EP2598618B1 - Verfahren zur herstellung von synthetischem erdgas - Google Patents

Verfahren zur herstellung von synthetischem erdgas Download PDF

Info

Publication number
EP2598618B1
EP2598618B1 EP11743964.6A EP11743964A EP2598618B1 EP 2598618 B1 EP2598618 B1 EP 2598618B1 EP 11743964 A EP11743964 A EP 11743964A EP 2598618 B1 EP2598618 B1 EP 2598618B1
Authority
EP
European Patent Office
Prior art keywords
stream
reaction zone
synthesis gas
gas stream
main reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11743964.6A
Other languages
English (en)
French (fr)
Other versions
EP2598618A1 (de
Inventor
Stefan Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Global E&C Solutions Germany GmbH
Original Assignee
Air Liquide Global E&C Solutions Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Global E&C Solutions Germany GmbH filed Critical Air Liquide Global E&C Solutions Germany GmbH
Publication of EP2598618A1 publication Critical patent/EP2598618A1/de
Application granted granted Critical
Publication of EP2598618B1 publication Critical patent/EP2598618B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Definitions

  • the invention relates to a process for the production of synthetic natural gas.
  • the invention relates to a process for producing and providing synthetic natural gas at pressures suitable for direct feed into natural gas pipelines.
  • the composition of the primary gas from the coal gasification further conditioning stages, such as adsorption to remove sulfur-containing components of zinc oxide-containing adsorbents, and additional conversion stages such as shift reactors to adjust the hydrogen and CO content of the synthesis gas.
  • the purified and conditioned synthesis gas is then heated to the inlet temperature in the first methanation of about 260 ° C by heat exchange against recirculated product gas of the first methanation.
  • the reactor pressure is about 25 bar (a).
  • the product gas recirculation serves to control the Congestion due to the high exothermicity of the above reactions.
  • the first reaction stage of the methanization is followed by another methanation stage, which is operated without product gas recirculation.
  • the enriched in its methane content and thus energy content product gas of the methanation is cooled and dried and thus has a quality that is suitable for introduction or admixture in conventional natural gas pipelines.
  • the gas pressure of the SNG has to be increased to the pipeline operating pressure by means of compression in a pipeline head-end station
  • Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, keyword "Natural Gas” , Chapter 4.1.1 "Pipeline Transmission” can be up to 80 bar (a).
  • FIG. 2 A more modern process variant for the synthesis of SNG from synthesis gas is disclosed in the US patent application US 2009/0247653 A1 disclosed. This is how the local shows Fig. 2 a process in which the synthesis gas first passes through one or more methanation reactors to produce a primary methanation product gas which is subsequently cooled to separate water by condensation from the primary methanation product gas. A portion of the thus-dried primary methanation product is subsequently recycled as recycle gas before the entrance of the methanation reactors. The remaining portion of the primary methanization product gas is fed as feed to another adiabatic methanization reactor ("trim reactor").
  • trim reactor another adiabatic methanization reactor
  • the process is carried out such that there are at least two series-connected methanation primary reactors, wherein the first reactor is supplied with fresh synthesis gas feed gas and the recycle stream and the second reactor is supplied with both the product gas of the first reactor and fresh synthesis gas feed gas ,
  • a cooled and dried methanization product gas is finally obtained, the pressure of which must be increased before it is discharged into a pipeline network.
  • the EP-A-0 120 590 discloses a multi-stage methanation process for converting synthesis gas and a sulfur-containing gas into a methane-rich, pipeline-grade product gas. In this process, it is considered advantageous to carry out the methanation at high pressure to provide the pipelined final product gas without additional compression.
  • the US-A-4 124 628 discloses a six-stage methanation process in which densification occurs after the fifth stage.
  • the SNG produced by methanation is often to be fed into an existing pipeline system for transport to consumers. Due to the pressure loss that the synthesis gas suffers when passing through the methanation plant and the lower pressure level in the methanation plant compared to the pipeline pressure it is necessary to compress the methane-rich product gas after the methanation plant to pipeline pressure.
  • the present invention has for its object to provide for the production of SNG from synthesis gas on an industrial scale and the subsequent feeding of the generated SNG in a pipeline system, a method that is characterized by particular energy efficiency.
  • the methane-rich product gas after the methanization plant must be compressed by a lower pressure on the pipeline pressure due to the relaxation over the plant parts. Due to the higher pressure ratio, defined as the ratio of outlet pressure to inlet pressure of the compressor, more energy must be expended for the product compressor and for the cycle compressor together than in the inventive method.
  • the subject of the process according to the invention is that the densification of the synthesis gas to adjust the target pressure in addition to the product compression before the main reaction zone and / or before or in the post-reaction zone, instead - as in the prior art processes - only after the methanation.
  • the temperature increase due to the compression is used for the heating of the synthesis gas, which explains the energetic advantages of the process.
  • the sum of the compression energy for auxiliary, cycle and product compressors is lower with this circuit.
  • the additional compressor is arranged before or in the post-reaction zone, the utilization of the more favorable pressure ratio leads to the energetic advantages of the process according to the invention.
  • An arrangement in the post-reaction zone can take place if it comprises a plurality of reactors. In this case, the arrangement of the additional compressor before the last reactor of the post-reaction zone has proven to be particularly favorable.
  • the SNG product gas Before being introduced into the pipeline system, the SNG product gas may need to be cooled and dried, as is also provided in the prior art.
  • the setting of the target pressure is carried out by compression in front of the main reaction zone and before the synthesis gas fresh gas stream is combined with the recycle stream.
  • an additional compressor is arranged in front of the point of fusion of the synthesis gas fresh gas stream with the recycle stream. This can be followed, for example, the usually existing Feinentschwefelungseck. Since the synthesis gas fresh gas stream leaving the fine desulfurization stage is comparatively cold, part of the supplied compression energy can be advantageously used to preheat the synthesis gas fresh gas stream.
  • the cycle compressor is relieved. In this embodiment of the invention particularly large energy savings are achieved, as the following numerical examples show.
  • the product compressor can be dimensioned considerably smaller in terms of its compressor performance than in a methanization system according to the prior art.
  • adjusting the target pressure comprises compressing before or in the post-reaction zone, after withdrawing the recycle stream after the main reaction zone.
  • the additional compressor can be connected upstream of the cooler before entering the post-reaction zone; In this case, a part of the supplied compression energy is advantageously used for steam generation. It is particularly preferred, however, downstream of the cooler, since then a cooler and dryer gas can be compressed.
  • the additional compressor can also be switched directly in front of the first catalyst bed of the post-reaction zone, whereby, as in the above case, part of the supplied compression energy can be used to preheat the gas stream entering the post-reaction zone.
  • An arrangement of the additional compressor in the post-reaction zone is possible if it comprises several reactors. In this case, the arrangement of the additional compressor before the last reactor of the post-reaction zone has proven to be particularly favorable.
  • a preferred embodiment of the invention provides that the heating of the main reaction zone supplied synthesis gas feed stream is carried out in indirect heat exchange against a hot process own or foreign process fluid flow. Particular preference is given to heating the synthesis gas feed stream fed to the main reaction zone in indirect heat exchange with the recycle stream.
  • the heat integration obtained in this way contributes to the energy efficiency of the method according to the invention.
  • the addition of the recycle stream to the syngas fresh gas stream also serves to control the exotherm in the main reaction zone.
  • the dilution of the syngas fresh gas stream and the consequent reduction in the concentration of carbon oxides in the syngas feed stream reduces the risk of carbon deposits forming in the main reaction zone catalyst beds as well as at the catalyst bed exit.
  • Preferred embodiments of the invention provide that the reaction of the synthesis gas feed stream to a methane-rich intermediate gas stream occurs in the main reaction zone at temperatures between 200 and 700 ° C and at pressures between 15 and 120 bar (a) such that further reaction of the intermediate Gas stream to a methane-rich product gas stream in the post-reaction zone at temperatures between 150 and 500 ° C and at pressures between 30 and 120 bar (a), and reacting the synthesis gas feed stream in the main reaction zone and / or the intermediate gas stream in the post-reaction zone by means of methanation catalysts on nickel, iron or precious metal base.
  • nickel catalysts for the methanation of carbon oxides with hydrogen is known per se and is used industrially, so that a large number of suitable catalysts is commercially available.
  • the molar ratio of hydrogen to carbon monoxide in the synthesis gas fresh gas stream is between 0.4 and 5.0 mol / mol. Considering the stoichiometry of the reactions discussed above For the formation of methane by hydrogenation of carbon oxides, these molar ratios have been found to be particularly suitable.
  • An advantageous embodiment of the method according to the invention provides that the main reaction zone comprises at least two catalyst beds, and that a portion of the synthesis gas fresh gas stream is passed before entering the second catalyst bed of the main reaction zone.
  • This measure which is known per se, contributes significantly to distributing the high exothermicity of the methanation reaction more uniformly over both catalyst beds, so that a thermal overload of the first catalyst bed, which leads to accelerated deactivation of the catalyst used there, is avoided.
  • the target pressure in the process according to the invention is preferably between 30 and 120 bar (a), more preferably between 30 and 90 bar (a). This corresponds to the usual working pressure in natural gas pipelines.
  • the process according to the invention can be used for the processing of synthesis gas produced by gasification of coal.
  • the coal gasification is followed by the following, known to those skilled in the process steps for conditioning the synthesis gas: A partial conversion of the CO to hydrogen to adjust the required H 2 / CO ratio (CO shift), and a removal of acidic gas components, eg. Example by washing with cold methanol by the Rectisol® process in which sulfur compounds are almost completely and carbon dioxide partially removed.
  • the inventive method can also for the processing of synthesis gas from other sources, eg. B. from natural gas or by gasification of biomass or liquid, hydrocarbon-containing starting materials synthesis gas can be used.
  • the methanization plant in each case adjoins a coal gasification plant, not shown in the figure, in which the synthesis gas intended for the conversion to SNG is produced in a manner known per se from feed coal and conditioned for use in the methanation plant ,
  • Fig. 1 shows a methanation plant 100 according to the prior art.
  • synthesis gas produced and subsequently conditioned in the coal gasification plant is first supplied to a fine desulfurization 102 in order to remove last traces of sulfur compounds from the synthesis gas fresh gas stream.
  • a portion of the synthesis gas fresh gas stream is withdrawn via line 107 and fed to the second catalyst bed of the main methanation reaction zone.
  • the fine-desulfurized synthesis gas fresh gas stream is fed via line 118, a recycle stream containing already partially converted to methane synthesis gas.
  • a synthesis gas feed stream is obtained, which is fed via line 103 to a heat exchanger 104, in which the syngas feed stream in indirect heat exchange against the brought via line 115, 116 and 118, hot recycle stream to temperatures between 220 and 350 ° C. is heated.
  • the recycle stream is conveyed via the cycle compressor 117 and compressed to the methanation pressure of 20 to 50 bar (a).
  • the preheated synthesis gas feed stream is fed via line 105 to the main reaction zone, which consists of two methanation catalyst-containing reactors 106 and 111. These are adiabatic fixed bed reactors, which are characterized by their constructive simplicity. However, the use of reactors of a different design and with different temperature control would also be conceivable.
  • the reactor 106 a partial conversion of the carbon oxides with hydrogen takes place on a commercial methanation catalyst based on nickel at temperatures of 220 to 700 ° C and pressures between 20 and 50 bar (a).
  • the space velocity is between 2000 and 40,000 h -1 , the H 2 / CO ratio is between 2.5 and 4.0 mol / mol.
  • the partially converted intermediate product gas stream leaving the reactor 106 is fed via line 108 to a heat exchanger 109 in which it is cooled to temperatures of 220 and 350 ° C.
  • the cooled intermediate product gas stream is fed to the second reactor 111 of the main reaction zone, where further conversion of the carbon oxides with hydrogen to methane takes place.
  • the intermediate gas stream in line 110 is admixed with the partial gas stream introduced via line 107, whereby additional cooling is effected and the concentration of carbon oxides and hydrogen is increased.
  • reactor 111 a further partial conversion of the carbon oxides takes place with hydrogen, the reaction conditions being comparable to those in reactor 106.
  • the further partially converted intermediate product gas stream leaving the reactor 111 is fed to a cooler 113, in which it is cooled to temperatures of 180 ° and 350 ° C.
  • the heat dissipated in the heat exchangers 109, 113 and 119 is used to generate steam in the steam generating plant 130.
  • the partially reacted intermediate gas stream is removed from the main reaction zone of the methanation plant 100. From it, a partial stream is withdrawn via line 115 as a recycle stream and fed to the first reactor 106.
  • the partially reacted intermediate gas stream is cooled in the heat exchanger 119 to temperatures between 40 to 350 ° C and fed via line 120 to the reactor 121, which represents the only methanization of the post-reaction in the present embodiment.
  • the reactor 121 In the adiabatic or isothermal reactor 121, a further conversion of the carbon oxides with hydrogen to methane takes place on a commercial methanation catalyst nickel based at temperatures of 180 to 370 ° C and pressures between 20 and 50 bar (a).
  • the space velocity is between 2000 and 40,000 h -1 .
  • the reactor 121 via line 122 leaving, methane-rich product gas stream is cooled in cooler 123 to temperatures of 20 to 120 ° C and in an in Fig. 1 dried drying system not shown.
  • the cooled and dried product gas stream is fed to the product compressor 125, in which the product gas stream is compressed to the pipeline inlet pressure of 30 to 120 bar (a).
  • the compressed product gas stream is fed to the pipeline, not shown in the figure.
  • Fig. 2 shows a Methanmaschinesstrom 200 according to the invention according to a first embodiment.
  • the system parts marked with the reference symbols 20x or 2xx correspond to those in FIG Fig. 1 according to the prior art, which have been designated there by 10x or 1xx, in terms of their nature, design, function and operating conditions, unless otherwise stated.
  • the synthesis gas fresh gas stream is compressed before entry into the fine desulfurization 202 to a pressure of 40 to 120 bar (a) by means of additional compressor 227.
  • partial conversion of the carbon oxides with hydrogen takes place on a nickel-based methanation catalyst at temperatures of 200 to 700 ° C. and pressures between 40 and 120 bar (a).
  • the H 2 / CO ratio is between 0.4 and 5.0 mol / mol.
  • further conversion of the carbon oxides with hydrogen to methane takes place on a nickel-based methanation catalyst at temperatures of 150 to 500 ° C. and pressures between 40 and 120 bar (a).
  • the methane-rich product gas stream leaving the reactor 221 via line 222 is cooled in cooler 223 to temperatures of 20 to 120 ° C. and poured into an in Fig. 2 dried drying system not shown.
  • the cooled and dried product gas stream is first supplied to the product compressor 225 and finally via line 226 of the pipeline not shown in the figure.
  • Fig. 3 shows a Methanmaschinesstrom 300 according to the invention according to a further embodiment. Again, each correspond to the reference numerals 30x or 3xx marked system parts with those of Fig. 1 according to the prior art, which have been designated there by 10x or 1xx, in terms of their nature, design, function and operating conditions, unless otherwise stated.
  • the compression of the partially reacted intermediate gas stream takes place before entering the post-reaction zone by means of additional compressor 327 to a pressure of 40 to 120 bar (a).
  • additional compressor 327 to a pressure of 40 to 120 bar (a).
  • partial conversion of the carbon oxides with hydrogen takes place on a nickel-based methanation catalyst at temperatures of 200 to 700 ° C. and pressures between 20 and 75 bar (a).
  • the H 2 / CO ratio is between 0.4 and 5.0 mol / mol.
  • further conversion of the carbon oxides with hydrogen to methane takes place on a nickel-based methanation catalyst at temperatures of 150 to 500 ° C. and pressures between 40 and 120 bar (a).
  • the methane-rich product gas stream leaving the reactor 321 via line 322 is cooled in cooler 323 to temperatures of 20 to 120 ° C. and placed in an in Fig. 3 dried drying system not shown.
  • the cooled and dried product gas stream is first supplied to the product compressor 325 and finally via line 326 of the pipeline not shown in the figure.
  • the methane-rich product gas has the following composition at an outlet pressure of 80.0 bara for the three operating cases: case Compaction of the SNG product stream (prior art, Fig. 1 , Appendix 100) Compression before the post-reaction zone (invention, Fig. 3 , Appendix 300) Compaction before the main reaction zone (invention, Fig.
  • the invention provides a process for the production of synthetic natural gas (SNG) and its provision at pipeline operating pressure which is distinguished by its high energy efficiency compared to the processes known in the prior art.
  • This advantage is achieved essentially by the use of a Zusazuverêtrs at a suitable point in the process, accompanied by an adjustment of the process parameters.
  • the advantages of the methods known in the prior art with respect to their robustness and high availability of operation of the system according to the invention continue to exist.

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft ein Verfahren zur Herstellung von synthetischem Erdgas. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung und Bereitstellung von synthetischem Erdgas bei Drücken, die sich für die direkte Einspeisung in Erdgaspipelines eignen.
  • Stand der Technik
  • Infolge der Zweifel an der Verfügbarkeit von und der Versorgung mit Erdgas in den 1970er Jahren wurden beträchtliche Anstrengungen unternommen, synthetisches Erdgas (substitute natural gas, SNG) ausgehend von den großen bekannten Kohlevorräten zu erzeugen. Dies wurde insbesondere überall dort diskutiert, wo es einen großen lokalen Bedarf an Erdgas als bedeutendem Primärenergieträger gab und gleichzeitig beträchtliche Kohlevorkommen vor Ort verfügbar waren. Hauptbestandteil des SNG ist dabei - wie auch beim Erdgas - das Methan. Da für kohlebasierte Anlagen zur Erzeugung von SNG eine vergleichsweise hohe Investition erforderlich ist, und nachfolgend große neue Erdgasvorkommen entdeckt wurden, die auf eine langzeitige Versorgung mit preiswertem Erdgas hoffen ließen, ließ allerdings das Interesse an der industriellen Erzeugung von SNG in der Folgezeit zunächst wieder nach.
  • Da sich die Situation dahingehend verändert hat, dass auch das Ende der bislang bekannten Erdgasreserven abzusehen ist, nimmt in jüngster Vergangenheit das Interesse an der Methanisierung als alternativer Quelle für Erdgas-Ersatzgas wieder zu. Zudem bietet die Technologie eine Möglichkeit, große und entlegene Kohlevorkommen effizienter zu nutzen. Auch aus geopolitischen Überlegungen besteht der Wunsch, größere Unabhängigkeit von den vergleichsweise wenigen, großen Erdgasvorkommen zu erzielen. Die Erzeugung von SNG im industriellen Maßstab findet daher wieder verstärktes Interesse. Von besonderem Vorteil ist es dabei, dass die für die Versorgung mit Erdgas errichtete Infrastruktur, beispielsweise bereits bestehende Pipelinesysteme, praktisch unverändert weiter benutzt werden kann.
  • Wie in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, Stichwort "Gas Production" ausgeführt wird, geht das Prinzip der katalytischen Methansynthese durch Hydrierung von Kohlenmonoxid (CO) mit Wasserstoff (H2) zurück auf Arbeiten von Sabatier und Senderens aus dem Jahr 1902. Die Reaktion kann durch folgende Reaktionsgleichung beschrieben werden:

            CO + 3 H2 = CH4 + H2O

  • Auch Kohlendioxid kann zu Methan umgesetzt werden gemäß der Gleichung

            CO2 + 4 H2 = CH4 + 2 H2O

  • Beide Reaktionen werden über die CO-Konvertierungsreaktion (CO-Shift) miteinander verbunden, die in Gegenwart aktiver Katalysatoren immer simultan abläuft:

            CO + H2O = CO2 + H2

  • Beide genannten Reaktionen für die Methanbildung verlaufen stark exotherm und mit Volumenabnahme. Die Bildung von Methan in hoher Ausbeute nach den obigen Reaktionen ist daher bei tiefen Temperaturen sowie hohen Drücken begünstigt. Zur Erreichung akzeptabler Reaktionsgeschwindigkeiten ist dann der Einsatz geeigneter Katalysatoren erforderlich. Es kommen daher Katalysatoren zum Einsatz, die auf Nickel als aktiver Metallkomponente basieren. Die Anwesenheit von Katalysatorgiften, wie sie beispielsweise schwefelhaltige Komponenten darstellen, muss dabei sorgfältig vermieden werden, da die Desaktivierung der eingesetzten Katalysatoren primär von der Anwesenheit solcher Katalysatorgifte abhängt. Typische Methanisierungskatalysatoren auf Nickelbasis arbeiten bei Temperaturen von 300 bis 700 °C; dabei kommen beispielsweise Katalysatoren mit hohem Nickelgehalt auf speziellen Aluminiumoxid-Trägermaterialien zum Einsatz, die durch Dotierung mit Zirconiumoxid stabilisiert wurden.
  • Technische Verfahren zur Herstellung von SNG im industriellen Maßstab, ausgehend von kohlenmonoxid- und wasserstoffhaltigem Synthesegas, sind der Fachwelt seit langer Zeit bekannt. So lehrt die US-Patentschrift US 4005996 A ein Verfahren zur Erhöhung des Energieinhalts eines durch Vergasung von Kohle gewonnenen Synthesegasstroms. Das Verfahren beinhaltet die katalytische Methanisierung von Kohlenoxiden mit Wasserstoff mittels hochaktiver Nickelkatalysatoren, wobei in mehreren Reaktionsstufen ein Methan und Wasserdampf enthaltendes Gasgemisch erzeugt wird. Das Synthesegasprodukt der Kohlevergasung wird zunächst durch Gaswäsche mit geeigneten Absorptionsmitteln, beispielsweise Methanol oder aminhaltigen Absorbentien, von Katalysatorgiften und anderen Verunreinigungen sowie von einem Teil des enthaltenen Kohlendioxids befreit. Je nach Zusammensetzung des Primärgases aus der Kohlevergasung werden noch weitere Konditionierungsstufen, beispielsweise Adsorptionsstufen zur Entfernung schwefelhaltiger Komponenten an zinkoxidhaltigen Adsorbentien, und zusätzliche Umwandlungsstufen wie Shift-Reaktoren zur Einstellung des Wasserstoff- und CO-Gehaltes des Synthesegases durchlaufen. Das gereinigte und konditionierte Synthesegas wird dann auf die Eintrittstemperatur in den ersten Methanisierungsreaktor von rund 260 °C durch Wärmetausch gegen zurückgeführtes Produktgas der ersten Methanisierungsstufe aufgeheizt. Der Reaktordruck beträgt dabei ca. 25 bar(a). Durch die Beimischung des Rückführgases zum frischen Einsatzgas der Methanisierung wird zudem die Gaszusammensetzung vorteilhaft in der Weise verändert, dass es im Katalysatorbett und am Reaktoraustritt der Methanisierung nicht mehr zur Abscheidung von festem Kohlenstoff kommt. Zudem dient die Produktgasrückführung zur Beherrschung der Wärmetönung aufgrund der hohen Exothermie der oben genannten Reaktionen. An die erste Reaktionsstufe der Methanisierung schließt sich eine weitere Methanisierungsstufe an, die ohne Produktgasrückführung betrieben wird. Das bezüglich seines Methangehalts und somit Energieinhalts angereicherte Produktgas der Methanisierung wird abgekühlt und getrocknet und besitzt somit eine Qualität, die sich zur Einleitung bzw. Zumischung in konventionelle Erdgaspipelines eignet. Für die Einleitung in eine Erdgaspipeline muss der Gasdruck des SNG mittels Verdichtung in einer Pipeline-Kopfstation auf den Pipeline-Betriebsdruck erhöht werden, der laut Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, Stichwort "Natural Gas", Kapitel 4.1.1 "Pipeline Transmission" bis zu 80 bar(a) betragen kann.
  • Eine modernere Verfahrensvariante zur SNG-Gewinnung aus Synthesegas wird in der US-Patentanmeldung US 2009/0247653 A1 offenbart. So zeigt die dortige Fig. 2 ein Verfahren, bei der das Synthesegas zunächst einen oder mehrere Methanisierungsreaktoren durchläuft, wobei ein primäres Methanisierungsproduktgas erzeugt wird, das nachfolgend abgekühlt wird, um Wasser durch Kondensation aus dem primären Methanisierungsproduktgas abzutrennen. Ein Teil des auf diese Weise getrockneten Methanisierungs-Primärproduktes wird nachfolgend als Rückführgas vor den Eingang der Methanisierungsreaktoren zurückgeführt. Der verbleibende Teil des primären Methanisierungsproduktgases wird als Einsatz einem weiteren adiabaten Methanisierungsreaktor ("Trim-Reaktor") zugeführt. Bevorzugt wird das Verfahren so durchgeführt, dass mindestens zwei hintereinandergeschaltete Methanisierungs-Primärreaktoren vorhanden sind, wobei der erste Reaktor mit frischem Synthesegas-Einsatzgas und dem Rückführstrom beaufschlagt wird, und dem zweiten Reaktor sowohl das Produktgas des ersten Reaktors als auch frisches Synthesegas-Einsatzgas zugeführt wird. Auch bei diesem Verfahren wird schließlich ein abgekühltes und getrocknetes Methanisierungsproduktgas erhalten, dessen Druck vor seiner Abgabe in ein Pipelinenetz erhöht werden muss.
  • Die EP-A-0 120 590 offenbart ein mehrstufiges Methanisierungsverfahren zur Umsetzung von Synthesegas und einem schwefelhaltigem Gas in ein methanreiches, Pipelinequalität aufweisendes Produktgas. Bei diesem Verfahren wird als vorteilhaft beschrieben, die Methanisierung bei hohem Druck durchzuführen, um das Endproduktgas mit Pipelinespezifikation ohne zusätzliche Kompression bereitzustellen.
  • Aus der US-A-3 928 000 ist ein Verfahren zur Herstellung eines methanreichen Gases durch Partialoxidation eines schwefelhaltigen Kohlenwasserstoff-Brennstoffs in einem Synthesegasgenerator bekannt, bei dem die Methanisierung des Synthesegases an einem schwefelresistenten Methanisierungskatalysator bei dem durch den Synthesegasgenerator bereitgestellten Druck erfolgt, wodurch kostspielige Kompressoren eingespart werden.
  • Die US-A-4 124 628 offenbart ein sechsstufiges Methanisierungsverfahren, bei dem eine Verdichtung nach der fünften Stufe erfolgt.
  • Das mittels Methanisierung hergestellte SNG soll zwecks Transport zu Verbrauchern oft in ein bestehendes Pipelinesystem eingespeist werden. Bedingt durch den Druckverlust, den das Synthesegas bei Durchlaufen der Methanisierungsanlage erleidet, sowie das im Vergleich zum Pipelinedruck niedrigere Druckniveau in der Methanisierungsanlage ist es erforderlich, das methanreiche Produktgas nach der Methanisierungsanlage auf Pipelinedruck zu verdichten. In der Broschüre "From solid fuels to substitute natural gas (SNG) using TREMP™", erhältlich im Internet unter der Webadresse www.topsoe.com, wird darauf hingewiesen, dass es häufig notwendig ist, das erzeugte SNG vor seiner Einspeisung in ein Pipelinesystem im Druck zu erhöhen. Ferner wird ausgeführt, dass die Druckerhöhung nach der Herstellung und Trocknung des erzeugten SNG erfolgt, also direkt vor seiner Einspeisung in die Pipeline.
  • Beschreibung der Erfindung
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, für die Herstellung von SNG aus Synthesegas im industriellen Maßstab und die nachfolgende Einspeisung des erzeugten SNG in ein Pipelinesystem ein Verfahren zur Verfügung zu stellen, dass sich durch besondere Energieeffizienz auszeichnet.
  • Die Lösung der erfindungsgemäßen Aufgabe ergibt sich im Wesentlichen aus den kennzeichnenden Merkmalen des Anspruchs 1 in Zusammenwirken mit den Merkmalen des Oberbegriffs. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Bei den im Stand der Technik bekannten Verfahren zur Herstellung von SNG und seiner Einspeisung in ein Pipelinesystem erfolgt die Anpassung des Zieldrucks des Produktgases der Methanisierung, also in der Regel des Pipelinedrucks, nach der letzten Reaktionsstufe, sowie nach Abkühlung und Trocknung des Produktgases.
  • Überraschenderweise wurde nun gefunden, dass erhebliche Energieeinsparungen erreicht werden können, wenn die Einstellung des Zieldruckes auch bereits vor der Hauptreaktionszone und/oder vor oder in der Nachreaktionszone mittels Verdichtung durch einen Zusatzverdichter erfolgt. Dies ist insofern nicht naheliegend, als sich der dort einzustellende Druck als Summe aus dem Zieldruck und dem Druckverlust über die gesamte bzw. die restliche Methanisierungsanlage ergibt. Letzterer ist a priori nicht bekannt; der Fachmann vermeidet es daher, einen Zieldruck stromaufwärts einzustellen, wenn noch Druckverlust erzeugende Anlagenteile zwischengeschaltet sind, sondern bevorzugt die Einstellung des Zieldruckes möglichst nahe am Übergabepunkt (hier am Eintritt in die Pipeline).
  • Bei einem Methanisierungsverfahren gemäß Stand der Technik muss aufgrund der Entspannung über die Anlagenteile das methanreiche Produktgas nach der Methanisierungsanlage von einem geringeren Druck auf den Pipelinedruck komprimiert werden. Durch das höhere Druckverhältnis, definiert als Verhältnis aus Austrittsdruck zu Eintrittsdruck des Verdichters, muss mehr Energie für den Produktverdichter und für den Kreislaufverdichter zusammen aufgewandt werden als bei dem erfindungsgemäßem Verfahren.
  • Gegenstand des erfindungsgemäßen Verfahrens ist es, dass das Verdichten des Synthesegases zur Einstellung des Zieldruckes zusätzlich zur Produktverdichtung vor der Hauptreaktionszone und/oder vor oder in der Nachreaktionszone erfolgt, anstatt - wie bei den Verfahren im Stand der Technik - ausschließlich erst nach der Methanisierungsanlage. Hierdurch wird die Temperaturerhöhung in Folge der Kompression für das Aufheizen des Synthesegases genutzt, wodurch sich die energetischen Vorteile des Verfahrens erklären. Zudem ist vorteilhaft, dass bei dem erfindungsgemäßen Verfahren im Zusatzverdichter ein kälteres Synthesegas im Vergleich zum Kreislaufverdichter komprimiert wird, und dass sich ein günstigeres Druckverhältnis sowohl für den Kreislaufverdichter als auch für den Zusatzverdichter ergibt. Diese Vorteile wiegen den anscheinenden Nachteil auf, dass ein größerer Stoffmengenstrom komprimiert wird. Das Ergebnis ist, dass die Summe der Kompressionsenergie für Zusatz-, Kreislauf- und Produktverdichter mit dieser Schaltung geringer ist. Wird der Zusatzverdichter vor oder in der Nachreaktionszone angeordnet, führt die Ausnutzung des günstigeren Druckverhältnisses zu den energetischen Vorteilen des erfindungsgemäßen Verfahrens. Eine Anordnung in der Nachreaktionszone kann dann erfolgen, wenn diese mehrere Reaktoren umfasst. Als besonders günstig hat sich in diesem Fall die Anordnung des Zusatzverdichters vor dem letzten Reaktor der Nachreaktionszone erwiesen. Vor dem Einleiten in das Pipelinesystem ist das SNG-Produktgas ggf. einer Abkühlung und Trocknung zuzuführen, wie es auch im Stand der Technik vorgesehen ist.
  • Bevorzugte Ausgestaltungen der Erfindung
  • Besonders bevorzugt erfolgt das Einstellen des Zieldrucks durch Verdichten vor der Hauptreaktionszone und vor dem Zusammenführen des Synthesegas-Frischgasstroms mit dem Rückführstrom. Hierzu wird vor dem Vereinigungspunkt des Synthesegas-Frischgasstroms mit dem Rückführstrom ein Zusatzverdichter angeordnet. Dieser kann beispielsweise der üblicherweise vorhandenen Feinentschwefelungsstufe nachgeschaltet werden. Da der die Feinentschwefelungsstufe verlassende Synthesegas-Frischgasstroms vergleichsweise kalt ist, kann ein Teil der zugeführten Kompressionsenergie vorteilhaft zur Vorwärmung des Synthesegas-Frischgasstroms verwendet werden. Zudem wird der Kreislaufverdichter entlastet. Bei dieser Ausgestaltung der Erfindung werden besonders große Energieeinsparungen erzielt, wie die nachfolgenden Zahlenbeispiele zeigen. Der Produktverdichter kann bezüglich seiner Verdichterleistung erheblich kleiner dimensioniert werden als bei einer Methanisierungsanlage gemäß Stand der Technik.
  • In einer weiteren, bevorzugten Ausgestaltung umfasst das Einstellen des Zieldrucks das Verdichten vor oder in der Nachreaktionszone, und zwar nach dem Abziehen des Rückführstroms nach der Hauptreaktionszone. Der Zusatzverdichter kann dabei dem Kühler vor Eintritt in die Nachreaktionszone vorgeschaltet werden; in diesem Fall wird ein Teil der zugeführten Kompressionsenergie vorteilhaft zur Dampferzeugung genutzt. Besonders bevorzugt wird er jedoch dem Kühler nachgeschaltet, da dann ein kühleres und trockeneres Gas verdichtet werden kann. Alternativ kann der Zusatzverdichter auch direkt vor das erste Katalysatorbett der Nachreaktionszone geschaltet werden, wodurch wie im obigen Fall ein Teil der zugeführten Kompressionsenergie zur Vorwärmung des in die Nachreaktionszone eintretenden Gasstroms genutzt werden kann. Auch eine Anordnung des Zusatzverdichters in der Nachreaktionszone ist möglich, wenn diese mehrere Reaktoren umfasst. Als besonders günstig hat sich in diesem Fall die Anordnung des Zusatzverdichters vor dem letzten Reaktor der Nachreaktionszone erwiesen.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass das Aufheizen des der Hauptreaktionszone zugeführten Synthesegas-Einsatzstroms im indirekten Wärmetausch gegen einen heißen verfahrenseigenen oder verfahrensfremden Fluidstrom erfolgt. Besonders bevorzugt erfolgt dabei das Aufheizen des der Hauptreaktionszone zugeführten Synthesegas-Einsatzstroms im indirekten Wärmetausch gegen den Rückführstrom. Die auf diese Weise erhaltene Wärmeintegration trägt zur Energieeffizienz des erfindungsgemäßen Verfahrens bei.
  • Die Zumischung des Rückführstroms zum Synthesegas-Frischgasstrom dient ferner der Beherrschung der Exothermie in der Hauptreaktionszone. Die Verdünnung des Synthesegas-Frischgasstroms und die dadurch erreichte Herabsetzung der Konzentration an Kohlenoxiden im Synthesegas-Einsatzstrom verringert die Gefahr zur Bildung von Kohlenstoffablagerungen in den Katalysatorbetten der Hauptreaktionszone, sowie an den Ausgängen aus den Katalysatorbetten.
  • Bevorzugte Ausgestaltungen der Erfindung sehen vor, dass das Umsetzen des Synthesegas-Einsatzstroms zu einem methanreichen Zwischenprodukt-Gasstrom in der Hauptreaktionszone bei Temperaturen zwischen 200 und 700 °C und bei Drücken zwischen 15 und 120 bar(a) erfolgt, dass das weitere Umsetzen des Zwischenprodukt-Gasstroms zu einem methanreichen Produktgasstrom in der Nachreaktionszone bei Temperaturen zwischen 150 und 500 °C und bei Drücken zwischen 30 und 120 bar(a) erfolgt und dass das Umsetzen des Synthesegas-Einsatzstroms in der Hauptreaktionszone und/oder des Zwischenprodukt-Gasstroms in der Nachreaktionszone mittels Methanisierungskatalysatoren auf Nickel-, Eisen- oder Edelmetallbasis erfolgt. Die Verwendung insbesondere von Nickelkatalysatoren zur Methanisierung von Kohlenoxiden mit Wasserstoff ist an sich bekannt und wird industriell eingesetzt, so dass eine Vielzahl geeigneter Katalysatoren kommerziell zur Verfügung steht.
  • Gemäß einer bevorzugten Ausgestaltungsform der Erfindung beträgt das Stoffmengenverhältnis von Wasserstoff zu Kohlenmonoxid im Synthesegas-Frischgasstrom zwischen 0,4 und 5,0 mol/mol. In Anbetracht der Stöchiometrie der oben diskutierten Reaktionen zur Bildung von Methan durch Hydrierung der Kohlenoxide haben sich diese Stoffmengenverhältnisse als besonders geeignet erwiesen.
  • Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass die Hauptreaktionszone mindestens zwei Katalysatorbetten umfaßt, und dass ein Teil des Synthesegas-Frischgasstroms vor den Eintritt in das zweite Katalysatorbett der Hauptreaktionszone geführt wird. Diese an sich bekannte Maßnahme trägt erheblich dazu bei, die hohe Exothermie der Methanisierungsreaktion gleichmäßiger auf beide Katalysatorbetten zu verteilen, so dass eine thermische Überlastung des ersten Katalysatorbetts, die zu beschleunigter Desaktivierung des dort eingesetzten Katalysators führt, vermieden wird.
  • Bevorzugt beträgt der Zieldruck bei dem erfindungsgemäßen Verfahren zwischen 30 und 120 bar(a), besonders bevorzugt zwischen 30 und 90 bar(a). Dies entspricht dem in Erdgaspipelines üblichen Arbeitsdruck.
  • In Weiterbildung der Erfindung kann das erfindungsgemäße Verfahren zur Verarbeitung von Synthesegas eingesetzt werden, dass durch Vergasung von Kohle erzeugt wurde. Der Kohlevergasung schließen sich folgende, dem Fachmann an sich bekannte Verfahrensschritte zur Konditionierung des Synthesegases an: Eine teilweise Konvertierung des CO zu Wasserstoff zur Einstellung des benötigten H2/CO-Verhältnisses (CO-Shift), sowie eine Entfernung acider Gasbestandteile, z. B. durch Wäsche mit kaltem Methanol nach dem Rectisol®-Verfahren, bei dem Schwefelverbindungen fast vollständig und Kohlendioxid teilweise entfernt werden. Das erfindungsgemäße Verfahren kann aber auch zur Verarbeitung von Synthesegas aus anderen Quellen, z. B. aus Erdgas oder durch Vergasung von Biomasse oder flüssigen, kohlenwasserstoffhaltigen Einsatzstoffen erhaltenes Synthesegas eingesetzt werden.
  • Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und den Zeichnungen. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination die Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
  • Es zeigen
  • Fig. 1
    eine Methanisierungsanlage nach dem Stand der Technik,
    Fig. 2
    eine erfindungsgemäße Methanisierungsanlage gemäß einer ersten Ausgestaltungsform,
    Fig. 3
    eine erfindungsgemäße Methanisierungsanlage gemäß einer weiteren Ausgestaltungsform.
  • In den in den Figuren dargestellten Ausführungsbeispielen schließt sich die Methanisierungsanlage jeweils einer in der Figur nicht dargestellten Anlage zur Kohlevergasung an, in der das für die Umsetzung zu SNG bestimmte Synthesegas in an sich bekannter Weise aus Einsatzkohle erzeugt und für den Einsatz in der Methanisierungsanlage konditioniert wird.
  • Fig. 1 zeigt eine Methanisierungsanlage 100 nach dem Stand der Technik. Über Leitung 101 wird in der Kohlevergasungsanlage erzeugtes und nachfolgend konditioniertes Synthesegas zunächst einer Feinentschwefelung 102 zugeführt, um letzte Spuren an Schwefelverbindungen aus dem Synthesegas-Frischgasstrom zu entfernen. Nach Passieren der Feinentschwefelung 102 wird ein Teil des Synthesegas-Frischgasstroms über Leitung 107 entnommen und vor das zweite Katalysatorbett der Methanisierungs-Hauptreaktionszone geführt. Ferner wird dem feinentschwefelten Synthesegas-Frischgasstrom über Leitung 118 ein Rückführstrom zugeführt, der bereits zu Methan teilumgesetztes Synthesegas enthält. Auf diese Weise wird ein Synthesegas-Einsatzstrom erhalten, der über Leitung 103 einem Wärmetauscher 104 zugeführt wird, in dem der Synthesegas-Einsatzstrom im indirekten Wärmetausch gegen den über Leitung 115, 116 und 118 herangeführten, heißen Rückführstrom auf Temperaturen zwischen 220 und 350 °C aufgeheizt wird. Der Rückführstrom wird über den Kreislaufverdichter 117 gefördert und auf den Methanisierungsdruck von 20 bis 50 bar(a) verdichtet.
  • Der vorgewärmte Synthesegas-Einsatzstrom wird über Leitung 105 der Hauptreaktionszone zugeführt, die aus zwei Methanisierungskatalysator enthaltenden Reaktoren 106 und 111 besteht. Es handelt sich dabei um adiabate Festbettreaktoren, die sich durch ihre konstruktive Einfachheit auszeichnen. Der Einsatz von Reaktoren anderer Bauform und mit anderer Temperaturführung wäre aber ebenfalls denkbar. Im Reaktor 106 erfolgt ein Teilumsatz der Kohlenoxide mit Wasserstoff an einem kommerziellen Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 220 bis 700 °C und Drücken zwischen 20 und 50 bar(a). Die Raumgeschwindigkeit beträgt zwischen 2000 und 40000 h-1, das H2/CO-Verhältnis liegt zwischen 2,5 und 4,0 mol/mol. Der den Reaktor 106 verlassende, teilumgesetzte Zwischenprodukt-Gasstrom wird über Leitung 108 einem Wärmetauscher 109 zugeführt, in dem er auf Temperaturen von 220 und 350°C abgekühlt wird. Über Leitung 110 wird der abgekühlte Zwischenprodukt-Gasstrom dem zweiten Reaktor 111 der Hauptreaktionszone zugeführt, wo ein weiterer Umsatz der Kohlenoxide mit Wasserstoff zu Methan erfolgt. Zuvor wird dem Zwischenprodukt-Gasstrom in Leitung 110 aber noch der über Leitung 107 herangeführte Teilgasstrom zugemischt, wodurch eine zusätzliche Kühlung bewirkt und die Konzentration an Kohlenoxiden und Wasserstoff erhöht wird. Im Reaktor 111 erfolgt ein weiterer Teilumsatz der Kohlenoxide mit Wasserstoff, wobei die Reaktionsbedingungen mit denjenigen in Reaktor 106 vergleichbar sind. Über Leitung 112 wird der den Reaktor 111 verlassende, weiter teilumgesetzte Zwischenprodukt-Gasstrom einem Kühler 113 zugeführt, in dem er auf Temperaturen von 180 und 350°C abgekühlt wird. Die in den Wärmetauschern 109, 113 und 119 abgeführte Wärme wird zur Dampferzeugung in der Dampferzeugungsanlage 130 genutzt.
  • Über Leitung 114 wird der teilumgesetzte Zwischenprodukt-Gasstrom aus der Hauptreaktionszone der Methanisierungsanlage 100 abgeführt. Von ihm wird über Leitung 115 ein Teilstrom als Rückführstrom entnommen und vor den ersten Reaktor 106 geführt. Der teilumgesetzte Zwischenprodukt-Gasstrom wird im Wärmetauscher 119 auf Temperaturen zwischen 40 bis 350 °C abgekühlt und über Leitung 120 dem Reaktor 121 zugeführt, der im vorliegenden Ausführungsbeispiel den einzigen Methanisierungsreaktor der Nachreaktionszone darstellt. Im adiabaten oder isothermen Reaktor 121 erfolgt ein weiterer Umsatz der Kohlenoxide mit Wasserstoff zu Methan an einem kommerziellen Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 180 bis 370 °C und Drücken zwischen 20 und 50 bar(a). Die Raumgeschwindigkeit beträgt zwischen 2000 und 40000 h-1. Der den Reaktor 121 über Leitung 122 verlassende, methanreiche Produktgasstrom wird in Kühler 123 auf Temperaturen von 20 bis 120 °C abgekühlt und in einer in Fig. 1 nicht dargestellten Trocknungsanlage getrocknet. Über Leitung 124 wird der gekühlte und getrocknete Produktgasstrom dem Produktverdichter 125 zugeführt, in dem der Produktgasstrom auf den Pipelineeintrittsdruck von 30 bis 120 bar(a) verdichtet wird. Über Leitung 126 wird der verdichtete Produktgasstrom der in der Figur nicht gezeigten Pipeline zugeführt.
  • Fig. 2 zeigt eine erfindungsgemäße Methanisierungsanlage 200 gemäß einer ersten Ausgestaltungsform. Es entsprechen sich jeweils die mit den Bezugszeichen 20x bzw. 2xx gekennzeichneten Anlagenteile mit denjenigen der in Fig. 1 gezeigten Methanisierungsanlage gemäß Stand der Technik, die dort mit 10x bzw. 1xx bezeichnet wurden, hinsichtlich ihrer Art, Ausgestaltung, Funktion und Betriebsbedingungen, falls nicht anders angegeben. Im Gegensatz zu der Methanisierungsanlage gemäß Stand der Technik wird der Synthesegas-Frischgasstrom vor Eintritt in die Feinentschwefelung 202 auf einen Druck von 40 bis 120 bar(a) mittels Zusatzverdichter 227 verdichtet. Im Reaktor 206 und 211 erfolgt ein Teilumsatz der Kohlenoxide mit Wasserstoff an einem Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 200 bis 700 °C und Drücken zwischen 40 und 120 bar(a). Das H2/CO-Verhältnis liegt zwischen 0,4 und 5,0 mol/mol. Im Reaktor 221 erfolgt ein weiterer Umsatz der Kohlenoxide mit Wasserstoff zu Methan an einem Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 150 bis 500 °C und Drücken zwischen 40 und 120 bar(a). Der den Reaktor 221 über Leitung 222 verlassende, methanreiche Produktgasstrom wird in Kühler 223 auf Temperaturen von 20 bis 120 °C abgekühlt und in einer in Fig. 2 nicht dargestellten Trocknungsanlage getrocknet. Über Leitung 224 wird der gekühlte und getrocknete Produktgasstrom zunächst dem Produktverdichter 225 und schließlich über Leitung 226 der in der Figur nicht gezeigten Pipeline zugeführt.
  • Fig. 3 zeigt eine erfindungsgemäße Methanisierungsanlage 300 gemäß einer weiteren Ausgestaltungsform. Wiederum entsprechen sich jeweils die mit den Bezugszeichen 30x bzw. 3xx gekennzeichneten Anlagenteile mit denjenigen der in Fig. 1 gezeigten Methanisierungsanlage gemäß Stand der Technik, die dort mit 10x bzw. 1xx bezeichnet wurden, hinsichtlich ihrer Art, Ausgestaltung, Funktion und Betriebsbedingungen, falls nicht anders angegeben. Im Gegensatz zu der Methanisierungsanlage gemäß Stand der Technik erfolgt die Verdichtung des teilumgesetzten Zwischenprodukt-Gasstroms vor Eintritt in die Nachreaktionszone mittels Zusatzverdichter 327 auf einen Druck von 40 bis 120 bar(a). Im Reaktor 306 und 311 erfolgt ein Teilumsatz der Kohlenoxide mit Wasserstoff an einem Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 200 bis 700 °C und Drücken zwischen 20 und 75 bar(a). Das H2/CO-Verhältnis liegt zwischen 0,4 und 5,0 mol/mol. Im Reaktor 321 erfolgt ein weiterer Umsatz der Kohlenoxide mit Wasserstoff zu Methan an einem Methanisierungskatalysator auf Nickelbasis bei Temperaturen von 150 bis 500 °C und Drücken zwischen 40 und 120 bar(a). Der den Reaktor 321 über Leitung 322 verlassende, methanreiche Produktgasstrom wird in Kühler 323 auf Temperaturen von 20 bis 120 °C abgekühlt und in einer in Fig. 3 nicht dargestellten Trocknungsanlage getrocknet. Über Leitung 324 wird der gekühlte und getrocknete Produktgasstrom zunächst dem Produktverdichter 325 und schließlich über Leitung 326 der in der Figur nicht gezeigten Pipeline zugeführt.
  • Zahlenbeispiele
  • Um die Vorteile des erfindungsgemäßen Verfahrens zu verdeutlichen, werden nachfolgend Zahlenbeispiele wiedergegeben, bei denen wichtige Betriebsparameter eines Methanisierungsverfahrens gemäß Stand der Technik mit den korrespondierenden Betriebsparametern erfindungsgemäßer Methanisierungsverfahren nach den beiden zuvor beschriebenen Ausgestaltungsformen verglichen werden. Alle drei nachfolgenden Fälle basieren auf der folgenden Zusammensetzung des Synthesegas-Frischgasstroms aus einer Flugstromvergasung von Kohle.
    Komponente Mengenstrom
    H2 14027 kmol/h
    CO 4608 kmol/h
    CO2 47 kmol/h
    CH4 1 kmol/h
    N2 156 kmol/h
    Ar 23 kmol/h
  • Das methanreiche Produktgas hat bei einem Austrittsdruck von 80,0 bara für die drei Betriebsfälle folgende Zusammensetzung:
    Fall Verdichtung des SNG-Produktstroms (Stand der Technik, Fig. 1 , Anlage 100) Verdichtung vor der Nachreaktionszone (Erfindung, Fig. 3 , Anlage 300) Verdichtung vor der Hauptreaktionszone (Erfindung, Fig. 2 , Anlage 200)
    H2 117 kmol/h 82 kmol/h 33 kmol/h
    CO 0,5 kmol/h 0 kmol/h 0 kmol/h
    CO2 25 kmol/h 17 kmol/h 5 kmol/h
    H2O 40 kmol/h 16 kmol/h 16 kmol/h
    CH4 4633 kmol/h 4641 kmol/h 4653 kmol/h
    N2 156 kmol/h 156 kmol/h 156 kmol/h
    Ar 23 kmol/h 23 kmol/h 23 kmol/h
  • In der nachfolgenden Tabelle werden wichtige Betriebsparameter für die drei diskutierten Fälle, insbesondere die Bedarfe an elektrischer Energie, zusammengestellt und miteinander verglichen. Es wird deutlich, dass insbesondere die in Fig. 2 dargestellte Ausgestaltung der Erfindung, die eine Verdichtung auf Pipelinedruck vor der Hauptreaktionszone vorsieht, zu erheblichen. Einsparungen an elektrischer Energie führt.
  • Gewerbliche Anwendbarkeit
  • Mit der Erfindung wird ein Verfahren zur Herstellung von synthetischem Erdgas (SNG) und seine Bereitstellung bei Pipelinebetriebsdruck zur Verfügung gestellt, das sich im Vergleich zu den im Stand der Technik bekannten Verfahren durch seine hohe Energieeffizienz auszeichnet. Dieser Vorteil wird im Wesentlichen durch den Einsatz eines Zusazuverdichters an geeigneter Stelle im Verfahren, begleitet von einer Anpassung der Verfahrensparameter, erzielt. Die Vorteile der im Stand der Technik bekannten Verfahren hinsichtlich ihrer Robustheit und hoher Betriebverfügbarkeit der verfahrensgemäßen Anlagen bleiben weiter bestehen.
    Fall Verdichtung des SNG-Produktstroms (Stand der Technik, Fig. 1 , Anlage 100 Verdichtung vor der Nachreaktionszone (Erfindung, Fig. 3 , Anlage 300 Verdichtung vor der Hauptreaktionszone (Erfindung, Fig. 2 , Anlage 200)
    Zusatzverdichter
    Eintrittsvolumenstrom 9702 m3/h 18688 m3/h
    Eintrittsmolstrom 5484 kmol/h 18866 kmol/h
    Eintrittsdruck 15,5 bar(a) 25,8 bar(a)
    Austrittsdruck 40,9 bar(a) 50,8 bar(a)
    Eintrittstemperatur 59,9 °C 30,0 °C
    Druckverhältnis 2,6 2,0
    Energiebedarf 6,60 MW 13,88 MW
    Kreislaufverdichter
    Eintrittsvolumenstrom 145558 m3/h 145558 m3/h 54752 m3/h
    Eintrittsmolstrom 62029 kmol/h 62028 kmol/h 62216 kmol/h
    Eintrittsdruck 15,5 bar(a) 15,5 bar(a) 40,9 bar(a)
    Austrittsdruck 24,2 bar(a) 24,2 bar(a) 49,7 bar(a)
    Druckverhältnis 1,6 1,6 1,2
    Eintrittstemperatur 174,9 °C 174,9 °C 174,8 °C
    Energiebedarf 39,75 MW 39,75 MW 16,55 MW
    Produktverdichter
    Eintrittsvolumenstrom 16133 m3/h 3461 m3/h 3461 m3/h
    Eintrittsmolstrom 4994 kmol/h 4885 kmol/h 4885 kmol/h
    Eintrittsdruck 8,0 bar(a) 35,5 bar(a) 35,5 bar(a)
    Austrittsdruck 80,0 bar(a) 80,0 bar(a) 80,0 bar(a)
    Eintrittstemperatur 41,6 °C 42,5 °C 42,5 °C
    Stufenanzahl 3 2 2
    Druckverhältnis 10,0 2,3 2,3
    Energiebedarf 14,03 MW 4,41 MW 4,41 MW
    Gesamtenergiebedarf 53,78 MW 50,76 MW 34,84 MW
  • Bezugszeichenliste
  • 101, 201, 301
    Leitung
    102, 202, 302
    Feinentschwefelungsreaktor
    103, 203, 303
    Leitung
    104, 204, 304
    Wärmetauscher
    105, 205, 305
    Leitung
    106, 206, 306
    Methanisierungsreaktor
    107, 207, 307
    Leitung
    108, 208, 308
    Leitung
    109, 209, 309
    Wärmetauscher
    110, 210, 310
    Leitung
    111, 211, 311
    Methanisierungsreaktor
    112, 212, 312
    Leitung
    113, 213, 313
    Wärmetauscher
    114, 214, 314
    Leitung
    115, 215, 315
    Leitung
    116, 216, 316
    Leitung
    117, 217, 317
    Kreislaufverdichter
    118, 218, 318
    Leitung
    119, 219, 319
    Wärmetauscher
    120, 220, 320
    Leitung
    121, 221, 321
    Methanisierungsreaktor
    122, 222, 322
    Leitung
    123, 223, 323
    Wärmetauscher
    124, 224, 324
    Leitung
    125, 225, 325
    Produktverdichter
    126, 226, 326
    Leitung
    227, 327
    Zusatzverdichter
    228, 328
    Leitung
    130, 230, 330
    Dampferzeugungsanlage

Claims (10)

  1. Verfahren zur Herstellung eines methanreichen Produktgasstroms mit definiertem Zieldruck aus einem Kohlenoxide und Wasserstoff enthaltenden Synthesegas-Frischgasstrom, wobei folgende Prozessschritte umfasst werden:
    (a) Bereitstellen eines Synthesegas-Frischgasstroms mit einem Eingangsdruck,
    (b) Zusammenführen des Synthesegas-Frischgasstroms mit einem Rückführstrom zu einem Synthesegas-Einsatzstrom,
    (c) Aufheizen des Synthesegas-Einsatzstroms und Zuführen zu einer Hauptreaktionszone,
    (d) Umsetzen des aufgeheizten Synthesegas-Einsatzstroms zu einem an Methan angereicherten Zwischenprodukt-Gasstrom in einer Hauptreaktionszone unter Methanisierungsbedingungen, wobei die Hauptreaktionszone mindestens ein Methanisierungskatalysator enthaltendes Katalysatorbett beinhaltet,
    (e) Abziehen eines Teilstroms des methanreichen Zwischenprodukt-Gasstroms nach der Hauptreaktionszone als Rückführstrom, wobei der Rückführstrom mittels eines Kreislaufverdichters vor die Hauptreaktionszone zurückgeführt wird und mit dem Synthesegas-Frischgasstrom zu dem Synthesegas-Einsatzstrom zusammengeführt wird,
    (f) Zuführen des nach Schritt (d) verbliebenen Anteils des methanreichen Zwischenprodukt-Gasstroms zu einer Nachreaktionszone,
    (g) Umsetzen des der Nachreaktionszone zugeführten Zwischenprodukt-Gasstroms unter Methanisierungsbedingungen zu einem methanreichen Produktgasstrom, wobei die Nachreaktionszone mindestens ein Methanisierungskatalysator enthaltendes Katalysatorbett beinhaltet,
    (h) Abziehen des methanreichen Produktgasstroms aus der Nachreaktionszone und Zuführen desselben zu einem Produktverdichter,
    dadurch gekennzeichnet, dass der Hauptreaktionszone und/oder der Nachreaktionszone ein Zusatzverdichter vorgeschaltet ist und dass das Einstellen des Zieldrucks mittels des Produktverdichters und des Zusatzverdichters erfolgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verdichten mittels eines Zusatzverdichters vor der Hauptreaktionszone und vor dem Zusammenführen des Synthesegas-Frischgasstroms mit dem Rückführstrom erfolgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verdichten mittels eines Zusatzverdichters vor dem letzten Katalysatorbett der Nachreaktionszone und nach dem Abziehen des Rückführstroms nach der Hauptreaktionszone erfolgt.
  4. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Aufheizen des der Hauptreaktionszone zugeführten Synthesegas-Einsatzstroms im indirekten Wärmetausch gegen einen heißen verfahrenseigenen oder verfahrensfremden Fluidstrom erfolgt.
  5. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Umsetzen des Synthesegas-Einsatzstroms zu einem methanreichen Zwischenprodukt-Gasstrom in der Hauptreaktionszone bei Temperaturen zwischen 200 und 700 °C und bei Drücken zwischen 15 und 120 bar(a) in Anwesenheit eines Methanisierungskatalysators erfolgt.
  6. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Umsetzen des Zwischenprodukt-Gasstroms zu einem methanreichen Produktgasstrom in der Nachreaktionszone bei Temperaturen zwischen 150 und 500 °C und bei Drücken zwischen 30 und 120 bar(a) in Anwesenheit eines Methanisierungskatalysators erfolgt.
  7. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Stoffmengenverhältnis von Wasserstoff zu Kohlenmonoxid im Synthesegas-Frischgasstrom zwischen 0,4 und 5,0 mol/mol beträgt.
  8. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Hauptreaktionszone mindestens zwei Katalysatorbetten umfaßt.
  9. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass ein Teil des Synthesegas-Frischgasstroms vor den Eintritt in das zweite Katalysatorbett der Hauptreaktionszone geführt wird.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Zieldruck zwischen 30 und 120 bar(a), bevorzugt zwischen 30 und 90 bar(a) beträgt.
EP11743964.6A 2010-07-29 2011-06-15 Verfahren zur herstellung von synthetischem erdgas Active EP2598618B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010032709.3A DE102010032709B4 (de) 2010-07-29 2010-07-29 Verfahren zur Herstellung von synthetischem Erdgas
PCT/EP2011/002939 WO2012013266A1 (de) 2010-07-29 2011-06-15 Verfahren zur herstellung von synthetischem erdgas

Publications (2)

Publication Number Publication Date
EP2598618A1 EP2598618A1 (de) 2013-06-05
EP2598618B1 true EP2598618B1 (de) 2019-05-01

Family

ID=44630354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11743964.6A Active EP2598618B1 (de) 2010-07-29 2011-06-15 Verfahren zur herstellung von synthetischem erdgas

Country Status (5)

Country Link
US (1) US8759407B2 (de)
EP (1) EP2598618B1 (de)
CN (1) CN103119137B (de)
DE (1) DE102010032709B4 (de)
WO (1) WO2012013266A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218955A1 (de) * 2012-10-17 2014-05-15 Rohöl-Aufsuchungs Aktiengesellschaft Vorrichtung zur Erdgasverdichtung und Verfahren zur Methanherstellung
GB201503607D0 (en) * 2015-03-03 2015-04-15 Johnson Matthey Davy Technologies Ltd Process
GB201503606D0 (en) * 2015-03-03 2015-04-15 Johnson Matthey Davy Technologies Ltd Process
CN108779405B (zh) * 2016-03-14 2020-11-24 托普索公司 用于生产甲烷化气体的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928000A (en) 1973-12-28 1975-12-23 Texaco Inc Production of a clean methane-rich fuel gas from high-sulfur containing hydrocarbonaceous materials
DE2440456C3 (de) * 1974-08-23 1978-06-08 Linde Ag, 6200 Wiesbaden Verfahren zur Reinigung eines mit Kohlendioxid verunreinigten methanreichen Gases
US4005996A (en) 1975-09-04 1977-02-01 El Paso Natural Gas Company Methanation process for the production of an alternate fuel for natural gas
US4124628A (en) * 1977-07-28 1978-11-07 Union Carbide Corporation Serial adiabatic methanation and steam reforming
ATE28622T1 (de) * 1983-03-03 1987-08-15 Gas Res Inst Verfahren zur herstellung von ferngas aus schwefel enthaltendem synthesegas.
EP1219566A1 (de) * 2000-12-27 2002-07-03 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Intergriertes Verfahren und Vorrichtung zur Herstellung von Synthesegas
US20090247653A1 (en) * 2006-04-06 2009-10-01 Fluor Technologies Corporation Configurations And Methods of SNG Production
EP2110425B2 (de) * 2008-04-16 2022-03-30 Casale Sa Verfahren und Anlage zur Erdgassubstitution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20130178546A1 (en) 2013-07-11
DE102010032709A1 (de) 2012-02-02
WO2012013266A1 (de) 2012-02-02
CN103119137B (zh) 2015-04-15
EP2598618A1 (de) 2013-06-05
CN103119137A (zh) 2013-05-22
US8759407B2 (en) 2014-06-24
DE102010032709B4 (de) 2016-03-10

Similar Documents

Publication Publication Date Title
EP0816290B1 (de) Verfahren zur Gewinnung von Kohlenmonoxid und Wasserstoff
DE60304064T2 (de) Herstellung von kohlenwasserstoffen
WO2017137581A1 (de) Verfahren zur synthese von methanol
DE2342085A1 (de) Verfahren zur herstellung eines stark reduzierenden gases
DE102009059310A1 (de) Hocheffizientes Verfahren zur katalytischen Methanisierung von Kohlendioxid und Wasserstoff enthaltenden Gasgemischen
DE102009034551A1 (de) Verfahren und Anlage zur Herstellung von Methanol
DE2729921A1 (de) Verfahren zur herstellung eines mit erdgas austauschbaren gases
DE102010008857A1 (de) Verfahren zur Herstellung von Methanol
EP3176152B1 (de) Verfahren zur erzeugung von harnstoff
EP2598618B1 (de) Verfahren zur herstellung von synthetischem erdgas
EP4098610A1 (de) Verfahren und anlage zum herstellen von reinwasserstoff durch dampfreformierung mit niedriger kohlendioxid-emission
DE2220617A1 (de) Verfahren zur herstellung von wasserstoff
DE102017204208A1 (de) Verfahren und Anlage zur Erzeugung und Aufbereitung eines Synthesegasgemisches
EP2898943B1 (de) Verfahren und Anlage zur Gewinnung von Dimethylether aus Synthesegas
EP0839786A2 (de) Verfahren zum Erzeugen von Methanol aus Erdgas
DE60131471T2 (de) Reaktor zur reformierung von erdgas und gleichzeitige herstellung von wasserstoff
DE102013224039A1 (de) Behandlung von Synthesegasen aus einer Vergasungseinrichtung
DE3518362A1 (de) Verfahren zur herstellung von methanol
DE102021210549A1 (de) Verfahren zur Ammoniaksynthese und Anlage zur Herstellung von Ammoniak
EP3075706A1 (de) Verfahren und eine anlage zur erzeugung von synthesegas
DE2943356A1 (de) Verfahren zur gemeinsamen herstellung von ammoniak und methanol
DE102015117574A1 (de) Verfahren und Anlage zur Erzeugung von Synthesegas mit variabler Zusammensetzung
EP3816145B1 (de) Verfahren und anlage zur herstellung von methanol aus wasserstoffreichem synthesegas
DE102021125884A1 (de) Verfahren und Vorrichtung zur Herstellung eines methanhaltigen Produktgases
EP3770140B1 (de) Verfahren und anlage zur synthese von methanol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIR LIQUIDE GLOBAL E&C SOLUTIONS GERMANY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1126875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015651

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015651

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190615

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1126875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 13