EP3837105A1 - Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen - Google Patents

Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen

Info

Publication number
EP3837105A1
EP3837105A1 EP19765964.2A EP19765964A EP3837105A1 EP 3837105 A1 EP3837105 A1 EP 3837105A1 EP 19765964 A EP19765964 A EP 19765964A EP 3837105 A1 EP3837105 A1 EP 3837105A1
Authority
EP
European Patent Office
Prior art keywords
closure
coater
gap
coating
particle material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19765964.2A
Other languages
English (en)
French (fr)
Inventor
Josef Grasegger
Bastian HEYMEL
Wolfgang MÜHLBAUER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voxeljet AG
Original Assignee
Voxeljet AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voxeljet AG filed Critical Voxeljet AG
Publication of EP3837105A1 publication Critical patent/EP3837105A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/343Metering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/329Feeding using hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention relates to a method and an apparatus for producing three-dimensional models by means of layer construction technology.
  • the European patent EP 0 431 924 B1 describes a method for producing three-dimensional objects from computer data.
  • a thin layer of a particulate material is applied to a platform and this is selectively printed with a binder material using a print head.
  • the particle area printed with the binder adheres and solidifies under the influence of the binder and, if necessary, an additional hardener.
  • the platform is then lowered into a construction cylinder by a layer thickness and provided with a new layer of particle material which is also printed, as described above. These steps are repeated until a certain desired height of the object is reached.
  • a three-dimensional object is created from the printed and solidified areas.
  • This object which is made of solidified particle material, is embedded in loose particle material after its completion and is then freed from it. This is done, for example, by means of a sucker. All that remains are the desired objects, which are then removed from the residual powder e.g. can be freed by brushing.
  • coaters can, for example, have an adjustable opening, often in the form of a gap. This gap can, for example, extend over a large part of the width of the coater.
  • a problem with known coaters using an adjustable slot or opening is that the gap size or the gap opening has to be enlarged in order to be able to dispense a larger quantity of particulate material. This may influence the controllability of the particle exit, because it can happen that the gap or slit can no longer be controlled, since particle material emerges even at a standstill.
  • the coater blade In order to be able to form a pouring cone for closing in a large opening of the coater, the coater blade would have to be designed in dimensions that would be structurally problematic, since the usable coater dimensions would then make the construction site size uneconomical. In particular, a very long coater blade would have to be used in order to be able to build up a pouring cone which can cause the gap to close. However, a large-sized coater blade would reduce the buildable space and thus reduce economy. Another problem is the start-up speed or the delay in the gap opening of oscillating blade coater openings closed by pouring cone due to vibration and the associated quality problems due to insufficient
  • the problem here is that the coater is moved or started at a certain speed.
  • the coater travels a certain distance above the construction site, while the vibration in the vibrating blade coater causes the cone closure to collapse and particle material to flow out.
  • the particulate matter begins to flow out too late and that insufficient particulate matter is applied to a certain part of the construction site.
  • it can result in either too little volume of particle material or no particle material being applied in certain areas of the construction field in this time window.
  • Another object of the present invention was to modify a coater in such a way that a large amount of particulate material can be applied from a coater to the construction platform and at the same time the gap opening of the coater can be completely closed and the coater can still be moved at high speed can, in order to achieve advantageous and / or shortened manufacturing times.
  • a further object of the present invention was therefore to provide a method, a material system and / or a device which helps to reduce the disadvantages of the prior art or avoids or prevents them entirely.
  • the invention relates to a closure device suitable for a 3D printing device and / or coating device, comprising a controllable closure means.
  • the invention relates to a 3D printing device which comprises a controllable closure means.
  • the invention relates to a method for producing 3D shaped parts, wherein particulate building material is applied in a defined layer by means of a coater to a construction field, is selectively solidified in order to obtain a 3D shaped part, the coater including a closure device, which comprises a controllable closure means.
  • FIG. 1 a shows an aspect of the disclosure, wherein a coating container 105 with particle material 101 is shown.
  • the coater blade 102 faces the building platform (not shown) and, with the adjustable diaphragm 103 (closure means), forms a coater gap 100 in which a pouring cone made of particle material 104 is formed to close the gap.
  • the adjustable diaphragm 103 can be controlled by suitable means and the coater gap 100 can thus be opened further. In this way, for example, an increased amount of particulate material can be applied to the building platform (not shown) and the traveling speed of the coater can thus be increased.
  • FIG. 1b shows the process of applying the particulate material, the coater being moved in the feed movement 108.
  • the coater blade 102 (see FIG. 1 a) is set in vibration with a swinging movement 109, so that the pouring cone opens and particle material flows out and a roller made of particle material 107 is formed and an applied layer of particle material 106 is applied.
  • FIG. 2a shows a coater container 105 filled with particle material 101 and coater blade 102 and adjustable diaphragm 103 with closure plate 201 and control roller 200. In this position of the closure plate 201, no particle material can emerge from the gap.
  • control roller 200 is actuated and the closure plate 201 is moved in a direction 203 by rotation, and the coating container is thus opened, so that the outflowing particulate material 204 forms a powder roller and a particulate material layer
  • 3a and 3b describe another aspect of the disclosure.
  • a coating container 105 with particle material 101 is shown, as is the closure device, which has an elongated blade 302, an adjustable diaphragm 103, prestressed closure plate 301,
  • Closure seal 300 and control roller 200 includes.
  • Fig. 4 describes another aspect of the disclosure, wherein the control, i.e. opening and closing the opening by means of
  • Sealing plate 201 is carried out by driving with a backdrop.
  • FIG. 4a shows a further aspect of the disclosure, FIG. 5a showing a closed gap and FIG. 5b an open gap of the coating container.
  • a vertically movable diaphragm 500 and a horizontally movable backdrop 501 are used.
  • 502 shows the cylinder connected to the diaphragm and 503 the link guide and 504 the link movement.
  • FIG. 6 describes a further aspect of the disclosure, wherein a simplified flow diagram for a double coater system is shown with the outflows of the controlled (active - according to the invention) and the non-controlled (passive - prior art) coater. It is clear that a larger volume can be applied to the construction platform with the closure system according to the invention.
  • an object on which the application is based is achieved in that a closure device is provided which is completely lockable and can release increased amounts of particulate material after start-up and can apply it to the building platform.
  • 3D molded part in the sense of the invention are all three-dimensional objects produced by means of the method according to the invention and / or the device according to the invention, which have a dimensional stability.
  • Conveyor belt and delimiting side walls are the geometrical place in which the particle material bed grows during the construction process by repeated coating with particle material or through which the bed material passes in continuous principles Construction level, limited, with continuous principles usually exist Conveyor belt and delimiting side walls.
  • the installation space can also be configured by a so-called job box, which represents a unit that can be extended and retracted into the device and allows batch production, a job box being extended after the process has ended and a new job box being able to be inserted into the device immediately, so that Manufacturing volume and thus the device performance is increased.
  • Construction platform or “construction field” in the sense of the disclosure is the area to which the particle material is applied and on which the particle material is selectively solidified in order to build up a predetermined three-dimensional molded part.
  • particle material is preferably a dry, free-flowing powder, but it can also be a cohesive one cut-resistant powder or a particle-laden liquid are used.
  • particle material and powder are used synonymously.
  • Particle material application is the process in which a defined layer of powder is generated. This can be done either on the construction platform or on an inclined plane relative to a conveyor belt using continuous principles.
  • the particle material application is also referred to as “coating” or “recoating”. called.
  • “selective application of liquid” can take place after each application of particulate material or, depending on the requirements of the shaped body and for optimizing the manufacture of the shaped body, can also be carried out irregularly, for example several times with respect to an application of particulate material.
  • Any known 3D printing device can be used as the "device" for carrying out the method according to the invention required components.
  • Common components include coater, construction field, means for moving the construction field or other components in continuous processes, dosing devices and heat and / or radiation means and other components known to the person skilled in the art, which are therefore not described in detail here.
  • “Closure device” or “closure unit” in the sense of the disclosure combines the positive features that can be achieved with a swinging blade construction and at the same time allows the coating device to be started up more quickly and larger particle material volumes to be applied.
  • a “locking device” comprises or includes at least one oscillating blade and a locking means which can be controlled by suitable means, for example by means of an eccentric, a pulling wedge and / or a link.
  • the "packing density” describes the filling of the geometric space by a solid. It depends on the nature of the particle material and the application device and is an important starting variable for the sintering process.
  • the building material is always applied in a "defined layer” or “layer thickness”, which is set individually depending on the building material and process conditions. It is, for example, 0.05 to 0.5 mm, preferably 0.1 to 0.3 mm.
  • “Gap” or “gap opening” in the sense of the disclosure means the agent through which particle material is applied from the recoater or onto the construction platform and by means of which the application amount of particle material can be controlled.
  • the particle material emerges from the coater through the “gap” or the “gap opening” and flows onto the construction platform.
  • the “closure” or “coater closure” controls the released amount of particulate material.
  • a “coating blade” or “oscillating blade” in the sense of the disclosure relates to a means of a coating device facing the building platform, which means can be combined with other means to control the application of particulate material.
  • the "coater blade” can form a gap with another part or means of the coater device, which is closed at standstill by a pouring cone.
  • the "coater blade” is closed and opened with a controllable closure, for example a spring steel sheet, and so on Particle material application controlled on the construction site.
  • a “closure device” in the sense of the disclosure relates to the combination of coater blade, controllable closure and actuator in a particle material coater.
  • a “closure means” or “closure” or “coater closure” in the sense of the disclosure is a means that enables the gap of the coater to be closed and opened in a controlled manner. It can be, for example, a spring steel sheet.
  • control means or “actuator” in the sense of the disclosure serves to open and close the closure means.
  • Opening speed in the sense of the disclosure means the length of time that passes until the closure means is actuated from its closed position to its maximum opening.
  • Closure opening process in the sense of the disclosure is the process in which the closure means is brought from its closed to its open position. Accordingly, a “closure closing process” is the reverse process.
  • Travel speed in the sense of the disclosure refers to the speed of the coater moving forwards or backwards.
  • the travel speed and the opening speed are important variables, the process sequence, the production speed for 3D molded parts and the control of the start-up and the printing process influence. These variables therefore also influence the economy of a 3D printing device.
  • the invention relates to a closure device suitable for a 3D printing device and / or coating device, comprising a closure means, preferably a steel sheet, for example spring steel sheet, the closure means being controllable and being able to be opened by a control means, the control means being an eccentric, is a pull wedge and / or a backdrop.
  • a closure means preferably a steel sheet, for example spring steel sheet
  • the closure means being controllable and being able to be opened by a control means, the control means being an eccentric, is a pull wedge and / or a backdrop.
  • the closure device described here can be installed in 3D printing devices and / or coating devices that use and apply fluid, particulate material to build up the layer and build up the 3D molded parts.
  • the coater can be a simple powder coater or a double coater.
  • the closure device can contain a control means which serves to open the closure means, for example a steel spring plate, and / or to control the gap width (gap size).
  • a closure device thus has at least one closure means, a coater blade and a particle material supply or a particle material container, the parts being connected to one another in such a way that an application to a construction site can take place in a controlled manner.
  • the control means can open the closure means from 1 to 5 mm.
  • the closure device it is also possible to control the opening speed and to apply particulate material to the building platform in a targeted manner.
  • the opening speed (maximum opening of the gap) can be from 0.5 / 10 to 3/10 seconds, preferably from 1/10 to 2/10 seconds.
  • the outflow can only be adjusted by mechanically adjusting the gap outside the process, while the device according to the invention enables the gap to be adjusted and even regulated during operation.
  • the closure device can be installed in a coater which has a coater opening in the direction of travel. It can essentially be an oscillating blade recoater as described in the prior art described above. It can also be a double coater which has an oscillating blade opening in each direction of travel and with which particle material can thus be applied to the construction field in both directions of travel.
  • the disclosure relates to a 3D printing device and / or a coater device comprising a closure means as described above, the distance covered by the coater device when starting up or while driving over the construction field from the beginning of the closure opening process until the closure 2 opens cm to 10 cm, preferably 3 cm to 7 cm, with a travel speed of the coating device or the closure device of 350 mm / second.
  • the 3D printing device and / or coater device described here can comprise: a closure device as described above and a coater blade as described above.
  • the coater blade can be made of all suitable materials and preferably consists of a stainless steel sheet.
  • the coater blade can be set in vibration by any means known to those skilled in the art. The vibration is generated using one or more eccentrics, for example.
  • the powder material can be released by means of a combination of the closing device described here and a vibration of the coating blade. This advantageously realizes the advantages of a vibrating blade coater and avoids the disadvantages of particle material volumes that can be applied to a limited extent.
  • the coater can be closed by covering the gap as well as by changing the pouring cone in the gap by changing the aspect ratio (i.e. the ratio of gap height to gap length) of the gap by suitable measures, preferably reducing the gap height by moving the screen.
  • aspect ratio i.e. the ratio of gap height to gap length
  • the disclosure relates to a method for producing 3D molded parts, wherein a closure device or 3D printing device or as described above
  • Coating device is used.
  • Known printheads with suitable technology are used to apply the pressure fluid.
  • the liquid can be selectively applied using one or more print heads.
  • the drop mass of the print head or print heads is preferably adjustable.
  • the print head or print heads can selectively apply the liquid in one or both directions of travel. In the process it is achieved that the particulate building material is selectively solidified, preferably selectively solidified and sintered.
  • a closure as described here is particularly advantageous in combination with the method described below and / or the device arrangement and is characterized by various advantages:
  • the closure described above is combined with a method for producing three-dimensional models by means of a layer construction technique, particle-shaped construction material being applied in a defined layer to a construction field and a binder liquid being selectively applied to the construction material, a certain amount being moved and these steps being repeated, until the desired object is created, the application and application steps taking place substantially simultaneously.
  • the method as described above is characterized in that the particulate building material is applied with a coater and / or the binder liquid is applied with a printhead.
  • the method as described above can be characterized in that the device means printhead follows the device means coater at a defined distance, preferably at a distance of 1000 mm - 300 mm, more preferably 300 mm - 50 mm, even more preferably immediately , Furthermore, in the method as described above, the device means can be moved at a speed of 0.02 m / s to 1 m / s, preferably that the different device means are moved at the same or a different speed.
  • the method as described above is characterized in that the device means are retracted and the device means returns in rapid traverse, preferably at a speed of 0.5 m / s to 5 m / s.
  • Another method, as described above, is characterized in that the application and the application take place in the forward and in the return.
  • the material application can be controlled particularly advantageously by the closure as described above, which has a positive effect on the process sequence and on the quality of the parts produced in this way.
  • Another method as described above is characterized in that several device means of the coater and metering unit, preferably each 2 to 20, more preferably 4 to 15, form several layers in one pass.
  • the method as described above can be characterized in that several device means form several layers in one pass both in the forward and in the return, preferably it is characterized in that several device means build up several layers on a continuously operating conveyor unit.
  • the process as described above can also be characterized in that an oblique printing process, a batch process and / or a continuous process is used as the basic process.
  • closure as described above can advantageously be combined in a device for producing three-dimensional models by means of a layer construction technique, the at least two, preferably 3 to 20, pressure means at least two, preferably 2 to 20,
  • the parallelization of the processes of coating and printing described here can be controlled even more precisely by means of the closure described above.
  • the various printing processes are carried out essentially simultaneously and can advantageously be controlled very precisely by using the closure described above, it being possible to arrange a plurality of coaters and printing units in succession and to deposit and selectively solidify several layers in one pass. This does not require increases in travel speeds or other measures that negatively affect the quality of the products produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Coating Apparatus (AREA)

Abstract

Verschlussvorrichtung geeignet für eine 3D-Druckvorrichtung oder/und Beschichtervorrichtung, umfassend ein Verschlussmittel (500), wobei das Verschlussmittel ansteuerbar ist und durch ein Ansteuermittel geöffnet werden kann, wobei das Ansteuermittel ein Excenter, ein Ziehkeil und/oder eine Kulisse (501) ist. Die Erfindung betrifft auch ein Verfahren und eine Vorrichtung zum Herstellen von 3D-Formteilen wobei eine solche Verschlussvorrichtung zum Einsatz kommt.

Description

VERSCHLUSSVORRICHTUNG, 3D-DRUCKVORRICHTUNG UND
VERFAHREN ZUM HERSTELLEN VON 3D-FORMTEILEN
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtaufbautechnik.
In der europäischen Patentschrift EP 0 431 924 Bl wird ein Verfahren zur Herstellung dreidimensionaler Objekte aus Computerdaten beschrieben. Dabei wird ein Partikelmaterial in einer dünnen Schicht auf eine Plattform aufgetragen und dieses selektiv mittels eines Druckkopfes mit einem Bindermaterial bedruckt. Der mit dem Binder bedruckte Partikelbereich verklebt und verfestigt sich unter dem Einfluss des Binders und gegebenenfalls eines zusätzlichen Härters. Anschließend wird die Plattform um eine Schichtdicke in einen Bauzylinder abgesenkt und mit einer neuen Schicht Partikelmaterial versehen, die ebenfalls, wie oben beschrieben, bedruckt wird. Diese Schritte werden wiederholt, bis eine gewisse, erwünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt.
Dieses aus verfestigtem Partikelmaterial hergestellte Objekt ist nach seiner Fertigstellung in losem Partikelmaterial eingebettet und wird anschließend davon befreit. Dies erfolgt beispielsweise mittels eines Saugers. Übrig bleiben danach die gewünschten Objekte, die dann vom Restpulver z.B. durch Abbürsten befreit werden.
Ein wichtiger Arbeitsschritt ist der Pulverauftrag. Hierbei sind eine korrekte Dosierung und ein gezieltes und gesteuertes Aufträgen des Pulvermaterials wichtig. Die Beschichtergeschwindigkeit bzw. die
1
BESTÄTIGUNGSKOPIE Geschwindigkeit mit der das Partikelmaterial aufgebracht werden kann, hat einen erheblichen Einfluss auf die Herstellungszeit der Bauteile und damit auch auf die Wirtschaftlichkeit der eingesetzten Maschine.
Zur besseren Dosierung des Pulvermaterials können Beschichter beispielsweise eine einstellbare Öffnung, häufig in Spaltform, aufweisen. Dieser Spalt kann sich beispielsweise über einen Großteil der Breite des Beschichters erstecken.
Ein Problem bei bekannten Beschichtern, die einen regelbaren Schlitz oder eine regelbare Öffnung verwenden ist, dass die Spaltgröße oder die Spaltöffnung vergrößert werden muss, um eine größere Partikelmaterialmenge abgeben zu können. Dadurch wird unter Umständen die Regelbarkeit des Partikelaustritts beeinflusst, denn es kann dazu kommen, dass der Spalt oder Schlitz nicht mehr regelbar ist, da bereits im Stillstand Partikelmaterial austritt.
Dieses Problem tritt insbesondere bei Beschichtern auf, die mittels Schüttkegel den Spalt oder Schlitz verschließen und diesen durch eine Vibration öffnen und so den Partikelmaterialaustritt steuern.
Beispiele hierfür sind sogenannte Schwingklingenbeschichter wie beschrieben in DE10117875A1 oder DE10216013A1.
Um in einer großen Öffnung des Beschichters trotzdem einen Schüttkegel zum Verschließen ausbilden zu können, müsste die Beschichterklinge in Dimensionen ausgebildet werden, die konstruktiv problematisch wären, da dann die nutzbaren Beschichterdimensionen die Baufeldgröße unwirtschaftlich machen würden. Insbesondere müsste eine sehr lange Beschichterklinge verwendet werden, um einen Schüttkegel aufbauen zu können, der einen Verschluss des Spaltes bewirken kann. Eine groß dimensionierte Beschichterklinge würde aber den bebaubaren Raum verkleinern und so die Wirtschaftlichkeit vermindern. Ein weiteres Problem ist die Anfahrgeschwindigkeit bzw. die Verzögerung beim Spaltöffnen von durch Schüttkegel verschlossenen Schwinklingenbeschichteröffnungen durch Vibration und die damit verbundenen Qualitätsprobleme durch unzureichenden
Partikelmaterialauftrag. Das Problem hierbei besteht darin, dass der Beschichter mit einer bestimmten Geschwindigkeit verfährt bzw. angefahren wird. Dabei legt der Beschichter über dem Baufeld eine gewisse Strecke zurück, während die Vibration im Schwingklingenbeschichter dazu führt, dass der Schüttkegelverschluss zusammenbricht und Partikelmaterial ausfließen kann. Allerdings kann es passieren, dass das Partikelmaterialausfließen zu spät beginnt und damit auf einem gewissen Teil des Baufeldes nicht ausreichend Partikelmaterial aufgebracht wird. Es kann somit im Resultat dazu führen, dass in diesem Zeitfenster entweder zu wenig Volumen an Partikelmaterial oder überhaupt kein Partikelmaterial in bestimmten Bereichen des Baufeldes aufgebracht werden.
Es war deshalb eine Aufgabe der vorliegenden Erfindung konstruktive Mittel bereitzustellen, die ein verbessertes 3D-Druckverfahren erlauben oder zumindest die Nachteile des Standes der Technik zu verbessern oder ganz zu vermeiden.
Eine weitere Aufgabe der vorliegenden Erfindung war es, einen Beschichter in der Art zu modifizieren, dass eine große Menge an Partikelmaterial aus einem Beschichter auf die Bauplattform aufgetragen werden kann und gleichzeitig die Spaltöffnung des Beschichters vollständig verschließbar ist und der Beschichter dennoch in hoher Geschwindigkeit verfahren werden kann, um vorteilhafte und/oder verkürzte Herstellungszeiten erreichen zu können.
Eine weitere Aufgabe der vorliegenden Erfindung war es somit, ein Verfahren, ein Materialsystem und/oder eine Vorrichtung bereitzustellen, die die Nachteile des Standes der Technik reduzieren hilft oder diese ganz vermeidet oder verhindert. Kurze Zusammenfassung der Erfindung
In einem Aspekt betrifft die Erfindung eine Verschlussvorrichtung geeignet für eine 3D-Druckvorrichtung oder/und Beschichtervorrichtung, umfassend ein ansteuerbares Verschlussmittel.
In einem weiteren Aspekt betrifft die Erfindung eine 3D-Druckvorrichtung, die ein ansteuerbares Verschlussmittel umfasst.
In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zum Herstellen von 3D-Formteilen, wobei partikelförmiges Baumaterial in einer definierten Schicht mittels Beschichter auf ein Baufeld aufgetragen wird, selektiv verfestigt wird, um ein 3D-Formteil zu erhalten, wobei der Beschichter eine Verschlussvorrichtung beinhaltet, die ein ansteuerbares Verschlussmittel umfasst.
Kurze Beschreibung der Figuren
Fig. la zeigt einen Aspekt der Offenbarung, wobei ein Beschichterbehälter 105 mit Partikelmaterial 101 dargestellt ist. Die Beschichterklinge 102 ist der Bauplattform zugewandt (nicht dargestellt) und bildet mit der einstellbaren Blende 103 (Verschlussmittel) einen Beschichterspalt 100, in dem sich zum Verschließen des Spaltes ein Schüttkegel aus Partikelmaterial 104 bildet. Die einstellbare Blende 103 kann mit geeigneten Mitteln angesteuert werden und so der Beschichterspalt 100 weiter geöffnet werden. Derart kann beispielsweise eine erhöhte Menge an Partikelmaterial auf die Bauplattform (nicht dargestellt) aufgetragen werden und somit die Verfahrgeschwindigkeit des Beschichters erhöht werden. Soll der Beschichterspalt wieder geschlossen werden, wird die Blende 103 angesteuert und der Beschichterspalt verkleinert, sodass sich wieder ein Schüttkegel ausbilden kann, sobald die Schwingung der Beschichterklinge 102 eingestellt wird. Fig. lb zeigt den Vorgang des Partikelmaterialauftrages, wobei in Vorschubbewegung 108 der Beschichter verfahren wird. Die Beschichterklinge 102 (siehe Fig. la) wird in Schwingung versetzt mit einer Schwingbewegung 109, sodass sich der Schüttkegel Verschluss öffnet und Partikelmaterial ausfließt und sich eine Walze aus Partikelmaterial 107 bildet und eine aufgelegte Schicht aus Partikelmaterial 106 aufgetragen wird.
Fig. 2 beschreibt einen weiteren Aspekt der Offenbarung.
Fig. 2a zeigt einen Beschichterbehälter 105 mit Partikelmaterial 101 gefüllt und Beschichterklinge 102 und einstellbare Blende 103 mit Verschlussblech 201 und Steuerwalze 200. In dieser Position des Verschlussbleches 201 kann kein Partikelmaterial aus dem Spalt austreten.
In Fig. 2b wird die Steuerwalze 200 angesteuert und durch eine Drehung das Verschlussblech 201 in Richtung 203 bewegt und so der Beschichterbehälter geöffnet, sodass das ausfließende Partikelmaterial 204 eine Pulverwalze bildet und eine Partikelmaterialschicht beim
Überfahren des Beschichterbehälters über die Bauplattform auf der Bauplattform ausgebildet wird.
Fig. 3a und 3b beschreiben einen weiteren Aspekt der Offenbarung.
Es ist ein Beschichterbehälter 105 mit Partikelmaterial 101 dargestellt sowie die Verschlussvorrichtung, die eine verlängerte Klinge 302, eine einstellbare Blende 103, vorgespanntes Verschlussblech 301,
Verschlussdichtung 300 und Steuerwalze 200 umfasst.
Fig. 4 beschreibt einen weiteren Aspekt der Offenbarung, wobei die Ansteuerung, d.h. das Öffnen und Verschließen der Öffnung mittels
Verschlussblech 201, durch Ansteuern mit einer Kulisse erfolgt.
In Fig. 4a ist der Spalt geschlossen und in Fig. 4b ist das Verschlussblech 201 geklappt oder parallel verschoben und so der Spalt des Beschichterbehälters geöffnet. Hierbei wird eine Kugel 400 in der Kulisse verschoben. Fig. 5 beschreibt einen weiteren Aspekt der Offenbarung, wobei Fig 5a einen geschlossenen und Fig. 5b einen geöffneten Spalt des Beschichterbehälters zeigt. Hierbei wird eine vertikal bewegliche Blende 500 und eine horizontal bewegliche Kulisse 501 eingesetzt. 502 zeigt den mit der Blende verbundenen Zylinder und 503 die Kulissenführung bzw. 504die Kulissenbewegung.
Fig. 6 beschreibt einen weiteren Aspekt der Offenbarung, wobei ein vereinfachtes Ausflussdiagramm für ein Doppelbeschichtersystem mit den Ausflüssen des angesteuerten (aktiv - nach der Erfindung) und des nicht angesteuerten (passiv - Stand der Technik) Beschichters dargestellt ist. Es wird deutlich, dass mit dem erfindungsgemäßen Verschlusssystem ein größeres Volumen auf die Bauplattform auftragbar ist.
Ausführliche Beschreibung der Erfindung
Erfindungsgemäß wird eine der Anmeldung zugrunde liegende Aufgabe dadurch gelöst, dass eine Verschlussvorrichtung bereitgestellt wird, die vollständig verschließbar ist und nach dem Anfahren erhöhte Mengen von Partikelmaterial abgeben und auf die Bauplattform auftragen kann.
Im Folgenden werden zunächst einige Begriffe der Erfindung näher erläutert.
„3D-Formteil",„Formkörper" oder„Bauteil" im Sinne der Erfindung sind alles mittels des erfindungsgemäßen Verfahrens oder/und der erfindungsgemäßen Vorrichtung hergestellte dreidimensionale Objekte, die eine Formfestigkeit aufweisen.
„Bauraum" ist der geometrische Ort in dem die Partikelmaterialschüttung während des Bauprozesses durch wiederholtes Beschichten mit Partikelmaterial wächst oder durch den die Schüttung bei kontinuierlichen Prinzipien durchläuft. Im Allgemeinen wird der Bauraum durch einen Boden, die Bauplattform, durch Wände und eine offene Deckfläche, die Bauebene, begrenzt. Bei kontinuierlichen Prinzipien existieren meist ein Förderband und begrenzende Seitenwände. Der Bauraum kann auch durch eine sogenannte Jobbox ausgestaltet sein, die eine in die Vorrichtung ein- und ausfahrbare Einheit darstellt und eine Batch-Herstellung erlaubt, wobei eine Jobbox nach Prozessabschluss ausgefahren wird und sofort eine neue Jobbox in die Vorrichtung eingefahren werden kann, sodass das Herstellungsvolumen und somit die Vorrichtungsleistung erhöht wird.
„Bauplattform" oder„Baufeld" im Sinne der Offenbarung ist die Fläche, auf die das Partikelmaterial aufgetragen wird und auf der das Partikelmaterial selektiv verfestigt wird, um ein vorbestimmtes dreidimensionales Formteil aufzubauen.
Als „Partikelmaterialien" oder „partikelförmige Baumaterialien" oder „Baumaterialien" können alle für den Pulver-basierten 3D Druck bekannten Materialien verwendet werden, insbesondere Polymere, Keramiken und Metalle. Das Partikelmaterial ist vorzugsweise ein trocken frei fließendes Pulver, es kann aber auch ein kohäsives schnittfestes Pulver oder eine partikelbeladene Flüssigkeit verwendet werden. In dieser Schrift werden Partikelmaterial und Pulver synonym verwendet.
Der „Partikelmaterialauftrag" ist der Vorgang bei dem eine definierte Schicht aus Pulver erzeugt wird. Dies kann entweder auf der Bauplattform oder auf einer geneigten Ebene relativ zu einem Förderband bei kontinuierlichen Prinzipen erfolgen. Der Partikelmaterialauftrag wird im Weiteren auch„Beschichtung" oder„Recoaten" genannt.
„Selektiver Flüssigkeitsauftrag" kann im Sinne der Erfindung nach jedem Partikelmaterialauftrag erfolgen oder je nach den Erfordernissen des Formkörpers und zur Optimierung der Formkörperherstellung auch unregelmäßig, beispielsweise mehrfach bezogen auf einen Partikelmaterialauftrag, erfolgen. Dabei wird ein Schnittbild durch den gewünschten Körper aufgedruckt.
Als „Vorrichtung" zum Durchführen des erfindungsgemäßen Verfahrens kann jede bekannte 3D-Druckvorrichtung verwendet werden, die die erforderlichen Bauteile beinhaltet. Übliche Komponenten beinhalten Beschichter, Baufeld, Mittel zum Verfahren des Baufeldes oder anderer Bauteile bei kontinuierlichen Verfahren, Dosiervorrichtungen und Wärme- und/oder Bestrahlungsmittel und andere dem Fachmann bekannte Bauteile, die deshalb hier nicht näher ausgeführt werden.
„Verschlussvorrichtung" oder „Verschlusseinheit" im Sinne der Offenbarung vereinigt die positiven Merkmale, die mit einer Schwingklingenkonstruktion erzielt werden können und erlaubt gleichzeitig ein schnelleres Anfahren der Beschichtervorrichtung sowie den Auftrag von größeren Partikelmaterialvolumen. Eine derartige „Verschlussvorrichtung" umfasst oder beinhaltet mindestens eine Schwingklinge und eine Verschlussmittel, das mit geeigneten Mitteln ansteuerbar ist, z.B. durch einen Exzenter, einen Ziehkeil oder/und eine Kulisse.
Die „Packungsdichte" beschreibt die Ausfüllung des geometrischen Raumes durch einen Feststoff. Sie hängt von der Natur des Partikelmaterials und der Auftragsvorrichtung ab und ist eine wichtige Ausgangsgröße für den Sinterprozess.
Das Baumaterial wird immer in einer „definierten Schicht" oder „Schichtstärke" aufgebracht, die je nach Baumaterial und Verfahrensbedingungen individuell eingestellt wird. Sie beträgt beispielsweise 0,05 bis 0,5 mm, vorzugsweise 0,1 bis 0,3 mm.
„Spalt" oder „Spaltöffnung" im Sinne der Offenbarung bezeichnet das Mittel durch das Partikelmaterial vom Recoater bzw. auf die Bauplattform aufgebracht wird und mittels dem/der die Auftragsmenge von Partikelmaterial gesteuert werden kann. Durch den „Spalt" oder die „Spaltöffnung" tritt das Partikelmaterial aus dem Beschichter aus und fließt auf die Bauplattform. Der„Verschluss" oder„Beschichterverschluss" steuert die freigegebene Partikelmaterialmenge. Eine„Beschichterklinge" oder„Schwingklinge" im Sinne der Offenbarung betrifft ein der Bauplattform zugewandtes Mittel einer Beschichtervorrichtung, die mit weiteren Mitteln kombiniert sein kann, um den Partikelmaterialauftrag zu steuern. Die„Beschichterklinge" kann mit einem anderen Teil oder Mittel der Beschichtervorrichtung einen Spalt bilden, der im Stillstand durch einen Schüttkegel verschlossen wird. In der vorliegenden Offenbarung wird die „Beschichterklinge" mit einem ansteuerbaren Verschluss, z.B. einem Federstahlblech, verschlossen und geöffnet und so der Partikelmaterialauftrag auf das Baufeld gesteuert.
Eine „Verschlussvorrichtung" im Sinne der Offenbarung betrifft die Kombination von Beschichterklinge, ansteuerbarem Verschluss und Aktor in einem Partikelmaterialbeschichter.
Ein„Verschlussmittel" oder„Verschluss" oder„Beschichterverschluss" im Sinne der Offenbarung ist ein Mittel, das es ermöglicht den Spalt des Beschichters gesteuert zu schließen und zu öffnen. Es kann z.B. ein Federstahlblech sein.
Ein „Ansteuermittel" oder„Aktor" im Sinne der Offenbarung dient zum Öffnen und Schließen des Verschlussmittels.
„Öffnungsgeschwindigkeit" im Sinne der Offenbarung bedeutet die Zeitdauer, die vergeht bis das Verschlussmittel von seiner geschlossenen Stellung bis zu seiner maximalen Öffnung angesteuert wird.
„Verschlussöffnungsprozess" im Sinne der Offenbarung ist der Vorgang bei dem das Verschlussmittel von seiner geschlossenen zu seiner geöffneten Stellung gebracht wird. Dementsprechend ist ein „Verschlussschließungsprozess" der umgekehrte Ablauf.
„Verfahrgeschwindigkeit" im Sinne der Offenbarung bezieht sich auf die Geschwindigkeit des Vor- oder Zurückfahren des Beschichters. Die Verfahrgeschwindigkeit und die Öffnungsgeschwindigkeit sind wichtige Größen, die den Verfahrensablauf, die Herstellungsgeschwindigkeit für 3D- Formteilen und das Steuern des Anfahrens und des Druckprozesses beeinflussen. Somit beeinflussen diese Größen auch die Wirtschaftlichkeit einer 3D-Druckvorrichtung.
Die Aspekte der Erfindung werden im Folgenden beschrieben.
Die Erfindung betrifft in einem Aspekt eine Verschlussvorrichtung geeignet für eine 3D-Druckvorrichtung oder/und Beschichtervorrichtung, umfassend ein Verschlussmittel, vorzugsweise ein Stahlblech, bspw. Federstahlblech, wobei das Verschlussmittel ansteuerbar ist und durch ein Ansteuermittel geöffnet werden kann, wobei das Ansteuermittel ein Excenter, ein Ziehkeil und/oder eine Kulisse ist.
Mit dem erfindungsgemäßen Verfahren wurde eine besonders vorteilhafte Lösung bereitgestellt, um das der Anmeldung zu Grunde liegende Problem zu lösen.
Mit dem erfinderischen Verschlusssystem und Beschichter wird es möglich den Pulverdurchsatz bzw. den Partikelmaterialauftrag des Beschichters zur erhöhen und dadurch höherer Verfahrgeschwindigkeiten zu erreichen und die Auftragsgeschwindigkeit und das Auftragsvolumen pro Zeiteinheit zu steigern.
Mit den oben dargestellten Vorrichtungskomponenten in der dargestellten Kombination konnten überraschender Weise sehr vorteilhafte Verfahrensergebnisse erreicht werden.
Mit der erfindungsgemäßen Vorrichtung werden die oben ausgeführten Probleme oder Nachteile zumindest vermindert oder ganz vermieden.
Die hier beschriebene Verschlussvorrichtung kann in 3D- Druckvorrichtungen und/oder Beschichtervorrichtungen eingebaut werden, die fluides partikelförmiges Material zum Schichtaufbau und zum Aufbau der 3D-Formteile verwenden und auftragen. Die Beschichtervorrichtung kann ein einfacher Pulverbeschichter oder ein Doppelbeschichter sein. Die Verschlussvorrichtung kann ein Ansteuermittel beinhalten, die dazu dient das Verschlussmittel, z.B. ein Stahlfederblech, zu öffnen oder/und die Spaltbreite (Spaltgröße) zu steuern. Eine Verschlussvorrichtung weist somit mindestens ein Verschlussmittel, eine Beschichterklinge und eine Partikelmaterialzufuhr oder einen Partikelmaterialbehälter auf, wobei die Teile so miteinander verbunden sind, dass ein Auftrag auf ein Baufeld gesteuert erfolgen kann. Das Ansteuermittel kann das Verschlussmittel von 1 bis 5 mm öffnen.
Mit der Verschlussvorrichtung ist es auch möglich die Öffnungsgeschwindigkeit zu steuern und entsprechend Partikelmaterial in gezielter Weise auf die Bauplattform aufzutragen. Dabei ist die Geschwindigkeit, die benötigt wird, um eine Maximalöffnung des Verschlussmittels zu erreichen. Dabei kann die Öffnungsgeschwindigkeit (Maximalöffnung des Spaltes) von 0,5/10 bis 3/10 Sekunden betragen, vorzugsweise beträgt diese von 1/10 bis 2/10 Sekunden.
Mit dem Beschichter und/oder Verschluss wie hier beschrieben wird es in vorteilhafter Weise möglich nicht nur die Auftragsmenge, sondern auch die Anfahrgeschwindigkeit zur Abgabe von Partikelmaterial besser zu steuern. Weiterhin kann so das Problem von fehlendem Partikelmaterialauftrag beim Anfahren des Beschichters vermieden werden, wodurch sich Qualitätsvorteile in den Bauteilen ergeben. Damit steigt auch die Wirtschaftlichkeit, da sich der Ausschuss verringert.
Weiterhin wird bei bekannten Beschichtern immer eine große Menge an Abfallpartikelmaterial anfallen, das nicht oder nur mit erhöhtem Aufwand und den damit verbundenen Kosten wieder rezyklisiert werden kann. Mit dem Beschichter bzw. Verschluss wie hierin beschrieben können diese Nachteile des Standes der Technik vermieden oder zumindest vermindert werden. Auch erleichtert ein Verschluss wie hier beschrieben die stufenweise Anordnung von Beschichtern wie weiter unten im Detail beschrieben.
Bei herkömmlichen Schwingbeschichtern ist der Ausfluss nur durch eine mechanische Verstellung des Spalts außerhalb des Prozesses einstellbar, während die erfindungsgemäße Vorrichtung eine Einstellung und sogar Regelung des Spalts während des Betriebs ermöglicht.
Die Verschlussvorrichtung kann in einem Beschichter eingebaut sein, der in die Verfahrrichtung eine Beschichteröffnung aufweist. Es kann sich dabei im Wesentlichen um einen wie im oben beschriebenen Stand der Technik beschriebenen Schwingklingenrecoater handeln. Es kann auch ein Doppelbeschichter sein, der in jede Verfahrrichtung eine Schwingklingenöffnung aufweist und mit dem somit in beide Verfahrrichtungen Partikelmaterial auf das Baufeld aufgetragen werden kann.
In einem weiteren Aspekt betrifft die Offenbarung eine 3D- Druckvorrichtung oder/und eine Beschichtervorrichtung, umfassend ein Verschlussmittel wie oben beschrieben, wobei die durch die Beschichtervorrichtung beim Anfahren oder während der Fahrt über das Baufeld zurückgelegte Strecke ab Beginn des Verschlussöffnungsprozesses bis zur Öffnung des Verschlusses 2 cm bis 10 cm, vorzugsweise 3 cm bis 7 cm, bei einer Verfahrgeschwindigkeit der Beschichtervorrichtung oder der Verschlussvorrichtung von 350 mm/Sekunde beträgt.
Die hier beschriebene 3D-Druckvorrichtung oder/und Beschichtervorrichtung kann umfassen: eine wie oben beschriebene Verschlussvorrichtung und eine wie oben beschriebene Beschichterklinge.
Die Beschichterklinge kann aus allen geeigneten Materialien gefertigt sein und sie besteht vorzugsweise aus einem Edelstahlblech. Die Beschichterklinge kann mit allen dem Fachmann bekannten Mitteln in Schwingung versetzt werden. Die Schwingung wird z.B. mittels einem oder mehreren Exzentern erzeugt.
In der hier beschriebenen 3D-Druckvorrichtung oder/und Beschichtervorrichtung kann das Pulvermaterial (Partikelmaterial) mittels einer Kombination der hier beschriebenen Verschlussvorrichtung und einer Vibration der Beschichterklinge freisetzbar werden. Damit werden vorteilhafter Weise die Vorteile eines Schwingklingenbeschichters verwirklicht und die Nachteile von begrenzt auftragbaren Partikelmaterialvolumen vermieden.
Der Beschichterverschluss kann sowohl durch die Abdeckung des Spaltes erfolgen, als auch durch die Veränderung des Schüttkegels im Spalt durch Änderung des Aspektverhältnisses (also dem Verhältnis von Spalthöhe zu Spaltlänge) des Spaltes durch geeignete Maßnahmen, vorzugsweise Verkleinerung der Spalthöhe durch Bewegung der Blende.
In einer weiteren Ausführungsform betrifft die Offenbarung ein Verfahren zum Herstellen von 3D-Formteilen, wobei eine wie oben beschriebenen Verschlussvorrichtung oder 3D-Druckvorrichtung oder
Beschichtervorrichtung verwendet wird.
Zum Aufbringen der Druckflüssigkeit werden bekannte Druckköpfe mit geeigneter Technik verwendet. Die Flüssigkeit kann mittels eines oder mehrerer Druckköpfe selektiv aufgebracht werden. Vorzugsweise sind der oder die Druckköpfe in ihrer Tropfenmasse einstellbar. Der oder die Druckköpfe können die Flüssigkeit in einer oder in beiden Verfahrrichtungen selektiv aufbringen. In dem Verfahren wird erreicht, dass das partikelförmige Baumaterial selektiv verfestigt, vorzugsweise selektiv verfestigt und gesintert wird.
Innerhalb des Bauprozesses werden Baumaterial und Druckflüssigkeit zyklisch aufgetragen. Dabei wird das Baufeld um die gewählte Schichtstärke abgesenkt bzw. die Auftragseinheiten entsprechend angehoben. Diese Vorgänge werden zyklisch wiederholt.
Insbesondere vorteilhaft ist ein wie hier beschriebener Verschluss in Kombination mit dem im Folgenden beschriebenen Verfahren oder/und der Vorrichtungsanordnung und er zeichnet sich durch verschiedene Vorteile aus:
Der oben beschriebene Verschluss wird kombiniert mit einem Verfahren zum Herstellen dreidimensionaler Modelle mittels Schichtaufbautechnik, wobei partikelförmiges Baumaterial in einer definierten Schicht auf ein Baufeld aufgetragen wird und eine Binderflüssigkeit selektiv auf das Baumaterial aufgebracht wird, um einen gewissen Betrag verfahren wird und diese Schritte wiederholt werden, bis das gewünschte Objekt erzeugt ist, wobei die Schritte des Auftragens und Aufbringens im Wesentlichen gleichzeitig stattfinden.
Das Verfahren wie oben beschrieben, ist dadurch gekennzeichnet, dass das partikelförmige Baumaterial mit einem Beschichter aufgetragen wird oder/und die Binderflüssigkeit mit einem Druckkopf aufgebracht wird.
Dabei kann das wie oben beschriebenen Verfahren, dadurch gekennzeichnet sein, dass das Vorrichtungsmittel Druckkopf dem Vorrichtungsmittel Beschichter in einem definierten Abstand, vorzugsweise in einem Abstand von 1000 mm - 300 mm, mehr bevorzugt von 300 mm - 50 mm, noch mehr bevorzugt unmittelbar, folgt. Weiterhin kann in dem wie oben beschriebenen Verfahren das Vorrichtungsmittel mit einer Geschwindigkeit von 0,02 m/s bis 1 m/s verfahren werden, vorzugsweise dass die verschiedenen Vorrichtungsmittel mit derselben oder einer unterschiedlichen Geschwindigkeiten verfahren werden.
In einer Ausführungsform ist das wie oben beschriebene Verfahren, dadurch gekennzeichnet, dass die Vorrichtungsmittel zurückgefahren werden und der Rücklauf der Vorrichtungsmittel im Eilgang erfolgt, vorzugsweise mit einer Geschwindigkeit von 0,5 m/s bis 5 m/s.
Ein weiteres wie oben beschriebenes Verfahren, ist dadurch gekennzeichnet, dass das Aufträgen und das Aufbringen im Vor- wie im Rücklauf stattfindet.
Besonders vorteilhaft kann durch den wie oben beschriebenen Verschluss die Materialauftragung präzise gesteuert werden, was sich positiv auf den Verfahrensablauf sowie auf die Qualität der so hergestellten Teile auswirk.
Ein weiteres wie oben beschriebenes Verfahren, ist dadurch gekennzeichnet, dass mehrere Vorrichtungsmittel von Beschichter und Dosiereinheit, vorzugsweise jeweils 2 bis 20, mehr bevorzugt 4 bis 15, mehrere Schichten in einer Überfahrt bilden.
Dabei kann das wie oben beschriebene Verfahren, dadurch gekennzeichnet sein, dass mehrere Vorrichtungsmittel mehrere Schichten in einer Überfahrt sowohl im Vor- als auch im Rücklauf bilden, vorzugsweise ist es dadurch gekennzeichnet, dass mehrere Vorrichtungsmittel mehrere Schichten auf einer kontinuierlich arbeitenden Fördereinheit aufbauen. Auch kann das wie oben beschrieben Verfahren, dadurch gekennzeichnet sein, dass als Basisverfahren ein Schrägdruckverfahren, ein Batchverfahren oder/und ein kontinuierliches Verfahren verwendet wird.
Weiterhin kann der wie oben beschriebene Verschluss vorteilhaft kombiniert werden in einer Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtaufbautechnik, die mindestens zwei, vorzugsweise 3 - 20, Druckmittel mindestens zwei, vorzugsweise 2 - 20,
Beschichtermittel nachgeordnet aufweist, vorzugsweise die mindestens zwei Beschichtermittel und mindestens zwei Druckmittel aufweist, vorzugsweise die dadurch gekennzeichnet ist, dass das Druckmittel und das Beschichtermittel auf der gleichen Achse angeordnet sind, vorzugsweise die dadurch gekennzeichnet ist, dass das Druckmittel als Linehead ausgeführt ist, vorzugsweise die dadurch gekennzeichnet ist, dass das/die Druckmittel und das/die Beschichtermittel mit einer Geschwindigkeit von 0,02 m/s bis 5 m/s verfahren werden können, vorzugsweise die dadurch gekennzeichnet ist, dass das/die Druckmittel und das/die Beschichtermittel so angeordnet und ausgeführt sind, dass sie im Vor- wie im Rücklauf arbeiten können, vorzugsweise die dadurch gekennzeichnet ist, dass das/die Druckmittel und das/die Beschichtermittel in verschiedenen Ebenen, vorzugsweise in ihrer Höhe, vorzugsweise in der Z-Achse, verstellbar sind, vorzugsweise die dadurch gekennzeichnet ist, dass das/die Druckmittel und das/die Beschichtermittel versetzt angeordnet sind, vorzugsweise dass sie so angeordnet sind, dass sie mehrere Schichten übereinander auftragen und aufbringen können, vorzugsweise die dadurch gekennzeichnet ist, dass sie eine kontinuierlich arbeitende Fördereinheit aufweist, vorzugsweise die dadurch gekennzeichnet ist, dass sie als ein Schrägdrucker, ein Batchdrucker oder ein kontinuierlich arbeitender Drucker ausgeführt ist, vorzugsweise die dadurch gekennzeichnet it, dass sie als ein Schrägdrucker ausgeführt ist oder/und die Vorrichtungsmittel in einem vertikalen Karussell oder radartig angeordnet sind. In einer Ausführungsform konnten die Erfinder mit einer Kombination von Verfahren bzw. Vorrichtung mit dem oben beschriebenen Verschluss eine Volumenleistung bei zufriedenstellendem Qualitätsniveau nicht nur signifikant steigern, sondern auch noch besser steuerbar machen.
Die hier beschriebene Parallelisieren der Vorgänge von Beschichten und Bedrucken kann mittels des oben beschriebenen Verschlusses noch präziser gesteuert werden. Die verschiedenen Druckvorgänge werden im Wesentlichen gleichzeitig ausgeführt und sind vorteilhafterweise sehr genau steuerbar durch die Verwendung des oben beschriebenen Verschlusses, wobei es möglich ist, mehrere Beschichter und Druckeinheiten hintereinander anzuordnen und in einer Überfahrt mehrere Schichten abzulegen und selektiv zu verfestigen. Dazu sind keine Steigerungen der Verfahrgeschwindigkeiten oder sonstige Maßnahmen nötig, die die Qualität der produzierten Produkte negativ beeinflussen.
Bezugszeichenliste
Beschichterspalt
Partikel material
Beschichterklinge
einstellbare Blende
Schüttkegel aus Partikelmaterial
Beschichterbehälter
aufgelegte Schicht aus Partikelmaterial
(schüttkegelbegrenzte) Walze aus Partikelmaterial Vorschubbewegung
Schwingbewegung der Klinge Steuerwalze
Verschlussblech
Drehung der Steuerwalze
Bewegung des Verschlussblechs
ausfließendes Partikelmaterial Verschlussdichtung
vorgespanntes Verschlussblech
verlängerte Klinge Kugel
Betätigungsschieber
Kulisse in der Blende vertikal bewegliche Blende
horizontal bewegliche Kulisse mit der Blende verbundener Zylinder Kulissenführung
Kulissenbewegung

Claims

Patentansprüche
1. Verschlussvorrichtung geeignet für eine 3D-Druckvorrichtung oder/und Beschichtervorrichtung, umfassend ein Verschlussmittel, vorzugsweise ein Federstahlblech, wobei das Verschlussmittel ansteuerbar ist und durch ein Ansteuermittel geöffnet werden kann, wobei das Ansteuermittel ein Excenter, ein Ziehkeil und/oder eine Kulisse ist.
2. Verschlussvorrichtung nach Anspruch 1, wobei die Beschichtervorrichtung ein Pulverbeschichter, vorzugsweise ein Doppelbeschichter ist.
3. Verschlussvorrichtung nach Anspruch 1 oder 2, wobei das Verschlussmittel durch das Ansteuermittel von 1 bis 5 mm in seiner maximalen Öffnungsbreite geöffnet werden kann.
4. Verschlussvorrichtung nach Anspruch 1, 2 oder 3, wobei die
Öffnungsgeschwindigkeit (Maximalöffnung) von 0,5/10 bis 3/10 Sekunden beträgt, vorzugsweise von 1/10 bis 2/10 Sekunden beträgt.
5. 3D-Druckvorrichtung oder/und Beschichtervorrichtung, umfassend ein Verschlussmittel nach einem der Ansprüche 1 bis 4 wobei die von der Beschichtervorrichtung zurückgelegte Strecke ab Beginn des Verschlussöffnungsprozesses bis zur Öffnung des Verschlusses 2 cm bis 10 cm, vorzugsweise 3 cm bis 7 cm, bei einer Verfahrgeschwindigkeit der Beschichtervorrichtung oder der Verschlussvorrichtung von 350 mm/Sekunde beträgt.
6. 3D-Druckvorrichtung oder/und Beschichtervorrichtung nach Anspruch
5, umfassend eine Verschlussvorrichtung nach einem der Ansprüche 1 bis 4 und eine Beschichterklinge.
7. 3D-Druckvorrichtung oder/und Beschichtervorrichtung nach Anspruch
6, wobei Pulvermaterial mittels einer Kombination von Verschlussvorrichtung nach einem der Ansprüche 1 bis 4 und einer Vibration der Beschichterklinge freisetzbar ist.
8. Verfahren zum Herstellen von 3D-Formteilen, wobei eine Verschlussvorrichtung nach einem der Ansprüche 1 bis 4 oder eine 3D- Druckvorrichtung oder/und Beschichtervorrichtung nach Anspruch 5 verwendet wird.
EP19765964.2A 2018-08-16 2019-08-15 Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen Pending EP3837105A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018006473.6A DE102018006473A1 (de) 2018-08-16 2018-08-16 Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung
PCT/DE2019/000222 WO2020035100A1 (de) 2018-08-16 2019-08-15 Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen

Publications (1)

Publication Number Publication Date
EP3837105A1 true EP3837105A1 (de) 2021-06-23

Family

ID=67909247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19765964.2A Pending EP3837105A1 (de) 2018-08-16 2019-08-15 Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen

Country Status (4)

Country Link
US (2) US11964434B2 (de)
EP (1) EP3837105A1 (de)
DE (1) DE102018006473A1 (de)
WO (1) WO2020035100A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
DE102019004176A1 (de) 2019-06-14 2020-12-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mittels Schichtaufbautechnik und Beschichter mit Unterdruckverschluss
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat

Family Cites Families (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE42338C (de) 1887-04-01 1888-03-09 H. HOPPE in Frankfurt, Main, Bockenheimer Landstrafse -179 Keilgetriebe zur Bewegung von Absperrschiebern
US4247508B1 (en) 1979-12-03 1996-10-01 Dtm Corp Molding process
DE3221357A1 (de) 1982-06-05 1983-12-08 Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg Verfahren zur herstellung von formen und kernen fuer giesszwecke
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JPS62275734A (ja) 1986-05-26 1987-11-30 Tokieda Naomitsu 立体形成方法
IL84936A (en) 1987-12-23 1997-02-18 Cubital Ltd Three-dimensional modelling apparatus
US4752352A (en) 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5155324A (en) 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
ATE138293T1 (de) 1986-10-17 1996-06-15 Univ Texas Verfahren und vorrichtung zur herstellung von gesinterten formkörpern durch teilsinterung
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4752498A (en) 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US5047182A (en) 1987-11-25 1991-09-10 Ceramics Process Systems Corporation Complex ceramic and metallic shaped by low pressure forming and sublimative drying
US5772947A (en) 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
CA1337955C (en) 1988-09-26 1996-01-23 Thomas A. Almquist Recoating of stereolithographic layers
US5637175A (en) 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
WO1990003893A1 (en) 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
JPH0336019A (ja) 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
US5284695A (en) 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
AU643700B2 (en) 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
US5156697A (en) 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
DE3930750A1 (de) 1989-09-14 1991-03-28 Krupp Medizintechnik Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
DE3942859A1 (de) 1989-12-23 1991-07-04 Basf Ag Verfahren zur herstellung von bauteilen
US5127037A (en) 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
US5126529A (en) 1990-12-03 1992-06-30 Weiss Lee E Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition
DE4102260A1 (de) 1991-01-23 1992-07-30 Artos Med Produkte Vorrichtung zur herstellung beliebig geformter koerper
US5740051A (en) 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5342919A (en) 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5352405A (en) 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
DE4305201C1 (de) 1993-02-19 1994-04-07 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objekts
US5433261A (en) 1993-04-30 1995-07-18 Lanxide Technology Company, Lp Methods for fabricating shapes by use of organometallic, ceramic precursor binders
DE4325573C2 (de) 1993-07-30 1998-09-03 Stephan Herrmann Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung
US5398193B1 (en) 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5518680A (en) 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
DE4400523C2 (de) 1994-01-11 1996-07-11 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US5518060A (en) 1994-01-25 1996-05-21 Brunswick Corporation Method of producing polymeric patterns for use in evaporable foam casting
DE4440397C2 (de) 1994-11-11 2001-04-26 Eos Electro Optical Syst Verfahren zum Herstellen von Gußformen
EP0968776B1 (de) 1994-05-27 2002-10-02 EOS GmbH ELECTRO OPTICAL SYSTEMS Verfahren für den Einsatz in der Giessereitechnik
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US6048954A (en) 1994-07-22 2000-04-11 The University Of Texas System Board Of Regents Binder compositions for laser sintering processes
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5555176A (en) 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5717599A (en) 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
GB9501987D0 (en) 1995-02-01 1995-03-22 Butterworth Steven Dissolved medium rendered resin (DMRR) processing
JP3839479B2 (ja) 1995-02-01 2006-11-01 スリーディー システムズ インコーポレーテッド 3次元物体の高速断面積層方法
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE29506204U1 (de) 1995-04-10 1995-06-01 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE19514740C1 (de) 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE19515165C2 (de) 1995-04-25 1997-03-06 Eos Electro Optical Syst Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie
DE19528215A1 (de) 1995-08-01 1997-02-06 Thomas Dipl Ing Himmer Verfahren zur Herstellung von dreidimensionalen Modellen und Formen
DE19530295C1 (de) 1995-08-11 1997-01-30 Eos Electro Optical Syst Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6270335B2 (en) 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
DE69634921T2 (de) 1995-09-27 2005-12-01 3D Systems, Inc., Valencia Modellierung durch selektive Materialablagerung zur Formung von dreidimensionalen Gegenständen
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
DE19545167A1 (de) 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Verfahren zum Herstellen von Bauteilen oder Werkzeugen
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
WO1997030782A1 (fr) 1996-02-20 1997-08-28 Mikuni Corporation Procede de production de materiau granulaire
AU720255B2 (en) 1996-03-06 2000-05-25 BioZ, L.L.C Method for formation of a three-dimensional body
US6596224B1 (en) 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
GB9611582D0 (en) 1996-06-04 1996-08-07 Thin Film Technology Consultan 3D printing and forming of structures
US5824250A (en) 1996-06-28 1998-10-20 Alliedsignal Inc. Gel cast molding with fugitive molds
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US7332537B2 (en) 1996-09-04 2008-02-19 Z Corporation Three dimensional printing material system and method
US7037382B2 (en) 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6989115B2 (en) 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
DE29701279U1 (de) 1997-01-27 1997-05-22 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element
EP1015153A4 (de) 1997-03-31 2004-09-01 Therics Inc Verfahren zur verteilung von pulvern
US5940674A (en) 1997-04-09 1999-08-17 Massachusetts Institute Of Technology Three-dimensional product manufacture using masks
DE19715582B4 (de) 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
NL1006059C2 (nl) 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
DE19723892C1 (de) 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
DE19727677A1 (de) 1997-06-30 1999-01-07 Huels Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten
US5989476A (en) 1998-06-12 1999-11-23 3D Systems, Inc. Process of making a molded refractory article
JP3518726B2 (ja) 1998-07-13 2004-04-12 トヨタ自動車株式会社 積層造形方法及び積層造形用レジン被覆砂
DE19846478C5 (de) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
DE19853834A1 (de) 1998-11-21 2000-05-31 Ingo Ederer Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6259962B1 (en) 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US6405095B1 (en) 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
DE19928245B4 (de) 1999-06-21 2006-02-09 Eos Gmbh Electro Optical Systems Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6658314B1 (en) 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
DE19948591A1 (de) 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
EP1415792B1 (de) 1999-11-05 2014-04-30 3D Systems Incorporated Verfahren und Zusammenstellungen für dreidimensionales Drucken
JP4624626B2 (ja) 1999-11-05 2011-02-02 ズィー コーポレイション 材料システム及び3次元印刷法
GB9927127D0 (en) 1999-11-16 2000-01-12 Univ Warwick A method of manufacturing an item and apparatus for manufacturing an item
DE19957370C2 (de) 1999-11-29 2002-03-07 Carl Johannes Fruth Verfahren und Vorrichtung zum Beschichten eines Substrates
TWI228114B (en) 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece
DE19963948A1 (de) 1999-12-31 2001-07-26 Zsolt Herbak Verfahren zum Modellbau
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
DE60014714T2 (de) 2000-03-24 2006-03-02 Voxeljet Technology Gmbh Verfahren zum Herstellen eines Bauteils in Ablagerunstechnik
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
JP2001334583A (ja) 2000-05-25 2001-12-04 Minolta Co Ltd 三次元造形装置
DE10026955A1 (de) 2000-05-30 2001-12-13 Daimler Chrysler Ag Materialsystem zur Verwendung beim 3D-Drucken
SE520565C2 (sv) 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
US6619882B2 (en) 2000-07-10 2003-09-16 Rh Group Llc Method and apparatus for sealing cracks in roads
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
DE10047615A1 (de) 2000-09-26 2002-04-25 Generis Gmbh Wechselbehälter
DE10047614C2 (de) 2000-09-26 2003-03-27 Generis Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE10049043A1 (de) 2000-10-04 2002-05-02 Generis Gmbh Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern
DE10053741C1 (de) 2000-10-30 2002-02-21 Concept Laser Gmbh Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung
US20020111707A1 (en) 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
US20020090410A1 (en) 2001-01-11 2002-07-11 Shigeaki Tochimoto Powder material removing apparatus and three dimensional modeling system
DE10105504A1 (de) 2001-02-07 2002-08-14 Eos Electro Optical Syst Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts
US6896839B2 (en) 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
DE20122639U1 (de) 2001-02-07 2006-11-16 Eos Gmbh Electro Optical Systems Vorrichtung zum Herstellen eines dreidimensionalen Objekts
GB0103752D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-Dimensional printing
GB0103754D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
US6939489B2 (en) 2001-03-23 2005-09-06 Ivoclar Vivadent Ag Desktop process for producing dental products by means of 3-dimensional plotting
DE10117875C1 (de) 2001-04-10 2003-01-30 Generis Gmbh Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung
US20020155254A1 (en) 2001-04-20 2002-10-24 Mcquate William M. Apparatus and method for placing particles in a pattern onto a substrate
GB0112675D0 (en) 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
DE10128664A1 (de) 2001-06-15 2003-01-30 Univ Clausthal Tech Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern
JP2003052804A (ja) 2001-08-09 2003-02-25 Ichiro Ono インプラントの製造方法およびインプラント
US6841116B2 (en) 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
JP2003136605A (ja) 2001-11-06 2003-05-14 Toshiba Corp 製品の作成方法及びその製品
GB2382798A (en) 2001-12-04 2003-06-11 Qinetiq Ltd Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon
SE523394C2 (sv) 2001-12-13 2004-04-13 Fcubic Ab Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt
US6713125B1 (en) 2002-03-13 2004-03-30 3D Systems, Inc. Infiltration of three-dimensional objects formed by solid freeform fabrication
DE10216013B4 (de) 2002-04-11 2006-12-28 Generis Gmbh Verfahren und Vorrichtung zum Auftragen von Fluiden
DE10222167A1 (de) * 2002-05-20 2003-12-04 Generis Gmbh Vorrichtung zum Zuführen von Fluiden
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
EP1513670A1 (de) 2002-06-18 2005-03-16 DaimlerChrysler AG Lasersinterverfahren mit erh hter prozessgenauigkeit und par tikel zur verwendung dabei
DE10326919A1 (de) 2002-06-18 2004-01-08 Daimlerchrysler Ag Partikel und Verfahren für die Herstellung eines dreidimensionalen Gegenstandes
DE10227224B4 (de) 2002-06-18 2005-11-24 Daimlerchrysler Ag Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren
US7027887B2 (en) 2002-07-03 2006-04-11 Theries, Llc Apparatus, systems and methods for use in three-dimensional printing
DE10235434A1 (de) 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
US20040038009A1 (en) 2002-08-21 2004-02-26 Leyden Richard Noel Water-based material systems and methods for 3D printing
JP4069245B2 (ja) 2002-08-27 2008-04-02 富田製薬株式会社 造形法
US7087109B2 (en) 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20040112523A1 (en) 2002-10-15 2004-06-17 Crom Elden Wendell Three dimensional printing from two dimensional printing devices
US6742456B1 (en) 2002-11-14 2004-06-01 Hewlett-Packard Development Company, L.P. Rapid prototyping material systems
US7153454B2 (en) 2003-01-21 2006-12-26 University Of Southern California Multi-nozzle assembly for extrusion of wall
US7497977B2 (en) 2003-01-29 2009-03-03 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
WO2004073961A2 (de) 2003-02-18 2004-09-02 Daimlerchrysler Ag Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren
ATE446396T1 (de) 2003-03-10 2009-11-15 Kuraray Co Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff
EP1628823B8 (de) 2003-05-21 2012-06-27 3D Systems Incorporated Thermoplastisches pulvermaterialsystem für appearance models von 3d-drucksystemen
WO2004106041A2 (en) 2003-05-23 2004-12-09 Z Corporation Apparatus and methods for 3d printing
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (de) 2003-06-17 2005-03-03 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US20050012247A1 (en) 2003-07-18 2005-01-20 Laura Kramer Systems and methods for using multi-part curable materials
US7120512B2 (en) 2003-08-25 2006-10-10 Hewlett-Packard Development Company, L.P. Method and a system for solid freeform fabricating using non-reactive powder
US20050074511A1 (en) 2003-10-03 2005-04-07 Christopher Oriakhi Solid free-form fabrication of solid three-dimesional objects
US7220380B2 (en) 2003-10-14 2007-05-22 Hewlett-Packard Development Company, L.P. System and method for fabricating a three-dimensional metal object using solid free-form fabrication
US7348075B2 (en) 2003-10-28 2008-03-25 Hewlett-Packard Development Company, L.P. System and method for fabricating three-dimensional objects using solid free-form fabrication
US7455805B2 (en) 2003-10-28 2008-11-25 Hewlett-Packard Development Company, L.P. Resin-modified inorganic phosphate cement for solid freeform fabrication
US7381360B2 (en) 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
FR2865960B1 (fr) 2004-02-06 2006-05-05 Nicolas Marsac Procede et machine pour realiser des objets en trois dimensions par depot de couches successives
US7608672B2 (en) 2004-02-12 2009-10-27 Illinois Tool Works Inc. Infiltrant system for rapid prototyping process
DE102004008168B4 (de) * 2004-02-19 2015-12-10 Voxeljet Ag Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
DE102004014806B4 (de) 2004-03-24 2006-09-14 Daimlerchrysler Ag Rapid-Technologie-Bauteil
WO2005097476A2 (en) 2004-04-02 2005-10-20 Z Corporation Methods and apparatus for 3d printing
US7435763B2 (en) 2004-04-02 2008-10-14 Hewlett-Packard Development Company, L.P. Solid freeform compositions, methods of application thereof, and systems for use thereof
DE102004020452A1 (de) 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004025374A1 (de) 2004-05-24 2006-02-09 Technische Universität Berlin Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels
JP4239915B2 (ja) 2004-07-16 2009-03-18 セイコーエプソン株式会社 マイクロレンズの製造方法およびマイクロレンズの製造装置
ITMI20050459A1 (it) 2005-03-21 2006-09-22 Montangero & Montangero S R L Dispositivo di movimentazione al suolo di un corpo
ITPI20050031A1 (it) 2005-03-22 2006-09-23 Moreno Chiarugi Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato
US7357629B2 (en) 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7790096B2 (en) 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
US20080003390A1 (en) 2005-04-27 2008-01-03 Nahoto Hayashi Multi-Layer Structure and Process for Production Thereof
US20060257579A1 (en) 2005-05-13 2006-11-16 Isaac Farr Use of a salt of a poly-acid to delay setting in cement slurry
DE102005022308B4 (de) 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US20060254467A1 (en) 2005-05-13 2006-11-16 Isaac Farr Method for making spray-dried cement particles
US20070045891A1 (en) 2005-08-23 2007-03-01 Valspar Sourcing, Inc. Infiltrated Articles Prepared by a Laser Sintering Method and Method of Manufacturing the Same
DE102006040305A1 (de) 2005-09-20 2007-03-29 Daimlerchrysler Ag Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand
JP2009508723A (ja) 2005-09-20 2009-03-05 ピーティーエス ソフトウェア ビーブイ 三次元物品を構築する装置及び三次元物品を構築する方法
US7296990B2 (en) 2005-10-14 2007-11-20 Hewlett-Packard Development Company, L.P. Systems and methods of solid freeform fabrication with translating powder bins
DE102005056260B4 (de) 2005-11-25 2008-12-18 Prometal Rct Gmbh Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material
US20070126157A1 (en) 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
JP4247501B2 (ja) 2005-12-27 2009-04-02 富田製薬株式会社 型の製造方法
EP2001656B1 (de) 2006-04-06 2014-10-15 3D Systems Incorporated Set zur herstellung dreidimensionaler objekte durch verwendung elektromagnetischer strahlung
US7979152B2 (en) 2006-05-26 2011-07-12 Z Corporation Apparatus and methods for handling materials in a 3-D printer
DE102006029298B4 (de) 2006-06-23 2008-11-06 Stiftung Caesar Center Of Advanced European Studies And Research Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung
DE102006030350A1 (de) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers
US20080018018A1 (en) 2006-07-20 2008-01-24 Nielsen Jeffrey A Solid freeform fabrication methods and systems
KR101271243B1 (ko) 2006-07-27 2013-06-07 아르켐 에이비 3차원 물체 생성방법 및 장치
DE102006038858A1 (de) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
DE102006040182A1 (de) 2006-08-26 2008-03-06 Mht Mold & Hotrunner Technology Ag Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür
DE202006016477U1 (de) 2006-10-24 2006-12-21 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102006053121B3 (de) 2006-11-10 2007-12-27 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial
DE102006055326A1 (de) 2006-11-23 2008-05-29 Voxeljet Technology Gmbh Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen
US7905951B2 (en) 2006-12-08 2011-03-15 Z Corporation Three dimensional printing material system and method using peroxide cure
CN101616785B (zh) 2007-01-10 2014-01-08 3D系统公司 具有改进的颜色、制品性能和易用性的三维印刷材料体系
DE102007015015B4 (de) 2007-03-28 2014-12-24 Hawle Armaturen Gmbh Absperrscheibenantrieb für absperrbare Armaturen
JP4869155B2 (ja) 2007-05-30 2012-02-08 株式会社東芝 物品の製造方法
DE102007033434A1 (de) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Bauteile
US20100279007A1 (en) 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
DE102007040755A1 (de) 2007-08-28 2009-03-05 Jens Jacob Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern
ITPI20070108A1 (it) 2007-09-17 2009-03-18 Enrico Dini Metodo perfezionato per la realizzazione automatica di strutture di conglomerato
DE102007047326B4 (de) 2007-10-02 2011-08-25 CL Schutzrechtsverwaltungs GmbH, 96215 Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102007049058A1 (de) 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils
DE102007050679A1 (de) * 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
JP5146010B2 (ja) 2008-02-28 2013-02-20 東レ株式会社 セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
US9636870B2 (en) 2008-05-26 2017-05-02 Sony Corporation Modeling apparatus and modeling method
GB0813242D0 (en) * 2008-07-18 2008-08-27 Mcp Tooling Technologies Ltd Powder dispensing apparatus and method
DE102008058378A1 (de) 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Verfahren zum schichtweisen Aufbau von Kunststoffmodellen
EP2191922B1 (de) 2008-11-27 2011-01-05 MTT Technologies GmbH Träger- und Pulverauftragsvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung
US8545209B2 (en) 2009-03-31 2013-10-01 Microjet Technology Co., Ltd. Three-dimensional object forming apparatus and method for forming three-dimensional object
JP5364439B2 (ja) 2009-05-15 2013-12-11 パナソニック株式会社 三次元形状造形物の製造方法
DE102009030113A1 (de) 2009-06-22 2010-12-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen
US20100323301A1 (en) 2009-06-23 2010-12-23 Huey-Ru Tang Lee Method and apparatus for making three-dimensional parts
ES2386602T3 (es) 2009-08-25 2012-08-23 Bego Medical Gmbh Dispositivo y procedimiento para la producción continua generativa
DE102009055966B4 (de) 2009-11-27 2014-05-15 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102009056696B4 (de) 2009-12-02 2011-11-10 Prometal Rct Gmbh Baubox für eine Rapid-Prototyping-Anlage
US8211226B2 (en) 2010-01-15 2012-07-03 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three-dimensional printer
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013733A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010027071A1 (de) 2010-07-13 2012-01-19 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik
US8282380B2 (en) 2010-08-18 2012-10-09 Makerbot Industries Automated 3D build processes
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
WO2012164078A2 (de) 2011-06-01 2012-12-06 Bam Bundesanstalt Für Materialforschung Und- Prüfung Verfahren zum herstellen eines formkörpers sowie vorrichtung
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102011053205B4 (de) 2011-09-01 2017-05-24 Exone Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
DE102011119338A1 (de) 2011-11-26 2013-05-29 Voxeljet Technology Gmbh System zum Herstellen dreidimensionaler Modelle
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
WO2014036643A1 (en) 2012-09-07 2014-03-13 Husky Injection Molding Systems Ltd. Valve gate device
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102012024266A1 (de) 2012-12-12 2014-06-12 Voxeljet Ag Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
US9403725B2 (en) 2013-03-12 2016-08-02 University Of Southern California Inserting inhibitor to create part boundary isolation during 3D printing
DE102013005855A1 (de) 2013-04-08 2014-10-09 Voxeljet Ag Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder
EP2818305B1 (de) * 2013-06-25 2016-03-23 SLM Solutions GmbH Pulverauftragsvorrichtung und Betriebsverfahren für eine Pulverauftragsvorrichtung
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013019716A1 (de) 2013-11-27 2015-05-28 Voxeljet Ag 3D-Druckverfahren mit Schlicker
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
DE102013021091A1 (de) 2013-12-18 2015-06-18 Voxeljet Ag 3D-Druckverfahren mit Schnelltrockenschritt
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
DE102013021891A1 (de) 2013-12-23 2015-06-25 Voxeljet Ag Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
DE102014011544A1 (de) 2014-08-08 2016-02-11 Voxeljet Ag Druckkopf und seine Verwendung
DE102014014895A1 (de) 2014-10-13 2016-04-14 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren
DE102014018579A1 (de) 2014-12-17 2016-06-23 Voxeljet Ag Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015008860A1 (de) 2015-07-14 2017-01-19 Voxeljet Ag Vorrichtung zum Justieren eines Druckkopfes
DE102015011503A1 (de) * 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
DE102015222100A1 (de) * 2015-11-10 2017-05-11 Eos Gmbh Electro Optical Systems Beschichtungseinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102015014964A1 (de) 2015-11-20 2017-05-24 Voxeljet Ag Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
CN106885001A (zh) 2015-12-16 2017-06-23 天津梓彦科技发展有限公司 一种新型封胶阀
DE102015016464B4 (de) 2015-12-21 2024-04-25 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
US20180111198A1 (en) * 2016-10-21 2018-04-26 Velo3D, Inc. Operation of three-dimensional printer components
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
DE102016014349A1 (de) 2016-12-02 2018-06-07 Voxeljet Ag Dosiervorrichtung und Beschichtersystem für das pulverbettbasierte Additive Manufacturing
US10022794B1 (en) * 2017-01-13 2018-07-17 General Electric Company Additive manufacturing using a mobile build volume
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler

Also Published As

Publication number Publication date
US11964434B2 (en) 2024-04-23
US20210316507A1 (en) 2021-10-14
WO2020035100A1 (de) 2020-02-20
DE102018006473A1 (de) 2020-02-20
US20240342994A1 (en) 2024-10-17

Similar Documents

Publication Publication Date Title
EP3271156B1 (de) Verfahren und vorrichtung zum herstellen von 3d-formteilen mit doppelrecoater
EP3263338B1 (de) Verfahren zum generativen herstellen eines dreidimensionalen objekts
EP3119591B1 (de) 3d-drucker, 3d-druckeranordnung und generatives fertigungsverfahren
EP1951505B1 (de) Verfahren und vorrichtung zum flächigen auftragen von fliessfähigem material
EP3086919B1 (de) Vorrichtung und verfahren mit beschleunigter verfahrensführung für 3d- druckverfahren
EP3275654B1 (de) Beschichtungseinheit, beschichtungsverfahren, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
DE102004008168B4 (de) Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
EP1494841B1 (de) Verfahren und vorrichtung zum auftragen von fluiden
WO2002083323A2 (de) Verfahren und vorrichtung zum auftragen von fluiden
WO2016066317A1 (de) Verfahren, vorrichtung und beschichtungsmodul zum herstellen eines dreidimensionalen objekts
EP3837105A1 (de) Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen
EP3638488A1 (de) Beschichteranordnung für einen 3d-drucker
WO2021008641A1 (de) Verfahren zur herstellung von 3d-formteilen mit variablen zieleigenschaften der gedruckten bildpunkte
DE102014010951A1 (de) Verfahren und Vorrichtung zum Dosieren von formlosem Baumaterial in einem Schichtbauverfahren
EP3749470B1 (de) 3d-drucker und generatives fertigungsverfahren
EP3758920A1 (de) Vorrichtung und verfahren zum herstellen von 3d-formteilen mittels verbesserter partikelmaterialdosiereinheit
EP4359200A1 (de) Verfahren und vorrichtung zum herstellen von 3d-formteilen mittels schichtaufbautechnik mittels keilklingenbeschichter
EP3668704A1 (de) Anordnung und verfahren zur erzeugung einer 3d-struktur
WO2022100773A2 (de) Verfahren zum auftragen von partikelförmigem baumaterial in einem 3d-drucker

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220912

RIC1 Information provided on ipc code assigned before grant

Ipc: B33Y 10/00 20150101ALI20231002BHEP

Ipc: B33Y 30/00 20150101ALI20231002BHEP

Ipc: B29C 64/214 20170101ALI20231002BHEP

Ipc: B33Y 40/00 20200101ALI20231002BHEP

Ipc: B29C 64/153 20170101ALI20231002BHEP

Ipc: B29C 64/343 20170101ALI20231002BHEP

Ipc: B29C 64/329 20170101AFI20231002BHEP