resistance to liquid aluminum and cryolite. Due to the average degree of graphitization obtained, thermal and electrical conductivity are high. A loss of TiB 2 could not be determined by X-ray diffractometry. The wettability of the cathode block by liquid aluminum is very good.
  • a single coke variety is used.
  • the wetting behavior of the resulting cathode block is largely the same as in the first embodiment.
  • the thermal and electrical conductivity are similar to those in the first embodiment.
  • graphite powder or carbon particles are added to the coke mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Ceramic Products (AREA)

Claims (8)

  1. Procédé destiné à la fabrication d'un bloc cathodique, lequel est conçu sous la forme d'un bloc à couches multiples et lequel présente les étapes suivantes : l'étape de la mise à disposition des matériaux de départ, à savoir du coke et une poudre de matériau dur, comme par exemple le TiB2, ainsi que, le cas échéant, un matériau contenant du carbone, dans lequel une première couche contient du coke comme le matériau de départ et une deuxième couche, laquelle se présente sous la forme d'un matériau de départ, contient du coke comme le matériau de départ et un matériau dur, en particulier du TiB2, l'étape de mélange des matériaux de départ, l'étape de moulage d'un bloc cathodique, l'étape de la carbonisation et l'étape de la graphitisation ainsi que l'étape de refroidissement ; dans lequel l'étape de graphitisation est réalisée à des températures comprises entre 2300 °C et 3000 °C, en particulier entre 2400 °C et 2900 °C ; caractérisé en ce que la deuxième couche est fabriquée avec une épaisseur qui est comprise entre 10 % et 50 %, en particulier entre 15 % et 45 % par rapport à l'épaisseur totale du bloc cathodique.
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de graphitisation est réalisée avec une vitesse de chauffage comprise entre 90 K/h et 200 K/h et/ou à la température de graphitisation comprise entre 2300 °C et 2900 °C.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le coke comprend deux types de coke, lesquels possèdent un comportement différent de variation du volume pendant la carbonisation et/ou la graphitisation et/ou le refroidissement.
  4. Procédé selon la revendication 3, caractérisé en ce que le bloc cathodique est obtenu avec une masse volumique apparente de plus de 1,68 g/cm3, en particulier de plus de 1,71 g/cm3.
  5. Procédé selon l'une ou plusieurs des revendications 1 à 4, caractérisé en ce que la totalité du bloc cathodique est fabriquée sous la forme d'un composite composé de graphite et d'un matériau dur.
  6. Procédé selon la revendication 5, caractérisé en ce que le bloc cathodique contient, comme matériau de départ, tout au moins un autre matériau contenant du carbone qui se présente sous la forme de la première couche et/ou de la deuxième couche.
  7. Procédé selon l'une ou plusieurs des revendications 1 à 6, caractérisé en ce qu'une proportion de graphite et/ou de carbone graphité s'élève à tout au moins 60 %, mesurée par rapport à la teneur totale en carbone, dans tout au moins une couche du bloc cathodique.
  8. Procédé selon la revendication 7, caractérisé en ce que la proportion de graphite et/ou de carbone graphité s'élève à tout au moins 80 %.
EP11738711.8A 2010-07-29 2011-07-29 Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium Active EP2598674B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038665A DE102010038665A1 (de) 2010-07-29 2010-07-29 Verfahren zum Herstellen eines Kathodenblocks für eine Aluminium-Elektrolysezelle und einen Kathodenblock
PCT/EP2011/063077 WO2012013769A1 (fr) 2010-07-29 2011-07-29 Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium et bloc cathodique correspondant

Publications (2)

Publication Number Publication Date
EP2598674A1 EP2598674A1 (fr) 2013-06-05
EP2598674B1 true EP2598674B1 (fr) 2018-02-14

Family

ID=44546387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738711.8A Active EP2598674B1 (fr) 2010-07-29 2011-07-29 Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium

Country Status (9)

Country Link
EP (1) EP2598674B1 (fr)
JP (1) JP5631492B2 (fr)
CN (1) CN103069053A (fr)
CA (1) CA2805562C (fr)
DE (1) DE102010038665A1 (fr)
NO (1) NO2598674T3 (fr)
RU (1) RU2556192C2 (fr)
UA (1) UA109020C2 (fr)
WO (1) WO2012013769A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201468A1 (de) * 2012-02-01 2013-08-01 Sgl Carbon Se Verfahren zur Herstellung eines Kathodenblocks für eine Aluminium-Elektrolysezelle und einen Kathodenblock
DE102013202437A1 (de) * 2013-02-14 2014-08-14 Sgl Carbon Se Kathodenblock mit einer benetzbaren und abrasionsbeständigen Oberfläche

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308114A (en) * 1980-07-21 1981-12-29 Aluminum Company Of America Electrolytic production of aluminum using a composite cathode
US4308115A (en) * 1980-08-15 1981-12-29 Aluminum Company Of America Method of producing aluminum using graphite cathode coated with refractory hard metal
US4376029A (en) * 1980-09-11 1983-03-08 Great Lakes Carbon Corporation Titanium diboride-graphite composits
CN85205776U (zh) * 1985-12-31 1986-10-22 东北工学院 铝电解用二硼化钛复合层式阴极结构
US6001236A (en) * 1992-04-01 1999-12-14 Moltech Invent S.A. Application of refractory borides to protect carbon-containing components of aluminium production cells
DE19714433C2 (de) * 1997-04-08 2002-08-01 Celanese Ventures Gmbh Verfahren zur Herstellung einer Beschichtung mit einem Titanborid-gehald von mindestens 80 Gew.-%
FR2789093B1 (fr) * 1999-02-02 2001-03-09 Carbone Savoie Cathode graphite pour l'electrolyse de l'aluminium
FR2878520B1 (fr) * 2004-11-29 2015-09-18 Saint Gobain Ct Recherches Bloc refractaire fritte a base de carbure de silicium a liaison nitrure de silicium
CN100491600C (zh) 2006-10-18 2009-05-27 中国铝业股份有限公司 一种可湿润阴极炭块的制备方法
CN101158048A (zh) * 2007-08-03 2008-04-09 中国铝业股份有限公司 一种铝电解槽用石墨化可湿润阴极炭块及其生产方法

Also Published As

Publication number Publication date
CA2805562A1 (fr) 2012-02-02
WO2012013769A1 (fr) 2012-02-02
JP2013532772A (ja) 2013-08-19
RU2013108752A (ru) 2014-09-10
EP2598674A1 (fr) 2013-06-05
CN103069053A (zh) 2013-04-24
CA2805562C (fr) 2015-06-16
JP5631492B2 (ja) 2014-11-26
RU2556192C2 (ru) 2015-07-10
NO2598674T3 (fr) 2018-07-14
DE102010038665A1 (de) 2012-02-02
UA109020C2 (uk) 2015-07-10

Similar Documents

Publication Publication Date Title
DE1251962B (de) Kathode fur eine Elektrolysezelle zur Herstellung von Aluminium und Verfahren zur Herstellung derselben
EP2576870B1 (fr) Corps en carbone, procédé de fabrication d'un corps en carbone et utilisation dudit corps en carbone
EP2598675B1 (fr) Bloc cathodique pour cellule d'électrolyse d'aluminium et procédé de production dudit bloc cathodique
WO2017080661A1 (fr) Nouveau procédé de fabrication de corps de graphite
DE3034359C2 (de) Verfahren zur Herstellung von Kohlenstoffmaterialien hoher Dichte und hoher Festigkeit
EP2598674B1 (fr) Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium
DE1092215B (de) Kathode und Zelle zur Gewinnung von Aluminium aus Aluminiumoxyd durch Schmelzflusselektrolyse
EP2809833B1 (fr) Procédé de fabrication d'un bloc cathodique pour une cellule d'électrolyse de l'aluminium
WO2012107400A2 (fr) Bloc cathodique au graphite, pourvu d'une surface résistante à l'abrasion
EP2598673B1 (fr) Procédé de production d'un bloc cathodique pour cellule d'électrolyse d'aluminium
WO2012107396A2 (fr) Bloc cathodique au graphite, profilé en surface et pourvu d'une surface résistante à l'abrasion
EP2956573A1 (fr) Bloc cathodique ayant une surface mouillable et résistant à l'abrasion
EP0068518B1 (fr) Procédé de fabrication de corps en carbone à partir de coke sans liant auxiliaire
AT208606B (de) Fester Stromleiter und Verfahren zu seiner Herstellung
EP3272187B1 (fr) Composition pour électrodes
DE1180141B (de) Anode zur Verwendung bei der direkten elektrolytischen Reduktion von Uranoxyden zu Uran sowie Verfahren zur Herstellung dieser Anode
DE2112287B2 (de) Kohlenstoffblock als Kathode für eine elektrolytische Aluminiumzelle und Verfahren zu dessen Herstellung
DE102016226122A1 (de) Neuartiger Kathodenblock
DE102011001834A1 (de) Neuartige kombinierte graphitierte heterotype Kathode zur Gewinnung von Aluminium und deren graphitierter Kathodenhemmblock
DE102011111331A1 (de) Titandiborid-Granulate als Erosionsschutz für Kathoden
DE3306028A1 (de) Verfahren zur herstellung eines kohlenstoffblocks fuer aluminium-elektrolysezellen
DE202011109452U1 (de) Graphitelektrode
DE1671167A1 (de) Verfahren zur Erhoehung der Festigkeit und der elektrischen Leitfaehigkeit von aus Graphit- oder Kohlengrundstoff bestehenden Koerpern und/oder zum Verkleben solcher Koerper zueinander,zu Keramikkoerpern oder zu Metallen
DE102012218958A1 (de) Kathodenblock mit trapezförmigem Querschnitt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CFL CE GMBH

INTG Intention to grant announced

Effective date: 20170822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013724

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 969887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011013724

Country of ref document: DE

Owner name: COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011013724

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190801 AND 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 969887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180729

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: COBEX GMBH, DE

Ref country code: NO

Ref legal event code: CREP

REG Reference to a national code

Ref country code: NO

Ref legal event code: CREP

Representative=s name: PLOUGMANN VINGTOFT, POSTBOKS 1003 SENTRUM, 0104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011013724

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: COBEX GMBH, 65189 WIESBADEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: TOKAI COBEX GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 13

Ref country code: GB

Payment date: 20230720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230711

Year of fee payment: 13