EP2576191A2 - Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung - Google Patents

Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung

Info

Publication number
EP2576191A2
EP2576191A2 EP11722310.7A EP11722310A EP2576191A2 EP 2576191 A2 EP2576191 A2 EP 2576191A2 EP 11722310 A EP11722310 A EP 11722310A EP 2576191 A2 EP2576191 A2 EP 2576191A2
Authority
EP
European Patent Office
Prior art keywords
space
construction
building
areas
changing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11722310.7A
Other languages
English (en)
French (fr)
Inventor
Johann Oberhofer
Robert Eichner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS GmbH filed Critical EOS GmbH
Publication of EP2576191A2 publication Critical patent/EP2576191A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a construction space changing device for a device for producing three-dimensional objects by stratified solidification of a powdered building material to the.
  • Object corresponding locations in the respective layers and an apparatus for producing a three-dimensional object with a space modification device.
  • Devices for producing three-dimensional objects by layer-wise solidifying a powdery building material for example in the form of a laser sintering machine, have, for example, the EOSINT M270 a construction area with a size of 250 x 250 mm.
  • Such devices may be too large and inflexible for the production of small objects, such as dental inlays, due to the large installation space.
  • the patent DE 199 52 998 B4 discloses an apparatus for the direct production of bodies in the layer structure of pulverulent substances, which in one embodiment has two construction spaces and two associated reservoir. The floors of the installation spaces and reservoir are each connected to a separate drive, which makes the device complex and inflexible.
  • One aspect of the invention is a construction space modification device which makes it possible to reduce or divide the installation space into one or more separate, smaller construction areas, in which objects can be produced with less power, or, in the context of compatibility, different powder types can be processed in parallel.
  • the space modification device is simple, thus inexpensive and can be easily retrofitted or removed again.
  • FIGS. 1 shows a schematic representation of a laser sintering device as an example of an apparatus for producing a three-dimensional object
  • Fig. 2 is a plan view of a construction level of a device that can be equipped with the space change device or retrofitted
  • Fig. 3 is a sectional view of the building chamber along the section line shown in Fig. 2 at the end of a process of manufacturing objects by
  • FIG. 4 shows a plan view of an assembly of a construction space changing device in a first embodiment with a modified construction area in a device according to FIG. 1;
  • 5 shows a plan view of an assembly of a construction space changing device in the first embodiment with a plurality of modified construction areas in a device according to FIG. 1;
  • FIG. 6 is a sectional side view of the assemblies of FIG. 4 and 5;
  • 7 is a plan view of a construction plane of a device with a construction space changing device according to a second embodiment of the invention, in which the coater is not shown;
  • 8a is a sectional view of the construction level according to the second embodiment taken along a section line shown in Fig. 7 at the beginning of a process of producing objects by stratified solidification of a. powdery building material;
  • Fig. 8b is a sectional view of the construction level according to the.
  • FIG. 9 shows a plan view of a construction plane of a device with a construction space changing device according to a third embodiment of the invention, in which the coater is not shown; 10a is a sectional view of the construction level according to the third embodiment along a section line shown in Figure 9 at the beginning of the process of producing objects by layered solidification of a powdered building material.
  • 10b is a sectional view of the construction level according to the third embodiment taken along the section line shown in Figure 9 at the end of the process of the production of objects by layered solidification of a powdered building material.
  • FIG. 1 schematically shows a laser sintering apparatus as an example of a device for producing a three-dimensional object in layers by means of a generative production method.
  • the device has an open towards the top frame 1, which forms a building chamber, with a movable therein in the vertical direction pad in the form of a construction platform 2, which carries the object to be formed 3 and defines a construction field.
  • the construction platform 2 is adjusted in the vertical direction so that the respective layer of the object 3 to be consolidated lies in a building level 4.
  • a coater 5 is provided for applying the pulverulent build-up material which can be solidified by electromagnetic radiation.
  • An exposure system has a laser 6 as the source of the electromagnetic radiation.
  • a deflection device 8 by means of which a laser beam 7 generated by the laser 6 is directed onto a coupling window 9, is transmitted by the latter into a process chamber 10 and focused at a predetermined point in the building plane 4.
  • a control unit 11 is also provided, via which the components of the device can be used in a coordinated manner for carrying out be controlled during the construction process.
  • the control unit 11 is operated inter alia as a function of CAD data of the object to be produced.
  • the apparatus further comprises a gas circulation and gas preparation system, not shown.
  • the powdery material is stored in a storage or a metering container 12 and is supplied by the coater 5 thereof in the construction field.
  • powdery building material all powder or powder mixtures suitable for the laser sintering process can be used.
  • powders include e.g. Plastic powders such as polyamide or polystyrene, PEEK, metal powders such as stainless steel powder or other metal powders adapted to the respective purpose, in particular alloys, plastic-coated sand or ceramic powder.
  • the operation of the laser sintering device is such that the coater 5 moves over the construction field and wrestles a powder layer with a predetermined thickness. Subsequently, the cross section of the object 3 in the respective layer is irradiated with the laser beam 7 and the powder is solidified there. Then the build platform 2 is lowered and applied a new powder layer. The production of the object 3 is carried out in this way, layer by layer. After completion, the object 3 is removed and optionally post-treated and / or subjected to quality control.
  • FIG. 2 shows, by way of example, a plan view of a building level 4 of a laser sintering device which can be equipped or retrofitted with a space change device in which the build platform 2 is spatially arranged between the dosing container 12 and an overflow container.
  • container 13 is provided. Retrofittable here means that the device is functional without the installation space dividing device, and the installation space dividing device is self-installable without changing the device, wherein parts of the installation space arrangement device can be ' tigbar on components of the device.
  • the metering container 12, the building platform 2, on which the powdered building material is transported and 'over which a construction space 22 is formed, and the overflow container 13 have a substantially equal width, in FIG. 2 in the vertical direction.
  • the metering container 12 has a punch or piston, not shown, for transporting the powder to the top.
  • the powdery building material is transported by the coater, not shown in Fig. 2 in the space 22 and excess powder material falls during further movement of the coater in the overflow tank 13th
  • Fig. 3 is a sectional view of the building chamber along the section line shown in Fig. 2 at the end of the process of producing objects by layer-wise solidifying a powdery building material.
  • a coater 5 is shown above the installation space 22, in which three manufactured objects 3 are shown.
  • the space 22 is bounded below by the build platform 2, and fixed laterally by the frame 1.
  • the building board 15 is located on the building platform 2, ie within the space 22. It must, as shown in Fig. 3, do not reach to the frame 1.
  • the construction space 22 is filled in the area surrounding the object 3 with a powder 16 as the powdery building material, so that all objects 3, in which the powder was solidified by the laser beam 7, are made of the same powder. One or more objects 3 can be produced simultaneously.
  • the coater 5 has a blade 14 with which the. Powder 3 is applied to each of the build platform 2.
  • the construction platform 2 can be adjusted in height by means of a lifting mechanism 18, so that by lowering the construction platform 2, the height of the layer of the powder 16 applied by the coater 5 can be adjusted according to specific processing parameters.
  • 4 shows by way of example a plan view of an assembly 27 of a construction space changing device in a first embodiment in the laser sintering apparatus.
  • the assembly has a base member, here in the form of a trough 28 on.
  • the tub 28 here has dimensions which correspond approximately to the areas of an original building area 29 and of an original metering box area 30, which are originally contained in the device. In its width, in the vertical direction in FIG. 4, the tub 28 has an edge so that it is wider than the original building area 29 and the original Dosier disposer Suite 30.
  • the area of the trough below the rim is so wide that it fits into the original build area 29 and the original dosing tank area 30 with a clearance required for installation. In length, the tub 28 also fits with a required clearance in the outer limits of these areas.
  • the edge can also be designed differently, or the edge can be omitted, so that the trough 28 rests on an original intermediate wall 31.
  • a delimited building area 22.1 is provided, in which the three-dimensional objects are produced. Building areas are spaces that are subregions of the installation space 22, wherein the position of the building area 22.1 within the width dimension of the trough 28 can be chosen arbitrarily and the width
  • the construction area is delimited by a boundary device within the installation space 22.
  • the assembly 27 here has a relative to the metering 12 in its dimensions reduced metering 12.1 to provide the powder.
  • an overflow tank 13.1 is provided which has compared to the overflow tank 13 has reduced dimensions.
  • a wider overflow container may be provided.
  • the coater 5 is shown in FIG. 4 in the position after it has transported the powder from the metering container 12.1 into the build area 22.1 and excess powder has been introduced into the overflow container 13.1.
  • 5 shows, by way of example, a top view of the module 27 of the installation space changing device in an alternative first embodiment in the laser sintering device.
  • the tub 28 has here several changed separate building areas 22.1, 22.2.
  • the construction areas 22.1, 22.2 are separated from each other by areas 40 of the tub 28 between openings 41.1, 41.2 in the bottom of the tub 28, which are components of the boundary device.
  • more than two building areas 22.1, 22.2 be provided to split the space 22 even more.
  • the construction areas have different dimensions in this embodiment. The latter can also be identical.
  • the widths of the multiple construction areas can be arbitrarily set within the total width.
  • the assembly 27 here has two metering 12.1, 12.2 to provide the powder.
  • the width of the dosing tank corresponds in each case to the width of the associated construction areas. The width may also be different in alternative embodiments.
  • the construction areas 22.1 and 22.2 are spatially separated from each other in the direction of the width of the tub 28 with a gap that is sufficiently large so that it prevents the powder, each of the dosing containers 12.1, 12.2 in the construction areas 22.1, 22.2 be transported, mix.
  • the coater 5 is shown in FIG. 5 in the position after it has transported the powder from the metering tanks 12.1, 12.2 into the building areas 22.1, 22.2 and excess powder has been introduced into the overflow tanks 13.1, 13.2.
  • the coater 5 supplies the various construction areas 22.1, 22.2 in one movement with the respective powder.
  • FIG. 6 the assembly 27 of Figures 4 and 5 is shown in a side view in a longitudinal section.
  • overflow containers 13.1, 13.2 are shown here integrated into the tub. But they can also be installed as a separate container in the tub 28.
  • the assembly 27 has as one or more components of the boundary device one or more reduced building platforms 32 as documents in the openings 41.1, 41.2, the documents being arranged in the construction area 22.1 shown in FIG. 4 and the construction areas 22.1 and 22.2 shown in FIG and whose base area is a partial area of the building platform, which is adapted to the horizontal dimensions of the respective building area.
  • the reduced building platforms 32 are fastened to the building platform 2 via a connecting means, here a connecting plate 33, which is moved upwards and downwards during the production process and, if necessary, connected to one another, whereby the two connected, reduced construction platforms 32 move simultaneously , As a result, the construction platform 2 and the reduced documents 32 also move simultaneously up and down.
  • a metering container stamper 34 is provided in each case for transporting the powder up to the top. If necessary, the metering vessel punches 34 are each connected to one another via a connecting plate 35, so that they move simultaneously. The connection plate is in turn mounted on an original metering platform 36.
  • the production process is analogous to the production process described above, wherein the control unit 11 of the device with a construction space changing device according to the first embodiment is designed so that a process software in the separate construction areas 22.1 and 22.2 can set different operating parameters, to be able to process different powders and to be able to produce different properties of the objects 3.
  • connection plate 33 with the reduced support 32 or the reduced support 32 and the connection plate 35 with the metering reservoir 34 or the Dosier investigaerst Zin 34 are each mounted on the build platform 2 and on the original metering platform.
  • the tub 28 is inserted into the frame 1 (FIG. 1), the original building area 29 and the original metering tank area 30.
  • the tub 28 then lies with its lateral edges on an upper surface of the frame 1, so that a plane 37 is located on the bottom of the tub 28 slightly above the building level 4.
  • the tub is secured in the device by suitable fasteners, and in alternative embodiments, eg by welding, may also be permanently attached.
  • FIG. 7 shows a plan view of the construction level 4 of a device with a construction space changing device according to a second embodiment.
  • the coater is not shown here.
  • the metering container in this second embodiment differs from the metering container shown in FIG. 5 in that two vertical metering container dividing walls 19 are provided, which extend in FIG. 7 from left to right, ie in the direction of movement A, and the metering container subdivide, so that three metering 12.1, 12.2 and 12. 3 arise, the Dosier spasnnennpurpose 19 are mounted on top of the punch or the piston.
  • the installation space 22 above the building platform 2 FIG.
  • the construction areas 22.1, 22.2, 22.3 are thus defined here only by partial areas of the building platform 2.
  • the Dosier electervennclaim 19 and the space dividing walls 20 are each arranged in alignment with each other.
  • the overflow container is divided into three overflow containers 13.1, 13.2 and 13.3 by walls 21 which are likewise aligned with the metering-retaining walls 19 and the installation space dividing walls 20.
  • intermediate dividing walls 23 are provided extending in the direction of movement A in each case.
  • intermediate partitions 24 are provided between the space partition walls 20 and the walls 21 in the overflow tank 13. These serve in each case that, in the case in which different powders 16 are used for the different construction areas 22.1, 22.2 and 22.3, these between the construction areas 22.1, 22.2 and 22.3, the dosing 12.1, 12.2 and 12.3 and the overflow containers 13.1, 13.2 , 13.3 are not mixed.
  • the dosing container partitions 19, the space partition walls 20 and the intermediate partitions 23 each have the same width.
  • the intermediate partitions 24 may be of equal or smaller width.
  • the intermediate partitions 20 and intermediate partitions 24 are fixed so that they protrude from the building level 4 upwards.
  • FIG. 8 a shows a sectional view of the construction chamber according to the second embodiment along a section line shown in FIG. 7 at the beginning of the process of producing objects.
  • the structure is substantially identical to the structure shown in FIG. The difference is that it is shown here how the construction space dividing walls 20 are arranged.
  • the space partition walls 20 are mounted on the building platform 2.
  • respective building boards 15 are arranged on the building platform 2 whose upper surfaces are at the beginning of the production of objects in the building level 4, their height being equal to the minimum height of the building space dividing walls 20 is so that they serve as ' packing.
  • the building panels 15 can be taken out, for example, after completion together with the object 3 formed. However, their presence is not mandatory.
  • the coater 5 as a component of a common coater unit of the various construction areas 22.1, 22.2 and 22.3 has a slot-shaped or gap-shaped recess 25 for each space partition 20, whereby the blade 14 is subdivided into several sub-blades.
  • the recesses 25 are designed so that they have on their adjacent surfaces to the space partition walls 20 a little game to one To transport the powder as completely as possible without loss through the game in the space, on the other hand, despite any manufacturing tolerances, thermal expansion and play in the storage elements, a process-reliable
  • Fig. 8b shows the representation of the second embodiment shown in Fig. 8a at the end of the production of objects. Identical elements are provided with the same reference numerals and not described again.
  • the construction space dividing walls 20 have a height which ensures that the powders 16 in the different construction areas 22.1, 22.2 and 22.3 also remain separate at the end of the production process of the objects 3 and do not mix.
  • the height corresponds at least to the maximum object height to be realized.
  • Functional or tolerance-related gaps which occur in the longitudinal direction of the installation space dividing walls between the installation space partition walls 20 and walls of the construction areas 22.1, 22.2 and 22.3 may be provided by sealing elements, e.g. by silicone lips, to be closed.
  • the manufacturing process is analogous to the production process described above, wherein the control unit 11 of the device with a construction space changing device according to the second embodiment is designed so that a process software in the separate construction areas 22.1, 22.2 and 22.3 can set different operating parameters in order to be able to process different powders and to be able to produce different properties of the objects 3.
  • the third embodiment of the installation space modification device of the invention shown in FIGS. 9, 10a and 10b is essentially identical to the second embodiment, but differs in the construction of the installation space partition walls 20 and the Dosier disposer- dividing walls 19. Again, identical elements are provided with the same reference numerals and not described again.
  • Construction space dividing walls 20 and metering vessel partitions 19, which are e.g. can be realized by telescopically extendable or collapsible plates.
  • the lower end of the space dividing walls 20 is attached to the building platform 2 and the upper end of the space dividing walls 20 is mounted so that the upper edge is level with the building level 4, the lower end of the Dosier mattersennennpurpose 19 is attached to the plunger or the piston of the dosing and the upper end of the Dosier mattersennennpurpose 19 is mounted so that the upper edge is at the level of the building level 4.
  • space partition walls can additionally or alternatively also be arranged in a direction which is perpendicular to the direction of movement A in FIG. 9, that is to say in FIG. 9, perpendicular to the installation space partition walls 20. It is possible, the respective . Baubaubrook also "in the A-direction limit and so to zoom out.
  • elongated space partition walls not only the use of elongated space partition walls, but also the use of partitions, which seen from above have the shape of a rectangular or other shaped frame, possible.
  • the individual superimposed frame members are telescoped at the beginning of the manufacturing process and form a height-adjustable container 'has a low height at the beginning of the manufacturing process and its height increases as the process progresses.
  • the upper surface of the frame is at the level of the building level 4 and the lower end of the frame is attached to the building platform 2.
  • the use of sealing elements is not required.
  • the blade 14 of the coater 5 has subdividing elements 26 which project beyond the blade in the direction of movement A indicated in FIG. 9 of the blade 14 shown in FIGS. 10a and 10b.
  • the subdividing elements 26 extend over the entire height of the blade 14.
  • the subdividing elements 26 serve to prevent the mixing of the different powders 16 during the transport from the metering containers 12.1, 12.2, 12.3 to the construction areas 22.1, 22.2, 22.3, since they project in a movement relative to the blade 14, and thus the areas of the separate different powder 16 in the direction of movement in front of the blade 14.
  • control unit 11 of the apparatus is designed so that a process software in the separate building areas 22.1, 22.2 and 22.3 can set different operating parameters to process different powders and different properties of the To create objects 3.
  • each a partition the space in two construction areas, the dosing into two dosing, and the overflow container in two overflow container.
  • the space and the two containers can be separated into several construction areas and associated containers.
  • the width of the construction areas and the associated containers can be selected by the choice of the distances and / or the width of the partitions to each other.
  • installation spaces of different widths including asymmetrical installation spaces, can be set for objects of different sizes.
  • Subdivision of the construction space with the installation space changing device into several construction areas also makes it possible to use not all construction areas for the production of objects. When using the Bauraumver sectionsein- direction with multiple construction areas and, for example, the production of objects in only one construction area thereby a reduction of the space is achieved.
  • the second and third embodiments can be divided by the choice of a corresponding width of a space modification element of the space not only in several construction areas, but also the space to be reduced to the surface of a building area.
  • the remaining surface of the construction platform 2 is covered by the space modification element. The coater is then adjusted accordingly.
  • the space varying means may be configured as an exchange unit for an apparatus for manufacturing a three-dimensional object by layer-wise solidifying a powdery building material.
  • the exchange unit for the device can be designed such that it comprises a region of the building level 4, and the dosing containers 12, the building platform 2 with the corresponding space dividing walls 20, optionally the intermediate dividing walls 23 and the overflow containers 13 are arranged on the insert.
  • the coater 5 may, as a separate element of the conversion kit, be provided, on a case by case basis, with either one or more recesses 25 or with one or more subdividing elements 26.
  • the drive of the construction platform is part of the device and not of the replacement unit.
  • the exchange units can be in different
  • Configurations with different numbers and sizes of construction be provided so that the user to a certain extent several smaller devices are provided.
  • the metering container is also arranged above the coater.
  • the metering container is subdivided according to the number and the position of the installation space partitions, and the powdery building material is supplied from above to the coater.
  • dividing walls are still provided which prevent a mixing of different powders during feeding to the coater.
  • the device described is not limited to laser sintering machines. It is applicable to all laminating machines, e.g. Stereolithography, which instead of a powder-like material, a liquid, photocurable
  • Resin used in three-dimensional printing in which the powdery building material by a binder, the e.g. when
  • Droplet particles are applied to the powder layer, selectively solidified at the locations corresponding to the object, or even selective mask sintering using a mask and an extended light source instead of a laser beam.
  • FDM method Fused Deposition Modeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

Eine Bauraumveränderungseinrichtung für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials an den dem Objekt entsprechenden Stellen in den jeweiligen Schichten weist eine oder mehrere kleinere Unterlagen (32) oder ein oder mehrere Bauraumtrennelemente (20) auf einer Bauplattform (2) auf, wodurch die Vorrichtung einen oder mehrere kleinere Baubereiche (22.1, 22.2, 22.3) aufweist, in denen das Pulvermaterial effektiver genutzt wird oder unterschiedliche Pulvermaterialien verarbeitet werden.

Description

Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer
Bauraumveränderungseinrichtung
Die Erfindung betrifft eine Bauraumveränderungseinrichtung für eine Vorrichtung zum Herstellen von dreidimensionalen Objekten durch schichtweises Verfestigen, eines pulverförmigen Aufbaumaterials an den dem. Objekt entsprechenden Stellen in den jeweiligen Schichten sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung. Vorrichtungen zum Herstellen von dreidimensionalen Objekten durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials, beispielsweise in Form einer Laser-Sintermaschine, weisen wie z.B. die EOSINT M270 eine Baufläche mit einer Größe von 250 x 250 mm auf. Solche Vorrichtungen können für die Herstellung von kleinen Objekten, wie z.B. Zahninlays , auf Grund des großen Bauraums zu groß und unflexibel sein. Auf Grund der großen Fläche der Bauplattform ist es erforderlich, eine große Menge eines pulverförmigen Materials aufzubringen, von dem nur ein kleiner Anteil zu einem Objekt verarbeitet wird. Das nicht verfestigte Material wird anschließend üblicherweise wieder aufbereitet. Damit sinkt die Wirtschaftlichkeit der Maschine bei derartigen Anwendungen . Eine Entwicklung von Vorrichtungen, die speziell für Objekte mit diesen kleinen Abmessungen geeignet ist, ist auf Grund des Entwicklungsaufwands und der Herstellungskosten hinsichtlich eines erzielbaren Erlöses und der eingeschränkten Verwendbarkeit der Vorrichtungen üblicherweise nicht wirtschaftlich.
Die Patentschrift DE 199 52 998 B4 offenbart eine Vorrichtung zur direkten Herstellung von Körpern im Schichtaufbau aus pulverformigen Stoffen, die in einer Ausführungsform zwei Bauräume und zwei dazugehörige Vorratsbehälter aufweist. Die Böden der Bauräume und Vorratsbehälter sind dabei jeweils mit einem eigenen Antrieb verbunden, was die Vorrichtung aufwendig und unflexibel macht .
Es ist Aufgabe der Erfindung, eine Einrichtung für eine Vorrich- tung zur Herstellung von Objekten durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials , und eine solche Vorrichtung bereit zu stellen, so dass eine Vorrichtung mit einem großem Bauraum so weitergebildet wird, dass eine wirtschaftliche Herstellung von Objekten in unterschiedlichen Abmessungen durch schichtweises Verfestigen des pulverförmigen Aufbaumaterials möglich ist.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Weiterbildungen der Erfindung sind Gegenstand der abhängigen An- Sprüche. Ein Aspekt der Erfindung ist eine Bauraumveränderungseinrich- tung, die eine Verkleinerung oder Aufteilung des Bauraums in einen oder mehrere separate kleinere Baubereiche ermöglicht, in denen dann jeweils Objekte mit geringerem Pul ereinsatz herge- stellt werden können, oder, im Rahmen der Verträglichkeit, unterschiedliche Pulverarten parallel verarbeitet werden können. Die Bauraumveränderungseinrichtung ist einfach aufgebaut, somit kostengünstig und kann einfach nachgerüstet oder auch wieder entfernt werden.
Weitere Merkmale und Zweckmäßigkeiten der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Figuren. Von den Figuren zeigen: Fig. 1 eine schematische Darstellung einer Lasersintervorrichtung als Beispiel für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts;
Fig. 2 eine Draufsicht auf eine Bauebene einer Vorrichtung, die mit der Bauraumveränderungseinrichtung aus- oder nachrüstbar
Fig. 3 eine geschnittene Darstellung der Baukammer entlang der in Fig. 2 gezeigten Schnittlinie am Ende eines Prozesses der Herstellung von Objekten durch
schichtweises Verfestigen eines pulverförmigen Auf- baumaterials ;
Fig. 4 eine Draufsicht auf eine Baugruppe einer Bauraumveränderungseinrichtung in einer ersten Ausführungs- form mit einem veränderten Baubereich in einer Vorrichtung gemäß Fig. 1 ; Fig. 5 eine Draufsicht auf eine Baugruppe einer Bauraumver- änderungseinrichtung in der ersten Ausführungs form mit mehreren veränderten Baubereichen in einer Vor- richtung gemäß Fig. 1;
Fig. 6 eine geschnittene seitliche Darstellung der Baugruppen von Fig . 4 und 5 ; Fig. 7 eine Draufsicht auf eine Bauebene einer Vorrichtung mit einer Bauraumveränderungseinrichtung gemäß einer zweiten Ausführungsform der Erfindung, bei der der Beschichter nicht dargestellt ist; Fig. 8a eine geschnittene Darstellung der Bauebene gemäß der zweiten Ausführungsform entlang einer in Fig. 7 gezeigten Schnittlinie am Beginn eines Prozesses der Herstellung von Objekten durch schichtweises Verfestigen eines . pulverförmigen Aufbaumaterials ;
Fig. 8b eine geschnittene Darstellung der Bauebene gemäß der.
zweiten Ausführungsform entlang der in Fig. 7 gezeigten Schnittlinie am Ende des Prozesses der Herstellung von Objekten durch schichtweises Verfesti- gen eines pulverförmigen Aufbaumaterials ;
Fig. 9 eine Draufsicht auf eine Bauebene einer Vorrichtung mit einer Bauraumveränderungseinrichtung gemäß einer dritten Aus führungsform der Erfindung, bei der der Beschichter nicht dargestellt ist; Fig. 10a eine geschnittene Darstellung der Bauebene gemäß der dritten Ausführungsform entlang einer in Fig. 9 gezeigten Schnittlinie am Beginn des Prozesses der Herstellung von Objekten durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials ;
Fig. 10b eine geschnittene Darstellung der Bauebene gemäß der dritten Ausführungsform entlang der in Fig. 9 gezeigten Schnittlinie am Ende des Prozesses der Her- Stellung von Objekten durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials ;
In Fig. 1 ist eine Lasersintervorrichtung als Beispiel einer Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens schematisch dargestellt. Die Vorrichtung weist einen nach oben hin offenen Rahmen 1, der eine Baukammer bildet, mit einer darin in vertikaler Richtung bewegbaren Unterlage in Form einer Bauplattform 2 auf, die das zu bildende Objekt 3 trägt und ein Baufeld definiert. Die Bauplattform 2 wird in vertikaler Richtung so eingestellt, dass die jeweils zu verfestigende Schicht des Objekts 3 in einer Bauebene 4 liegt. Weiter ist ein Beschichter 5 zum Aufbringen des durch elektromagnetische Strahlung verfestigbaren pulverförmigen Aufbaumaterials vorgesehen. Ein Belich- tungssystem weist als Quelle der elektromagnetischen Strahlung einen Laser 6 auf. Weitere Bestandteile des Belichtungssystems sind eine Ablenkeinrichtung 8 durch die ein durch den Laser 6 erzeugter Laserstrahl 7 auf ein Einkoppelfenster 9 gelenkt wird, von diesem in eine Prozesskammer 10 hindurchgelassen und in ei- nem vorbestimmten Punkt in der Bauebene 4 fokussiert wird. Es ist ferner eine Steuereinheit 11 vorgesehen, über die die Bestandteile der Vorrichtung in koordinierter Weise zum Durchfüh- ren des Bauprozesses gesteuert werden. Die Steuereinheit 11 wird unter anderem in Abhängigkeit von CAD-Daten des herzustellenden Objekts betrieben. Die Vorrichtung weist weiterhin ein nicht gezeigtes Gasumlauf- und Gasauf ereitungssystem auf.
Das pulverförmige Material ist in einem Vorrats- bzw. einem Dosierbehälter 12 gespeichert und wird durch den Beschichter 5 daraus in das Baufeld zugeführt. Als pulverförmiges Aufbaumaterial können alle für das Lasersinterverfahren geeigneten Pulver bzw. Pulvermischungen verwendet werden. Solche Pulver umfassen z.B. Kunststoffpulver wie Polyamid oder Polystyrol, PEEK, Metallpulver wie Edelstahlpulver o- der andere, dem jeweiligen Zweck angepasste Metallpulver, insbe- sondere Legierungen, kunststoffbeschichteter Sand oder Keramikpulver .
Der Betrieb der Lasersintervorrichtung erfolgt so, dass der Beschichter 5 über das Baufeld fährt und eine Pulverschicht mit einer vorbestimmten Dicke auf ringt. Anschließend wird mit dem Laserstrahl 7 der Querschnitt des Objekts 3 in der jeweiligen Schicht bestrahlt und das Pulver dort verfestigt. Dann wird die Bauplattform 2 abgesenkt und eine neue Pulverschicht aufgebracht. Die Herstellung des Objekts 3 erfolgt auf diese Weise Schicht für Schicht. Nach Fertigstellung wird das Objekt 3 entnommen und gegebenenfalls nachbehandelt und/oder einer Qualitätskontrolle unterzogen.
Fig. 2 zeigt beispielhaft eine Draufsicht auf eine Bauebene 4 einer Laser-Sintervorrichtung, die mit einer Bauraumveränderung- seinrichtung aus- oder nachrüstbar ist, bei der die Bauplattform 2 räumlich zwischen dem Dosierbehälter 12 und einem Überlaufbe- hälter 13 vorgesehen ist. Nachrüstbar bedeutet hier, dass die Vorrichtung ohne die Bauraumaufteileinrichtung funktionsfähig ist, und die Bauraumaufteileinrichtung ohne Veränderung der Vorrichtung selbst einbaubar ist, wobei Teile der Bauraumaufteileinrichtung an Bauteilen der Vorrichtung befes'tigbar sein können .
Der Dosierbehälter 12, die Bauplattform 2, auf die das pulver- förmige Aufbaumaterial transportiert wird und' über der ein Bauraum 22 gebildet wird, und der Überlaufbehälter 13 weisen eine im Wesentlichen gleiche Breite, in Fig. 2 in der vertikalen Richtung, auf. Der Dosierbehälter 12 weist einen nicht gezeigten Stempel bzw. Kolben zum Nachobentransportieren des Pulvers auf.
Das pulverförmigen Aufbaumaterial wird durch den in Fig. 2 nicht gezeigten Beschichter in den Bauraum 22 transportiert und überschüssiges Pulvermaterial fällt beim weiteren Bewegen des Beschichters in den Überlaufbehälter 13.
Fig. 3. ist eine geschnittene Darstellung der Baukammer entlang der in Fig. 2 gezeigten Schnittlinie am Ende des Prozesses der Herstellung von Objekten durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials . Ein Beschichter 5 ist über dem Bauraum 22, in dem drei hergestellte Objekte 3 dargestellt sind, gezeigt.
Der Bauraum 22 wird unten durch die Bauplattform 2 begrenzt, und seitlich durch den Rahmen 1 festgelegt. Die Bauplatte 15 liegt auf der Bauplattform 2, also innerhalb des Bauraums 22. Sie muss, wie in Fig. 3 dargestellt, nicht bis zum Rahmen 1 reichen. Der Bauraum 22 ist in dem das Objekt 3 umgebenden Bereich mit einem Pulver 16 als das pulverförmige Aufbaumaterial gefüllt, so dass alle Objekte 3, bei denen das Pulver durch den Laserstrahl 7 verfestigt wurde, aus dem selben Pulver hergestellt sind. Es können ein oder mehrere Objekte 3 gleichzeitig hergestellt werden .
Der Beschichter 5 weist eine Klinge 14 auf, mit der das . Pulver 3 jeweils auf die Bauplattform 2 aufgebracht wird.
Die Bauplattform 2 ist mit Hilfe einer Hubmechanik 18 höhenver- stellbar, so dass durch Absenken der Bauplattform 2 die Höhe der durch den Beschichter 5 aufgebrachten Schicht des Pulvers 16 entsprechend spezifischer Bearbeitungsparameter eingestellt werden kann. Fig. 4 zeigt beispielhaft eine Draufsicht auf eine Baugruppe 27 einer Bauraumveränderungseinrichtung in einer ersten Ausführungsform in der Lasersintervorrichtung. Die Baugruppe weist ein Basiselement, hier in Form einer Wanne 28, auf. Die Wanne 28 weist hier Abmessungen auf, die in etwa den Bereichen eines Ori- ginal-Baubereichs 29 und eines Original-Dosierbehälterbereichs 30, die ursprünglich in der Vorrichtung enthalten sind, entspricht. In ihrer Breite, in Fig. 4 in vertikaler Richtung, weist die Wanne 28 einen Rand auf, so dass sie breiter als der Original-Baubereich 29 und der Original-Dosierbehälterbereich 30 ist. Der Bereich der Wanne unterhalb des Rands ist so breit, dass er mit einem für die Montage erforderlichen Spiel in den Original-Baubereich 29 und den Original-Dosierbehälterbereich 30 passt. In ihrer Länge passt die Wanne 28 ebenfalls mit einem erforderlichen Spiel in die äußeren Grenzen dieser Bereiche. Der Rand kann auch anders ausgeführt sein, oder der Rand kann weggelassen werden, so dass die Wanne 28 auf einer Original- Zwischenwand 31 aufliegt. In der Wanne 28 ist ein abgegrenzter Baubereich 22.1 vorgesehen, in dem die dreidimensionalen Objekte hergestellt werden. Baubereiche sind Räume, die Teilbereiche des Bauraums 22 sind, wobei die Position des Baubereichs 22.1 innerhalb der Breitenabmessung der Wanne 28 beliebig gewählt werden kann und die Breite
entsprechend der zu fertigenden Objekte 3 festgelegt werden kann. Der Baubereich wird durch eine Abgrenzeinrichtung innerhalb des Bauraums 22 abgegrenzt.
Weiterhin weist die Baugruppe 27 hier einen gegenüber dem Dosierbehälter 12 in seinen Abmessungen verkleinerten Dosierbehälter 12.1 zur Bereitstellung des Pulvers auf . Darüberhinaus ist in der Wanne 28 ein Uberlaufbehälter 13.1 vorgesehen der gegenüber dem Überlaufbehälter 13 verringerte Abmessungen aufweist. In einer alternativen Ausführungsform kann auch ein breiterer Überlaufbehälter vorgesehen sein. Der Beschichter 5 ist in Fig. 4 in der Position gezeigt, nachdem er von dem Dosierbehälter 12.1 das Pulver in den Baubereich 22.1 transportiert hat und überschüssiges Pulver in den Überlaufbehälter 13.1 eingebracht wurde. Fig. 5 zeigt beispielhaft eine Draufsicht auf die Baugruppe 27 der Bauraumveränderungseinrichtung in einer alternativen ersten Ausführungsform in der Lasersintervorrichtung . Die Wanne 28 weist hier mehrere veränderte separate Baubereiche 22.1, 22.2 auf. Die Baubereiche 22.1, 22.2 werden durch Bereiche 40 der Wanne 28 zwischen Öffnungen 41.1, 41.2 im Boden der Wanne 28, die Bestandteile der Abgrenzeinrichtung sind, voneinander getrennt. In alternativen Ausführungsformen können auch mehr als zwei Baubereiche 22.1, 22.2 vorgesehen sein, um den Bauraum 22 noch stärker aufzuteilen. In ihrer Breite haben die Baubereiche in dieser Ausführungsform unterschiedliche Abmessungen. Letztere können aber auch identisch sein. Im Prinzip können die Breiten der mehreren Baubereiche innerhalb der Gesamtbreite beliebig festgelegt sein.
Weiterhin weist die Baugruppe 27 hier zwei Dosierbehälter 12.1, 12.2 zur Bereitstellung des Pulvers auf. In alternativen Ausfüh- rungsformen können auch mehrere Dosierbehälter entsprechend der Anzahl der Baubereiche 22.1, 22.2 vorgesehen sein. Die Breite der Dosierbehälter entspricht jeweils der Breite der zugehörigen Baubereiche. Die Breite kann in alternativen Ausführungsformen aber auch unterschiedlich sein.
Die Baubereiche 22.1 und 22.2 sind in Richtung der Breite der Wanne 28 voneinander räumlich mit einem Zwischenraum getrennt, der ausreichend groß vorgesehen ist, so dass er verhindert, dass sich die Pulver, die jeweils von den Dosierbehältern 12.1, 12.2 in die Baubereiche 22.1, 22.2 transportiert werden, vermischen.
Der Beschichter 5 ist in Fig. 5 in der Position gezeigt, nachdem er von den Dosierbehältern 12.1, 12.2 das Pulver in die Baubereiche 22.1, 22.2 transportiert hat und überschüssiges Pulver in die Überlaufbehälter 13.1, 13.2 eingebracht wurde. Der Beschichter 5 versorgt die verschiedenen Baubereiche 22.1, 22.2 in einer Bewegung mit dem jeweiligen Pulver.
In Fig. 6 ist die Baugruppe 27 der Figuren 4 und 5 in einer seitlichen Darstellung in einem Längsschnitt gezeigt. Die Wanne
28 ist so gezeigt, dass sie in den Original- Dosierbehälterbereich 30 und den Original -Baubehälterbereich 29 von oben eingeführt ist und die Original-Zwischenwand 31 in einer Quernut aufnimmt .
Die Überlaufbehälter 13.1, 13.2 sind hier als in die Wanne in- tegriert dargestellt. Sie können aber auch als separate Behälter in die Wanne 28 eingebaut sein.
Die Baugruppe 27 weist als weitere Bestandteile der Abgrenzeinrichtung eine oder mehrere verkleinerte Bauplattformen 32 als Unterlagen in den Öffnungen 41.1, 41.2 auf, wobei die Unterlagen in dem in Fig. 4 gezeigten Baubereich 22.1 und den in Fig. 5 gezeigten Baubereichen 22.1 und 22.2 angeordnet sind und deren Grundfläche eine Teilfläche der Bauplattform ist, die an die horizontalen Abmessungen des jeweiligen Baubereichs angepasst ist. Die verkleinerten Bauplattformen 32 sind über ein Verbindungsmittel, hier eine Verbindungsplatte 33, auf der Bauplattform 2 befestigt, die während des Herstellungsprozesses nach oben und nach unten bewegt wird, und ggf. miteinander verbunden, wodurch sich die beiden verbundenen verkleinerten Bauplattformen 32 si- multan bewegen. Dadurch bewegen sich die Bauplattform 2 und die verkleinerten Unterlagen 32 ebenfalls simultan nach oben und unten.
In dem Dosierbehälter oder in den Dosierbehältern, von denen in der Schnittdarstellung nur ein Dosierbehälter 12 gezeigt ist, ist jeweils ein Dosierbehälterstempel 34 zum Nachobentranspor- tieren des Pulvers vorgesehen. Die Dosierbehälterstempel 34 sind ggf. jeweils über eine Verbindungsplatte 35 miteinander verbunden, so dass sie sich simultan bewegen. Die Verbindungsplatte ist wiederum auf einer Original-Dosierplattform 36 befestigt. Der Herstellprozess ist analog zu dem zuvor beschriebenen Her- stellprozess , wobei die Steuereinheit 11 der Vorrichtung mit einer Bauraumveränderungseinrichtung gemäß der ersten Ausführungs- form so ausgebildet ist, dass eine Prozess-Software in den sepa- raten Baubereichen 22.1 und 22.2 unterschiedliche Betriebsparameter einstellen kann, um unterschiedliche Pulver verarbeiten zu können und verschiedene Eigenschaften der Objekte 3 erzeugen zu können. Für die Umrüstung der Laser-Sintervorrichtung mit der Bauraumveränderungseinrichtung ist es, um den Bauraum 22 zu verändern, also zu verkleinern oder aufzuteilen, erforderlich, dass die Verbindungsplatte 33 mit der verkleinerten Unterlage 32 oder den verkleinerten Unterlagen 32 und die Verbindungsplatte 35 mit dem Dosierbehälterstempel 34 oder den Dosierbehälterstempeln 34 jeweils auf der Bauplattform 2 und auf der Original- Dosierplattform befestigt werden. Die Wanne 28 wird in den Rahmen 1 (Fig. 1) , in den Original-Baubereich 29 und den Original- Dosierbehälterbereich 30, eingeführt. Die Wanne 28 liegt dann mit ihren seitlichen Rändern auf einer oberen Fläche des Rahmens 1 auf, so dass sich eine Ebene 37 auf dem Boden der Wanne 28 geringfügig oberhalb der Bauebene 4 befindet . Die Wanne wird durch geeignete Befestigungsmittel in der Vorrichtung befestigt, und kann in alternativen Ausführungsformen, z.B. durch Schweißen, auch dauerhaft befestigt sein.
In Fig. 7 ist eine Draufsicht auf die Bauebene 4 einer Vorrichtung mit einer Bauraumveränderungseinrichtung gemäß einer zweiten Ausführungsform gezeigt. Der Beschichter ist hier nicht dar- gestellt. Der Dosierbehälter unterscheidet sich in dieser zweiten Ausführungsform von dem in Fig. 5 gezeigten Dosierbehälter dadurch, däss zwei senkrechte Dosierbehältertrennwände 19 vorgesehen sind, die sich in Fig. 7 von links nach rechts, also in der Be- wegungsrichtung A, erstrecken, und den Dosierbehälter unterteilen, so dass drei Dosierbehälter 12.1, 12.2 und 12. 3 entstehen, wobei die Dosierbehältertrennwände 19 auf der Oberseite des Stempels bzw. des Kolbens befestigt sind. Analog ist auch der Bauraum 22 über der Bauplattform 2 (Fig. 2) durch zwei Bauraumveränderungselemente , hier Bauraumtrennwände 20 als Bauraumtrennelemente in drei Baubereiche 22.1, 22.2, 22.3 unterteilt. Die Baubereiche 22.1, 22.2, 22.3 werden hier also nur jeweils durch Teilflächen der Bauplattform 2 festgelegt. Die Dosierbehältertrennwände 19 und die Bauraumtrennwände 20 sind jeweils fluchtend zueinander angeordnet.
Ebenfalls ist der Überlaufbehälter in der zweiten Ausführungs- form der Erfindung durch Wände 21, die ebenfalls mit den Dosier- behält rtrennwänden 19 und den Bauraumtrennwänden 20 fluchten, in drei Überlaufbehälter 13.1, 13.2 und 13.3 unterteilt.
Zwischen den Dosierbehältertrennwänden 19 und den Bauraumtrennwänden 20 sind sich in der Bewegungsrichtung A erstreckend je- weils Zwischentrennwände 23 vorgesehen. Zwischen den Bauraumtrennwänden 20 und den Wänden 21 in dem Überlaufbehälter 13 sind Zwischentrennwände 24 vorgesehen. Diese dienen jeweils dazu, dass in dem Fall, in dem verschiedene Pulver 16 für die verschiedenen Baubereichen 22.1, 22.2 und 22.3 verwendet werden, diese zwischen den Baubereichen 22.1, 22.2 und 22.3, den Dosierbehältern 12.1, 12.2 und 12.3 und den Überlaufbehältern 13.1, 13.2, 13.3 nicht vermischt werden. Die Dosierbehältertrennwände 19, die Bauraumtrennwände 20 und die Zwischentrennwände 23 weisen jeweils die gleiche Breite auf. Die Zwischentrennwände 24 können von gleicher oder geringerer Breite sein. Die Zwischentrennwände 20 und Zwischentrennwände 24 sind so befestigt, dass sie von der Bauebene 4 aus nach oben ragen.
Fig. 8a zeigt eine geschnittene Darstellung der Baukammer gemäß der zweiten Ausführungsform entlang einer in Fig. 7 gezeigten Schnittlinie am Beginn des Prozesses der Herstellung von Objek- ten.
Der Aufbau ist im Wesentlichen identisch mit dem in Fig. 3 gezeigten Aufbau. Der Unterschied besteht darin, dass hier gezeigt ist, wie die Bauraumtrennwände 20 angeordnet sind. Die Bauraum- trennwände 20 sind auf der Bauplattform 2 befestigt. Zwischen den einzelnen Bauraumtrennwänden 20 und zwischen den Bauraumtrennwänden 20 und dem Rahmen 1 sind auf der Bauplattform 2 jeweils Bauplatten 15 angeordnet, deren obere Flächen am Beginn der Herstellung von Objekten in der Bauebene 4 liegen, wobei ih- re Höhe gleich der minimalen Höhe der Bauraumtrennwände 20 ist, so dass sie als' Füllkörper dienen. Die Bauplatten 15 können z.B. nach der Fertigstellung zusammen mit dem gebildeten Objekt 3 herausgenommen werden. Ihr Vorhandensein ist jedoch nicht zwingend erforderlich .
Der Beschichter 5 als ein Bestandteil einer gemeinsamen Beschichtereinheit der verschiedenen Baubereiche 22.1, 22.2 und 22.3 weist für jede Bauraumtrennwand 20 eine schlitz- oder spaltförmige Aussparung 25 auf, wodurch auch die Klinge 14 in mehrere Teilklingen unterteilt wird. Die Aussparungen 25 sind so gestaltet, dass sie an ihren angrenzenden Flächen zu den Bauraumtrennwänden 20 ein geringes Spiel aufweisen, um zum einen das Pulver möglichst vollständig ohne einen Verlust durch das Spiel in den Bauraum zu transportieren, zum andern trotz eventuell auftretenden Fertigungstoleranzen, thermischen Ausdehnungen und Spiel in den Lagerungselementen, einen prozesssicheren
Transport des Pulvers zu gewährleisten.
Fig. 8b zeigt die in Fig. 8a gezeigte Darstellung der zweiten Ausführungsform am Ende der Herstellung von Objekten. Identische Elemente sind mit den selben Bezugszeichen versehen und nicht erneut beschrieben.
Die Bauraumtrennwände 20 weisen eine Höhe auf, die gewährleistet, dass die Pulver 16 in den verschiedenen Baubereichen 22.1, 22.2 und 22.3 auch am Ende des Herstellprozesses der Objekte 3 getrennt bleiben und sich nicht vermischen. Die Höhe entspricht mindestens der zu realisierenden maximalen Objekthöhe.
Funktions- oder toleranzbedingte Spalte, die in Längsrichtung der Bauraumtrennwände zwischen den Bauraumtrennwänden 20 und Wänden der Baubereiche 22.1, 22.2 und 22.3 auftreten, können durch Dichtelemente, z.B. durch Silikonlippen, verschlossen werden.
Der Herstellprozess ist analog zu dem zuvor beschriebenen Her- stellprozess , wobei auch die Steuereinheit 11 der Vorrichtung mit einer Bauraumveränderungseinrichtung gemäß der zweiten Aus- führungsform so ausgebildet ist, dass eine Prozess-Software in den separaten Baubereichen 22.1, 22.2 und 22.3 unterschiedliche Betriebsparameter einstellen kann, um unterschiedliche Pulver verarbeiten zu können und verschiedene Eigenschaften der Objekte 3 erzeugen zu können. Die in den Fig. 9, 10a und 10b gezeigte dritte Ausführungsform der Bauraumveränderungseinrichtung der Erfindung ist im Wesentlichen gleich der zweiten Ausführungsform, unterscheidet sich aber im Aufbau der Bauraumtrennwände 20 und der Dosierbehälter- trennwände 19. Auch hier sind identische Elemente mit den selben Bezugszeichen versehen und nicht erneut beschrieben.
Die Bauraumtrennwände 20 und die Dosierbehältertrennwanae ±=> x±± der dritten Ausführungsform weisen nicht wie in der zweiten Aus- führungsform eine feste Höhe auf, sondern sind höhenvariable
Bauraumtrennwände 20 und Dosierbehältertrennwände 19, die z.B. durch teleskopartig ausziehbare bzw. zusammenschiebbare Platten realisiert werden können. Das untere Ende der Bauraumtrennwände 20 ist an der Bauplattform 2 angebracht und das obere Ende der Bauraumtrennwände 20 ist so angebracht, dass die Oberkante in Höhe der Bauebene 4 liegt, das untere Ende der Dosierbehältertrennwände 19 ist an dem Stempel bzw. dem Kolben des Dosierbehälters angebracht und das obere Ende der Dosierbehältertrennwände 19 ist so angebracht, dass die Oberkante in Höhe der Bau- ebene 4 liegt.
Auf der Bauplattform 2 der Vorrichtung sind in jedem Baubereich 22.1, 22.2 und 22.3 jeweils eine Bauplatte 15 mit einer solchen Höhe angeordnet, dass sich deren obere Flächen in der Anfangspo- sition der Bauplattform 2 gemeinsam mit den oberen Flächen der
Bauraumtrennwände 20, die nun in einem teleskopartig zusammengeschobenen Zustand sind, in der Bauebene 4 befinden.
Auch in dieser Ausführungsform können funktions- bzw. toleranz- bedingte Spalte zwischen den Bauraumtrennwänden 20 und Wänden der Baubereiche 22.1, 22.2 und 22.3 durch Dichtelemente, z.B. durch Silikonlippen, verschlossen werden. Bauraumtrennwände können in einer weiteren Ausführungsform als Weiterbildung der dritten Ausführungsform zusätzlich oder alternativ auch in einer Richtung, die in Fig. 9 senkrecht zu der Be- wegungsrichtung A ist, also in Fig. 9 gesehen, senkrecht zu den Bauraumtrennwänden 20, angeordnet sein. Dabei ist es möglich, den jeweiligen. Baubereich auch „in der A-Richtung zu begrenzen und so zu verkleinern. In einer Weiterbildung dieser Ausführungsform ist nicht nur der Einsatz von langgestreckten Bauraumtrennwänden, sondern auch der Einsatz von Trennwänden, die von oben gesehen die Form eines rechteckigen oder anders geformten Rahmens aufweisen, möglich. Die einzelnen übereinander geschachtelten Rahmenelemente sind zu Beginn des Herstellungsprozesses teleskopartig ineinander geschachtelt und bilden einen höhenverstellbaren Behälter, der 'zu Beginn des Herstellungsprozesses eine geringe Höhe aufweist und dessen Höhe bei fortschreitendem Prozess zunimmt. Die obere Fläche des Rahmens ist auf dem Niveau der Bauebene 4 und das untere Ende des Rahmens ist an der Bauplattform 2 angebracht. Hierbei ist der Einsatz von Dichtelementen nicht erforderlich.
Da die Bauraumtrennwände 20 in dieser dritten Ausführungsform die Bauebene 4 nicht überragen, sind in dieser Ausführungsform keine Aussparungen in dem Beschichter 5 erforderlich. Jedoch weist hier die Klinge 14 des Beschichters 5 Untergliederungselemente 26 auf, die in der in Fig. 9 angegebenen Bewegungsrichtung A der in Fig. 10a und 10b gezeigten Klinge 14 über die Klinge hinaus vorstehen. Die Untergliederungselemente 26 erstrecken sich über die ganze Höhe der Klinge 14. Die Untergliederungselemente 26 dienen dazu, ein Vermischen der unterschiedlichen Pulver 16 während des Transports von den Dosierbehältern 12.1, 12.2, 12.3 zu den Baubereicheri 22.1, 22.2, 22.3 zu verhindern, da sie bei einer Bewegung gegenüber der Klinge 14 vorstehen, und somit die Bereiche der verschiedenen Pulver 16 in der Bewegungsrichtung vor der Klinge 14 trennen.
Wie in der ersten und zweiten Ausführungsform ist auch in der dritten Ausführungsform die Steuereinheit 11 der Vorrichtung so ausgebildet, dass eine Prozess-Software in den separaten Baubereichen 22.1, 22.2 und 22.3 unterschiedliche Betriebsparameter einstellen kann, um unterschiedliche Pulver verarbeiten zu können und verschiedene Eigenschaften der Objekte 3 erzeugen zu können .
In der zweiten und dritten Ausführungsform sind die Bauräume durch die Bauraumtrennwände 20 in drei Baubereiche 22.1, 22.2, und 22.3, der Dosierbehälter durch die Dosierbehältertrennwände 19 in die Dosierbehälter 12.1, 12.2, und 12.3, und der Überlauf- behälter 13 durch die Überlaufbehältertrennwände in drei Überlaufbehälter 13.1, 13.2 und 13.3 getrennt. Durch eine andere Anzahl von Trennwänden ist es auch möglich, bei der Verwendung von beispielsweise jeweils einer Trennwand, den Bauraum in zwei Baubereiche, den Dosierbehälter in zwei Dosierbehälter, und den Ü- berlaufbehälter in zwei Überlaufbehälter zu trennen. Bei der
Verwendung von jeweils mehreren Trennwänden können der Bauraum und die beiden Behälter in mehrere Baubereiche und zugehörige Behälter getrennt werden. Die Breite der Baubereiche und der zugehörigen Behälter ist durch die Wahl der Abstände und/oder der Breite der Trennwände zueinander wählbar. So können Bauräume verschiedener Breite, also auch asymmetrische Bauräume für Objekte mit unterschiedlicher Größe eingestellt werden. Bei der . Unterteilung des Bauraums mit der Bauraumveränderung- seinrichtung in mehrere Baubereiche besteht auch die Möglichkeit, nicht sämtliche Baubereiche für die Herstellung von Objek- ten zu nutzen. Bei der Verwendung der Bauraumveränderungsein- richtung mit mehreren Baubereichen und beispielsweise der Herstellung von Objekten in nur einem Baubereich wird dadurch auch eine Verkleinerung des Bauraums erzielt. Bei der zweiten und dritten Ausführungsform kann durch die Wahl einer entsprechenden Breite eines Bauraumveränderungselements der Bauraum nicht nur in mehrere Baubereiche unterteilt werden, sondern auch der Bauraum auf die Fläche eines Baubereichs verkleinert werden. Die übrige Fläche der Bauplattform 2 wird durch das Bauraumverände- rungselement abgedeckt. Der Beschichter ist dann entsprechend angepasst.
Die Bauraumveränderungseinrichtung kann als eine Austauscheinheit für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts durch schichtweises Verfestigen eines pulverförmigen Aufbaumaterials gestaltet sein. Hierbei kann die Austauschein- heit für die Vorrichtung so ausgebildet sein, dass diese einen Bereich der Bauebene 4 umfasst, und die Dosierbehälter 12, die Bauplattform 2 mit den entsprechenden Bauraumtrennwänden 20, gegebenenfalls die Zwischentrennwände 23 und die Überlaufbehälter 13 an dem Einsatz angeordnet sind. Der Beschichter 5 kann als ein separates Element des Umrüstbausatzes fallweise entweder mit einer oder mehreren Aussparungen 25 oder mit einem oder mehreren Untergliederungselementen 26 versehen sein. Der Antrieb der Bauplattform ist Bestandteil der Vorrichtung und nicht der Aus- tauscheinheit . Die Austauscheinheiten können in verschiedenen
Konfigurationen mit verschiedenen Anzahlen und Größen von Baube- reichen vorgesehen sein, so dass für den Anwender gewissermaßen mehrere kleinere Vorrichtungen bereitgestellt werden.
In einer weiteren Abwandlung ist der Dosierbehälter auch ober- halb des Beschichters angeordnet. Der Dosierbehälter ist hier ebenfalls entsprechend der Anzahl und der Lage der Bauraumtrennwände unterteilt, und das pulverförmige Aufbaumaterial wird von oben zu dem Beschichter zugeführt. Gegebenenfalls sind noch Trennwände vorgesehen, die ein Vermischen verschiedener Pulver beim Zuführen zu dem Beschichter verhindern.
Die beschriebene Vorrichtung ist nicht auf Laser-Sintermaschinen beschränkt. Sie ist anwendbar bei allen Maschinen für Schichtbauverfahren, wie z.B. der Stereolithographie, die anstelle ei- nes pulverför igen Materials ein flüssiges, lichtaushärtbares
Harz verwendet, beim dreidimensionalen Drucken, bei dem das pulverförmige Aufbaumaterial durch einen Binder, der z.B. als
Tröpfchenpartikel auf die Pulverschicht aufgetragen wird, an den dem Objekt entsprechenden Stellen selektiv verfestigt wird, oder auch beim selektiven Maskensintern, bei dem anstelle eines Laserstrahls eine Maske und eine ausgedehnte Lichtquelle verwendet werden. Als weiteres Schichtbauverfahren, bei dem die erfindungsgemäße Vorrichtung anwendbar ist, ist das sogenannte FDM- Verfahren (Fused Deposition Modeling) oder ähnliche Verfahren denkbar .

Claims

Patentansprüche
1. Bauraumveränderungseinrichtung für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts (3) durch schichtwei- ses Verfestigen eines Aufbaumaterials (16) an den dem Objekt (3) entsprechenden Stellen in den jeweiligen Schichten mit einem Beschichter (5) , der das Aufbaumaterial (16) in Form einer Schicht aufträgt, einer Bauplattform (2) und mit einem Bauraum (22) o- berhalb der Bauplattform (2) , in dem das Verfestigen des Aufbau- materials (16) erfolgt,
wobei die Bauraumveränderungseinrichtung eine Wanne (28) mit einer Abgrenzeinrichtung, aufweist, und
wobei die Abgrenzeinrichtung mindestens einen Baubereich (22.1), der ein Teilbereich des Bauraums (22) ist, innerhalb des Bauraums (22) abgrenzt.
2. Bauraumveränderungseinrichtung gemäß Anspruch 1, wobei die Wanne (28) zumindest eine Öffnung (41.1) aufweist und in der Öffnung eine Unterlage (32) vorgesehen ist.
3. Bauraumveränderungseinrichtung gemäß einem der Ansprüche 1 oder 2, wobei die Abgrenzeinrichtung mindestens zwei separate Baubereiche (22.1, 22.2) abgrenzt.
4. Bauraumveränderungseinrichtung gemäß Anspruch 3, wobei die separaten Unterlagen (32) miteinander so verbunden sind, dass sie mit einer einzigen Hubmechanik bewegbar sind.
5. Bauraumveränderungseinrichtung für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts (3) durch schichtweises Verfestigen eines Aufbaumaterials (16) an den dem Objekt (3) entsprechenden Stellen in den jeweiligen Schichten mit einem Be- schichter (5) , der das Auf aumaterial (16) in Form einer Schicht aufträgt, einer Bauplattförm (2) und mit einem Bauraum (22) o- berhalb der Bauplattform (2) , in dem das Verfestigen des Aufbau- materials (16) erfolgt,
wobei die Bauraumveränderungseinrichtung mindestens ein
Bauraumveränderungselement (20) aufweist, das auf einer
Bauplattform (2), auf der das Objekt (3) aufgebaut wird, befestigbar ist, und die Bauraumveränderungseinrichtung so ange- passt ist, dass das mindestens eine Bauraumveränderungselement (20) mindestens einen Baubereich (22.1), der ein Teilbereich des Bauraums (22) ist, abgrenzt.
6. Bauraumveränderungseinrichtung gemäß Anspruch 5 , wobei die Bauraumveränderungseinrichtung so angepasst ist, dass das Bau- raumveränderungselement (20) mindestens zwei separate Baubereiche (22.1, 22.2, 22.3) innerhalb des Bauraums (22) abgrenzt.
7. Bauraumveränderungseinrichtung gemäß einem der vorangehenden Ansprüche, wobei die Bauraumveränderungseinrichtung für je- den Baubereich (22.1, 22.2, 22.3) entweder einen eigenen Dosierbehälter (12.1, 12.2, 12.3) und einen eigenen Überlaufbehälter (13.1, 13.2, 13.3) aufweist, oder einen gemeinsamen Dosierbehälter (12) und/oder einen gemeinsamen Überlaufbehälter (13) mit auf die separaten Baubereiche (22.1, 22.2, 22.3) abgestimmten Teilbereichen aufweist.
8. Bauraumveränderungseinrichtung gemäß einem der vorangehenden Ansprüche, wobei die Bauraumveränderungseinrichtung den Beschichter (5) als einen Bestandteil einer gemeinsamen Beschich- tereinheit der separaten Baubereiche (22.1, 22.2, 22.3) aufweist.
9. Bauraumveränderungseinrichtung gemäß einem der vorangehenden Ansprüche, wobei die Bauraumveränderungseinrichtung als eine · abgeschlossene Baugruppe ausgebildet ist, die entweder zumindest eines der Bauraumveränderungselemente (20) , oder alternativ eine Kombination aus mehreren Unterlagen (32) , zumindest einem Dosierbehälter (12), zumindest einem Überlaufbehälter (13) und der Wanne (28) umfasst.
10. Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung gemäß einem der vorangehenden Ansprüche, wobei die Vorrichtung eine gemeinsame Baukammer (1), in der sich die Baubereiche (22.1, 22.2, 22.3) befinden, aufweist.
11. Vorrichtung gemäß Anspruch 10, wobei die Vorrichtung ein gemeinsames Gasumlauf- und Gasaufbereitungssystem für sämtliche Baubereiche (22.1, 22.2, 22.3) aufweist.
12. Vorrichtung gemäß Anspruch 10 oder 11, wobei die Vorrich- tung ein gemeinsames Belichtungssystem für sämtliche Baubereiche
(22.1, 22.2, 22.3) aufweist.
13. Vorrichtung gemäß einem der Ansprüche 10 bis 12, wobei die Vorrichtung eine Steuereinheit (11) aufweist, die so ausgebildet ist, dass eine Prozess-Software in den Baubereichen (22.1, 22.2, 22.3) jeweils zugehörige Betriebsparameter einstellen kann.
14. Vorrichtung gemäß einem der Ansprüche 10 bis 13 mit einer Bauraumveränderungseinrichtung gemäß einem der Ansprüche 5 oder 6, wobei der Beschichter (5), vorzugsweise eine Klinge (14), eine Aussparung (25) für das zumindest eine Bauraumveränderungs- element (20) aufweist.
15. Vorrichtung gemäß einem der Ansprüche 10 bis 13, wobei der Beschichter (5) mindestens ein Untergliederungselement (26) zum Verhindern des Vermischens verschiedener Aufbaumaterialien (16) aufweist .
16. Vorrichtung gemäß einem der Ansprüche 10 bis 13 und 15 mit einer Bauraumveränderungseinrichtung gemäß einem der Ansprüche 5 oder 6, wobei die Bauraumveränderungselemente (20) höhenvariabel sind.
EP11722310.7A 2010-05-12 2011-05-09 Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung Withdrawn EP2576191A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010020416A DE102010020416A1 (de) 2010-05-12 2010-05-12 Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung
PCT/EP2011/002302 WO2011141152A2 (de) 2010-05-12 2011-05-09 Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung

Publications (1)

Publication Number Publication Date
EP2576191A2 true EP2576191A2 (de) 2013-04-10

Family

ID=44118761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11722310.7A Withdrawn EP2576191A2 (de) 2010-05-12 2011-05-09 Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung

Country Status (6)

Country Link
US (1) US8845319B2 (de)
EP (1) EP2576191A2 (de)
JP (1) JP2013526429A (de)
CN (1) CN102917862A (de)
DE (1) DE102010020416A1 (de)
WO (1) WO2011141152A2 (de)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2231352B1 (de) 2008-01-03 2013-10-16 Arcam Ab Verfahren und vorrichtung zur herstellung von dreidimensionalen objekten
WO2011008143A1 (en) 2009-07-15 2011-01-20 Arcam Ab Method and apparatus for producing three-dimensional objects
FR2949988B1 (fr) * 2009-09-17 2011-10-07 Phenix Systems Procede de realisation d'un objet par traitement laser a partir d'au moins deux materiaux pulverulents differents et installation correspondante
EP2463081A1 (de) * 2010-12-09 2012-06-13 3M Innovative Properties Co. System mit schneller Prototypherstellungsvorrichtung und Materialpatrone, Patrone und Verfahren zur Verwendung des Systems
ITVI20110099A1 (it) * 2011-04-20 2012-10-21 Dws Srl Metodo per la produzione di un oggetto tridimensionale e macchina stereolitografica impiegante tale metodo
DE102011075748B4 (de) * 2011-05-12 2024-04-25 Realizer Gmbh Vorrichtung zur aufeinander folgenden Herstellung von Formkörpern durch schichtweises Aufbauen aus Werkstoffpulver
EP2797730B2 (de) 2011-12-28 2020-03-04 Arcam Ab Verfahren und vorrichtung zur detektion von fehlern bei der freiformherstellung
EP2797707B1 (de) 2011-12-28 2021-02-24 Arcam Ab Verfahren und vorrichtung zur herstellung poröser dreidimensionaler gegenstände
FR2991208B1 (fr) * 2012-06-01 2014-06-06 Michelin & Cie Machine et procede pour la fabrication additive a base de poudre
GB2503215A (en) * 2012-06-18 2013-12-25 Rolls Royce Plc Method of making an object using a deposition control plate
FR2994113B1 (fr) 2012-07-31 2017-10-06 Michelin & Cie Machine et procede pour la fabrication additive a base de poudre
US20140077422A1 (en) * 2012-09-19 2014-03-20 Pratt & Whitney Rocketdyne, Inc. Reduced build mass additive manufacturing chamber
ITVR20120231A1 (it) * 2012-11-20 2014-05-21 Sisma Spa Macchina per produrre oggetti tridimensionali a partire da materiali in polvere
CN104853901B (zh) 2012-12-17 2018-06-05 阿卡姆股份公司 添加材料制造方法和设备
US9931785B2 (en) 2013-03-15 2018-04-03 3D Systems, Inc. Chute for laser sintering systems
US20140302187A1 (en) * 2013-04-04 2014-10-09 Tyco Electronics Corporation Powder dam for powder bed laser sintering device
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US10562132B2 (en) * 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US20150017051A1 (en) * 2013-07-11 2015-01-15 Taiwan Shan Yin Int'l Co., Ltd. Method of speedily forming dental implant auxiliary devices
EP3021999B1 (de) 2013-07-19 2022-04-20 Raytheon Technologies Corporation Verfahren zur herstellung eines gusskernes
US9676032B2 (en) * 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
WO2015039817A1 (en) * 2013-09-20 2015-03-26 Arcam Ab Method for additive manufacturing of three-dimensional article(s)
DE102013223411A1 (de) * 2013-11-15 2015-05-21 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
DE102014206996B3 (de) 2014-04-11 2015-07-23 MTU Aero Engines AG Vorrichtung zum generativen Herstellen eines Bauteils
JP5717900B1 (ja) * 2014-05-15 2015-05-13 株式会社ソディック 三次元形状の積層造形物の製造装置
DE102014108633B9 (de) * 2014-06-18 2024-07-04 Kulzer Gmbh Vorrichtung und Verfahren zur Herstellung dreidimensionaler Objekte mittels Rapid-Prototyping
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
US9341467B2 (en) 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
DE102014112447A1 (de) * 2014-08-29 2016-03-03 Exone Gmbh 3D-Drucker, 3D-Druckeranordnung und generatives Fertigungsverfahren
EP3200981B1 (de) 2014-09-30 2023-01-25 Hewlett-Packard Development Company, L.P. Bett mit virtueller konstruktion
GB201417687D0 (en) 2014-10-07 2014-11-19 Renishaw Plc A module for additive manufacturing apparatus
DE102014222302A1 (de) * 2014-10-31 2016-05-04 Siemens Aktiengesellschaft Herstellen eines Bauteils durch Selektives Laserschmelzen
US9908287B2 (en) 2014-11-20 2018-03-06 Ut-Battelle, Llc Build platform that provides mechanical engagement with additive manufacturing prints
US20160167303A1 (en) 2014-12-15 2016-06-16 Arcam Ab Slicing method
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
DE102015201425B3 (de) * 2015-01-28 2016-04-07 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
DE102015109525A1 (de) * 2015-06-15 2016-12-15 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen von dreidimensionalen Objekten sowie ein zugehöriges Verfahren
DE102015212420A1 (de) * 2015-07-02 2017-01-05 Siemens Aktiengesellschaft Vorrichtung zur additiven Fertigung eines Bauteils
US10625338B2 (en) 2015-07-17 2020-04-21 Applied Materials, Inc. Method for forming brace structures for additive manufacturing
WO2017023281A1 (en) * 2015-07-31 2017-02-09 Hewlett-Packard Development Company, L.P. 3d printer with multiple carriages
HU230841B1 (hu) 2015-08-14 2018-08-28 Marton Bartos Berendezés és eljárás háromdimenziós tárgy elõállítására
US10328525B2 (en) * 2015-08-25 2019-06-25 General Electric Company Coater apparatus and method for additive manufacturing
CN105127423B (zh) * 2015-09-07 2017-07-28 苏州西帝摩三维打印科技有限公司 选择性激光熔化三维打印设备
DE102015011790A1 (de) * 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10843266B2 (en) 2015-10-30 2020-11-24 Seurat Technologies, Inc. Chamber systems for additive manufacturing
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
JP6459912B2 (ja) * 2015-11-09 2019-01-30 トヨタ自動車株式会社 積層造形装置
JP6477428B2 (ja) * 2015-11-09 2019-03-06 トヨタ自動車株式会社 積層造形装置の制御方法
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
JP2017094540A (ja) 2015-11-19 2017-06-01 ナブテスコ株式会社 三次元造形装置、三次元造形方法、プログラムおよび記録媒体
WO2017100695A1 (en) 2015-12-10 2017-06-15 Velo3D, Inc. Skillful three-dimensional printing
DE102016224790A1 (de) 2015-12-15 2017-06-22 Nabtesco Corporation Dreidimensionale Modelliervorrichtung
DE102016225124A1 (de) 2015-12-16 2017-06-22 Nabtesco Corporation Vorrichtung zur dreidimensionalen Formgebung, Steuerungsverfahren für eine Vorrichtung zur dreidimensionalen Formgebung, Herstellungsverfahren für dreidimensional geformte Objekte, Programm und Speichermedium
CN108139734A (zh) * 2015-12-22 2018-06-08 惠普发展公司,有限责任合伙企业 打印数据生成系统
US20170239719A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
NL2017022B1 (en) * 2016-06-22 2018-01-04 Additive Ind Bv Apparatus for producing an object by means of additive manufacturing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102016213296A1 (de) * 2016-07-20 2018-01-25 Man Diesel & Turbo Se Strömungsmaschine und Verfahren zum Herstellen desselben
DE102016114057A1 (de) * 2016-07-29 2018-02-01 Cl Schutzrechtsverwaltungs Gmbh Baukammer für eine Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
JP6194991B1 (ja) * 2016-07-29 2017-09-13 富士ゼロックス株式会社 造形物受注管理制御装置、造形物受注管理プログラム
US20180095450A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
CN107952957B (zh) * 2016-10-16 2019-10-29 北京煜鼎增材制造研究院有限公司 增材制造系统及增材制造方法
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10286451B2 (en) 2016-11-02 2019-05-14 General Electric Company Build plate for additive manufacturing systems
US20180126460A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10632732B2 (en) * 2016-11-08 2020-04-28 3Dbotics, Inc. Method and apparatus for making three-dimensional objects using a dynamically adjustable retaining barrier
DE102016225178A1 (de) * 2016-12-15 2018-06-21 MTU Aero Engines AG Schichtbauvorrichtung und Schichtbauverfahren zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US20180250745A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
JP2018144463A (ja) 2017-03-09 2018-09-20 富士ゼロックス株式会社 造形管理システム、造形管理制御装置
US20180281282A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US11550295B2 (en) * 2017-03-31 2023-01-10 Eos Gmbh Electro Optical Systems Continuous exposure
CN108788141B (zh) * 2017-04-28 2021-03-02 西门子公司 选择性激光融化设备及打印方法
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
DE102017110650A1 (de) * 2017-05-16 2018-11-22 Ald Vacuum Technologies Gmbh Verfahren und Vorrichtung für die additive Herstellung von Werkstücken
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US20180369961A1 (en) * 2017-06-23 2018-12-27 Applied Materials, Inc. Treatment of solidified layer
EP3437838B1 (de) 2017-08-04 2022-02-23 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur generativen fertigung von dreidimensionalen objekten
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US20190152143A1 (en) * 2017-11-17 2019-05-23 General Electric Company Powder reduction apparatus
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
DE102018202644A1 (de) * 2018-02-21 2019-08-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Maschine zum schnellen Inertisieren einer Prozesskammer zur additiven Fertigung von Bauteilen
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
EP3784473B1 (de) * 2018-04-27 2023-06-07 Freemelt Ab Aufbaukammer mit selbstdichtendem design
EP3575017A1 (de) * 2018-05-30 2019-12-04 Siemens Aktiengesellschaft Verfahren und setup zur generativen fertigung
US20210268730A1 (en) * 2018-06-29 2021-09-02 3M Innovative Properties Company A method of time-shifted and time-overlapping building up physical workpieces by additive manufacturing
GB2577618A (en) 2018-08-17 2020-04-01 Kolibri Metals Gmbh Thermal insulation fastening system
WO2020076285A1 (en) * 2018-10-08 2020-04-16 Hewlett-Packard Development Company, L.P. Validating object model data for additive manufacturing
WO2020099732A1 (fr) * 2018-11-16 2020-05-22 Gmp Ingenierie Plateforme adaptative amovible de fabrication additive pour un équipement de fabrication additive métallique par fusion laser
WO2020122931A1 (en) * 2018-12-14 2020-06-18 Hewlett-Packard Development Company, L.P. Evaluating candidate virtual build volumes
WO2020204899A1 (en) * 2019-03-29 2020-10-08 Hewlett-Packard Development Company, L.P. Separation of objects for additive manufacturing
EP3741480A1 (de) * 2019-05-24 2020-11-25 Siemens Aktiengesellschaft Pulverbettfusionssystem zur herstellung eines objekts aus mehreren materialien
FR3098751B1 (fr) 2019-07-19 2022-01-07 Addup Procédé de fabrication additive utilisant un pochoir
CA3148849A1 (en) 2019-07-26 2021-02-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects
CN110315080B (zh) * 2019-08-09 2020-10-30 南京精铖新材料科技有限公司 一种具有除尘功能的金属铺粉3d打印机
US20210245432A1 (en) * 2020-02-07 2021-08-12 Concept Laser Gmbh Apparatus for additively manufacturing three-dimensional objects
DE102020105524A1 (de) 2020-03-02 2021-09-02 Otto-von-Guericke-Universität Magdeburg, Körperschaft des öffentlichen Rechts Additive Herstellungseinrichtung und Verfahren zur additiven Herstellung eines dreidimensionalen Erzeugnisses
US11633799B2 (en) * 2020-10-01 2023-04-25 Hamilton Sundstrand Corporation Control assembly fabrication via brazing
DE102021213860A1 (de) 2021-12-07 2023-06-07 Volkswagen Aktiengesellschaft Vorrichtung für eine Herstellungsvorrichtung zur additiven Herstellung von 3D-Bauteilen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026099A1 (en) * 2005-07-26 2007-02-01 Aspect Inc. Powder sinter layered manufacturing apparatus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252264A (en) * 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
WO1996029192A1 (de) * 1995-03-20 1996-09-26 Eos Gmbh Electro Optical Systems Vorrichtung und verfahren zum herstellen eines dreidimensionalen objektes mittels lasersintern
US6007318A (en) * 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
DE19846478C5 (de) * 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
FR2790418B1 (fr) * 1999-03-01 2001-05-11 Optoform Sarl Procedes De Prot Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre
DE19952998B4 (de) 1999-11-04 2004-04-15 Exner, Horst, Prof. Dr.-Ing. Vorrichtung zur direkten Herstellung von Körpern im Schichtaufbau aus pulverförmigen Stoffen
SE520565C2 (sv) * 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
DE10117875C1 (de) * 2001-04-10 2003-01-30 Generis Gmbh Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung
AU2002305201A1 (en) * 2001-04-19 2002-11-05 Case Western Reserve University Fabrication of a polymeric prosthetic implant
JP3724437B2 (ja) * 2002-02-25 2005-12-07 松下電工株式会社 三次元形状造形物の製造方法及びその製造装置
US6986654B2 (en) * 2002-07-03 2006-01-17 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
DE10235434A1 (de) * 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
DE10235427A1 (de) * 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Objekten mittels eines generativen Fertigungsverfahrens
JP2004122489A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd 三次元形状造形物の製造装置及びこれを用いた金型の製造方法
US20040084814A1 (en) * 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
US20050049751A1 (en) * 2002-11-11 2005-03-03 Farnworth Warren M. Machine vision systems for use with programmable material consolidation apparatus and systems
DE112004000302B3 (de) * 2003-02-25 2010-08-26 Panasonic Electric Works Co., Ltd., Kadoma-shi Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objekts
DE112004000301B4 (de) * 2003-02-25 2010-05-20 Panasonic Electric Works Co., Ltd., Kadoma-shi Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objekts
US20040254665A1 (en) * 2003-06-10 2004-12-16 Fink Jeffrey E. Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
JP4366538B2 (ja) * 2003-09-04 2009-11-18 リコープリンティングシステムズ株式会社 三次元積層造形物用支持体材料、三次元積層造形物の中間体、三次元積層造形物の製造方法、三次元積層造形物の製造装置
FR2865960B1 (fr) * 2004-02-06 2006-05-05 Nicolas Marsac Procede et machine pour realiser des objets en trois dimensions par depot de couches successives
TWI253379B (en) * 2004-04-08 2006-04-21 Wei-Hsiang Lai Method and apparatus for rapid prototyping using computer-printer aided to object realization
DE102004041633A1 (de) * 2004-08-27 2006-03-02 Fockele, Matthias, Dr. Vorrichtung zur Herstellung von Formkörpern
US20060078638A1 (en) * 2004-10-08 2006-04-13 3D Systems, Inc. Stereolithographic apparatus
US20060214335A1 (en) * 2005-03-09 2006-09-28 3D Systems, Inc. Laser sintering powder recycle system
DE102005024790A1 (de) 2005-05-26 2006-12-07 Eos Gmbh Electro Optical Systems Strahlungsheizung zum Heizen des Aufbaumaterials in einer Lasersintervorrichtung
US20070063372A1 (en) * 2005-09-19 2007-03-22 Nielsen Jeffrey A Systems and methods of solid freeform fabrication with interchangeable powder bins
JP4792905B2 (ja) * 2005-10-07 2011-10-12 パナソニック株式会社 3次元形状造形物の製造方法
US7296990B2 (en) * 2005-10-14 2007-11-20 Hewlett-Packard Development Company, L.P. Systems and methods of solid freeform fabrication with translating powder bins
DE102006023484A1 (de) * 2006-05-18 2007-11-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts aus einem pulverförmigen Aufbaumaterial
DE202006016477U1 (de) * 2006-10-24 2006-12-21 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102006055054A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE112008000475T5 (de) * 2007-02-23 2010-07-08 The Ex One Company Austauschbarer Fertigungsbehälter für dreidimensionalen Drucker
US7862320B2 (en) * 2007-07-17 2011-01-04 Seiko Epson Corporation Three-dimensional object forming apparatus and method for forming three dimensional object
US8308466B2 (en) * 2009-02-18 2012-11-13 Arcam Ab Apparatus for producing a three-dimensional object
DE102010020418A1 (de) * 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts mit Baufeldbegrenzung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026099A1 (en) * 2005-07-26 2007-02-01 Aspect Inc. Powder sinter layered manufacturing apparatus

Also Published As

Publication number Publication date
US8845319B2 (en) 2014-09-30
CN102917862A (zh) 2013-02-06
JP2013526429A (ja) 2013-06-24
DE102010020416A1 (de) 2011-11-17
WO2011141152A3 (de) 2012-01-05
US20110293771A1 (en) 2011-12-01
WO2011141152A2 (de) 2011-11-17

Similar Documents

Publication Publication Date Title
EP2576191A2 (de) Bauraumveränderungseinrichtung sowie eine vorrichtung zum herstellen eines dreidimensionalen objekts mit einer bauraumveränderungseinrichtung
EP3119591B1 (de) 3d-drucker, 3d-druckeranordnung und generatives fertigungsverfahren
EP3030403B1 (de) Beschichteranordnung für einen 3d-drucker
EP1872928B1 (de) Verfahren zum Aufbauen eines dreidimensionalen Körpers
EP3322573B1 (de) Verfahren und vorrichtung zur baumaterialdosierung in einem generativen fertigungsverfahren
EP3036087B1 (de) Beschichteranordnung für einen 3d-drucker
EP1322458B1 (de) Wechselbehälter
EP2018261B1 (de) Vorrichtung und verfahren zum herstellen eines dreidimensionalen objektes
EP3328620B1 (de) Beschichtungseinheit und verfahren zum herstellen eines dreidimensionalen objekts
EP1194281B1 (de) Vorrichtung und verfahren zur generativen herstellung eines dreidimensionalen objektes
WO2015096826A1 (de) Vorrichtung und verfahren mit beschleunigter verfahrensführung für 3d- druckverfahren
EP0909234A1 (de) Verfahren zum erzeugen eines dreidimensionalen körpers
WO2018202307A1 (de) Wechselkammer für eine vorrichtung und ein verfahren zum generativen herstellen eines dreidimensionalen objekts
WO2016030375A2 (de) Beschichteranordnung für einen 3d-drucker
EP3275654A1 (de) Beschichtungseinheit, beschichtungsverfahren, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
WO2008049384A1 (de) Vorrichtung zum herstellen eines dreidimensionalen objektes
WO2012076205A1 (de) Vorrichtung und verfahren zur generativen herstellung dreidimensionaler bauteile
DE102009020987A1 (de) Vorrichtung zur Herstellung von dreidimensionalen Objekten
WO2017080659A1 (de) Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts
EP3374158A1 (de) Pulveraustragseinheit, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
WO2021008641A1 (de) Verfahren zur herstellung von 3d-formteilen mit variablen zieleigenschaften der gedruckten bildpunkte
EP3470208A1 (de) Dosiervorrichtung, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
EP2389286B1 (de) Baubereichsbegrenzung einer rapid-prototyping-anlage
EP3837105A1 (de) Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen
DE102019007480A1 (de) Anordnung und Verfahren zum Erzeugen einer Schicht eines partikelförmigen Baumaterials in einem 3D-Drucker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17P Request for examination filed (corrected)

Effective date: 20130222

RIC1 Information provided on ipc code assigned before grant

Ipc: B29C 67/00 20060101AFI20130419BHEP

Ipc: B22F 3/105 20060101ALI20130419BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160419