EP2589072A2 - Interposer and method for producing holes in an interposer - Google Patents

Interposer and method for producing holes in an interposer

Info

Publication number
EP2589072A2
EP2589072A2 EP11730223.2A EP11730223A EP2589072A2 EP 2589072 A2 EP2589072 A2 EP 2589072A2 EP 11730223 A EP11730223 A EP 11730223A EP 2589072 A2 EP2589072 A2 EP 2589072A2
Authority
EP
European Patent Office
Prior art keywords
holes
base substrate
glass
interposer
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11730223.2A
Other languages
German (de)
French (fr)
Inventor
Oliver Jackl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of EP2589072A2 publication Critical patent/EP2589072A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/126Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of gases chemically reacting with the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0029Etching of the substrate by chemical or physical means by laser ablation of inorganic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/087Using a reactive gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means

Definitions

  • the invention relates to interposer for electrically connecting the terminals of a CPU chip with a
  • Circuit board further to methods that are used in a critical manufacturing step of the interposer.
  • a CPU chip as a processor core typically has several hundreds of contact points spaced close to each other on its underside over a relatively small area. Because of this close spacing, these contact points can not be mounted directly onto a circuit board, the so-called motherboard. It is therefore a
  • the glass fiber mat has a coefficient of expansion of 15 to 17 ⁇ 10 -6
  • the silicon-based core processor has one
  • Hole diameter is limited to 250 to 450 m.
  • the US 2002/0180015 Al shows a module for a variety of chips, the semiconductor devices and a
  • the wiring substrate comprises a glass substrate having holes through
  • the glass substrate has a wiring and an insulation layer. It is aimed at the
  • US 5,216,207 shows multi-layer ceramic circuit boards with conductors of silver. The layers are baked at low temperatures. The boards have a thermal expansion coefficient close to that of silicon.
  • US 2009/0321114 A1 shows a substrate unit for electrical testing with a multilayer
  • Ceramic substrate Although the materials used have a coefficient of thermal expansion in the vicinity of
  • Silicate glass The production process takes place in two
  • the invention has for its object to provide an interposer for electrical connection between a CPU chip and a circuit board, which is economical to manufacture, thereby enabling the production of micro holes in the order of 20 m and 200 ⁇ hole diameter and the interposer body similar thermal expansion to that of the CPU chip material.
  • Hole diameter the so-called aspect, should be between 1 and 10.
  • the center distance of the holes should be between 120 pm and 400 ⁇ ⁇ .
  • the hole shape should be at the hole inlet and outlet conical or
  • the interposer according to the invention is characterized in that its plate-shaped base substrate is made of glass whose thermal expansion coefficient is in the range between 3.1 x 10 "6 and 3.4 x 10 ⁇ . 6 chip boards based on silicon have a coefficient of expansion between 3.2 x 10 "6 and 3.3 x 10 " 6. Between interposer and CPU chip, therefore, no great mechanical stresses are to be expected due to different thermal expansion behavior
  • the number of holes in the interposer will be after the
  • a typical number of holes is in the range of 1000 to 3000.
  • the hole center distance of the holes is in the range of 50 ⁇ im and 700 ⁇ .
  • Interposer an arsenic or antimony content of less than 50 ppm.
  • Interposer have a plate thickness that is below 1 mm, but not 30 ⁇ below.
  • the number of holes of an interposer is chosen according to the needs and is of the order of 1000 to 3000 holes / cm 2 .
  • the invention is intended to interposer with
  • the holes are generally slim cylindrically shaped, but can be at the hole entrance and
  • Hole exit be equipped with rounded-broken edges.
  • Wavelength range of the transparency of the glass so that the laser rays penetrate into the glass and are not already absorbed in the outer layers of the glass.
  • Laser radiation of very high radiation intensity is used to cause local, athermal destruction of the glass along filamentous channels.
  • filamentous channels are then widened to the desired diameter of the holes, taking one
  • Lead hole material, and / or the filamentous channels are widened by the supply of reactive gases.
  • the holes provided can also be exactly marked by HF coupling material, which is printed dot-shaped on the base substrate.
  • Marked points are heated by RF energy in order to close the holes
  • Breakthrough sites can be caused by supplied etching gas
  • Fig. 1 is a schematic representation of a production of an interposer in longitudinal section
  • Fig. 2 shows a second production. Detailed description
  • holes 10 on a plate-shaped glass substrate 1 are marked by focused laser pulses 41 emanating from an arrangement 4 of lasers 40.
  • the radiation intensity of these lasers is so strong that local, athermal destruction occurs along a filamentary channel 11 in the glass.
  • filamentous channels 11 expanded into holes 12. It is possible to use opposing electrodes 6 and 7, which are supplied with high-voltage energy, which leads to dielectric breakthroughs through the glass substrate along the filamentary channels 11. These breakthroughs expand by electrothermal heating and
  • conductor paths 13 are applied to the perforation points 10 on the upper side of the glass plate 1, and the holes 12 are filled with conductive material 14 to complete on the underside of the plate the connections to the contact points of a CPU chip or the like.
  • Dielectric strength of the material leads. When high voltage is applied, dielectric breakdowns occur along narrow channels 11. By further supplying high voltage energy, these narrow channels 11 can be widened to the size of the holes 12.
  • conduction paths 13 are applied to the holes 12 on the top of the glass substrate, and the Holes are filled with conductive material 14 in order to produce, with turned glass plate 1, the connections for the CPU chip. It should be noted that interposers do not need to be made individually but glass substrate plates for one
  • interposers can be processed by cutting the large format glass substrate plates to recover the individual interposers. Formats of glass substrate plates with edge lengths from 0.2 m to 3 m (or smaller) can be processed.
  • Round disc formats can be up to 1 m in dimension
  • T2 The temperature at the viscosity 10 2 dPas (referred to as T2 (° C), calculated from the Vogel-Fulcher-Tammann equation
  • compositions (in% by weight based on oxide) and
  • the glasses have the following advantages:
  • the glasses are ideally suited for use as a substrate glass in the
  • Thermal expansion coefficient is little different, occur less mechanical stress between these bonded layers or plates, and there will be no dislocation or cracks between the layers or plates.
  • Interposer which are densely occupied with holes over previous interposers, take smaller substrate sizes, whereby the extent of different strains and shrinkages of the layers or plates involved and thus the risk of discarding and thus the

Abstract

Interposer for electrical connection between a CPU chip and a circuit board. A board-shaped base substrate (1) composed of glass has a coefficient of thermal expansion in the range of between 3.1 · 10-6 and 3.4 · 10-6 and holes (12) in a number that is in the range of between 10 and 10,000 cm-2. There are holes (12) having diameters which can be in the range of between 20 μm and 200 μm. Conductor tracks (13) run on one board side, said conductor tracks in each case extending right into the holes (12) and through the latter to the other board side in order to form connection points for the chip.

Description

Interposer und Verfahren zur Herstellung von Löchern in einem Interposer  Interposer and method of making holes in an interposer
Gebiet der Erfindung Field of the invention
Die Erfindung bezieht sich auf Interposer zur elektrischen Verbindung der Anschlüsse eines CPU-Chips mit einer The invention relates to interposer for electrically connecting the terminals of a CPU chip with a
Schaltungsplatte, ferner auf Verfahren, die bei einem kritischen Herstellungsschritt der Interposer benutzt werden . Circuit board, further to methods that are used in a critical manufacturing step of the interposer.
Hintergrund der Erfindung Ein CPU-Chip als Prozessorkern hat typischerweise auf seiner Unterseite auf relativ kleiner Fläche verteilt mehrere Hundert Kontaktpunkte in engem Abstand zueinander. Wegen dieses engen Abstandes können diese Kontaktpunkte nicht direkt auf eine Schaltungsplatte, das sogenannte Motherboard, montiert werden. Es wird deshalb ein Background of the Invention A CPU chip as a processor core typically has several hundreds of contact points spaced close to each other on its underside over a relatively small area. Because of this close spacing, these contact points can not be mounted directly onto a circuit board, the so-called motherboard. It is therefore a
Zwischenteil angewendet, mit welchem die Applied intermediate part, with which the
Kontaktierungsbasis verbreitert werden kann. Als Contacting basis can be broadened. When
Zwischenteil wird häufig eine mit Epoximaterial ummantelte Glasfasermatte eingesetzt, die mit einer Anzahl von Löchern versehen ist. Auf der Oberfläche der Glasfasermatte laufen Leiterbahnen, die in die jeweiligen Löcher hineinführen, um diese zu verfüllen, und auf der anderen Seite der Intermediate part is often used an encapsulated with epoxy material glass fiber mat, which is provided with a number of holes. On the surface of the glass fiber mat run tracks that lead into the respective holes to fill them, and on the other side of the
Glasfasermatte bis zu den Anschlusskontakten des Glass fiber mat up to the connection contacts of the
Prozessorkerns führen. Um dies zu bewerkstelligen, wird sowohl um den Prozessorkern als auch zwischen dem Lead processor cores. To accomplish this, both around the processor core and between the
Prozessorkern und der Glasfasermatte eine Hinterfüllung (underfill) aufgebracht, welche die Leitungen schützt und  Processor core and the glass fiber mat applied a backfill (underfill), which protects the lines and
BESTÄTIGUNGSKOPIE den Prozessorkern und die Glasfasermatte mechanisch CONFIRMATION COPY the processor core and the glass fiber mat mechanically
miteinander verbindet. Der Prozessorkern und die connects with each other. The processor core and the
Glasfasermatte weisen jedoch unterschiedliche Glass fiber mat, however, have different
Wärmeausdehnungen auf. So hat die Glasfasermatte einen Ausdehnungskoeffizienten von 15 bis 17 x 10~6, während der Kernprozessor auf Siliziumbasis einen Thermal expansions. Thus, the glass fiber mat has a coefficient of expansion of 15 to 17 × 10 -6 , while the silicon-based core processor has one
Wärmeausdehnungsfaktor von 3,2 bis 3,3 x 10"6 aufweist. Bei Auftreten von Erwärmung kommt es deshalb zu differentiellen Ausdehnungen zwischen dem Kernprozessor und der Thermal expansion factor of 3.2 to 3.3 x 10 "6. Thus, when heating occurs, there are differential expansions between the core processor and the
Glasfasermatte und damit zu mechanischen Spannungen Glass fiber mat and thus to mechanical stresses
zwischen diesen beiden Komponenten. Dies kann sich between these two components. This can happen
schädlich auf die Kontaktverbindungen auswirken, vor allem dann, wenn die beiden Komponenten nicht überall flächig miteinander verbunden sind. Dann können die Kontaktstellen leicht brechen. detrimental to the contact connections, especially if the two components are not connected to each other Then the contact points can break easily.
Die Anwendung der Glasfasermatte ist mit einem weiteren Nachteil behaftet, der mit dem mechanischen Bohren der Löcher in der Glasfasermatte zusammenhängt. Der The use of the glass fiber mat has a further drawback associated with the mechanical drilling of the holes in the glass fiber mat. Of the
Lochdurchmesser ist auf 250 bis 450 m begrenzt. Hole diameter is limited to 250 to 450 m.
Eine weitere Möglichkeit des Aufbaus und der Herstellung von Verbindungsstrukturen, die in der Art von Interposern genutzt werden könnten, wird in WO 02/058135 A2 aufgezeigt. Es wird die Wafertechnologie mit Erzeugung von Löchern und Gräben in dielektrischem Material angewendet, Another possibility for constructing and producing connecting structures which could be used in the manner of interposers is shown in WO 02/058135 A2. Wafer technology is applied with the production of holes and trenches in dielectric material,
beispielsweise Siliziumdioxid, und Auffüllen der Löcher und Gräben mit Leitungsschichten. Diese Herstellungsweise von Kontaktverbindungen ist jedoch sehr teuer. Eine ähnliche Technologie wird in DE 103 01 291 B3 For example, silica, and filling the holes and trenches with conductive layers. However, this method of making contact connections is very expensive. A similar technology is described in DE 103 01 291 B3
vermittelt. Es werden Vertiefungen in Substraten geätzt und durch Leiterbahnen aus Metall aufgefüllt, wobei auch taught. It recesses are etched in substrates and filled by tracks made of metal, and also
Kontakte durch Löcher hindurchreichen. Diese Technik ist aufwendig und teuer. Pass contacts through holes. This technique is complicated and expensive.
Die US 2002/0180015 AI zeigt ein Modul für eine Vielzahl von Chips, das Halbleiterbausteine und ein The US 2002/0180015 Al shows a module for a variety of chips, the semiconductor devices and a
Beschaltungssubstrat zur Aufbringung der  Wiring substrate for applying the
Halbleiterbausteine aufweist. Das Beschaltungssubstrat umfasst ein Glassubstrat mit Löchern, die durch Semiconductor devices has. The wiring substrate comprises a glass substrate having holes through
Sandstrahlbehandlung gebildet wurden. Auf der Oberfläche des Glassubstrat ist eine Beschaltungsschicht gebildet. Sandblast treatment were formed. On the surface of the glass substrate, a wiring layer is formed.
Ferner weist das Glassubstrat eine Verdrahtung und eine Isolationsschicht auf. Es wird angestrebt, den Further, the glass substrate has a wiring and an insulation layer. It is aimed at the
Wärmeausdehnungskoeffizienten des Glassubstrats in der Nähe des Koeffizienten von Silizium zu wählen.  To select the coefficient of thermal expansion of the glass substrate in the vicinity of the coefficient of silicon.
Die US 5,216,207 zeigt keramische Platinen mit mehreren Schichten mit Leitern aus Silber. Die Schichten werden bei niedrigen Temperaturen eingebrannt. Die Platinen haben einen Wärmeausdehungskoeffizienten nahe dem von Silizium. US 5,216,207 shows multi-layer ceramic circuit boards with conductors of silver. The layers are baked at low temperatures. The boards have a thermal expansion coefficient close to that of silicon.
Die US 2009/0321114 AI zeigt eine Subtstrateinheit zum elektrischen Testen mit einem mehrschichtigen US 2009/0321114 A1 shows a substrate unit for electrical testing with a multilayer
Keramiksubstrat. Die verwendeten Materialien haben zwar einen Wärmeausdehnungskoeffizienten in der Nähe des  Ceramic substrate. Although the materials used have a coefficient of thermal expansion in the vicinity of
entsprechenden Wertes Ihrer Erfindung, sind aber keine reinen Gläser. Die US 7,550,321 Bl zeigt ein Substrat mit einem corresponding value of your invention, but are not pure glasses. US 7,550,321 Bl shows a substrate with a
Wärmeausdehungskoeffizienten, der in Dickenrichtung einen Gradienten aufweist. Der Fachartikel "Femtosecond laser-assisted three- dimensional microfabrication in silica" aus Optics Letters, Vol. 26, No. 5, 1. März 2001, Seiten 277 bis 279 beschreibt direkte dreidimensionale Mikroproduktion in einem Thermal expansion coefficient, which has a gradient in the thickness direction. The article "Femtosecond laser-assisted three-dimensional microfabrication in silica" from Optics Letters, Vol. 26, no. 5, March 1, 2001, pages 277 to 279 describes direct three-dimensional microproduction in one
Silikatglas. Der Produktionsprozess erfolgt in zwei Silicate glass. The production process takes place in two
Schritten. Zunächst werden die vorgesehenen Muster mittels fokussierten Femtosekunden-Laserpulsen im Glas Steps. First, the intended patterns by means of focused femtosecond laser pulses in the glass
vorgezeichnet. Anschließend werden diese Muster geätzt. mapped out. Subsequently, these patterns are etched.
Allgemeine Erfindungsbeschreibung General description of the invention
Der Erfindung liegt die Aufgabe zugrunde, einen Interposer zur elektrischen Verbindung zwischen einem CPU-Chip und einer Schaltungsplatte zu schaffen, der wirtschaftlich herstellbar ist, dabei die Herstellung von Mikrolöchern in der Größenordnung von 20 m und 200 μπι Lochdurchmesser ermöglicht und der Interposerkörper eine Wärmeausdehnung ähnlich zu der des CPU-Chipmaterials aufweist. The invention has for its object to provide an interposer for electrical connection between a CPU chip and a circuit board, which is economical to manufacture, thereby enabling the production of micro holes in the order of 20 m and 200 μπι hole diameter and the interposer body similar thermal expansion to that of the CPU chip material.
Bei dem neuen Interposer sollen folgende Forderungen erfüllt werden können: With the new interposer, the following requirements should be fulfilled:
Viele kleine Löcher (10 bis 10.000) sollen pro Interposer bei engen Toleranzen der Löcher zueinander untergebracht werden können. Dabei muss auch ein Lochabstand bis herab zu 30 μιη eingehalten werden können. Der Lochdurchmesser soll bis zu einer Größe von 20 m herabreichen können. Das Many small holes (10 to 10,000) should be accommodated per interposer with close tolerances of the holes to each other. In this case, a hole spacing down to 30 μιη must be maintained. The hole diameter should be able to reach down to a size of 20 m. The
Verhältnis zwischen Dicke des Interposers und Ratio between thickness of the interposer and
Lochdurchmesser, der sogenannte Aspekt, soll zwischen 1 und 10 liegen können. Der Mittelpunktabstand der Löcher soll zwischen 120 pm und 400 μπ\ betragen können. Die Lochform soll am Locheintritt und -austritt konisch oder Hole diameter, the so-called aspect, should be between 1 and 10. The center distance of the holes should be between 120 pm and 400 μπ \. The hole shape should be at the hole inlet and outlet conical or
kraterförmig, in der Lochlaibungsmitte aber möglichst zylindrisch ausgebildet sein. Die Lochwände sollen glatt (feuerpoliert) sein. Gegebenenfalls soll auch ein Wulst von maximal 5 mm Wulsthöhe um den Lochrand herum entstehen. crater-shaped, but in the Lochlaibungsmitte be as cylindrical as possible. The hole walls should be smooth (fire polished). If necessary, also a bead of a maximum of 5 mm bead height around the edge of the hole around arise.
Der erfindungsgemäße Interposer zeichnet sich dadurch aus, dass sein plattenförmiges Basissubstrat aus Glas besteht, dessen Wärmeausdehnungskoeffizient im Bereich zwischen 3,1 x 10"6 und 3,4 x 10~6 liegt. Chipplatten auf Siliziumbasis weisen einen Ausdehnungskoeffizienten zwischen 3,2 x 10"6 und 3,3 x 10"6 auf. Zwischen Interposer und CPU-Chip sind deshalb keine großen mechanischen Spannungen zu erwarten, die auf unterschiedlichem Wärmeausdehnungsverhalten The interposer according to the invention is characterized in that its plate-shaped base substrate is made of glass whose thermal expansion coefficient is in the range between 3.1 x 10 "6 and 3.4 x 10 ~. 6 chip boards based on silicon have a coefficient of expansion between 3.2 x 10 "6 and 3.3 x 10 " 6. Between interposer and CPU chip, therefore, no great mechanical stresses are to be expected due to different thermal expansion behavior
beruhen . based.
Die Anzahl der Löcher im Interposer wird nach den  The number of holes in the interposer will be after the
jeweiligen Erfordernissen gewählt und kann bis zu 10.000 Löcher pro cm2 liegen. Eine übliche Lochanzahl liegt im Bereich von 1000 bis 3000. Der Lochmittenabstand der Löcher liegt im Bereich von 50 \im und 700 μιη. Um den Anforderungen der Miniaturisierung von Bauteilen Rechnung zu tragen, gibt es Löcher, deren Durchmesser im Bereich zwischen 20 m und 200 m liegt. Um die elektrische Verbindung zwischen dem CPU-Chip und seiner Schaltungsplatte herzustellen, selected requirements and may be up to 10,000 holes per cm 2 . A typical number of holes is in the range of 1000 to 3000. The hole center distance of the holes is in the range of 50 \ im and 700 μιη. In order to meet the requirements of miniaturization of components, there are holes whose diameter is in the range between 20 m and 200 m. To make the electrical connection between the CPU chip and its circuit board,
verlaufen Leiterbahnen auf einer der Plattenseiten des Interposers bis in die Löcher hinein und durch diese hindurch, um Anschlusspunkte für den CPU-Chip zu bilden. Das Glas des Basissubstrats sollte einen Alkaligehalt von weniger als 700 ppm enthalten. Solches Glas weist, wie gefordert, einen niedrigen Wärmeausdehnungskoeffizienten und infolge des hohen dielektrischen Wertes sehr gute signalisolierende Eigenschaften auf. Ferner wird die Gefahr der Kontamination von Siliziumprozessoren mit Alkalien weitgehend vermieden. Conductors run on one of the plate sides of the interposer into and through the holes to form connection points for the CPU chip. The glass of the base substrate should contain an alkali content of less than 700 ppm. Such glass has a low thermal expansion coefficient as required and due to the high dielectric value very good signal insulating properties. Furthermore, the risk of contamination of silicon processors with alkalis is largely avoided.
Aus Gründen des Umweltschutzes enthält die For reasons of environmental protection contains the
Glaszusammensetzung einen Arsen- oder Antimongehalt von weniger als 50 ppm. Interposer weisen eine Plattendicke auf, die unterhalb von 1 mm liegt, aber 30 μπι nicht unterschreitet. Die Lochanzahl eines Interposers wird nach den Bedürfnissen gewählt und liegt in der Größenordnung von 1000 bis 3000 Löchern/cm2. Mit der Erfindung wird avisiert, Interposer mit Glass composition an arsenic or antimony content of less than 50 ppm. Interposer have a plate thickness that is below 1 mm, but not 30 μπι below. The number of holes of an interposer is chosen according to the needs and is of the order of 1000 to 3000 holes / cm 2 . The invention is intended to interposer with
Mikrolöchern unterhalb von 100 μπι am Markt anzubieten. Die Löcher sind demnach eng gepackt, wobei der Mittelabstand der Löcher im Bereich zwischen 150 μπι und 400 μιη liegen kann. Der Lochkantenabstand der Löcher soll aber 30 μιη nicht unterschreiten. Die Löcher müssen nicht alle den gleichen Durchmesser aufweisen, es ist möglich, dass Löcher unterschiedlichen Durchmessers in dem plattenförmigen Micro holes below 100 μπι offer on the market. The holes are therefore packed tight, the center distance of the holes in the range between 150 μπι and 400 μιη can be. The hole edge distance of the holes but should not fall below 30 μιη. The holes need not all have the same diameter, it is possible that holes of different diameter in the plate-shaped
Basissubstrat vorhanden sind. Das Verhältnis der Base substrate are present. The ratio of
Glasplattendicke zum Lochdurchmesser, der sogenannte Glass plate thickness to the hole diameter, the so-called
Aspekt, kann in einem breiten Bereich von 0,1 bis 25 gewählt werden, wobei ein Aspektverhältnis von 1 bis 10 bevorzugt wird. Die Löcher sind im Allgemeinen schlank zylindrisch gestaltet, können aber am Locheingang und Aspect can be selected in a wide range of 0.1 to 25, with an aspect ratio of 1 to 10 being preferred. The holes are generally slim cylindrically shaped, but can be at the hole entrance and
Lochausgang mit abgerundet-gebrochenen Kanten ausgestattet sein . Hole exit be equipped with rounded-broken edges.
Um Löcher exakt zu positionieren, deren Durchmesser im Bereich zwischen 20 μπι und 200 μιτι liegen können, bedient man sich fokussierter Laserimpulse in einem To accurately position holes whose diameter can be in the range between 20 μπι and 200 μιτι operated you get focused laser pulses in one
Wellenlängenbereich der Transparenz des Glases, so dass die Laserstrahlen in das Glas eindringen und nicht bereits in den Randschichten des Glases absorbiert werden. Es wird Laserstrahlung sehr hoher Strahlungsintensität benutzt, damit es entlang von filamentartigen Kanälen zu lokaler, athermischer Zerstörung des Glases kommt. Diese  Wavelength range of the transparency of the glass, so that the laser rays penetrate into the glass and are not already absorbed in the outer layers of the glass. Laser radiation of very high radiation intensity is used to cause local, athermal destruction of the glass along filamentous channels. These
filamentartigen Kanäle werden anschließend auf gewünschten Durchmesser der Löcher aufgeweitet, wobei man sich filamentous channels are then widened to the desired diameter of the holes, taking one
dielektrischer Durchbrüche bedienen kann, die zur Serve dielectric breakthroughs, the
elektrothermischen Aufheizung und Verdampfung des electrothermal heating and evaporation of the
Lochrandmaterials führen, und/oder die filamentartigen Kanäle werden durch Zufuhr reaktiver Gase aufgeweitet. Die vorgesehenen Lochungsstellen können auch durch HF- Ankopplungsmaterial exakt markiert werden, das auf das Basissubstrat punktförmig aufgedruckt wird. Solche Lead hole material, and / or the filamentous channels are widened by the supply of reactive gases. The holes provided can also be exactly marked by HF coupling material, which is printed dot-shaped on the base substrate. Such
markierten Stellen werden durch HF-Energie aufgeheizt, um im Bereich der vorgesehenen Löcher die Marked points are heated by RF energy in order to close the holes
Durchbruchsfestigkeit gegenüber elektrischer Hochspannung zu erniedrigen und schließlich an diesen Stellen zu Breakthrough resistance to electrical high voltage to lower and finally in these places too
dielektrischen Durchbrüchen zu gelangen. Die reach dielectric breakthroughs. The
Durchbruchsstellen können durch zugeführtes Ätzgas Breakthrough sites can be caused by supplied etching gas
aufgeweitet werden. be widened.
Die Herstellung der Leiterbahnen auf dem plattenförmigen Glassubstrat und durch die Löcher hindurch erfolgt nach bekannten Verfahrensmustern und muss hier nicht weiter beschrieben werden. Kurze Beschreibung der Zeichnung The production of the conductor tracks on the plate-shaped glass substrate and through the holes is carried out according to known process patterns and need not be further described here. Short description of the drawing
Ausführungsbeispiele der Erfindung werden anhand der Embodiments of the invention will be described with reference to FIGS
Zeichnung beschrieben. Dabei zeigt: Drawing described. Showing:
Fig. 1 eine Schematische Darstellung einer Herstellungsart eines Interposers im Längsschnitt und  Fig. 1 is a schematic representation of a production of an interposer in longitudinal section and
Fig. 2 eine zweite Herstellungsart. Detaillierte Beschreibung Fig. 2 shows a second production. Detailed description
In einem ersten Verfahrensschritt werden Lochungsstellen 10 auf einem plattenförmigen Glassubstrat 1 durch fokussierte Laserimpulse 41 markiert, die von einer Anordnung 4 von Lasern 40 ausgehen. Die Strahlungsintensität dieser Laser ist so stark, dass es zu lokaler, athermischer Zerstörung entlang eines filamentartigen Kanals 11 im Glas kommt. In a first method step, holes 10 on a plate-shaped glass substrate 1 are marked by focused laser pulses 41 emanating from an arrangement 4 of lasers 40. The radiation intensity of these lasers is so strong that local, athermal destruction occurs along a filamentary channel 11 in the glass.
In einem zweiten Verfahrensschritt werden die In a second process step, the
filamentartigen Kanäle 11 zu Löchern 12 aufgeweitet. Man kann sich dabei gegenüberstehender Elektroden 6 und 7 bedienen, denen Hochspannungsenergie zugeführt wird, was zu dielektrischen Durchbrüchen durch das Glassubstrat entlang der filamentartigen Kanäle 11 führt. Diese Durchbrüche erweitern sich durch elektrothermische Aufheizung und filamentous channels 11 expanded into holes 12. It is possible to use opposing electrodes 6 and 7, which are supplied with high-voltage energy, which leads to dielectric breakthroughs through the glass substrate along the filamentary channels 11. These breakthroughs expand by electrothermal heating and
Verdampfung von Lochmaterial, bis der Vorgang bei Erreichen des gewünschten Lochdurchmessers durch Abschalten der  Evaporation of hole material until the process when reaching the desired hole diameter by switching off the
Energiezufuhr gestoppt wird. Alternativ oder zusätzlich kann man auch die Energy supply is stopped. Alternatively or additionally, you can also the
filamentartigen Kanäle 11 durch reaktive Gase aufweiten, wie durch Düsen 20, 30 dargestellt, die das Gas auf die Lochungsstellen 10 richten. dilate filamentous channels 11 by reactive gases, as shown by nozzles 20, 30, which direct the gas to the Lochungsstellen 10.
Im nächsten Verfahrensschritt werden auf der Oberseite der Glasplatte 1 Leitungsbahnen 13 zu den Lochungsstellen 10 hin aufgebracht, und die Löcher 12 werden durch leitendes Material 14 verfüllt, um auf der Unterseite der Platte die Anschlüsse zu den Kontaktpunkten eines CPU-Chips oder dergleichen zu vervollständigen. (Zur Montage auf dem In the next process step, conductor paths 13 are applied to the perforation points 10 on the upper side of the glass plate 1, and the holes 12 are filled with conductive material 14 to complete on the underside of the plate the connections to the contact points of a CPU chip or the like. (For mounting on the
Motherboard wird die Glasplatte 1 gewendet.) Motherboard will turn the glass plate 1.)
Fig. 2 zeigt eine weitere Möglichkeit der Herstellung von Mikrolöchern . Die Lochungsstellen 10 werden durch präzise aufgedrucktes HF-Ankopplungsmaterial markiert. An diesen Stellen 10 wird Hochfrequenzenergie mittels Elektroden 2, 3 eingekoppelt, so dass sich die Ankopplungspunkte selbst und das Glasmaterial zwischen den oberseitigen Fig. 2 shows a further possibility of the production of microholes. The holes 10 are marked by precisely printed RF coupling material. At these points 10 radio frequency energy is coupled by means of electrodes 2, 3, so that the coupling points themselves and the glass material between the top side
Ankopplungspunkten und den unterseitigen Ankopplungspunkten erwärmt, was zu einer Erniedrigung der  Warming coupling points and the bottom coupling points, resulting in a reduction of the
Durchschlagsfestigkeit des Materials führt. Bei Anlage von Hochspannung kommt es zu dielektrischen Durchbrüchen entlang von schmalen Kanälen 11. Durch weitere Zufuhr von Hochspannungsenergie können diese schmalen Kanäle 11 auf die Größe der Löcher 12 aufgeweitet werden. Dielectric strength of the material leads. When high voltage is applied, dielectric breakdowns occur along narrow channels 11. By further supplying high voltage energy, these narrow channels 11 can be widened to the size of the holes 12.
Es ist aber auch möglich, die Aufweitung der schmalen But it is also possible the expansion of the narrow
Kanäle 11 infolge dielektrischer Durchbrüche durch Channels 11 due to dielectric breakthroughs
reaktives Gas vorzunehmen, das durch Düsen 20, 30 zugeführt wird . to make reactive gas which is supplied through nozzles 20, 30.
Schließlich werden auf der Oberseite des Glassubstrats Leitungsbahnen 13 zu den Löchern 12 aufgebracht, und die Löcher werden mit Leitungsmaterial 14 verfüllt, um, bei gewendeter Glasplatte 1, die Anschlüsse für den CPU-Chip herzustellen . Es sei bemerkt, dass Interposer nicht einzeln hergestellt werden müssen, sondern Glassubstratplatten für eine Finally, conduction paths 13 are applied to the holes 12 on the top of the glass substrate, and the Holes are filled with conductive material 14 in order to produce, with turned glass plate 1, the connections for the CPU chip. It should be noted that interposers do not need to be made individually but glass substrate plates for one
Vielzahl von Interposern verarbeitet werden können, indem die großformatigen Glassubstratplatten zerschnitten werden, um die einzelnen Interposer zu gewinnen. Es können Formate der Glassubstratplatten mit Kantenlängen von 0,2 m auf 3 m (oder kleiner) verarbeitet werden. Variety of interposers can be processed by cutting the large format glass substrate plates to recover the individual interposers. Formats of glass substrate plates with edge lengths from 0.2 m to 3 m (or smaller) can be processed.
Rundscheibenformate können Abmessungen bis zu 1 m Round disc formats can be up to 1 m in dimension
aufweisen . Ausführungsbeispiele exhibit . embodiments
Aus herkömmlichen, von unvermeidlichen Verunreinigungen abgesehen im wesentlichen alkalifreien Rohstoffen wurden bei 1620° Celsius Gläser in Pt/Ir-Tiegeln erschmolzen. Die Schmelze wurde anderthalb Stunden bei dieser Temperatur geläutert, anschließend in induktiv bezeigte Platintiegel umgegossen und zur Homogenisierung 30 Minuten bei 1550° Celsius gerührt. Die Tabelle zeigt fünfzehn Beispiele geeigneter Gläser mit ihren Zusammensetzungen (in Gew.-% auf Oxidbasis) und ihre wichtigsten Eigenschaften. Das Läutermittel Sn02 (Beispiele 1-8, 11, 12, 14, 15) bzw. As203 (Beispiele 9, 10, 13) mit einem Anteil von 0,3 Gew.-% ist nicht aufgeführt. Folgende Eigenschaften sind angegeben: From conventional, apart from inevitable impurities substantially alkali-free raw materials glasses were melted in 1620 ° C in Pt / Ir crucibles. The melt was refined for one and a half hours at this temperature, then poured into inductive platinum crucible and stirred for 30 minutes at 1550 ° C for homogenization. The table shows fifteen examples of suitable glasses with their compositions (in% by weight based on oxide) and their most important properties. The refining agent Sn0 2 (Examples 1-8, 11, 12, 14, 15) or As 2 0 3 (Examples 9, 10, 13) with a proportion of 0.3 wt .-% is not listed. The following properties are specified:
- der thermische Ausdehnungskoeffizient 2o/3oo (10_6/K) - die Dichte p (g/cm3) - the thermal expansion coefficient 2 o / 3oo (10 _6 / K) the density p (g / cm 3 )
- die dilatometrische Transformationstemperatur Tg (°C) nach DIN 52324 - The dilatometric transformation temperature T g (° C) according to DIN 52324
- die Temperatur bei der Viskosität 104 dPas (bezeichnet als T4 (°C) - the temperature at the viscosity 10 4 dPas (referred to as T4 (° C)
- die Temperatur bei der Viskosität 102 dPas (bezeichnet als T2 (°C), berechnet aus der Vogel-Fulcher-Tammann- Gleichung - The temperature at the viscosity 10 2 dPas (referred to as T2 (° C), calculated from the Vogel-Fulcher-Tammann equation
- eine Säurebeständigkeit „HCl" als Gewichtsverslust  - An acid resistance "HCl" as weight loss
(Abtragswert) von allseitig polierten Glasplättchen der Abmessungen 50mm x 50mm x 2mm nach Behandlung mit 5%iger Salzsäure für 24 Stunden bei 95°C (mg/cm2) . (Abtragswert) of all-round glass slides of dimensions 50mm x 50mm x 2mm after treatment with 5% hydrochloric acid for 24 hours at 95 ° C (mg / cm 2 ).
- eine Beständigkeit „BHF" gegenüber gepufferter  - a resistance "BHF" over buffered
Fluorwasserstoffsäure als Gewichtsverlust  Hydrofluoric acid as a weight loss
(Abtragswert) von allseitig polierten Glasplättchen der Abmessungen 50mm x 50mm x 2mm nach Behandlung mit 10% NH4F · HF für 20 min. bei 23°C (mg/cm2) (Abtragswert) of all-round glass plates of dimensions 50mm x 50mm x 2mm after treatment with 10% NH 4 F · HF for 20 min. at 23 ° C (mg / cm 2 )
- der Brechwert nd - the refractive power n d
Beispiele : Examples:
Zusammensetzungen (in Gew.-% auf Oxidbasis) und  Compositions (in% by weight based on oxide) and
wesentliche Eigenschaften von erfindungsgemäßen Gläsern  essential properties of glasses according to the invention
1 2 3 4 5 6 1 2 3 4 5 6
Si02 60, 0 60, 0 59, 9 58, 9 59, 9 61, 0Si0 2 60, 0 60, 0 59, 9 58, 9 59, 9 61, 0
B203 7,5 7,5 7,5 8,5 7,5 9,5B 2 0 3 7.5 7.5 7.5 8.5 7.5 9.5
A1203 21,5 21,5 21,5 21,5 21,5 18, 4A1 2 0 3 21.5 21.5 21.5 21.5 21.5 18, 4
MgO 2,9 2, 9 2,0 2,0 2,9 2,2MgO 2.9 2, 9 2.0 2.0 2.9 2.2
CaO 3,8 2,8 3,8 3,8 4,8 4,1CaO 3.8 2.8 3.8 3.8 4.8 4.1
BaO 4,0 5,0 5,0 5, 0 3,1 4,5BaO 4.0 5.0 5.0 5, 0 3.1 4.5
ZnO - - - - - - α20/300 3, 07 3, 00 3,01 3, 08 3, 13 3, 11ZnO - - - - - - α20 / 300 3, 07 3, 00 3.01 3, 08 3, 13 3, 11
(10"6/K) (10 "6 / K)
ρ (g/cmJ) 2,48 2,48 2,48 2,48 2,47 2,45ρ (g / cm 2 ) 2.48 2.48 2.48 2.48 2.47 2.45
Tg (°C) 747 748 752 741 743 729Tg (° C) 747 748 752 741 743 729
T 4 (°C) 1312 1318 1315 1308 1292 1313T 4 (° C) 1312 1318 1315 1308 1292 1313
T 2 (°C) 1672 1678 1691 1668 1662 1700 nd 1, 520 1, 518 1, 519 1, 519 1, 521 1, 515T 2 (° C) 1672 1678 1691 1668 1662 1700 n d 1, 520 1, 518 1, 519 1, 519 1, 521 1, 515
HCl 1, 05 n.b. 0,85 n.b. 1,1 n.b.HCl 1, 05 n.b. 0.85 n.b. 1.1 n.b.
(mg/cm2) (mg / cm 2 )
BHF 0, 57 0, 58 0, 55 0, 55 0, 56 0,49 BHF 0, 57 0, 58 0, 55 0, 55 0, 56 0.49
(mg/cm2) (mg / cm 2 )
7 8 9 10 11 127 8 9 10 11 12
Si02 58, 5 62, 8 63, 5 63, 5 59,7 59,0Si0 2 58, 5 62, 8 63, 5 63, 5 59.7 59.0
B203 7,7 8,2 10, 0 10, 0 10, 0 9,0B 2 0 3 7.7 8.2 10, 0 10, 0 10, 0 9.0
AI2O3 22, 7 16, 5 15, 4 15, 4 18, 5 17, 2AI2O3 22, 7 16, 5 15, 4 15, 4 18, 5 17, 2
MgO 2,8 0,5 2,0 1,0 2,0MgO 2.8 0.5 2.0 1.0 2.0
CaO 2,0 4,2 5, 6 6, 6 8,3 9,0CaO 2.0 4.2 5, 6 6, 6 8,3 9,0
BaO 5,0 7,5 3,2 3,2 3,2 3,5BaO 5.0 7.5 3.2 3.2 3.2 3.5
ZnO 1,0 - - - - -ZnO 1.0 - - - - -
O20/300 2,89 3, 19 3, 24 3, 34 3, 44 3,76O20 / 300 2.89 3, 19 3, 24 3, 34 3, 44 3.76
(10"6/K) (10 "6 / K)
p (g/cmJ) 2, 50 2,49 2,42 2,43 2,46 2, 50p (g / cm J) 2 50 2.49 2.42 2.43 2.46 2 50
Tg (°C) 748 725 711 719 714 711Tg (° C) 748 725 711 719 714 711
T 4 (°C) 1314 1325 1320 1327 1281 1257T 4 (° C) 1314 1325 1320 1327 1281 1257
T 2 (°C) 1674 1699 n.b. n.b. 1650 1615 nd 1, 520 1, 513 1, 511 1, 512 1, 520 1, 526T 2 (° C) 1674 1699 nbnb 1650 1615 n d 1, 520 1, 513 1, 511 1, 512 1, 520 1, 526
HCl n.b. 0, 30 0,89 n.b. n.b. 0, 72HCl n.b. 0, 30 0.89 n.b. n.d. 0, 72
(mg/cm2) (mg / cm 2 )
BHF 0, 62 0,45 0,43 0,40 0, 44 0,49 BHF 0, 62 0.45 0.43 0.40 0, 44 0.49
(mg/cm2) (mg / cm 2 )
n.b. = nicht bestimmt nb = not determined
Wie die Ausführungsbeispiele verdeutlichen, besitzen die Gläser folgende vorteile Eigenschaften: As the embodiments illustrate, the glasses have the following advantages:
- eine thermische Dehnung 2o/3oo zwischen 2,8 x 10"6/K und 3,8 X 10"6/K, in bevorzugten Ausführungen ^ 3,6 x 10"6/K, in besonders bevorzugten Ausführungen <3,2 x 10"6/K, damit angepasst an das Ausdehnungsverhalten von amorphen und auch zunehmend polykristallinem Silicium. - mit Tg > 700°C eine hohe Transformationstemperatur, also eine hohe Temperaturbeständigkeit. Dies ist wesentlich für einen möglichst geringen herstellungsbedingten Schrumpf- a thermal expansion 2 o / 3oo between 2.8 x 10 "6 / K and 3.8 x 10" -6 / K, in preferred embodiments, ^ 3.6 x 10 "-6 / K, in particularly preferred embodiments, <3, 2 x 10 "6 / K, thus adapted to the expansion behavior of amorphous and increasingly polycrystalline silicon. - With T g > 700 ° C a high transformation temperature, so a high temperature resistance. This is essential for the lowest possible production-related shrinkage
(„compaction" ) und für die Verwendung der Gläser als ("Compaction") and for the use of glasses as
Substrate für Beschichtungen mit amorphen Si-Schichten und deren anschließende Temperung. Substrates for coatings with amorphous Si layers and their subsequent tempering.
- mit p < 2,600 g/cm3 eine geringe Dichte - With p <2.600 g / cm 3 a low density
- eine Temperatur bei der Viskosität 104 dPas - a temperature at the viscosity 10 4 dPas
(Verarbeitungstemperatur VA) von maximal 1350°C, und eine Temperatur bei der Viskosität 102 dPas von maximal 1720°C, was hinsichtlich der Heißformgebung sowie Schmezlbarkeit eine geeignete Viskositätskennlinie bedeutet. (Processing temperature V A ) of a maximum of 1350 ° C, and a temperature at the viscosity 10 2 dPas of at most 1720 ° C, which means a suitable viscosity characteristic in terms of hot forming and Schmezlbarkeit.
- mit nd ^ 1,526 einen geringen Brechwert. - with n d ^ 1.526 a low refractive index.
- eine hohe chemische Beständigkeit dokumentiert u.a. durch gute Beständigkeit gegenüber gepufferter Flußsäurelösung.  - a high chemical resistance documented i.a. by good resistance to buffered hydrofluoric acid solution.
Die Gläser weisen eine hohe Temperaturwechselbeständigkeit und eine gute Entglasungsstabilität auf. Die Gläser sind als Flachgläser mit den verschiedenen Ziehverfahren, z.B. Micro-sheet-Down-draw-, Up-draw- oder Overflowfusion-The glasses have a high thermal shock resistance and good devitrification stability. The glasses are in the form of flat glasses with the various drawing methods, e.g. Micro-sheet down-draw, up-draw or overflow fusion
Verfahren und in bevorzugter Ausführung, wenn sie frei von AS2O3 und Sb203 sind, auch mit dem Floatverfahren Process and in preferred embodiment, if they are free of AS2O3 and Sb 2 0 3 , also with the float process
herstellbar . Mit diesen Eigenschaften sind die Gläser hervorragend geeignet für die Verwendung als Substratglas bei der producible. With these properties, the glasses are ideally suited for use as a substrate glass in the
Herstellung von Interposern. Production of interposers.
Durch den Einsatz des Basissubstrats aus alkaliarmem Glas und mit einem Wärmeausdehnungskoeffizienten sehr nahe an dem des Chips aus Siliziummaterial werden Schwierigkeiten infolge unterschiedlicher Wärmeausdehnung von Interposer und CPU-Chip weitgehend vermieden. Wenn benachbarte, miteinander verbundene Materialschichten oder -platten sich nur wenig unterschiedlich erwärmen und der The use of the base substrate of low alkali glass and having a coefficient of thermal expansion very close to that of the silicon material chip causes difficulties due to differential thermal expansion of the interposer and CPU chip largely avoided. If adjacent, interconnected material layers or plates heat only slightly different and the
Wärmeausdehnungskoeffizient wenig unterschiedlich ist, treten weniger mechanische Spannungen zwischen diesen verbundenen Schichten oder Platten auf, und es kommt nicht zu Verwerfungen oder zu Rissen zwischen den Schichten oder Platten. Thermal expansion coefficient is little different, occur less mechanical stress between these bonded layers or plates, and there will be no dislocation or cracks between the layers or plates.
Interposer, welche dichter mit Löchern gegenüber bisherigen Interposern besetzt sind, nehmen kleinere Substratgrößen ein, wodurch das Ausmaß unterschiedlicher Dehnungen und Schrumpfungen der beteiligten Schichten oder Platten und damit die Gefahr des sich Verwerfens und damit der Interposer, which are densely occupied with holes over previous interposers, take smaller substrate sizes, whereby the extent of different strains and shrinkages of the layers or plates involved and thus the risk of discarding and thus the
Rissbildung zwischen den beteiligten Schichten oder Platten noch weiter verringert wird. Cracking between the layers or plates involved is further reduced.
Schließlich sind Kostensenkungen auch deshalb zu erwarten, weil (bei verringerter Interposergröße und Lochgröße) weniger Material an Glas und an Leitungsmaterial zur Finally, cost reductions are also to be expected because (with reduced interposer size and hole size) less material on glass and on lead material for
Auffüllung der Löcher verwendet werden muss. Filling the holes must be used.

Claims

Patentansprüche claims
Interposer zur elektrischen Verbindung zwischen einem CPU-Chip und einer Schaltungsplatte, Interposer for the electrical connection between a CPU chip and a circuit board,
mit folgenden Merkmalen:  with the following features:
ein plattenförmiges Basissubstrat (1) aus Glas mit einer ersten und einer zweiten Plattenseite;  a plate-shaped base substrate (1) made of glass with a first and a second plate side;
das Basissubstrat (1) weist einen  the base substrate (1) has a
Wärmeausdehnungskoeffizienten im Bereich zwischen Thermal expansion coefficient in the range between
3,1 · KT6 /°C und 3,4 · 10"6 /°C auf; 3.1 x KT 6 / ° C and 3.4 x 10 -6 / ° C;
das Basissubstrat weist Löcher (12) quer zu den Plattenseiten in einer Anzahl auf, die im Bereich zwischen 10 und 10.000 cm"2 liegt; the base substrate has holes (12) across the sides of the sheet in a number ranging between 10 and 10,000 cm 2 ;
es gibt Löcher (12) mit Durchmessern, die im Bereich zwischen 20 pm und 200 pm liegen können;  there are holes (12) with diameters ranging between 20 pm and 200 pm;
der Abstand der Löcher (12), gemessen von  the distance between the holes (12) measured from
Lochmitte zu Lochmitte, liegt im Bereich zwischen 50 pm und 700 pm;  Hole center to hole center, lies in the range between 50 pm and 700 pm;
auf der ersten Plattenseite verlaufen  on the first side of the plate
Leiterbahnen (13), die sich jeweils bis in die Löcher (12) hinein und durch diese hindurch (14) auf die zweite Plattenseite erstrecken, um Anschlusspunkte für den CPU-Chip zu bilden.  Conductor tracks (13) each extend into and through the holes (12) (14) on the second plate side to form connection points for the CPU chip.
Interposer nach Anspruch 1, Interposer according to claim 1,
wobei das Glas des Basissubstrates einen Alkaligehalt weniger als 700 ppm enthält.  wherein the glass of the base substrate contains an alkali content of less than 700 ppm.
Interposer nach Anspruch 1 oder 2, Interposer according to claim 1 or 2,
wobei das Glas des Basissubstrates einen Arsen- oder Antimongehalt von weniger als 50 ppm enthält. wherein the glass of the base substrate is an arsenic or Contains antimony content of less than 50 ppm.
4. Interposer nach einem der Ansprüche 1 bis 3, 4. Interposer according to one of claims 1 to 3,
wobei der Wärmeausdehnungskoeffizient bei 3,2 · 10 -6 liegt .  wherein the coefficient of thermal expansion is 3.2 x 10 -6.
5. Interposer nach einem der Ansprüche 1 bis 4, 5. Interposer according to one of claims 1 to 4,
wobei die Plattendicke des Substrates (1) im Bereich zwischen 30 μιη und 1000 μτ liegt.  wherein the plate thickness of the substrate (1) is in the range between 30 μιη and 1000 μτ.
Interposer nach einem der Ansprüche 1 bis 5, Interposer according to one of claims 1 to 5,
wobei die Lochanzahl im Bereich zwischen 1000 bis  the number of holes in the range between 1000 to
3000 cm"2 liegt. 3000 cm "2 lies.
Interposer nach einem der Ansprüche 1 bis 6, Interposer according to one of claims 1 to 6,
wobei der Durchmesser der Löcher (12) maximal 100 pm beträgt .  wherein the diameter of the holes (12) is at most 100 pm.
Interposer nach einem der Ansprüche 1 bis 7, Interposer according to one of claims 1 to 7,
wobei der Mittenabstand der Löcher (12) (12) im Bereich zwischen 150 ym und 400 μπι liegt.  wherein the center distance of the holes (12) (12) is in the range between 150 ym and 400 μπι.
Interposer nach einem der Ansprüche 1 bis 8, Interposer according to one of claims 1 to 8,
wobei der Lochkantenabstand der Löcher (12) wenigstens wherein the hole edge spacing of the holes (12) at least
30 pm beträgt. 30 pm.
Interposer nach einem der Ansprüche 1 bis 9, Interposer according to one of claims 1 to 9,
wobei Löcher (12) unterschiedlichen Durchmessers in dem plattenförmigen Basissubstrat (1) vorhanden sind.  wherein holes (12) of different diameters are provided in the plate-shaped base substrate (1).
Interposer nach einem der Ansprüche 1 bis Interposer according to one of claims 1 to
wobei folgende Abmessungsverhältnisse eingehalten werden : the following dimensional ratios are met become :
Lochmittenabstand zu Lochdurchmesser im Bereich von 1 bis 10;  Hole center distance to hole diameter in the range of 1 to 10;
Lochkantenabstand zu Lochdurchmesser im Bereich von 1 bis 9;  Hole edge distance to hole diameter in the range of 1 to 9;
Plattendicke des Substrats zu Lochdurchmesser im Bereich von 0,1 bis 25.  Plate thickness of the substrate to hole diameter in the range of 0.1 to 25.
12. Interposer nach einem der Ansprüche 1 bis 11, 12. Interposer according to one of claims 1 to 11,
wobei die Lochkanten zwischen Plattenseite des  the hole edges between plate side of the
Basissubstrats und Lochlaibung abgerundet-gebrochen sind.  Base substrate and hole reveal are rounded-broken.
13. Verfahren zur Herstellung von Löchern in einem 13. A method for producing holes in a
Interposer nach einem der Ansprüche 1 bis 12,  Interposer according to one of claims 1 to 12,
mit folgenden Schritten:  with the following steps:
a) Bereitstellen des zu lochenden Basissubstrates (1) aus Glas;  a) providing the base substrate (1) to be punched out of glass;
b) Ausrichten einer Vielfach-Laserstrahlanordnung (4) auf vorbestimmte Lochungsstellen (10) des  b) aligning a multiple laser beam assembly (4) on predetermined Lochungsstellen (10) of the
Basissubstrates (1);  Base substrate (1);
c) Auslösen von fokussierten Laserimpulsen (41) in  c) triggering focused laser pulses (41) in
einem Wellenlängenbereich zwischen 1600 und 200 nm, in welchem das Glas wenigstens teilweise transparent ist, und mit einer Strahlungsintensität, die zu lokaler, athermischer Zerstörung des Glases entlang jeweils eines filamentartigen Kanals (11) führt; d) Aufweiten der filamentartigen Kanäle (11) auf  a wavelength range between 1600 and 200 nm, in which the glass is at least partially transparent, and having a radiation intensity which results in local, athermal destruction of the glass along each filamentary channel (11); d) widening of the filamentary channels (11)
gewünschten Durchmesser der Löcher (12).  desired diameter of the holes (12).
14. Verfahren nach Anspruch 13, 14. The method according to claim 13,
wobei die Aufweitung der filamentartigen Kanäle (11) durch elektrothermische Aufheizung und Verdampfung von Lochmaterial infolge dielektrischer Durchbrüche erfolgt . 15. Verfahren nach Anspruch 13, wherein the widening of the filamentary channels (11) by electrothermal heating and evaporation of hole material due to dielectric breakthroughs. 15. The method according to claim 13,
wobei die Aufweitung der filamentartigen Kanäle (11) durch reaktive Gase erfolgt.  wherein the widening of the filamentary channels (11) is effected by reactive gases.
Verfahren zur Herstellung von Löchern in einem Process for the production of holes in one
Interposer nach einem der Ansprüche 1 bis 12,  Interposer according to one of claims 1 to 12,
mit folgenden Schritten:  with the following steps:
a) beidseitiges Bedrucken des Basissubstrats (1) aus Glas mit HF-Ankopplungsmaterial , punktförmig an vorgesehenen Lochungsstellen (10);  a) double-sided printing of the base substrate (1) made of glass with HF coupling material, punctiform at intended Lochungsstellen (10);
b) Verbringen des bedruckten Basissubstrates (1) in  b) moving the printed base substrate (1) into
einen Bearbeitungsraum, der von plattenförmigen HF- Elektroden (2, 3) flankiert wird;  a processing space flanked by plate-shaped RF electrodes (2, 3);
c) Beaufschlagen des Basissubstrates (1) mit HF- Energie, die vorwiegend das punktförmig aufgebrachte HF-Ankopplungsmaterial erwärmt, bis dort Erweichung des Materials des Basissubstrates stattfindet;  c) applying RF energy to the base substrate (1) which predominantly heats the dot-like applied RF coupling material until softening of the base substrate material occurs there;
d) Erzeugen hoher Spannung zwischen den Elektroden (2, 3), um schmale Kanäle (11) infolge dielektrischer Durchbrüche, ausgehend von den HF- Ankopplungspunkten, zu erzeugen.  d) generating high voltage between the electrodes (2, 3) to produce narrow channels (11) due to dielectric breakdowns from the RF coupling points.
17. Verfahren nach Anspruch 16, 17. The method according to claim 16,
wobei eine Aufweitung der schmalen Kanäle (11) infolge dielektrischer Durchbrüche zu Löchern (12) durch tiefes, reaktives Ionen-Ätzen erfolgt.  wherein a widening of the narrow channels (11) as a result of dielectric breakthroughs to holes (12) by deep, reactive ion etching takes place.
EP11730223.2A 2010-07-02 2011-07-04 Interposer and method for producing holes in an interposer Withdrawn EP2589072A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010025966A DE102010025966B4 (en) 2010-07-02 2010-07-02 Interposer and method for making holes in an interposer
PCT/EP2011/003300 WO2012000685A2 (en) 2010-07-02 2011-07-04 Interposer and method for producing holes in an interposer

Publications (1)

Publication Number Publication Date
EP2589072A2 true EP2589072A2 (en) 2013-05-08

Family

ID=44561381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11730223.2A Withdrawn EP2589072A2 (en) 2010-07-02 2011-07-04 Interposer and method for producing holes in an interposer

Country Status (7)

Country Link
US (2) US20130210245A1 (en)
EP (1) EP2589072A2 (en)
JP (3) JP6208010B2 (en)
KR (2) KR101726982B1 (en)
CN (1) CN102971838B (en)
DE (1) DE102010025966B4 (en)
WO (1) WO2012000685A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI547454B (en) * 2011-05-31 2016-09-01 康寧公司 High-speed micro-hole fabrication in glass
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
DE102013103370A1 (en) 2013-04-04 2014-10-09 Lpkf Laser & Electronics Ag Method for introducing perforations into a glass substrate and a glass substrate produced in this way
EP2964416B1 (en) 2013-04-04 2023-07-19 LPKF Laser & Electronics SE Method for separating a substrate
EP2964417B1 (en) 2013-04-04 2022-01-12 LPKF Laser & Electronics AG Method for providing through-openings in a substrate
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10293436B2 (en) * 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
JP2015146401A (en) * 2014-02-04 2015-08-13 大日本印刷株式会社 glass interposer
KR102445217B1 (en) 2014-07-08 2022-09-20 코닝 인코포레이티드 Methods and apparatuses for laser processing materials
EP3552753A3 (en) 2014-07-14 2019-12-11 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
DE102014113339A1 (en) 2014-09-16 2016-03-17 Lpkf Laser & Electronics Ag Method for producing recesses in a material
SG10201902331XA (en) 2014-09-16 2019-04-29 Lpkf Laser & Electronics Ag Method for introducing at least one cutout or aperture into a sheetlike workpiece
CN107922237B (en) 2015-03-24 2022-04-01 康宁股份有限公司 Laser cutting and processing of display glass compositions
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
CN109803786B (en) 2016-09-30 2021-05-07 康宁股份有限公司 Apparatus and method for laser processing of transparent workpieces using non-axisymmetric beam spots
EP3529214B1 (en) 2016-10-24 2020-12-23 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11478880B2 (en) 2017-03-06 2022-10-25 Lpkf Laser & Electronics Ag Method for producing at least one recess in a material by means of electromagnetic radiation and subsequent etching process
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
WO2019195220A1 (en) 2018-04-03 2019-10-10 Corning Research & Development Corporation Waveguide substrates and waveguide substrate assemblies having waveguide routing schemes and methods for fabricating the same
EP3776035B1 (en) 2018-04-03 2022-11-09 Corning Research & Development Corporation Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same
US11609395B2 (en) 2021-01-11 2023-03-21 Corning Research & Development Corporation Waveguide substrates and assemblies including the same

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483373A (en) 1966-07-28 1969-12-09 Siemens Ag Airlock assembly for corpuscular ray devices
US3562009A (en) 1967-02-14 1971-02-09 Western Electric Co Method of providing electrically conductive substrate through-holes
US3783237A (en) 1972-11-06 1974-01-01 Reynolds Tobacco Co R Apparatus for electrically perforating sheet material
DE2802315A1 (en) 1978-01-20 1979-07-26 Hauni Werke Koerber & Co Kg DEVICE FOR PERFORATING LINES OF WRAPPING MATERIAL FOR CIGARETTES OR OTHER ROD-SHAPED SMOKING ARTICLES
DE2830326A1 (en) 1978-07-10 1980-01-24 Schmidt Kufeke K P ARRANGEMENT FOR FINELY PERFORATING FILM-LIKE MATERIAL SHEETS BY MEANS OF HIGH VOLTAGE PULSES
FR2475064B1 (en) 1980-01-31 1987-06-26 Inoue Japax Res METHOD AND APPARATUS FOR SPARK TREATMENT OF AN ELECTRICALLY CONDUCTIVE PART
DE3111402A1 (en) 1980-03-25 1982-04-29 Walter Winston Duley "METHOD AND DEVICE FOR LASER BEAM PROCESSING OF WORKPIECES"
US4662969A (en) 1985-01-14 1987-05-05 General Motors Corporation Microwave method of perforating a polymer film
US4777338A (en) 1987-04-08 1988-10-11 Cross James D Perforation of synthetic plastic films
DE3742770A1 (en) 1987-12-17 1989-06-29 Akzo Gmbh MICRO / ULTRAFILTRATION MEMBRANES WITH DEFINED PORO SIZE BY IRRADIATION WITH PULSE LASERS AND METHOD FOR THE PRODUCTION THEREOF
US5216207A (en) * 1991-02-27 1993-06-01 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
FR2677271A1 (en) 1991-06-04 1992-12-11 Commissariat Energie Atomique Process for the production of microporous membranes
US5367143A (en) 1992-12-30 1994-11-22 International Business Machines Corporation Apparatus and method for multi-beam drilling
JP2529811B2 (en) 1993-07-28 1996-09-04 栄電子工業株式会社 Small-diameter hole drilling apparatus and small-diameter hole drilling method using the same
JP2607346B2 (en) 1994-03-04 1997-05-07 栄電子工業株式会社 Small hole processing method for substrate material
JP2572201B2 (en) 1994-03-04 1997-01-16 栄電子工業株式会社 Method and apparatus for processing small diameter holes in substrate material
JP2614697B2 (en) 1994-03-29 1997-05-28 栄電子工業株式会社 Small-diameter hole drilling apparatus and small-diameter hole drilling method using the same
JP2989271B2 (en) * 1995-07-12 1999-12-13 ホーヤ株式会社 Bare chip mounting board, method of manufacturing bare chip mounting board, and method of forming electrodes of bare chip
WO1997003460A1 (en) 1995-07-12 1997-01-30 Hoya Corporation Bare chip mounted board, method of manufacturing the board, and method of forming electrode of bare chip
US5770889A (en) * 1995-12-29 1998-06-23 Lsi Logic Corporation Systems having advanced pre-formed planar structures
CN1161899A (en) 1996-03-13 1997-10-15 严跃 Method for processing microporosities of polymer thin-film
JPH09255351A (en) * 1996-03-26 1997-09-30 Nippon Sheet Glass Co Ltd Method and device for boring glass plate
JP4004596B2 (en) 1997-08-05 2007-11-07 一成 高木 Plastic film manufacturing method
US6114240A (en) * 1997-12-18 2000-09-05 Micron Technology, Inc. Method for fabricating semiconductor components using focused laser beam
US6620731B1 (en) * 1997-12-18 2003-09-16 Micron Technology, Inc. Method for fabricating semiconductor components and interconnects with contacts on opposing sides
JP3844868B2 (en) 1998-01-12 2006-11-15 株式会社東芝 Laser / discharge combined machining method and apparatus
US7205181B1 (en) * 1998-03-20 2007-04-17 Mcsp, Llc Method of forming hermetic wafer scale integrated circuit structure
JP4497147B2 (en) * 1998-12-16 2010-07-07 セイコーエプソン株式会社 Semiconductor chip manufacturing method, semiconductor device manufacturing method, circuit board manufacturing method, and electronic device manufacturing method
US6424048B1 (en) * 1998-12-16 2002-07-23 Seiko Epson Corporation Semiconductor chip, semiconductor device, circuit board and electronic equipment and production methods for them
JP3792445B2 (en) 1999-03-30 2006-07-05 日本特殊陶業株式会社 Wiring board with capacitor
US7247035B2 (en) * 2000-06-20 2007-07-24 Nanonexus, Inc. Enhanced stress metal spring contactor
KR100477146B1 (en) * 1999-09-28 2005-03-17 스미도모쥬기가이고교 가부시키가이샤 Laser drilling method and laser drilling device
JP2001266094A (en) * 2000-03-15 2001-09-28 Toshiba Corp Non-contact communication unit and its control method
JP3796099B2 (en) * 2000-05-12 2006-07-12 新光電気工業株式会社 INTERPOSER FOR SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE
JP3797068B2 (en) 2000-07-10 2006-07-12 セイコーエプソン株式会社 Laser microfabrication method
US6399892B1 (en) 2000-09-19 2002-06-04 International Business Machines Corporation CTE compensated chip interposer
US6977224B2 (en) 2000-12-28 2005-12-20 Intel Corporation Method of electroless introduction of interconnect structures
JP4092890B2 (en) * 2001-05-31 2008-05-28 株式会社日立製作所 Multi-chip module
JP3860000B2 (en) * 2001-09-07 2006-12-20 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
TWI312166B (en) * 2001-09-28 2009-07-11 Toppan Printing Co Ltd Multi-layer circuit board, integrated circuit package, and manufacturing method for multi-layer circuit board
JP2003249606A (en) * 2002-02-25 2003-09-05 Sony Corp Semiconductor device and interposer
JP3999999B2 (en) 2002-04-19 2007-10-31 新日本製鐵株式会社 Laser surface processing equipment
JP4138529B2 (en) * 2003-02-24 2008-08-27 浜松ホトニクス株式会社 Semiconductor device and radiation detector using the same
US20060094584A1 (en) 2003-01-10 2006-05-04 Masanori Shojiya Glass for laser processing
DE10301291B3 (en) 2003-01-15 2004-08-26 Infineon Technologies Ag Inserting structures into a substrate used in VLSI technology comprises applying a photo-sensitive layer on an uppermost layer, forming structures on the photo-sensitive layer
US7327554B2 (en) * 2003-03-19 2008-02-05 Ngk Spark Plug Co., Ltd. Assembly of semiconductor device, interposer and substrate
JP2004288839A (en) 2003-03-20 2004-10-14 Fujikura Ltd Reactive ion etching device
JP2004306137A (en) 2003-03-27 2004-11-04 Kyocera Corp Through hole forming method
US6984583B2 (en) * 2003-09-16 2006-01-10 Micron Technology, Inc. Stereolithographic method for forming insulative coatings for via holes in semiconductor devices
KR20060111449A (en) * 2003-09-24 2006-10-27 이비덴 가부시키가이샤 Interposer and multilayer printed wiring board
US7847411B2 (en) * 2003-11-07 2010-12-07 Shinko Electric Industries Co., Ltd. Electronic device and method of manufacturing the same
JPWO2005074003A1 (en) * 2004-01-28 2007-09-13 国立大学法人京都大学 Laser analysis apparatus and method
US20060060238A1 (en) 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
JP2005228834A (en) * 2004-02-12 2005-08-25 Ibiden Co Ltd Electrode embedding member for plasma generator
JPWO2005081312A1 (en) * 2004-02-24 2008-01-17 イビデン株式会社 Semiconductor mounting substrate
EP1744860B1 (en) 2004-04-01 2012-02-01 PicoDrill SA Manufacturing and use of microperforated substrates
US7109068B2 (en) * 2004-08-31 2006-09-19 Micron Technology, Inc. Through-substrate interconnect fabrication methods
US7221050B2 (en) * 2004-09-02 2007-05-22 Intel Corporation Substrate having a functionally gradient coefficient of thermal expansion
CN101646301B (en) * 2004-12-15 2011-09-07 揖斐电株式会社 Printed wiring board
JP3966329B2 (en) * 2005-01-24 2007-08-29 セイコーエプソン株式会社 Inkjet head manufacturing method
JP2006239718A (en) * 2005-03-01 2006-09-14 Kyoto Univ Method and apparatus for manufacturing periodically arranged nano pore body
WO2006132151A1 (en) * 2005-06-06 2006-12-14 Rohm Co., Ltd. Interposer and semiconductor device
TWI379724B (en) * 2006-02-03 2012-12-21 Gsi Group Corp Laser-based method and system for removing one or more target link structures
JP4394667B2 (en) 2006-08-22 2010-01-06 日本碍子株式会社 Manufacturing method of electrostatic chuck with heater
JP2008066481A (en) * 2006-09-06 2008-03-21 Shinko Electric Ind Co Ltd Package, semiconductor device, manufacturing method of package and manufacturing method of semiconductor device
JP5003082B2 (en) * 2006-09-26 2012-08-15 富士通株式会社 Interposer and manufacturing method thereof
JP5124121B2 (en) * 2006-10-02 2013-01-23 株式会社アルバック Etching method of glass substrate
WO2008105535A1 (en) 2007-03-01 2008-09-04 Nec Corporation Semiconductor device and method for manufacturing the same
US8440916B2 (en) * 2007-06-28 2013-05-14 Intel Corporation Method of forming a substrate core structure using microvia laser drilling and conductive layer pre-patterning and substrate core structure formed according to the method
US20090033337A1 (en) 2007-08-03 2009-02-05 Pasco Robert W Temporary chip attach test carrier utilizing an interposer
WO2009022461A1 (en) * 2007-08-10 2009-02-19 Sanyo Electric Co., Ltd. Circuit device, circuit device manufacturing method and portable device
US7763965B2 (en) * 2007-09-25 2010-07-27 International Business Machines Corporation Stress relief structures for silicon interposers
CN101803007A (en) * 2007-09-28 2010-08-11 三洋电机株式会社 Element mounting substrate, method for manufacturing element mounting substrate, circuit device, method for manufacturing circuit device, and portable device
US8389903B2 (en) 2007-11-09 2013-03-05 Picodrill Sa Electrothermal focussing for the production of micro-structured substrates
JP5079475B2 (en) * 2007-12-05 2012-11-21 新光電気工業株式会社 Electronic component mounting package
EP2237934A1 (en) 2007-12-12 2010-10-13 PicoDrill SA Manufacturing of optical structures by electrothermal focussing
WO2009110288A1 (en) 2008-03-04 2009-09-11 日本電気株式会社 Capacitor having through electrode, method for manufacturing the capacitor, and semiconductor device
US7833808B2 (en) 2008-03-24 2010-11-16 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
CN201257685Y (en) 2008-06-26 2009-06-17 高田山 Plaster ion perforating head
KR101555379B1 (en) * 2008-06-30 2015-09-23 니혼도꾸슈도교 가부시키가이샤 Electrical Inspection Substrate Unit and Manufacturing Method Therefor
KR20110121605A (en) 2009-02-02 2011-11-07 아사히 가라스 가부시키가이샤 Glass substrate for semiconductor device member, and process for producing glass substrate for semiconductor device member
US8039957B2 (en) * 2009-03-11 2011-10-18 Raytheon Company System for improving flip chip performance
US20100244276A1 (en) * 2009-03-25 2010-09-30 Lsi Corporation Three-dimensional electronics package
US8624374B2 (en) * 2010-04-02 2014-01-07 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with fan-out and with connecting elements for stacking and manufacturing methods thereof
US8674513B2 (en) * 2010-05-13 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures for substrate
DE102010025969A1 (en) * 2010-07-02 2012-01-05 Schott Ag Hole generation with multiple electrodes
DE102010025968B4 (en) 2010-07-02 2016-06-02 Schott Ag Generation of microholes
DE102010025967B4 (en) 2010-07-02 2015-12-10 Schott Ag Method for producing a multiplicity of holes, device for this and glass interposer
WO2012129708A1 (en) 2011-03-30 2012-10-04 Selfrag Ag Electrode arrangement for an electrodynamic fragmentation plant
EP2564999A1 (en) * 2011-08-31 2013-03-06 Asahi Glass Company, Limited A method of generating a high quality hole or recess or well in a substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012000685A2 *

Also Published As

Publication number Publication date
JP6841607B2 (en) 2021-03-10
DE102010025966A1 (en) 2012-01-05
JP2019041133A (en) 2019-03-14
US20200045817A1 (en) 2020-02-06
JP2016195270A (en) 2016-11-17
KR20160013259A (en) 2016-02-03
KR101598260B1 (en) 2016-02-26
JP2013531380A (en) 2013-08-01
CN102971838B (en) 2015-11-25
US20130210245A1 (en) 2013-08-15
US11744015B2 (en) 2023-08-29
WO2012000685A2 (en) 2012-01-05
KR20130040224A (en) 2013-04-23
WO2012000685A3 (en) 2012-03-08
DE102010025966B4 (en) 2012-03-08
CN102971838A (en) 2013-03-13
JP6208010B2 (en) 2017-10-04
KR101726982B1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
DE102010025966B4 (en) Interposer and method for making holes in an interposer
DE60011515T2 (en) Preparation of Ceramic Substrates and Unsintered Ceramic Substrate
EP0016306B1 (en) Method of manufacturing a multi-layered glass-ceramic package for the mounting of semiconductor devices
DE10157443B4 (en) A glass ceramic composition for an electronic ceramic component, use of the glass ceramic composition for an electronic ceramic component, and methods for producing a multilayer electronic ceramic component
DE2901172A1 (en) PROCESS FOR MANUFACTURING MULTI-LAYER Sintered CERAMIC GLASS SUBSTRATES WITH CABLE PATTERNS COMPOSED OF GOLD, SILVER OR COPPER, AND SUBSTRATES MANUFACTURED THEREOF
DE112006002451B4 (en) Ceramic multilayer substrate, ceramic multilayer module, and method of making the same
EP1371092B2 (en) Method for structuring a flat substrate consisting of a glass-type material
DE112007001868B4 (en) Glass ceramic composition, sintered glass ceramic body and monolithic ceramic electronic component
DE3324933A1 (en) CERAMIC MULTI-LAYER PCB
DE2745582A1 (en) METHOD FOR PRODUCING AN OPTICAL CIRCUIT FROM A CERAMIC GLASS STRUCTURE
DE112011100505T5 (en) METHOD FOR PRODUCING A PHOTOACTIVE SUBSTRATE SUITABLE FOR MICRO-PRODUCTION
DE10141910B4 (en) Glass-ceramic sintered product and process for its preparation
DE3701973C2 (en)
DE1640457B1 (en) Electrical connections in circuit assemblies and methods of making them
DE112018005956T5 (en) INTEGRATED HEATING AND MANUFACTURING PROCESS
EP2954554B1 (en) Multi-level metallization on a ceramic substrate
DE102004047007B4 (en) A method of manufacturing a ceramic substrate for electronic thin film devices
DE10118529C1 (en) Process for structuring a flat substrate made of glass-like material
DE102004047033A1 (en) substratum
US20190157218A1 (en) Interposer and method for producing holes in an interposer
DE10234364A1 (en) Glass-ceramic composite material, used in low temperature co-fired ceramic applications, comprises a ceramic filler, and a glassy matrix containing lithium, silicon, aluminum and oxygen
DE102020103487B4 (en) Process for producing a glass-ceramic composite substrate
DE10145190A1 (en) Production of a glass-based body having a monolithic multiple layer structure and containing a passive electronic component comprises forming a glass film, coating with functional layers and optionally connecting two or more layers formed
DE3721929C2 (en)
DE112022001942T5 (en) Circuit board for high frequency devices and a high frequency device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130103

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180201