EP2598675B1 - Cathode block for an aluminium electrolysis cell and a process for the production thereof - Google Patents

Cathode block for an aluminium electrolysis cell and a process for the production thereof Download PDF

Info

Publication number
EP2598675B1
EP2598675B1 EP11743994.3A EP11743994A EP2598675B1 EP 2598675 B1 EP2598675 B1 EP 2598675B1 EP 11743994 A EP11743994 A EP 11743994A EP 2598675 B1 EP2598675 B1 EP 2598675B1
Authority
EP
European Patent Office
Prior art keywords
cathode block
hard material
coke
cathode
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11743994.3A
Other languages
German (de)
French (fr)
Other versions
EP2598675A1 (en
Inventor
Martin Kucher
Janusz Tomala
Frank Hiltmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2598675A1 publication Critical patent/EP2598675A1/en
Application granted granted Critical
Publication of EP2598675B1 publication Critical patent/EP2598675B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a cathode block for an aluminum electrolytic cell and a method for its production.
  • the bottom of an electrolytic cell is typically formed by a cathode surface consisting of individual cathode blocks. From below, the cathodes are contacted via steel ingots, which are placed in corresponding elongated recesses in the bottom of the cathode blocks.
  • Cathode blocks are conventionally made by mixing coke with carbonaceous particles such as anthracite, carbon or graphite, compacting and carbonizing.
  • carbonaceous particles such as anthracite, carbon or graphite
  • a graphitizing step at higher temperatures follows, at which the carbonaceous particles and the coke are at least partially converted to graphite.
  • TiB 2 is introduced into an upper layer of a cathode block.
  • a cathode block This is for example in the DE 112006004078 T described.
  • Such a top layer which is a TiB 2 graphite composite, is in direct contact with the aluminum melt and thus crucial for the current injection from the cathode into the molten aluminum.
  • TiB 2 and similar hard materials cause an improvement in the wettability of the cathode in the graphitized state and thus better energy efficiency of the electrolysis process.
  • Hard materials can also increase the bulk density and hardness of Cathodes increase, which has a better wear resistance, especially compared to aluminum and Kryolitschmelzen result.
  • TiB 2 powders and similar hard material powders are difficult to process.
  • cathode blocks made with them which form a TiB 2 graphite composite layer completely or in their upper layer, tend to be inhomogeneities.
  • the object of the present invention is therefore to provide a TiB 2 graphite composite cathode which is readily wettable to aluminum melts, has good wear properties and is easy to produce, and a process for their preparation.
  • a cathode block for an aluminum electrolytic cell according to the invention which comprises a composite layer containing graphite and a hard material such as TiB 2 , is characterized in that the hard material is in a monomodal particle size distribution, the mean particle size of the distribution d 50 being between 10 and 20 microns, in particular between 12 and 18 microns, in particular between 14 and 16 microns.
  • the hard material powder used according to the invention has a particularly good flowability or flowability. This makes the hard material powder particularly well with conventional conveyors, for example, conveyed to a mixing apparatus.
  • the obtained cathode blocks have a very good homogeneity with respect to the distribution of the hard material powder in the coke in the green body and in the graphite in the graphitized cathode body.
  • the d 90 of the refractory hard material is preferably between 20 and 40 ⁇ m, in particular between 25 and 30 ⁇ m. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • the d 10 of the refractory hard material is between 2 and 7 microns, in particular between 3 and 5 microns. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • Span of the refractory hard material powder is advantageously between 0.65 and 3.80, in particular between 1.00 and 2.25. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.
  • the composite layer forms the entire cathode block. This has the advantage that for the preparation of the cathode block a only green composition is necessary and accordingly only a single mixing step.
  • the cathode block may have at least two layers, wherein the composite layer forms the upper layer of the cathode block.
  • This top layer is in use of the cathode block according to the invention in direct contact with the melt of the electrolysis cell.
  • the cathode block preferably has at least one further layer which has less hard material powder than the upper layer or no hard material powder. This can reduce the amount of expensive hard material powder used.
  • the further layer is not in direct contact with the aluminum melt and therefore does not have to have good wettability and wear resistance.
  • the top layer may have a height which is 10 to 50%, in particular 15 to 45%, of the total height of the cathode block.
  • a small height of the topsheet, such as 20%, may be advantageous because a small amount of expensive hard material is needed.
  • a high height of the topsheet such as 40% may be advantageous because a layer having hard material has high wear resistance.
  • a cathode block according to the invention is prepared by a method comprising the steps of providing starting materials comprising coke, a hard material such as TiB 2 , and optionally another carbonaceous material, forming the cathode block, carbonizing and graphitizing, and cooling.
  • the coke comprises two types of coke, which have a different volume change behavior during carbonation and / or graphitization and / or cooling.
  • At least a portion of carbon in the cathode block is converted to graphite.
  • a cathode block produced by a method according to the invention has a bulk density of a carbon content of more than 1.68 g / cm 3 , particularly preferably more than 1.71 g / cm 3 , in particular up to 1.75 g / cm 3 .
  • a higher apparent density advantageously contributes to a longer service life. This may be due to the fact that more mass is present per unit volume of a cathode block, resulting in a given mass removal per unit time to a higher residual mass after a given removal period. On the other hand, it can be assumed that a higher bulk density with a corresponding corresponding lower porosity hampers an infiltration of electrolyte, which acts as a corrosive medium.
  • the second layer may have a bulk density of more than 1.80 g / cm 3 , for example, because of the addition of RHM after graphitization.
  • the two types of coke comprise a first type of coke and a second type of coke, the first type of coke having a greater shrinkage and / or expansion during carbonation and / or graphitization and / or cooling than the second type of coke.
  • the increased shrinkage and / or expansion is an advantageous embodiment of a different volume change behavior, which is probably particularly well suited to lead to a greater compression than when coke are mixed, which have an equal shrinkage and / or expansion.
  • the stronger shrinkage and / or expansion refers to any temperature range.
  • a different volume change behavior may be present during cooling.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume is at least 10% higher than that of the second coke, in particular at least 25% higher, in particular at least 50% higher.
  • the shrinkage from room temperature to 2000 ° C for the second type of coke 1.0 vol .-%, in the first coke variety, however, 1.1 vol .-%.
  • the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume at least 100% higher than that of the second coke, in particular at least 200% higher, in particular at least 300% higher.
  • the expansion from room temperature to 1000 ° C is 1.0% by volume for the second type of coke, and 4.0% by volume for the first type of coke.
  • the inventive method detects a 300% higher shrinkage and / or expansion.
  • a 300% higher shrinkage and / or expansion also includes the case that the second type of coke shrinks by 1.0% by volume, whereas the first type of coke expands by 2.0% by volume.
  • the second type of coke may have a greater shrinkage and / or expansion, as described above for the first coke variety.
  • a cathode block according to the invention is produced by a process comprising the steps of providing starting materials comprising coke, forming the cathode block, carbonizing and graphitizing, and cooling.
  • the coke preferably comprises two types of coke, with a different Volume change behavior during carbonization and / or graphitization and / or cooling lead to a densification of the cathode block of over 1.68 g / cm 3 .
  • different volume change behaviors of the two types of coke result in a compaction process during carbonization and / or graphitization and / or cooling that can prevent interlocking or otherwise blocking of individual coke particles due to similar shrinkage properties.
  • individual particles can presumably migrate to positions which are more favorable for compaction, and thus a higher packing density of the coke particles or the particles resulting therefrom in the further process than in conventional production processes can be achieved.
  • the advantages of a multi-layer block in which the layer facing the anode comprises a hard material are combined with the use of two types of coke with different volume change behavior.
  • the small differences in thermal expansion behavior during the heat treatment steps reduce production times and reject rates of the cathode blocks. Furthermore, therefore, advantageously the resistance to thermal stresses and resulting damage in the application is also increased.
  • At least one of the two types of coke is preferably a petroleum or coal tar coke.
  • the weight percent of the second coke variety in the total amount of coke is between 50% and 90%.
  • the different volume change behavior of the first and second types of coke has a particularly good effect on compression during carbonization and / or graphitization and / or cooling.
  • Conceivable quantity ranges of the second type of coke can be 50 to 60%, but also 60 to 80%, and 80 to 90%.
  • At least one carbonaceous material and / or pitch and / or additives are added to the coke. This can be both in terms of processability of the coke as well as the later properties of the produced cathode block.
  • the further carbonaceous material contains graphite-containing material;
  • the further carbonaceous material is graphite-containing material, such as graphite.
  • the graphite may be synthetic and / or natural graphite.
  • the carbonaceous material is advantageously 1 to 40% by weight, in particular from 5 to 30% by weight, based on the total amount of coke and carbonaceous material.
  • pitch in addition to the amount of coke and optionally carbonaceous material, which represents a total of 100 wt .-%, pitch in amounts of 5 to 40 wt .-%, in particular 15 to 30 wt .-% (based on 100 wt .-% the entire green mix). Pitch acts as a binder and serves to create a dimensionally stable body during carbonation.
  • Advantageous additives may be oil, such as press liquor oil, or stearic acid. These facilitate mixing of the coke and optionally the other components.
  • the coke comprises at least in one of the two layers, ie in the first and / or the second layer, two types of coke with a different volume change behavior during carbonization and / or graphitization and / or cooling to a densification of the resulting graphite of more than 1 , 68 g / cm 3 lead.
  • both layers or one of the two layers can thus be produced according to the invention with two different types of coke.
  • only the first layer can be produced according to the invention with two types of coke, while the second layer is produced with only one type of coke, but additionally contains TiB 2 as hard material.
  • the bulk densities and / or Expansion behavior of the two layers aligned which can advantageously increase the resistance of the layer compound.
  • FIG. 1 a particle size distribution of a TiB 2 powder used according to the invention: a) as a volume density distribution q 3 and b) as a volume sum distribution Q 3.
  • coke is mixed with pitch, mixed with TiB 2 powder having a monomodal particle size distribution and a d 50 of 15 ⁇ m, a d 90 of 30 ⁇ m and a d 10 of 5 ⁇ m.
  • the span value for this particle size distribution is 1.67.
  • the weight fraction of TiB 2 powder on the green mass is for example 10 to 30 wt .-%, such as 20 wt .-%.
  • the mixture is filled in a mold, which largely corresponds to the later form of the cathode blocks, and vibration-compressed or block-pressed.
  • the resulting green body is heated to a final temperature in a range of 2300 to 3000 ° C, in particular 2500 to 2900 ° C, such as 2800 ° C, wherein a carbonation step and then a graphitization occur, and then cooled.
  • the resulting cathode block has a very good wetting behavior and a very high resistance to wear compared to liquid aluminum and cryolite.
  • the mold is initially partially filled with a mixture of coke, graphite and TiB 2 and, if necessary, vibrationally precompressed. Subsequently, reference is made to the resulting starting layer, which at the later cathode represents the upper layer facing the anode and thus making direct contact with the molten aluminum will have a mixture of coke and graphite filled and in turn compacted.
  • the resulting upper starting layer at the later cathode represents the lower layer facing away from the anode.
  • This two-layer brick is carbonized and graphitized as in the first embodiment.

Description

Die vorliegende Erfindung betrifft einen Kathodenblock für eine Aluminium-Elektrolysezelle und ein Verfahren zu seiner Herstellung.The present invention relates to a cathode block for an aluminum electrolytic cell and a method for its production.

Ein bekanntes Verfahren zur Herstellung von metallischem Aluminium ist der Hall-Heroult-Prozess. Bei diesem elektrolytischen Verfahren wird typischerweise der Boden einer Elektrolysezelle von einer Kathodenfläche gebildet, die aus einzelnen Kathodenblöcken besteht. Von unten werden die Kathoden über Stahlbarren kontaktiert, die in entsprechenden länglichen Ausnehmungen in der Unterseite der Kathodenblöcke eingebracht sind.One known method of producing metallic aluminum is the Hall-Heroult process. In this electrolytic process, the bottom of an electrolytic cell is typically formed by a cathode surface consisting of individual cathode blocks. From below, the cathodes are contacted via steel ingots, which are placed in corresponding elongated recesses in the bottom of the cathode blocks.

Die Herstellung von Kathodenblöcken erfolgt herkömmlich durch Mischen von Koks mit kohlenstoffhaltigen Partikeln, wie Anthrazit, Kohlenstoff oder Graphit, Verdichten und Carbonisieren. Gegebenenfalls schließt sich ein Graphitierschritt bei höheren Temperaturen an, bei denen sich die kohlenstoffhaltigen Partikel und der Koks zumindest teilweise in Graphit umwandeln.Cathode blocks are conventionally made by mixing coke with carbonaceous particles such as anthracite, carbon or graphite, compacting and carbonizing. Optionally, a graphitizing step at higher temperatures follows, at which the carbonaceous particles and the coke are at least partially converted to graphite.

Graphitierter Kohlenstoff und Graphit werden jedoch von flüssigem Aluminium schlecht bzw. gar nicht benetzt. Dadurch erhöht sich der Strombedarf und damit auch der Energiebedarf einer Elektrolysezelle.Graphitized carbon and graphite, however, are poorly or not wetted by liquid aluminum. This increases the power consumption and thus also the energy consumption of an electrolysis cell.

Um dieses Problem zu lösen, wird im Stand der Technik TiB2 in eine Oberschicht eines Kathodenblocks eingebracht. Dies ist beispielsweise in der DE 112006004078 T beschrieben. Eine derartige Oberschicht, die einen TiB2-Graphit-Komposit darstellt, ist in direktem Kontakt mit der Aluminiumschmelze und damit ausschlaggebend für die Stromeinkopplung von der Kathode in die Aluminiumschmelze. TiB2 und ähnliche Hartmaterialien bewirken eine Verbesserung der Benetzbarkeit der Kathode im graphitierten Zustand und damit eine bessere Energieeffizienz des Elektrolyseprozesses. Hartmaterialien können darüber hinaus die Rohdichte und die Härte von Kathoden erhöhen, was eine bessere Verschleißbeständigkeit insbesondere gegenüber Aluminium- und Kryolitschmelzen zur Folge hat.In order to solve this problem, in the prior art TiB 2 is introduced into an upper layer of a cathode block. This is for example in the DE 112006004078 T described. Such a top layer, which is a TiB 2 graphite composite, is in direct contact with the aluminum melt and thus crucial for the current injection from the cathode into the molten aluminum. TiB 2 and similar hard materials cause an improvement in the wettability of the cathode in the graphitized state and thus better energy efficiency of the electrolysis process. Hard materials can also increase the bulk density and hardness of Cathodes increase, which has a better wear resistance, especially compared to aluminum and Kryolitschmelzen result.

TiB2-Pulver und ähnliche Hartmaterialpulver (auch mit refractory hard material (RHM) bezeichnet) sind jedoch schwierig zu verarbeiten. Mit ihnen hergestellte Kathodenblöcke, die vollständig oder in ihrer Oberschicht eine TiB2-Graphit-Komposit-Schicht darstellen, tendieren darüber hinaus zu Inhomogenitäten.However, TiB 2 powders and similar hard material powders (also called refractory hard material (RHM)) are difficult to process. In addition, cathode blocks made with them, which form a TiB 2 graphite composite layer completely or in their upper layer, tend to be inhomogeneities.

Aufgabe der vorliegenden Erfindung ist daher, eine TiB2-Graphit-Komposit-Kathode anzugeben, die gegenüber Aluminiumschmelzen gut benetzbar ist, gute Verschleißeigenschaften besitzt und leicht herzustellen ist, und ein Verfahren zu ihrer Herstellung.The object of the present invention is therefore to provide a TiB 2 graphite composite cathode which is readily wettable to aluminum melts, has good wear properties and is easy to produce, and a process for their preparation.

Die Aufgabe wird durch einen Kathodenblock nach Anspruch 1 gelöst.The object is achieved by a cathode block according to claim 1.

Ein erfindungsgemäßer Kathodenblock für eine Aluminium-Elektrolysezelle, der eine Kompositschicht, die Graphit und ein Hartmaterial, wie etwa TiB2, enthält, ist dadurch gekennzeichnet, dass das Hartmaterial in einer monomodalen Partikelgrößenverteilung vorliegt, wobei die mittlerer Partikelgröße der Verteilung d50 zwischen 10 und 20 µm liegt, insbesondere zwischen 12 und 18 µm, insbesondere zwischen 14 und 16 µm.A cathode block for an aluminum electrolytic cell according to the invention, which comprises a composite layer containing graphite and a hard material such as TiB 2 , is characterized in that the hard material is in a monomodal particle size distribution, the mean particle size of the distribution d 50 being between 10 and 20 microns, in particular between 12 and 18 microns, in particular between 14 and 16 microns.

Überraschenderweise hat sich im Rahmen der Erfindung herausgestellt, dass bei einem derartigen d50 das Hartmaterialpulver zwar einerseits eine große aktive Oberfläche besitzt, die eine sehr gute Benetzbarkeit des Kathodenblocks nach der Graphitierung bewirkt, aber andererseits nicht die Nachteile besitzt, die eine Verarbeitung des Hartmaterialpulvers als Kompositkomponente in einem Graphit-Hartmaterial-Komposit negativ beeinflussen. Diese möglichen Nachteile, die das erfindungsgemäß eingesetzte Hartmaterialpulver nicht aufweist, sind:

  • Staubneigung, beispielsweise beim Einfüllen in einen Mischbehälter oder beim Transport des Pulvers,
  • Agglomeratbildung, insbesondere beim Mischen, wie etwa Nassmischen mit Koks (Nassmischen bedeutet in diesem Zusammenhang insbesondere Mischen mit Pech als flüssiger Phase),
  • Entmischung aufgrund unterschiedlicher Materialdichten von Hartmaterial und Koks.
Surprisingly, it has been found within the scope of the invention that in such a d 50, the hard material powder on the one hand has a large active surface, which causes a very good wettability of the cathode block after graphitization, but on the other hand does not have the disadvantages, the processing of the hard material powder as Adversely affect composite component in a graphite hard material composite. These possible disadvantages, which the hard material powder used according to the invention does not have, are:
  • Dusting, for example when filling into a mixing container or during transport of the powder,
  • Agglomerate formation, in particular during mixing, such as wet mixing with coke (wet mixing means in this context in particular mixing with pitch as the liquid phase),
  • Demixing due to different material densities of hard material and coke.

Außer dem Wegfall dieser Nachteile besitzt das erfindungsgemäß eingesetzte Hartmaterialpulver eine besonders gute Fließfähigkeit bzw. Rieselfähigkeit. Dies macht das Hartmaterialpulver besonders gut mit herkömmlichen Fördervorrichtungen beispielsweise zu einer Mischapparatur förderbar.Apart from eliminating these disadvantages, the hard material powder used according to the invention has a particularly good flowability or flowability. This makes the hard material powder particularly well with conventional conveyors, for example, conveyed to a mixing apparatus.

Durch die gute Verarbeitbarkeit des Hartmaterialpulvers mit dem d50 zwischen 10 und 20 µm und einer monomodalen Partikelgrößen-Verteilung wird die Herstellung von Hartmaterialpulverkompositen für Kathodenblöcke stark vereinfacht. Die erhaltenen Kathodenblöcke weisen eine sehr gute Homogenität in Bezug auf die Verteilung des Hartmaterialpulvers im Koks im Grünkörper und im Graphit im graphitierten Kathodenkörper auf.Due to the good processability of the hard material powder with the d 50 between 10 and 20 microns and a monomodal particle size distribution, the production of Hartmaterialpulverkompositen for cathode blocks is greatly simplified. The obtained cathode blocks have a very good homogeneity with respect to the distribution of the hard material powder in the coke in the green body and in the graphite in the graphitized cathode body.

Bevorzugt liegt der d90 des feuerfesten Hartmaterials zwischen 20 und 40 µm, insbesondere zwischen 25 und 30 µm. Dies hat vorteilhaft zur Folge, dass Benetzungs- und Verarbeitungseigenschaften des Hartmaterialpulvers noch besser sind.The d 90 of the refractory hard material is preferably between 20 and 40 μm, in particular between 25 and 30 μm. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.

Vorteilhafterweise liegt der d10 des feuerfesten Hartmaterials zwischen 2 und 7 µm, insbesondere zwischen 3 und 5 µm. Dies hat vorteilhaft zur Folge, dass Benetzungs- und Verarbeitungseigenschaften des Hartmaterialpulvers noch besser sind.Advantageously, the d 10 of the refractory hard material is between 2 and 7 microns, in particular between 3 and 5 microns. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.

Des Weiteren lässt sich zur Charakterisierung der monomodalen Partikelgrößenverteilung deren Verteilungsbreite durch den sogenannten Span-Wert beschreiben, der sich wie folgt berechnet: Span = d 90 d 10 / d 50

Figure imgb0001
Furthermore, to characterize the monomodal particle size distribution, its distribution width can be described by the so-called span value, which is calculated as follows: chip = d 90 - d 10 / d 50
Figure imgb0001

Span des feuerfesten Hartmaterialpulvers liegt vorteilhaft zwischen 0,65 und 3,80, insbesondere zwischen 1,00 und 2,25. Dies hat vorteilhaft zur Folge, dass Benetzungs- und Verarbeitungseigenschaften des Hartmaterialpulvers noch besser sind.Span of the refractory hard material powder is advantageously between 0.65 and 3.80, in particular between 1.00 and 2.25. This has the advantageous consequence that wetting and processing properties of the hard material powder are even better.

Es kann vorteilhaft vorgesehen sein, dass die Kompositschicht den gesamten Kathodenblock bildet. Dies hat den Vorteil, dass zur Herstellung des Kathodenblocks eine einzige Grünmassenzusammensetzung notwendig ist und entsprechend nur ein einziger Mischschritt.It can be advantageously provided that the composite layer forms the entire cathode block. This has the advantage that for the preparation of the cathode block a only green composition is necessary and accordingly only a single mixing step.

Alternativ kann es vorteilhaft sein, dass der Kathodenblock zumindest zwei Schichten aufweist, wobei die Kompositschicht die Oberschicht des Kathodenblocks bildet. Diese Oberschicht ist im Einsatz des erfindungsgemäßen Kathodenblocks in direktem Kontakt zur Schmelze der Elektrolysezelle.Alternatively, it may be advantageous for the cathode block to have at least two layers, wherein the composite layer forms the upper layer of the cathode block. This top layer is in use of the cathode block according to the invention in direct contact with the melt of the electrolysis cell.

Bevorzugt besitzt der Kathodenblock zumindest eine weitere Schicht, die weniger Hartmaterialpulver aufweist als die Oberschicht oder kein Hartmaterialpulver aufweist. Dies kann die Menge an eingesetztem preisintensiven Hartmaterialpulver verringern. Die weitere Schicht ist bei Einsatz der Kathode in einer Aluminiumelektrolysezelle nicht in direktem Kontakt zur Aluminiumschmelze und muss daher keine gute Benetzbarkeit und Verschleißbeständigkeit aufweisen.The cathode block preferably has at least one further layer which has less hard material powder than the upper layer or no hard material powder. This can reduce the amount of expensive hard material powder used. When using the cathode in an aluminum electrolysis cell, the further layer is not in direct contact with the aluminum melt and therefore does not have to have good wettability and wear resistance.

Vorteilhaft kann die Oberschicht eine Höhe besitzen, die 10 bis 50 %, insbesondere 15 bis 45 %, der Gesamthöhe des Kathodenblocks beträgt. Eine geringe Höhe der Oberschicht, wie etwa 20 %, kann vorteilhaft sein, da eine geringe Menge an kostenintensivem Hartmaterial nötig ist.Advantageously, the top layer may have a height which is 10 to 50%, in particular 15 to 45%, of the total height of the cathode block. A small height of the topsheet, such as 20%, may be advantageous because a small amount of expensive hard material is needed.

Alternativ kann eine große Höhe der Oberschicht, wie etwa 40 %, vorteilhaft sein, da eine Schicht, die Hartmaterial besitzt, eine hohe Verschleißbeständigkeit besitzt. Je größer die Höhe dieses hoch verschleißfesten Materials in Bezug auf die Gesamthöhe des Kathodenblocks, desto höher die Verschleißfestigkeit des gesamten Kathodenblocks.Alternatively, a high height of the topsheet such as 40% may be advantageous because a layer having hard material has high wear resistance. The greater the height of this highly wear-resistant material relative to the overall height of the cathode block, the higher the wear resistance of the entire cathode block.

Bevorzugt wird ein erfindungsgemäßer Kathodenblock mit einem Verfahren hergestellt umfassend die Schritte Bereitstellen von Ausgangsmaterialien, aufweisend Koks, ein Hartmaterial, wie etwa TiB2, und gegebenenfalls ein weiteres kohlenstoffhaltige Material, Formen des Kathodenblocks, Carbonisieren und Graphitieren, sowie Abkühlen. Dabei umfasst der Koks erfindungsgemäß zwei Kokssorten, die während des Carbonisierens und/oder Graphitierens und/oder Abkühlens ein unterschiedliches Volumenänderungsverhalten besitzen.Preferably, a cathode block according to the invention is prepared by a method comprising the steps of providing starting materials comprising coke, a hard material such as TiB 2 , and optionally another carbonaceous material, forming the cathode block, carbonizing and graphitizing, and cooling. According to the invention, the coke comprises two types of coke, which have a different volume change behavior during carbonation and / or graphitization and / or cooling.

Beim Graphitierschritt wird zumindest ein Anteil von Kohlenstoff im Kathodenblock in Graphit umgewandelt.In the graphitizing step, at least a portion of carbon in the cathode block is converted to graphite.

Überraschenderweise hat sich gezeigt, dass die Lebensdauer der mit einem solchen Verfahren hergestellten Kathodenblöcke deutlich höher ist als bei den mit herkömmlichen Verfahren hergestellten Kathodenblöcken.Surprisingly, it has been shown that the lifetime of the cathode blocks produced by such a method is significantly higher than in the case of the cathode blocks produced by conventional methods.

Bevorzugt besitzt ein mit einem erfindungsgemäßen Verfahren hergestellter Kathodenblock eine Rohdichte eines Kohlenstoffanteils von über 1,68 g/cm3, besonders bevorzugt von über 1,71 g/cm3, insbesondere von bis zu 1,75 g/cm3.Preferably, a cathode block produced by a method according to the invention has a bulk density of a carbon content of more than 1.68 g / cm 3 , particularly preferably more than 1.71 g / cm 3 , in particular up to 1.75 g / cm 3 .

Vermutlich trägt eine höhere Rohdichte vorteilhaft zu einer längeren Lebensdauer bei. Dies kann zum einen darin begründet liegen, dass pro Volumeneinheit eines Kathodenblocks mehr Masse vorhanden ist, was bei einem gegebenen Masseabtrag pro Zeiteinheit zu einer höheren Restmasse nach einer gegebenen Abtragsdauer führt. Zum anderen lässt sich vermuten, dass eine höhere Rohdichte mit einer entsprechenden korrespondierenden niedrigeren Porosität eine Infiltration von Elektrolyt, das als korrosives Medium wirkt, behindert.Presumably, a higher apparent density advantageously contributes to a longer service life. This may be due to the fact that more mass is present per unit volume of a cathode block, resulting in a given mass removal per unit time to a higher residual mass after a given removal period. On the other hand, it can be assumed that a higher bulk density with a corresponding corresponding lower porosity hampers an infiltration of electrolyte, which acts as a corrosive medium.

Die zweite Schicht kann hierbei wegen des Zusatzes an RHM nach einem Graphitieren eine Rohdichte von beispielsweise über 1,80 g/cm3 aufweisen.The second layer may have a bulk density of more than 1.80 g / cm 3 , for example, because of the addition of RHM after graphitization.

Vorteilhaft umfassen die zwei Kokssorten eine erste Kokssorte und eine zweite Kokssorte, wobei die erste Kokssorte während des Carbonisierens und/oder Graphitierens und/oder Abkühlens eine stärkere Schwindung und/oder Ausdehnung aufweist als die zweite Kokssorte. Hierbei ist die stärkere Schwindung und/oder Ausdehnung eine vorteilhafte Ausbildung eines unterschiedlichen Volumenänderungsverhaltens, die vermutlich besonders gut geeignet ist, zu einer stärkeren Verdichtung zu führen, als wenn Kokssorten gemischt werden, die eine gleiche Schwindung und/oder Ausdehnung besitzen. Dabei bezieht sich die stärkere Schwindung und/oder Ausdehnung auf einen beliebigen Temperaturbereich. Somit kann beispielsweise lediglich eine stärkere Schwindung des ersten Koks beim Carbonisieren vorliegen. Andererseits kann beispielsweise zusätzlich oder stattdessen eine stärkere Ausdehnung in einem Übergangsbereich zwischen Carbonisieren und Graphitieren vorliegen. Stattdessen oder zusätzlich kann sich beim Abkühlen ein unterschiedliches Volumenänderungsverhalten vorliegen.Advantageously, the two types of coke comprise a first type of coke and a second type of coke, the first type of coke having a greater shrinkage and / or expansion during carbonation and / or graphitization and / or cooling than the second type of coke. Here, the increased shrinkage and / or expansion is an advantageous embodiment of a different volume change behavior, which is probably particularly well suited to lead to a greater compression than when coke are mixed, which have an equal shrinkage and / or expansion. The stronger shrinkage and / or expansion refers to any temperature range. Thus, for example, only a stronger shrinkage of the first coke during carbonization can be present. On the other hand, for example, in addition or instead, a greater extent in a transition region between carbonization and graphitization available. Instead or in addition, a different volume change behavior may be present during cooling.

Bevorzugt ist die Schwindung und/oder Ausdehnung der ersten Kokssorte während des Carbonisierens und/oder Graphitierens und/oder Abkühlens bezogen auf das Volumen zumindest 10 % höher als die der zweiten Kokssorte, insbesondere zumindest 25 % höher, insbesondere zumindest 50 % höher. Somit ist beispielsweise im Fall einer 10 % höheren Schwindung der ersten Kokssorte die Schwindung von Raumtemperatur bis 2000 °C bei der zweiten Kokssorte 1,0 Vol.-%, bei der ersten Kokssorte hingegen 1,1 Vol.-%.Preferably, the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume is at least 10% higher than that of the second coke, in particular at least 25% higher, in particular at least 50% higher. Thus, for example, in the case of a 10% higher shrinkage of the first type of coke, the shrinkage from room temperature to 2000 ° C for the second type of coke 1.0 vol .-%, in the first coke variety, however, 1.1 vol .-%.

Vorteilhafterweise ist die Schwindung und/oder Ausdehnung der ersten Kokssorte während des Carbonisierens und/oder Graphitierens und/oder Abkühlens bezogen auf das Volumen zumindest 100 % höher als die der zweiten Kokssorte, insbesondere zumindest 200 % höher, insbesondere zumindest 300 % höher. Somit ist beispielsweise im Fall einer 300 % höheren Ausdehnung der ersten Kokssorte die Ausdehnung von Raumtemperatur bis 1000 °C bei der zweiten Kokssorte 1,0 Vol.-%, bei der ersten Kokssorte hingegen 4,0 Vol.-%.Advantageously, the shrinkage and / or expansion of the first type of coke during carbonation and / or graphitization and / or cooling based on the volume at least 100% higher than that of the second coke, in particular at least 200% higher, in particular at least 300% higher. Thus, for example, in the case of a 300% higher expansion of the first type of coke, the expansion from room temperature to 1000 ° C is 1.0% by volume for the second type of coke, and 4.0% by volume for the first type of coke.

Auch der Fall, dass die erste Kokssorte eine Schwindung erfährt, die zweite Kokssorte hingegen im gleichen Temperaturintervall eine Ausdehnung, wird durch das erfindungsgemäße Verfahren erfasst. Eine um 300 % höhere Schwindung und/oder Ausdehnung umfasst somit beispielsweise auch den Fall, dass die zweite Kokssorte um 1,0 Vol.-% schwindet, die erste Kokssorte sich dagegen um 2,0 Vol.-% ausdehnt.The case that the first type of coke undergoes shrinkage, the second coke variety, however, an expansion in the same temperature interval, is detected by the inventive method. For example, a 300% higher shrinkage and / or expansion also includes the case that the second type of coke shrinks by 1.0% by volume, whereas the first type of coke expands by 2.0% by volume.

Alternativ kann in zumindest einem beliebigen Temperaturintervall des erfindungsgemäßen Verfahrens statt der ersten Kokssorte die zweite Kokssorte eine stärkere Schwindung und/oder Ausdehnung aufweisen, wie oben für die erste Kokssorte beschrieben.Alternatively, in at least one arbitrary temperature interval of the method according to the invention, instead of the first type of coke, the second type of coke may have a greater shrinkage and / or expansion, as described above for the first coke variety.

Bevorzugt wird ein erfindungsgemäßer Kathodenblock mit einem Verfahren hergestellt umfassend die Schritte Bereitstellen von Ausgangsmaterialien, umfassend Koks, Formen des Kathodenblocks, Carbonisieren und Graphitieren, sowie Abkühlen. Dabei umfasst der Koks bevorzugt zwei Kokssorten, die mit einem unterschiedlichen Volumenänderungsverhalten während des Carbonisierens und/oder Graphitierens und/oder Abkühlens zu einer Verdichtung des Kathodenblocks von über 1,68 g/cm3 führen. Vermutlich führen unterschiedliche Volumenänderungsverhalten der zwei Kokssorten dazu, dass bei einem Verdichtungsvorgang während des Carbonisierens und/oder Graphitierens und/oder Abkühlens ein Verhaken oder anderweitiges Blockieren einzelner Kokspartikel untereinander, das auf ähnliche Schwindungseigenschaften zurückgeführt wird, verhindert werden kann. Dadurch können vermutlich einzelne Partikel an für eine Verdichten günstigere Positionen wandern und somit eine höhere Packungsdichte der Kokspartikel bzw. der im weiteren Verfahren daraus entstehenden Partikel als bei herkömmlichen Herstellungsverfahren erzielt werden.Preferably, a cathode block according to the invention is produced by a process comprising the steps of providing starting materials comprising coke, forming the cathode block, carbonizing and graphitizing, and cooling. In this case, the coke preferably comprises two types of coke, with a different Volume change behavior during carbonization and / or graphitization and / or cooling lead to a densification of the cathode block of over 1.68 g / cm 3 . Presumably, different volume change behaviors of the two types of coke result in a compaction process during carbonization and / or graphitization and / or cooling that can prevent interlocking or otherwise blocking of individual coke particles due to similar shrinkage properties. As a result, individual particles can presumably migrate to positions which are more favorable for compaction, and thus a higher packing density of the coke particles or the particles resulting therefrom in the further process than in conventional production processes can be achieved.

Mit dieser Variante werden die Vorteile eines Mehrfachschichtblocks, bei dem die der Anode zugewandte Schicht ein Hartmaterial enthält, mit der Verwendung zweier Kokssorten mit unterschiedlichem Volumenänderungsverhalten kombiniert. Die geringen Unterschiede im thermischen Ausdehnungsverhalten während der Wärmebehandlungsschritte verringern Produktionszeiten und Ausschussraten der Kathodenblöcke. Des Weiteren ist daher vorteilhafterweise die Beständigkeit gegenüber thermischen Spannungen und daraus resultierenden Schädigungen in der Anwendung ebenfalls noch erhöht.With this variant, the advantages of a multi-layer block in which the layer facing the anode comprises a hard material are combined with the use of two types of coke with different volume change behavior. The small differences in thermal expansion behavior during the heat treatment steps reduce production times and reject rates of the cathode blocks. Furthermore, therefore, advantageously the resistance to thermal stresses and resulting damage in the application is also increased.

Bevorzugt ist zumindest eine der beiden Kokssorten ein Petrol- oder Steinkohlenteerpechkoks.At least one of the two types of coke is preferably a petroleum or coal tar coke.

Bevorzugt beträgt der Mengenanteil in Gewichtsprozent der zweiten Kokssorte an der Gesamtmenge an Koks zwischen 50 % und 90 %. In diesen Mengenbereichen wirkt sich das unterschiedliche Volumenänderungsverhalten der ersten und zweiten Kokssorte besonders gut auf eine Verdichtung während des Carbonisierens und/oder Graphitierens und/oder Abkühlens aus. Denkbare Mengenbereiche der zweiten Kokssorte können 50 bis 60 % sein, aber auch 60 bis 80 %, sowie 80 bis 90 %.Preferably, the weight percent of the second coke variety in the total amount of coke is between 50% and 90%. In these quantitative ranges, the different volume change behavior of the first and second types of coke has a particularly good effect on compression during carbonization and / or graphitization and / or cooling. Conceivable quantity ranges of the second type of coke can be 50 to 60%, but also 60 to 80%, and 80 to 90%.

Vorteilhaft werden dem Koks zumindest ein kohlenstoffhaltiges Material und/oder Pech und/oder Additive zugegeben. Dies kann sowohl hinsichtlich der Verarbeitbarkeit des Koks als auch der späteren Eigenschaften des hergestellten Kathodenblocks vorteilhaft sein.Advantageously, at least one carbonaceous material and / or pitch and / or additives are added to the coke. This can be both in terms of processability of the coke as well as the later properties of the produced cathode block.

Bevorzugt enthält das weitere kohlenstoffhaltige Material graphithaltiges Material; insbesondere besteht das weitere kohlenstoffhaltige Material aus graphithaltigem Material, wie etwa Graphit. Der Graphit kann synthetischer und/oder natürlicher Graphit sein. Durch derartiges weiteres kohlenstoffhaltiges Material wird erreicht, dass die notwendige Schwindung der Kathodenmasse, die durch den Koks dominiert wird, verringert wird.Preferably, the further carbonaceous material contains graphite-containing material; In particular, the further carbonaceous material is graphite-containing material, such as graphite. The graphite may be synthetic and / or natural graphite. By such further carbonaceous material is achieved that the necessary shrinkage of the cathode mass, which is dominated by the coke, is reduced.

Vorteilhaft liegt das kohlenstoffhaltige Material bezogen auf die Gesamtmenge aus Koks und kohlenstoffhaltigem Material zu 1 bis 40 Gew-.%, insbesondere zu 5 bis 30 Gew.-% vor.The carbonaceous material is advantageously 1 to 40% by weight, in particular from 5 to 30% by weight, based on the total amount of coke and carbonaceous material.

Bevorzugt kann zusätzlich zu der Menge an Koks und gegebenenfalls kohlenstoffhaltigem Material, die insgesamt 100 Gew.-% darstellt, Pech in Mengen von 5 bis 40 Gew.-%, insbesondere 15 bis 30 Gew.-% (bezogen auf 100 Gew.-% der gesamten Grünmischung) zugegeben werden. Pech wirkt als Bindemittel und dient dazu, während des Carbonisierens einen formstabilen Körper zu erzeugen.Preferably, in addition to the amount of coke and optionally carbonaceous material, which represents a total of 100 wt .-%, pitch in amounts of 5 to 40 wt .-%, in particular 15 to 30 wt .-% (based on 100 wt .-% the entire green mix). Pitch acts as a binder and serves to create a dimensionally stable body during carbonation.

Vorteilhafte Additive können Öl, wie Presshilfsöl, oder Stearinäure sein. Diese erleichtern ein Mischen des Kokses und gegebenenfalls der weiteren Komponenten.Advantageous additives may be oil, such as press liquor oil, or stearic acid. These facilitate mixing of the coke and optionally the other components.

Bevorzugt umfasst der Koks zumindest in einer der beiden Schichten, also in der ersten und/oder der zweiten Schicht, zwei Kokssorten, die mit einem unterschiedlichen Volumenänderungsverhalten während des Carbonisierens und/oder Graphitierens und/oder Abkühlens zu einer Verdichtung des entstehenden Graphits von über 1,68 g/cm3 führen. Je nach Wunsch und/oder Bedarf können somit beide Schichten oder eine der beiden Schichten erfindungsgemäß mit zwei unterschiedlichen Kokssorten hergestellt werden. Somit ergibt sich die Möglichkeit, Rohdichten und Rohdichteverhältnisse einzustellen, wie nötig oder gewünscht. Beispielsweise kann ausschließlich die erste Schicht erfindungsgemäß mit zwei Kokssorten hergestellt werden, während die zweite Schicht mit lediglich einer Kokssorte hergestellt wird, aber zusätzlich TiB2 als Hartmaterial enthält. Dadurch werden die Rohdichten und/oder Ausdehnungsverhalten der beiden Schichten angeglichen, was vorteilhafterweise die Beständigkeit der Schichtverbindung erhöhen kann.Preferably, the coke comprises at least in one of the two layers, ie in the first and / or the second layer, two types of coke with a different volume change behavior during carbonization and / or graphitization and / or cooling to a densification of the resulting graphite of more than 1 , 68 g / cm 3 lead. Depending on desire and / or requirement, both layers or one of the two layers can thus be produced according to the invention with two different types of coke. Thus, there is the possibility to adjust gross densities and raw density ratios, as necessary or desired. For example, only the first layer can be produced according to the invention with two types of coke, while the second layer is produced with only one type of coke, but additionally contains TiB 2 as hard material. As a result, the bulk densities and / or Expansion behavior of the two layers aligned, which can advantageously increase the resistance of the layer compound.

Weitere vorteilhafte Aus- und Weiterbildungen der Erfindung werden im Folgenden anhand eines bevorzugten Ausführungsbeispiels und der Figur erläutert.Further advantageous embodiments and developments of the invention will be explained below with reference to a preferred embodiment and the figure.

Dabei zeigt die einzige Figur 1 eine Korngrößenverteilung eines erfindungsgemäß eingesetzten TiB2-Pulvers: a) als Volumendichte-Verteilung q3 und b) als Volumensummenverteilung Q3.The only one shows FIG. 1 a particle size distribution of a TiB 2 powder used according to the invention: a) as a volume density distribution q 3 and b) as a volume sum distribution Q 3.

Zur Herstellung eines erfindungsgemäßen Kathodenblocks wird Koks mit Pech vermischt, mit TiB2-Pulver mit einer monomodalen Partikelgrößenverteilung und einem d50 von 15 µm, einem d90 von 30 µm und einem d10 von 5 µm gemischt. Der Span-Wert für diese Partikelgrößenverteilung beträgt 1,67. Der Gewichtsanteil an TiB2-Pulver an der Grünmasse beträgt beispielsweise 10 bis 30 Gew.-%, wie etwa 20 Gew.-%. Die Mischung wird in eine Form, die weitgehend der späteren Form der Kathodenblöcke entspricht, eingefüllt und vibrationsverdichtet oder blockgepresst. Der entstehende Grünkörper wird bis auf eine Endtemperatur in einem Bereich von 2300 bis 3000 °C, insbesondere 2500 bis 2900 °C, wie etwa 2800 °C, aufgeheizt, wobei ein Carbonisierschritt und anschließend ein Graphitierschritt erfolgen, und anschließend abgekühlt. Der entstehende Kathodenblock besitzt ein sehr gutes Benetzungsverhalten und eine sehr hohe Verschleißbeständigkeit gegenüber flüssigem Aluminium und Kryolith.To produce a cathode block according to the invention, coke is mixed with pitch, mixed with TiB 2 powder having a monomodal particle size distribution and a d 50 of 15 μm, a d 90 of 30 μm and a d 10 of 5 μm. The span value for this particle size distribution is 1.67. The weight fraction of TiB 2 powder on the green mass is for example 10 to 30 wt .-%, such as 20 wt .-%. The mixture is filled in a mold, which largely corresponds to the later form of the cathode blocks, and vibration-compressed or block-pressed. The resulting green body is heated to a final temperature in a range of 2300 to 3000 ° C, in particular 2500 to 2900 ° C, such as 2800 ° C, wherein a carbonation step and then a graphitization occur, and then cooled. The resulting cathode block has a very good wetting behavior and a very high resistance to wear compared to liquid aluminum and cryolite.

Alternativ werden statt eines einzigen Kokses zwei Kokssorten mit unterschiedlichen Volumenänderungsverhalten eingesetzt. Dieses unterschiedliche Volumenänderungsverhalten der beiden Kokse führt zu einer hohen Rohdichte des Graphits im Komposit und somit zu einer noch höheren Verschleißbeständigkeit der erhaltenen Kathodenblöcke als durch das TiB2-Pulver alleine.Alternatively, instead of a single coke, two coke varieties with different volume change behavior are used. This different volume change behavior of the two cokes leads to a high density of the graphite in the composite and thus to an even higher wear resistance of the cathode blocks obtained than by the TiB 2 powder alone.

In einer weiteren Variante wird die Form zunächst teilweise mit einer Mischung aus Koks, Graphit und TiB2 gefüllt und ggf. vibrationsvorverdichtet. Anschließend wird auf die sich ergebende Ausgangsschicht, die bei der späteren Kathode die obere Schicht darstellt, die der Anode zugewandt ist und somit direkten Kontakt mit der Aluminiumschmelze haben wird, eine Mischung aus Koks und Graphit gefüllt und wiederum verdichtet. Die sich ergebende obere Ausgangsschicht stellt bei der späteren Kathode die untere Schicht dar, die von der Anode abgewandt ist. Dieser Zweischichtstein wird wie beim ersten Ausführungsbeispiel carbonisiert und graphitiert.In a further variant, the mold is initially partially filled with a mixture of coke, graphite and TiB 2 and, if necessary, vibrationally precompressed. Subsequently, reference is made to the resulting starting layer, which at the later cathode represents the upper layer facing the anode and thus making direct contact with the molten aluminum will have a mixture of coke and graphite filled and in turn compacted. The resulting upper starting layer at the later cathode represents the lower layer facing away from the anode. This two-layer brick is carbonized and graphitized as in the first embodiment.

In einer weiteren Alternative werden als Koks der unteren Schicht zwei Kokssorten mit unterschiedlichen Volumenänderungsverhalten eingesetzt. Die Verschleißbeständigkeit des somit erhaltenen Kathodenblocks gegenüber Aluminium ist besonders hoch. Dies wird auf den geringeren Rohdichteunterschied zwischen der oberen und unteren Kathodenschicht als bei herkömmlichen TiB2-Kompositsteinen zurückgeführt.In another alternative, two types of coke with different volume change behavior are used as coke of the lower layer. The wear resistance of the thus obtained cathode block to aluminum is particularly high. This is attributed to the lower density difference between the upper and lower cathode layers than in conventional TiB 2 composite blocks.

Die Erfindung beschränkt sich nicht auf die angegebenen Beispiele, sondern kann auch in Abwandlungen ausgeführt werden, die hier nicht konkret beschrieben sind. Insbesondere werden auch andere Hartmaterialpulver außer TiB2 mit umfasst, wie etwa ZrB2, HfB2, oder andere Übergangsmetallboride.The invention is not limited to the examples given, but can also be carried out in modifications which are not specifically described here. In particular, other hard material powders other than TiB 2 are included, such as ZrB 2 , HfB 2 , or other transition metal borides.

Claims (15)

  1. Cathode block for an aluminium electrolytic cell, comprising a composite layer containing graphite and a hard material, such as TiB2, characterised in that the hard material is in a monomodal particle size distribution, d50 being between 10 and 20 µm, in particular between 12 and 18 µm, in particular between 14 and 16 µm
  2. Cathode block according to claim 1, characterised in that d90 of the hard material is between 20 and 40 µm, in particular between 25 and 30 µm
  3. Cathode block according to either claim 1 or claim 2, characterised in that d10 of the hard material is between 2 and 7 µm, in particular between 3 and 5 µm.
  4. Cathode block according to one or more of claims 1 to 3, characterised in that the span = (d90 - d10)/d50 of the particle size distribution of the hard material powder is between 0.65 and 3.80, in particular between 1.00 and 2.25.
  5. Cathode block according to one or more of claims 1 to 4, characterised in that the composite layer forms the entire cathode block
  6. Cathode block according to one or more of claims 1 to 5, characterised in that the cathode block comprises at least two layers, the composite layer forming the upper layer of the cathode block.
  7. Cathode block according to claim 6, characterised in that the cathode block has at least one additional layer which comprises less hard material powder than the upper layer, or which comprises no hard material powder.
  8. Cathode block according to either claim 6 or claim 7, characterised in that the upper layer is of a thickness which is 10 to 50 %, in particular 15 to 45 %, of the total thickness of the cathode block.
  9. Cathode block according to one or more of claims 1 to 8, characterised in that the bulk density in at least one layer of the cathode block is greater than 1.68 g/cm3 based on the proportion of carbon.
  10. Cathode block according to claim 9, characterised in that the bulk density is greater than 1.71 g/cm3.
  11. Method for producing a cathode block, in particular a cathode block according to one or more of claims 1 to 10, comprising the steps of providing starting materials, including coke and optionally another carbon-containing material, and hard material powder, such as TiB2 powder, mixing the starting materials, moulding the cathode block, carbonising and graphitising, and cooling, characterised in that hard material powder is used which has a monomodal particle size distribution and a d50 of between 10 and 20 µm, in particular between 12 and 18 µm, in particular between 14 and 16 µm
  12. Method according to claim 11, characterised in that a hard material powder is used which has a d90 of between 20 and 40 µm, in particular between 25 and 30 µm.
  13. Method according to either claim 11 or claim 12, characterised in that a hard material powder is used which has a d10 of between 2 and 7 µm, in particular between 3 and 5 µm.
  14. Method according to one or more of claims 11 to 13, characterised in that a hard material powder is used, the particle size distribution of which has a span = (d90 - d10)/d50 of between 0.65 and 3.80, in particular between 1.00 and 2.25.
  15. Method according to claim 14, characterised in that a cathode block having a bulk density of a proportion of carbon of over 1.68 g/cm3, in particular over 1.71 g/cm3, is obtained.
EP11743994.3A 2010-07-29 2011-07-29 Cathode block for an aluminium electrolysis cell and a process for the production thereof Active EP2598675B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010038669 DE102010038669A1 (en) 2010-07-29 2010-07-29 Cathode block for an aluminum electrolysis cell and a method for its production
PCT/EP2011/063082 WO2012013772A1 (en) 2010-07-29 2011-07-29 Cathode block for an aluminium electrolysis cell and a process for the production thereof

Publications (2)

Publication Number Publication Date
EP2598675A1 EP2598675A1 (en) 2013-06-05
EP2598675B1 true EP2598675B1 (en) 2017-03-08

Family

ID=44630342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11743994.3A Active EP2598675B1 (en) 2010-07-29 2011-07-29 Cathode block for an aluminium electrolysis cell and a process for the production thereof

Country Status (8)

Country Link
EP (1) EP2598675B1 (en)
JP (1) JP5714108B2 (en)
CN (1) CN103038396B (en)
CA (1) CA2805866C (en)
DE (1) DE102010038669A1 (en)
RU (1) RU2533066C2 (en)
UA (1) UA109019C2 (en)
WO (1) WO2012013772A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004014A1 (en) * 2011-02-11 2012-08-16 Sgl Carbon Se Cathode block with a covering layer containing hard material
DE102011004013A1 (en) * 2011-02-11 2012-08-16 Sgl Carbon Se Graphitized cathode block with an abrasion resistant surface
DE102012201468A1 (en) * 2012-02-01 2013-08-01 Sgl Carbon Se A method of making a cathode block for an aluminum electrolytic cell and a cathode block
DE102013202437A1 (en) * 2013-02-14 2014-08-14 Sgl Carbon Se Cathode block with a wettable and abrasion resistant surface
RU2660448C2 (en) * 2015-04-23 2018-07-06 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Electrode of aluminum electrolytic cell (options)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL129768C (en) * 1965-01-06
JPS5849483B2 (en) * 1976-04-02 1983-11-04 東洋カ−ボン株式会社 Cathode carbon block manufacturing method for aluminum electrolyzer
US4308114A (en) * 1980-07-21 1981-12-29 Aluminum Company Of America Electrolytic production of aluminum using a composite cathode
US4308115A (en) * 1980-08-15 1981-12-29 Aluminum Company Of America Method of producing aluminum using graphite cathode coated with refractory hard metal
US4376029A (en) * 1980-09-11 1983-03-08 Great Lakes Carbon Corporation Titanium diboride-graphite composits
JPS59500974A (en) * 1982-06-03 1984-05-31 グレ−ト レ−クス カ−ボン コ−ポレ−シヨン Cathode element of aluminum reduction electrolyzer
US4526669A (en) * 1982-06-03 1985-07-02 Great Lakes Carbon Corporation Cathodic component for aluminum reduction cell
US4582553A (en) * 1984-02-03 1986-04-15 Commonwealth Aluminum Corporation Process for manufacture of refractory hard metal containing plates for aluminum cell cathodes
JPH05263285A (en) * 1992-03-17 1993-10-12 Nippon Light Metal Co Ltd Electrode for electrolyzing aluminum
US5658447A (en) * 1992-12-17 1997-08-19 Comalco Aluminium Limited Electrolysis cell and method for metal production
JP3977472B2 (en) * 1997-01-23 2007-09-19 新日本テクノカーボン株式会社 Method for producing high density isotropic graphite material having low thermal expansion coefficient
DE19714433C2 (en) * 1997-04-08 2002-08-01 Celanese Ventures Gmbh Process for producing a coating with a titanium boride content of at least 80% by weight
NZ511514A (en) * 1998-11-17 2003-08-29 Alcan Int Ltd Wettable and erosion/oxidation-resistant carbon-composite materials containing a metal boride
US7462271B2 (en) * 2003-11-26 2008-12-09 Alcan International Limited Stabilizers for titanium diboride-containing cathode structures
US20050253118A1 (en) * 2004-05-17 2005-11-17 Sgl Carbon Ag Fracture resistant electrodes for a carbothermic reduction furnace
CN100491600C (en) 2006-10-18 2009-05-27 中国铝业股份有限公司 Method for preparing carbon block of cathode capable of being humidified
US8623510B2 (en) * 2006-12-22 2014-01-07 Toyo Tanso Co., Ltd. Graphite material and method for manufacturing the same
CN101158048A (en) * 2007-08-03 2008-04-09 中国铝业股份有限公司 Graphitized wetable cathode carbon block for aluminium electrolysis bath and production method thereof
RU2371523C1 (en) * 2008-06-23 2009-10-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Composite material for moistened cathode of aluminium electrolytic cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2805866C (en) 2015-07-21
RU2533066C2 (en) 2014-11-20
DE102010038669A1 (en) 2012-02-02
WO2012013772A1 (en) 2012-02-02
CA2805866A1 (en) 2012-02-02
CN103038396B (en) 2016-08-03
JP2013532773A (en) 2013-08-19
UA109019C2 (en) 2015-07-10
CN103038396A (en) 2013-04-10
EP2598675A1 (en) 2013-06-05
JP5714108B2 (en) 2015-05-07
RU2013108797A (en) 2014-09-10

Similar Documents

Publication Publication Date Title
DE1251962B (en) Cathode for an electrolytic cell for the production of aluminum and process for the production of the same
EP2598675B1 (en) Cathode block for an aluminium electrolysis cell and a process for the production thereof
EP2576870B1 (en) Carbon body, method for producing a carbon body and use thereof
WO2017080661A1 (en) Novel process for proucing graphite bodies
DE3034359A1 (en) Process for producing high-density,high-strength carbon and graphite material
WO2012107400A2 (en) Graphitized cathode block having an abrasion-proof surface
DE3506200A1 (en) CATHODE TUB FOR AN ALUMINUM ELECTROLYSIS CELL AND METHOD FOR THE PRODUCTION OF THE COMPOSITE BODIES THEREOF THE SIDE WALL
EP2598674B1 (en) Process for producing a cathode block for an aluminium electrolysis cell
EP2809833B1 (en) Method for producing a cathode block for an aluminum electrolytic cell
EP2598673B1 (en) Process for producing a cathode block for an aluminium electrolysis cell
EP2673401A2 (en) Surface-profiled graphite cathode block having an abrasion-proof surface
WO2014091023A1 (en) Side-wall block for a wall in an electrolytic cell for reducing aluminum
EP0068518B1 (en) Process for the manufacture of carbon bodies from coke without auxiliary binder
EP2956573A1 (en) Cathode block having an abrasion-resistant surface that can be wetted
AT208606B (en) Solid conductor and process for its manufacture
WO2017046376A1 (en) Cathode bottom for producing aluminum
EP3272187B1 (en) Electrode composition
DE102012218960B4 (en) Cathode comprising cathode blocks with a partially trapezoidal cross-section
DE102011001834A1 (en) Novel combined graphitized heterotyped cathode for the recovery of aluminum and its graphitized cathode barrier block
DE102016226122A1 (en) Novel cathode block
WO2014060422A2 (en) Cathode block with trapezoidal cross section
DE102012218958A1 (en) Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
DE102012218959A1 (en) Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
DE202011109452U1 (en) graphite electrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 873606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011798

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170308

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170308

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: SGL CFL CE GMBH, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65201 WIESBADEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170710

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011798

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

26N No opposition filed

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 873606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190801 AND 20190807

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: COBEX GMBH, DE

Ref country code: NO

Ref legal event code: CREP

Representative=s name: PLOUGMANN VINGTOFT, POSTBOKS 1003 SENTRUM, 0104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: TOKAI COBEX GMBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011798

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011798

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: COBEX GMBH, 65189 WIESBADEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20230615

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 13

Ref country code: GB

Payment date: 20230720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230711

Year of fee payment: 13