EP3837105A1 - Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen - Google Patents
Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilenInfo
- Publication number
- EP3837105A1 EP3837105A1 EP19765964.2A EP19765964A EP3837105A1 EP 3837105 A1 EP3837105 A1 EP 3837105A1 EP 19765964 A EP19765964 A EP 19765964A EP 3837105 A1 EP3837105 A1 EP 3837105A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- closure
- coater
- gap
- coating
- particle material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000465 moulding Methods 0.000 title abstract 2
- 238000007639 printing Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000010146 3D printing Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 56
- 239000011248 coating agent Substances 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 31
- 239000000843 powder Substances 0.000 claims description 15
- 229910000639 Spring steel Inorganic materials 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 48
- 238000010276 construction Methods 0.000 description 29
- 239000011236 particulate material Substances 0.000 description 16
- 239000004566 building material Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/343—Metering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
- B29C64/329—Feeding using hoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
Definitions
- the invention relates to a method and an apparatus for producing three-dimensional models by means of layer construction technology.
- the European patent EP 0 431 924 B1 describes a method for producing three-dimensional objects from computer data.
- a thin layer of a particulate material is applied to a platform and this is selectively printed with a binder material using a print head.
- the particle area printed with the binder adheres and solidifies under the influence of the binder and, if necessary, an additional hardener.
- the platform is then lowered into a construction cylinder by a layer thickness and provided with a new layer of particle material which is also printed, as described above. These steps are repeated until a certain desired height of the object is reached.
- a three-dimensional object is created from the printed and solidified areas.
- This object which is made of solidified particle material, is embedded in loose particle material after its completion and is then freed from it. This is done, for example, by means of a sucker. All that remains are the desired objects, which are then removed from the residual powder e.g. can be freed by brushing.
- coaters can, for example, have an adjustable opening, often in the form of a gap. This gap can, for example, extend over a large part of the width of the coater.
- a problem with known coaters using an adjustable slot or opening is that the gap size or the gap opening has to be enlarged in order to be able to dispense a larger quantity of particulate material. This may influence the controllability of the particle exit, because it can happen that the gap or slit can no longer be controlled, since particle material emerges even at a standstill.
- the coater blade In order to be able to form a pouring cone for closing in a large opening of the coater, the coater blade would have to be designed in dimensions that would be structurally problematic, since the usable coater dimensions would then make the construction site size uneconomical. In particular, a very long coater blade would have to be used in order to be able to build up a pouring cone which can cause the gap to close. However, a large-sized coater blade would reduce the buildable space and thus reduce economy. Another problem is the start-up speed or the delay in the gap opening of oscillating blade coater openings closed by pouring cone due to vibration and the associated quality problems due to insufficient
- the problem here is that the coater is moved or started at a certain speed.
- the coater travels a certain distance above the construction site, while the vibration in the vibrating blade coater causes the cone closure to collapse and particle material to flow out.
- the particulate matter begins to flow out too late and that insufficient particulate matter is applied to a certain part of the construction site.
- it can result in either too little volume of particle material or no particle material being applied in certain areas of the construction field in this time window.
- Another object of the present invention was to modify a coater in such a way that a large amount of particulate material can be applied from a coater to the construction platform and at the same time the gap opening of the coater can be completely closed and the coater can still be moved at high speed can, in order to achieve advantageous and / or shortened manufacturing times.
- a further object of the present invention was therefore to provide a method, a material system and / or a device which helps to reduce the disadvantages of the prior art or avoids or prevents them entirely.
- the invention relates to a closure device suitable for a 3D printing device and / or coating device, comprising a controllable closure means.
- the invention relates to a 3D printing device which comprises a controllable closure means.
- the invention relates to a method for producing 3D shaped parts, wherein particulate building material is applied in a defined layer by means of a coater to a construction field, is selectively solidified in order to obtain a 3D shaped part, the coater including a closure device, which comprises a controllable closure means.
- FIG. 1 a shows an aspect of the disclosure, wherein a coating container 105 with particle material 101 is shown.
- the coater blade 102 faces the building platform (not shown) and, with the adjustable diaphragm 103 (closure means), forms a coater gap 100 in which a pouring cone made of particle material 104 is formed to close the gap.
- the adjustable diaphragm 103 can be controlled by suitable means and the coater gap 100 can thus be opened further. In this way, for example, an increased amount of particulate material can be applied to the building platform (not shown) and the traveling speed of the coater can thus be increased.
- FIG. 1b shows the process of applying the particulate material, the coater being moved in the feed movement 108.
- the coater blade 102 (see FIG. 1 a) is set in vibration with a swinging movement 109, so that the pouring cone opens and particle material flows out and a roller made of particle material 107 is formed and an applied layer of particle material 106 is applied.
- FIG. 2a shows a coater container 105 filled with particle material 101 and coater blade 102 and adjustable diaphragm 103 with closure plate 201 and control roller 200. In this position of the closure plate 201, no particle material can emerge from the gap.
- control roller 200 is actuated and the closure plate 201 is moved in a direction 203 by rotation, and the coating container is thus opened, so that the outflowing particulate material 204 forms a powder roller and a particulate material layer
- 3a and 3b describe another aspect of the disclosure.
- a coating container 105 with particle material 101 is shown, as is the closure device, which has an elongated blade 302, an adjustable diaphragm 103, prestressed closure plate 301,
- Closure seal 300 and control roller 200 includes.
- Fig. 4 describes another aspect of the disclosure, wherein the control, i.e. opening and closing the opening by means of
- Sealing plate 201 is carried out by driving with a backdrop.
- FIG. 4a shows a further aspect of the disclosure, FIG. 5a showing a closed gap and FIG. 5b an open gap of the coating container.
- a vertically movable diaphragm 500 and a horizontally movable backdrop 501 are used.
- 502 shows the cylinder connected to the diaphragm and 503 the link guide and 504 the link movement.
- FIG. 6 describes a further aspect of the disclosure, wherein a simplified flow diagram for a double coater system is shown with the outflows of the controlled (active - according to the invention) and the non-controlled (passive - prior art) coater. It is clear that a larger volume can be applied to the construction platform with the closure system according to the invention.
- an object on which the application is based is achieved in that a closure device is provided which is completely lockable and can release increased amounts of particulate material after start-up and can apply it to the building platform.
- 3D molded part in the sense of the invention are all three-dimensional objects produced by means of the method according to the invention and / or the device according to the invention, which have a dimensional stability.
- Conveyor belt and delimiting side walls are the geometrical place in which the particle material bed grows during the construction process by repeated coating with particle material or through which the bed material passes in continuous principles Construction level, limited, with continuous principles usually exist Conveyor belt and delimiting side walls.
- the installation space can also be configured by a so-called job box, which represents a unit that can be extended and retracted into the device and allows batch production, a job box being extended after the process has ended and a new job box being able to be inserted into the device immediately, so that Manufacturing volume and thus the device performance is increased.
- Construction platform or “construction field” in the sense of the disclosure is the area to which the particle material is applied and on which the particle material is selectively solidified in order to build up a predetermined three-dimensional molded part.
- particle material is preferably a dry, free-flowing powder, but it can also be a cohesive one cut-resistant powder or a particle-laden liquid are used.
- particle material and powder are used synonymously.
- Particle material application is the process in which a defined layer of powder is generated. This can be done either on the construction platform or on an inclined plane relative to a conveyor belt using continuous principles.
- the particle material application is also referred to as “coating” or “recoating”. called.
- “selective application of liquid” can take place after each application of particulate material or, depending on the requirements of the shaped body and for optimizing the manufacture of the shaped body, can also be carried out irregularly, for example several times with respect to an application of particulate material.
- Any known 3D printing device can be used as the "device" for carrying out the method according to the invention required components.
- Common components include coater, construction field, means for moving the construction field or other components in continuous processes, dosing devices and heat and / or radiation means and other components known to the person skilled in the art, which are therefore not described in detail here.
- “Closure device” or “closure unit” in the sense of the disclosure combines the positive features that can be achieved with a swinging blade construction and at the same time allows the coating device to be started up more quickly and larger particle material volumes to be applied.
- a “locking device” comprises or includes at least one oscillating blade and a locking means which can be controlled by suitable means, for example by means of an eccentric, a pulling wedge and / or a link.
- the "packing density” describes the filling of the geometric space by a solid. It depends on the nature of the particle material and the application device and is an important starting variable for the sintering process.
- the building material is always applied in a "defined layer” or “layer thickness”, which is set individually depending on the building material and process conditions. It is, for example, 0.05 to 0.5 mm, preferably 0.1 to 0.3 mm.
- “Gap” or “gap opening” in the sense of the disclosure means the agent through which particle material is applied from the recoater or onto the construction platform and by means of which the application amount of particle material can be controlled.
- the particle material emerges from the coater through the “gap” or the “gap opening” and flows onto the construction platform.
- the “closure” or “coater closure” controls the released amount of particulate material.
- a “coating blade” or “oscillating blade” in the sense of the disclosure relates to a means of a coating device facing the building platform, which means can be combined with other means to control the application of particulate material.
- the "coater blade” can form a gap with another part or means of the coater device, which is closed at standstill by a pouring cone.
- the "coater blade” is closed and opened with a controllable closure, for example a spring steel sheet, and so on Particle material application controlled on the construction site.
- a “closure device” in the sense of the disclosure relates to the combination of coater blade, controllable closure and actuator in a particle material coater.
- a “closure means” or “closure” or “coater closure” in the sense of the disclosure is a means that enables the gap of the coater to be closed and opened in a controlled manner. It can be, for example, a spring steel sheet.
- control means or “actuator” in the sense of the disclosure serves to open and close the closure means.
- Opening speed in the sense of the disclosure means the length of time that passes until the closure means is actuated from its closed position to its maximum opening.
- Closure opening process in the sense of the disclosure is the process in which the closure means is brought from its closed to its open position. Accordingly, a “closure closing process” is the reverse process.
- Travel speed in the sense of the disclosure refers to the speed of the coater moving forwards or backwards.
- the travel speed and the opening speed are important variables, the process sequence, the production speed for 3D molded parts and the control of the start-up and the printing process influence. These variables therefore also influence the economy of a 3D printing device.
- the invention relates to a closure device suitable for a 3D printing device and / or coating device, comprising a closure means, preferably a steel sheet, for example spring steel sheet, the closure means being controllable and being able to be opened by a control means, the control means being an eccentric, is a pull wedge and / or a backdrop.
- a closure means preferably a steel sheet, for example spring steel sheet
- the closure means being controllable and being able to be opened by a control means, the control means being an eccentric, is a pull wedge and / or a backdrop.
- the closure device described here can be installed in 3D printing devices and / or coating devices that use and apply fluid, particulate material to build up the layer and build up the 3D molded parts.
- the coater can be a simple powder coater or a double coater.
- the closure device can contain a control means which serves to open the closure means, for example a steel spring plate, and / or to control the gap width (gap size).
- a closure device thus has at least one closure means, a coater blade and a particle material supply or a particle material container, the parts being connected to one another in such a way that an application to a construction site can take place in a controlled manner.
- the control means can open the closure means from 1 to 5 mm.
- the closure device it is also possible to control the opening speed and to apply particulate material to the building platform in a targeted manner.
- the opening speed (maximum opening of the gap) can be from 0.5 / 10 to 3/10 seconds, preferably from 1/10 to 2/10 seconds.
- the outflow can only be adjusted by mechanically adjusting the gap outside the process, while the device according to the invention enables the gap to be adjusted and even regulated during operation.
- the closure device can be installed in a coater which has a coater opening in the direction of travel. It can essentially be an oscillating blade recoater as described in the prior art described above. It can also be a double coater which has an oscillating blade opening in each direction of travel and with which particle material can thus be applied to the construction field in both directions of travel.
- the disclosure relates to a 3D printing device and / or a coater device comprising a closure means as described above, the distance covered by the coater device when starting up or while driving over the construction field from the beginning of the closure opening process until the closure 2 opens cm to 10 cm, preferably 3 cm to 7 cm, with a travel speed of the coating device or the closure device of 350 mm / second.
- the 3D printing device and / or coater device described here can comprise: a closure device as described above and a coater blade as described above.
- the coater blade can be made of all suitable materials and preferably consists of a stainless steel sheet.
- the coater blade can be set in vibration by any means known to those skilled in the art. The vibration is generated using one or more eccentrics, for example.
- the powder material can be released by means of a combination of the closing device described here and a vibration of the coating blade. This advantageously realizes the advantages of a vibrating blade coater and avoids the disadvantages of particle material volumes that can be applied to a limited extent.
- the coater can be closed by covering the gap as well as by changing the pouring cone in the gap by changing the aspect ratio (i.e. the ratio of gap height to gap length) of the gap by suitable measures, preferably reducing the gap height by moving the screen.
- aspect ratio i.e. the ratio of gap height to gap length
- the disclosure relates to a method for producing 3D molded parts, wherein a closure device or 3D printing device or as described above
- Coating device is used.
- Known printheads with suitable technology are used to apply the pressure fluid.
- the liquid can be selectively applied using one or more print heads.
- the drop mass of the print head or print heads is preferably adjustable.
- the print head or print heads can selectively apply the liquid in one or both directions of travel. In the process it is achieved that the particulate building material is selectively solidified, preferably selectively solidified and sintered.
- a closure as described here is particularly advantageous in combination with the method described below and / or the device arrangement and is characterized by various advantages:
- the closure described above is combined with a method for producing three-dimensional models by means of a layer construction technique, particle-shaped construction material being applied in a defined layer to a construction field and a binder liquid being selectively applied to the construction material, a certain amount being moved and these steps being repeated, until the desired object is created, the application and application steps taking place substantially simultaneously.
- the method as described above is characterized in that the particulate building material is applied with a coater and / or the binder liquid is applied with a printhead.
- the method as described above can be characterized in that the device means printhead follows the device means coater at a defined distance, preferably at a distance of 1000 mm - 300 mm, more preferably 300 mm - 50 mm, even more preferably immediately , Furthermore, in the method as described above, the device means can be moved at a speed of 0.02 m / s to 1 m / s, preferably that the different device means are moved at the same or a different speed.
- the method as described above is characterized in that the device means are retracted and the device means returns in rapid traverse, preferably at a speed of 0.5 m / s to 5 m / s.
- Another method, as described above, is characterized in that the application and the application take place in the forward and in the return.
- the material application can be controlled particularly advantageously by the closure as described above, which has a positive effect on the process sequence and on the quality of the parts produced in this way.
- Another method as described above is characterized in that several device means of the coater and metering unit, preferably each 2 to 20, more preferably 4 to 15, form several layers in one pass.
- the method as described above can be characterized in that several device means form several layers in one pass both in the forward and in the return, preferably it is characterized in that several device means build up several layers on a continuously operating conveyor unit.
- the process as described above can also be characterized in that an oblique printing process, a batch process and / or a continuous process is used as the basic process.
- closure as described above can advantageously be combined in a device for producing three-dimensional models by means of a layer construction technique, the at least two, preferably 3 to 20, pressure means at least two, preferably 2 to 20,
- the parallelization of the processes of coating and printing described here can be controlled even more precisely by means of the closure described above.
- the various printing processes are carried out essentially simultaneously and can advantageously be controlled very precisely by using the closure described above, it being possible to arrange a plurality of coaters and printing units in succession and to deposit and selectively solidify several layers in one pass. This does not require increases in travel speeds or other measures that negatively affect the quality of the products produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Coating Apparatus (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018006473.6A DE102018006473A1 (de) | 2018-08-16 | 2018-08-16 | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung |
PCT/DE2019/000222 WO2020035100A1 (de) | 2018-08-16 | 2019-08-15 | Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3837105A1 true EP3837105A1 (de) | 2021-06-23 |
Family
ID=67909247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19765964.2A Pending EP3837105A1 (de) | 2018-08-16 | 2019-08-15 | Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen |
Country Status (4)
Country | Link |
---|---|
US (2) | US11964434B2 (de) |
EP (1) | EP3837105A1 (de) |
DE (1) | DE102018006473A1 (de) |
WO (1) | WO2020035100A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019000796A1 (de) | 2019-02-05 | 2020-08-06 | Voxeljet Ag | Wechselbare Prozesseinheit |
DE102019004176A1 (de) | 2019-06-14 | 2020-12-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mittels Schichtaufbautechnik und Beschichter mit Unterdruckverschluss |
DE102019007595A1 (de) | 2019-11-01 | 2021-05-06 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat |
Family Cites Families (281)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE42338C (de) | 1887-04-01 | 1888-03-09 | H. HOPPE in Frankfurt, Main, Bockenheimer Landstrafse -179 | Keilgetriebe zur Bewegung von Absperrschiebern |
US4247508B1 (en) | 1979-12-03 | 1996-10-01 | Dtm Corp | Molding process |
DE3221357A1 (de) | 1982-06-05 | 1983-12-08 | Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg | Verfahren zur herstellung von formen und kernen fuer giesszwecke |
US4665492A (en) | 1984-07-02 | 1987-05-12 | Masters William E | Computer automated manufacturing process and system |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
JPS62275734A (ja) | 1986-05-26 | 1987-11-30 | Tokieda Naomitsu | 立体形成方法 |
IL84936A (en) | 1987-12-23 | 1997-02-18 | Cubital Ltd | Three-dimensional modelling apparatus |
US4752352A (en) | 1986-06-06 | 1988-06-21 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US4944817A (en) | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
ATE138293T1 (de) | 1986-10-17 | 1996-06-15 | Univ Texas | Verfahren und vorrichtung zur herstellung von gesinterten formkörpern durch teilsinterung |
US5017753A (en) | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US4752498A (en) | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US5047182A (en) | 1987-11-25 | 1991-09-10 | Ceramics Process Systems Corporation | Complex ceramic and metallic shaped by low pressure forming and sublimative drying |
US5772947A (en) | 1988-04-18 | 1998-06-30 | 3D Systems Inc | Stereolithographic curl reduction |
CA1337955C (en) | 1988-09-26 | 1996-01-23 | Thomas A. Almquist | Recoating of stereolithographic layers |
US5637175A (en) | 1988-10-05 | 1997-06-10 | Helisys Corporation | Apparatus for forming an integral object from laminations |
WO1990003893A1 (en) | 1988-10-05 | 1990-04-19 | Michael Feygin | An improved apparatus and method for forming an integral object from laminations |
GB2233928B (en) | 1989-05-23 | 1992-12-23 | Brother Ind Ltd | Apparatus and method for forming three-dimensional article |
US5248456A (en) | 1989-06-12 | 1993-09-28 | 3D Systems, Inc. | Method and apparatus for cleaning stereolithographically produced objects |
US5134569A (en) | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
JPH0336019A (ja) | 1989-07-03 | 1991-02-15 | Brother Ind Ltd | 三次元成形方法およびその装置 |
US5284695A (en) | 1989-09-05 | 1994-02-08 | Board Of Regents, The University Of Texas System | Method of producing high-temperature parts by way of low-temperature sintering |
AU643700B2 (en) | 1989-09-05 | 1993-11-25 | University Of Texas System, The | Multiple material systems and assisted powder handling for selective beam sintering |
US5156697A (en) | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
DE3930750A1 (de) | 1989-09-14 | 1991-03-28 | Krupp Medizintechnik | Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse |
US5136515A (en) | 1989-11-07 | 1992-08-04 | Richard Helinski | Method and means for constructing three-dimensional articles by particle deposition |
US5204055A (en) | 1989-12-08 | 1993-04-20 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
DE3942859A1 (de) | 1989-12-23 | 1991-07-04 | Basf Ag | Verfahren zur herstellung von bauteilen |
US5127037A (en) | 1990-08-15 | 1992-06-30 | Bynum David K | Apparatus for forming a three-dimensional reproduction of an object from laminations |
US5126529A (en) | 1990-12-03 | 1992-06-30 | Weiss Lee E | Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition |
DE4102260A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung beliebig geformter koerper |
US5740051A (en) | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US6175422B1 (en) | 1991-01-31 | 2001-01-16 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
US5252264A (en) | 1991-11-08 | 1993-10-12 | Dtm Corporation | Apparatus and method for producing parts with multi-directional powder delivery |
US5342919A (en) | 1992-11-23 | 1994-08-30 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
DE4300478C2 (de) | 1993-01-11 | 1998-05-20 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6146567A (en) | 1993-02-18 | 2000-11-14 | Massachusetts Institute Of Technology | Three dimensional printing methods |
DE4305201C1 (de) | 1993-02-19 | 1994-04-07 | Eos Electro Optical Syst | Verfahren zum Herstellen eines dreidimensionalen Objekts |
US5433261A (en) | 1993-04-30 | 1995-07-18 | Lanxide Technology Company, Lp | Methods for fabricating shapes by use of organometallic, ceramic precursor binders |
DE4325573C2 (de) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung |
US5398193B1 (en) | 1993-08-20 | 1997-09-16 | Alfredo O Deangelis | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5518680A (en) | 1993-10-18 | 1996-05-21 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free form fabrication techniques |
DE4400523C2 (de) | 1994-01-11 | 1996-07-11 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US5518060A (en) | 1994-01-25 | 1996-05-21 | Brunswick Corporation | Method of producing polymeric patterns for use in evaporable foam casting |
DE4440397C2 (de) | 1994-11-11 | 2001-04-26 | Eos Electro Optical Syst | Verfahren zum Herstellen von Gußformen |
EP0968776B1 (de) | 1994-05-27 | 2002-10-02 | EOS GmbH ELECTRO OPTICAL SYSTEMS | Verfahren für den Einsatz in der Giessereitechnik |
US5503785A (en) | 1994-06-02 | 1996-04-02 | Stratasys, Inc. | Process of support removal for fused deposition modeling |
US6048954A (en) | 1994-07-22 | 2000-04-11 | The University Of Texas System Board Of Regents | Binder compositions for laser sintering processes |
US5639402A (en) | 1994-08-08 | 1997-06-17 | Barlow; Joel W. | Method for fabricating artificial bone implant green parts |
US5555176A (en) | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
US5717599A (en) | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
GB9501987D0 (en) | 1995-02-01 | 1995-03-22 | Butterworth Steven | Dissolved medium rendered resin (DMRR) processing |
JP3839479B2 (ja) | 1995-02-01 | 2006-11-01 | スリーディー システムズ インコーポレーテッド | 3次元物体の高速断面積層方法 |
DE19511772C2 (de) | 1995-03-30 | 1997-09-04 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE29506204U1 (de) | 1995-04-10 | 1995-06-01 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE19514740C1 (de) | 1995-04-21 | 1996-04-11 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE19515165C2 (de) | 1995-04-25 | 1997-03-06 | Eos Electro Optical Syst | Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie |
DE19528215A1 (de) | 1995-08-01 | 1997-02-06 | Thomas Dipl Ing Himmer | Verfahren zur Herstellung von dreidimensionalen Modellen und Formen |
DE19530295C1 (de) | 1995-08-11 | 1997-01-30 | Eos Electro Optical Syst | Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern |
US5943235A (en) | 1995-09-27 | 1999-08-24 | 3D Systems, Inc. | Rapid prototyping system and method with support region data processing |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
US6305769B1 (en) | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
DE69634921T2 (de) | 1995-09-27 | 2005-12-01 | 3D Systems, Inc., Valencia | Modellierung durch selektive Materialablagerung zur Formung von dreidimensionalen Gegenständen |
US5749041A (en) | 1995-10-13 | 1998-05-05 | Dtm Corporation | Method of forming three-dimensional articles using thermosetting materials |
DE19545167A1 (de) | 1995-12-04 | 1997-06-05 | Bayerische Motoren Werke Ag | Verfahren zum Herstellen von Bauteilen oder Werkzeugen |
US5660621A (en) | 1995-12-29 | 1997-08-26 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
WO1997030782A1 (fr) | 1996-02-20 | 1997-08-28 | Mikuni Corporation | Procede de production de materiau granulaire |
AU720255B2 (en) | 1996-03-06 | 2000-05-25 | BioZ, L.L.C | Method for formation of a three-dimensional body |
US6596224B1 (en) | 1996-05-24 | 2003-07-22 | Massachusetts Institute Of Technology | Jetting layers of powder and the formation of fine powder beds thereby |
GB9611582D0 (en) | 1996-06-04 | 1996-08-07 | Thin Film Technology Consultan | 3D printing and forming of structures |
US5824250A (en) | 1996-06-28 | 1998-10-20 | Alliedsignal Inc. | Gel cast molding with fugitive molds |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US7332537B2 (en) | 1996-09-04 | 2008-02-19 | Z Corporation | Three dimensional printing material system and method |
US7037382B2 (en) | 1996-12-20 | 2006-05-02 | Z Corporation | Three-dimensional printer |
US6007318A (en) | 1996-12-20 | 1999-12-28 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US6989115B2 (en) | 1996-12-20 | 2006-01-24 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
DE29701279U1 (de) | 1997-01-27 | 1997-05-22 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element |
EP1015153A4 (de) | 1997-03-31 | 2004-09-01 | Therics Inc | Verfahren zur verteilung von pulvern |
US5940674A (en) | 1997-04-09 | 1999-08-17 | Massachusetts Institute Of Technology | Three-dimensional product manufacture using masks |
DE19715582B4 (de) | 1997-04-15 | 2009-02-12 | Ederer, Ingo, Dr. | Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten |
NL1006059C2 (nl) | 1997-05-14 | 1998-11-17 | Geest Adrianus F Van Der | Werkwijze en inrichting voor het vervaardigen van een vormlichaam. |
DE19723892C1 (de) | 1997-06-06 | 1998-09-03 | Rainer Hoechsmann | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
DE19727677A1 (de) | 1997-06-30 | 1999-01-07 | Huels Chemische Werke Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten |
US5989476A (en) | 1998-06-12 | 1999-11-23 | 3D Systems, Inc. | Process of making a molded refractory article |
JP3518726B2 (ja) | 1998-07-13 | 2004-04-12 | トヨタ自動車株式会社 | 積層造形方法及び積層造形用レジン被覆砂 |
DE19846478C5 (de) | 1998-10-09 | 2004-10-14 | Eos Gmbh Electro Optical Systems | Laser-Sintermaschine |
US20030114936A1 (en) | 1998-10-12 | 2003-06-19 | Therics, Inc. | Complex three-dimensional composite scaffold resistant to delimination |
DE19853834A1 (de) | 1998-11-21 | 2000-05-31 | Ingo Ederer | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
US6405095B1 (en) | 1999-05-25 | 2002-06-11 | Nanotek Instruments, Inc. | Rapid prototyping and tooling system |
US6165406A (en) | 1999-05-27 | 2000-12-26 | Nanotek Instruments, Inc. | 3-D color model making apparatus and process |
DE19928245B4 (de) | 1999-06-21 | 2006-02-09 | Eos Gmbh Electro Optical Systems | Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung |
US6722872B1 (en) | 1999-06-23 | 2004-04-20 | Stratasys, Inc. | High temperature modeling apparatus |
US6658314B1 (en) | 1999-10-06 | 2003-12-02 | Objet Geometries Ltd. | System and method for three dimensional model printing |
DE19948591A1 (de) | 1999-10-08 | 2001-04-19 | Generis Gmbh | Rapid-Prototyping - Verfahren und - Vorrichtung |
EP1415792B1 (de) | 1999-11-05 | 2014-04-30 | 3D Systems Incorporated | Verfahren und Zusammenstellungen für dreidimensionales Drucken |
JP4624626B2 (ja) | 1999-11-05 | 2011-02-02 | ズィー コーポレイション | 材料システム及び3次元印刷法 |
GB9927127D0 (en) | 1999-11-16 | 2000-01-12 | Univ Warwick | A method of manufacturing an item and apparatus for manufacturing an item |
DE19957370C2 (de) | 1999-11-29 | 2002-03-07 | Carl Johannes Fruth | Verfahren und Vorrichtung zum Beschichten eines Substrates |
TWI228114B (en) | 1999-12-24 | 2005-02-21 | Nat Science Council | Method and equipment for making ceramic work piece |
DE19963948A1 (de) | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
US7300619B2 (en) | 2000-03-13 | 2007-11-27 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
DE60014714T2 (de) | 2000-03-24 | 2006-03-02 | Voxeljet Technology Gmbh | Verfahren zum Herstellen eines Bauteils in Ablagerunstechnik |
US20010050031A1 (en) | 2000-04-14 | 2001-12-13 | Z Corporation | Compositions for three-dimensional printing of solid objects |
JP2001334583A (ja) | 2000-05-25 | 2001-12-04 | Minolta Co Ltd | 三次元造形装置 |
DE10026955A1 (de) | 2000-05-30 | 2001-12-13 | Daimler Chrysler Ag | Materialsystem zur Verwendung beim 3D-Drucken |
SE520565C2 (sv) | 2000-06-16 | 2003-07-29 | Ivf Industriforskning Och Utve | Sätt och apparat vid framställning av föremål genom FFF |
US6619882B2 (en) | 2000-07-10 | 2003-09-16 | Rh Group Llc | Method and apparatus for sealing cracks in roads |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
DE10047615A1 (de) | 2000-09-26 | 2002-04-25 | Generis Gmbh | Wechselbehälter |
DE10047614C2 (de) | 2000-09-26 | 2003-03-27 | Generis Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE10049043A1 (de) | 2000-10-04 | 2002-05-02 | Generis Gmbh | Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern |
DE10053741C1 (de) | 2000-10-30 | 2002-02-21 | Concept Laser Gmbh | Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung |
US20020111707A1 (en) | 2000-12-20 | 2002-08-15 | Zhimin Li | Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers |
US20020090410A1 (en) | 2001-01-11 | 2002-07-11 | Shigeaki Tochimoto | Powder material removing apparatus and three dimensional modeling system |
DE10105504A1 (de) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts |
US6896839B2 (en) | 2001-02-07 | 2005-05-24 | Minolta Co., Ltd. | Three-dimensional molding apparatus and three-dimensional molding method |
DE20122639U1 (de) | 2001-02-07 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
GB0103752D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-Dimensional printing |
GB0103754D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-dimensional structured printing |
US6939489B2 (en) | 2001-03-23 | 2005-09-06 | Ivoclar Vivadent Ag | Desktop process for producing dental products by means of 3-dimensional plotting |
DE10117875C1 (de) | 2001-04-10 | 2003-01-30 | Generis Gmbh | Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung |
US20020155254A1 (en) | 2001-04-20 | 2002-10-24 | Mcquate William M. | Apparatus and method for placing particles in a pattern onto a substrate |
GB0112675D0 (en) | 2001-05-24 | 2001-07-18 | Vantico Ltd | Three-dimensional structured printing |
DE10128664A1 (de) | 2001-06-15 | 2003-01-30 | Univ Clausthal Tech | Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern |
JP2003052804A (ja) | 2001-08-09 | 2003-02-25 | Ichiro Ono | インプラントの製造方法およびインプラント |
US6841116B2 (en) | 2001-10-03 | 2005-01-11 | 3D Systems, Inc. | Selective deposition modeling with curable phase change materials |
JP2003136605A (ja) | 2001-11-06 | 2003-05-14 | Toshiba Corp | 製品の作成方法及びその製品 |
GB2382798A (en) | 2001-12-04 | 2003-06-11 | Qinetiq Ltd | Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon |
SE523394C2 (sv) | 2001-12-13 | 2004-04-13 | Fcubic Ab | Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt |
US6713125B1 (en) | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
DE10216013B4 (de) | 2002-04-11 | 2006-12-28 | Generis Gmbh | Verfahren und Vorrichtung zum Auftragen von Fluiden |
DE10222167A1 (de) * | 2002-05-20 | 2003-12-04 | Generis Gmbh | Vorrichtung zum Zuführen von Fluiden |
DE10224981B4 (de) | 2002-06-05 | 2004-08-19 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
EP1513670A1 (de) | 2002-06-18 | 2005-03-16 | DaimlerChrysler AG | Lasersinterverfahren mit erh hter prozessgenauigkeit und par tikel zur verwendung dabei |
DE10326919A1 (de) | 2002-06-18 | 2004-01-08 | Daimlerchrysler Ag | Partikel und Verfahren für die Herstellung eines dreidimensionalen Gegenstandes |
DE10227224B4 (de) | 2002-06-18 | 2005-11-24 | Daimlerchrysler Ag | Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren |
US7027887B2 (en) | 2002-07-03 | 2006-04-11 | Theries, Llc | Apparatus, systems and methods for use in three-dimensional printing |
DE10235434A1 (de) | 2002-08-02 | 2004-02-12 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
US20040038009A1 (en) | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
JP4069245B2 (ja) | 2002-08-27 | 2008-04-02 | 富田製薬株式会社 | 造形法 |
US7087109B2 (en) | 2002-09-25 | 2006-08-08 | Z Corporation | Three dimensional printing material system and method |
US20040112523A1 (en) | 2002-10-15 | 2004-06-17 | Crom Elden Wendell | Three dimensional printing from two dimensional printing devices |
US6742456B1 (en) | 2002-11-14 | 2004-06-01 | Hewlett-Packard Development Company, L.P. | Rapid prototyping material systems |
US7153454B2 (en) | 2003-01-21 | 2006-12-26 | University Of Southern California | Multi-nozzle assembly for extrusion of wall |
US7497977B2 (en) | 2003-01-29 | 2009-03-03 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer |
WO2004073961A2 (de) | 2003-02-18 | 2004-09-02 | Daimlerchrysler Ag | Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren |
ATE446396T1 (de) | 2003-03-10 | 2009-11-15 | Kuraray Co | Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff |
EP1628823B8 (de) | 2003-05-21 | 2012-06-27 | 3D Systems Incorporated | Thermoplastisches pulvermaterialsystem für appearance models von 3d-drucksystemen |
WO2004106041A2 (en) | 2003-05-23 | 2004-12-09 | Z Corporation | Apparatus and methods for 3d printing |
US7435072B2 (en) | 2003-06-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication |
US7807077B2 (en) | 2003-06-16 | 2010-10-05 | Voxeljet Technology Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
DE10327272A1 (de) | 2003-06-17 | 2005-03-03 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
US20050012247A1 (en) | 2003-07-18 | 2005-01-20 | Laura Kramer | Systems and methods for using multi-part curable materials |
US7120512B2 (en) | 2003-08-25 | 2006-10-10 | Hewlett-Packard Development Company, L.P. | Method and a system for solid freeform fabricating using non-reactive powder |
US20050074511A1 (en) | 2003-10-03 | 2005-04-07 | Christopher Oriakhi | Solid free-form fabrication of solid three-dimesional objects |
US7220380B2 (en) | 2003-10-14 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | System and method for fabricating a three-dimensional metal object using solid free-form fabrication |
US7348075B2 (en) | 2003-10-28 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | System and method for fabricating three-dimensional objects using solid free-form fabrication |
US7455805B2 (en) | 2003-10-28 | 2008-11-25 | Hewlett-Packard Development Company, L.P. | Resin-modified inorganic phosphate cement for solid freeform fabrication |
US7381360B2 (en) | 2003-11-03 | 2008-06-03 | Hewlett-Packard Development Company, L.P. | Solid free-form fabrication of three-dimensional objects |
FR2865960B1 (fr) | 2004-02-06 | 2006-05-05 | Nicolas Marsac | Procede et machine pour realiser des objets en trois dimensions par depot de couches successives |
US7608672B2 (en) | 2004-02-12 | 2009-10-27 | Illinois Tool Works Inc. | Infiltrant system for rapid prototyping process |
DE102004008168B4 (de) * | 2004-02-19 | 2015-12-10 | Voxeljet Ag | Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
WO2005097476A2 (en) | 2004-04-02 | 2005-10-20 | Z Corporation | Methods and apparatus for 3d printing |
US7435763B2 (en) | 2004-04-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Solid freeform compositions, methods of application thereof, and systems for use thereof |
DE102004020452A1 (de) | 2004-04-27 | 2005-12-01 | Degussa Ag | Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren |
DE102004025374A1 (de) | 2004-05-24 | 2006-02-09 | Technische Universität Berlin | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels |
JP4239915B2 (ja) | 2004-07-16 | 2009-03-18 | セイコーエプソン株式会社 | マイクロレンズの製造方法およびマイクロレンズの製造装置 |
ITMI20050459A1 (it) | 2005-03-21 | 2006-09-22 | Montangero & Montangero S R L | Dispositivo di movimentazione al suolo di un corpo |
ITPI20050031A1 (it) | 2005-03-22 | 2006-09-23 | Moreno Chiarugi | Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato |
US7357629B2 (en) | 2005-03-23 | 2008-04-15 | 3D Systems, Inc. | Apparatus and method for aligning a removable build chamber within a process chamber |
US7790096B2 (en) | 2005-03-31 | 2010-09-07 | 3D Systems, Inc. | Thermal management system for a removable build chamber for use with a laser sintering system |
US20080003390A1 (en) | 2005-04-27 | 2008-01-03 | Nahoto Hayashi | Multi-Layer Structure and Process for Production Thereof |
US20060257579A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Use of a salt of a poly-acid to delay setting in cement slurry |
DE102005022308B4 (de) | 2005-05-13 | 2007-03-22 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US20060254467A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
US20070045891A1 (en) | 2005-08-23 | 2007-03-01 | Valspar Sourcing, Inc. | Infiltrated Articles Prepared by a Laser Sintering Method and Method of Manufacturing the Same |
DE102006040305A1 (de) | 2005-09-20 | 2007-03-29 | Daimlerchrysler Ag | Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand |
JP2009508723A (ja) | 2005-09-20 | 2009-03-05 | ピーティーエス ソフトウェア ビーブイ | 三次元物品を構築する装置及び三次元物品を構築する方法 |
US7296990B2 (en) | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
DE102005056260B4 (de) | 2005-11-25 | 2008-12-18 | Prometal Rct Gmbh | Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material |
US20070126157A1 (en) | 2005-12-02 | 2007-06-07 | Z Corporation | Apparatus and methods for removing printed articles from a 3-D printer |
JP4247501B2 (ja) | 2005-12-27 | 2009-04-02 | 富田製薬株式会社 | 型の製造方法 |
EP2001656B1 (de) | 2006-04-06 | 2014-10-15 | 3D Systems Incorporated | Set zur herstellung dreidimensionaler objekte durch verwendung elektromagnetischer strahlung |
US7979152B2 (en) | 2006-05-26 | 2011-07-12 | Z Corporation | Apparatus and methods for handling materials in a 3-D printer |
DE102006029298B4 (de) | 2006-06-23 | 2008-11-06 | Stiftung Caesar Center Of Advanced European Studies And Research | Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung |
DE102006030350A1 (de) | 2006-06-30 | 2008-01-03 | Voxeljet Technology Gmbh | Verfahren zum Aufbauen eines Schichtenkörpers |
US20080018018A1 (en) | 2006-07-20 | 2008-01-24 | Nielsen Jeffrey A | Solid freeform fabrication methods and systems |
KR101271243B1 (ko) | 2006-07-27 | 2013-06-07 | 아르켐 에이비 | 3차원 물체 생성방법 및 장치 |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
DE102006040182A1 (de) | 2006-08-26 | 2008-03-06 | Mht Mold & Hotrunner Technology Ag | Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür |
DE202006016477U1 (de) | 2006-10-24 | 2006-12-21 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102006053121B3 (de) | 2006-11-10 | 2007-12-27 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial |
DE102006055326A1 (de) | 2006-11-23 | 2008-05-29 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen |
US7905951B2 (en) | 2006-12-08 | 2011-03-15 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
CN101616785B (zh) | 2007-01-10 | 2014-01-08 | 3D系统公司 | 具有改进的颜色、制品性能和易用性的三维印刷材料体系 |
DE102007015015B4 (de) | 2007-03-28 | 2014-12-24 | Hawle Armaturen Gmbh | Absperrscheibenantrieb für absperrbare Armaturen |
JP4869155B2 (ja) | 2007-05-30 | 2012-02-08 | 株式会社東芝 | 物品の製造方法 |
DE102007033434A1 (de) | 2007-07-18 | 2009-01-22 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Bauteile |
US20100279007A1 (en) | 2007-08-14 | 2010-11-04 | The Penn State Research Foundation | 3-D Printing of near net shape products |
DE102007040755A1 (de) | 2007-08-28 | 2009-03-05 | Jens Jacob | Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern |
ITPI20070108A1 (it) | 2007-09-17 | 2009-03-18 | Enrico Dini | Metodo perfezionato per la realizzazione automatica di strutture di conglomerato |
DE102007047326B4 (de) | 2007-10-02 | 2011-08-25 | CL Schutzrechtsverwaltungs GmbH, 96215 | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102007049058A1 (de) | 2007-10-11 | 2009-04-16 | Voxeljet Technology Gmbh | Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils |
DE102007050679A1 (de) * | 2007-10-21 | 2009-04-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen |
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
JP5146010B2 (ja) | 2008-02-28 | 2013-02-20 | 東レ株式会社 | セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法 |
US9636870B2 (en) | 2008-05-26 | 2017-05-02 | Sony Corporation | Modeling apparatus and modeling method |
GB0813242D0 (en) * | 2008-07-18 | 2008-08-27 | Mcp Tooling Technologies Ltd | Powder dispensing apparatus and method |
DE102008058378A1 (de) | 2008-11-20 | 2010-05-27 | Voxeljet Technology Gmbh | Verfahren zum schichtweisen Aufbau von Kunststoffmodellen |
EP2191922B1 (de) | 2008-11-27 | 2011-01-05 | MTT Technologies GmbH | Träger- und Pulverauftragsvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung |
US8545209B2 (en) | 2009-03-31 | 2013-10-01 | Microjet Technology Co., Ltd. | Three-dimensional object forming apparatus and method for forming three-dimensional object |
JP5364439B2 (ja) | 2009-05-15 | 2013-12-11 | パナソニック株式会社 | 三次元形状造形物の製造方法 |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
US20100323301A1 (en) | 2009-06-23 | 2010-12-23 | Huey-Ru Tang Lee | Method and apparatus for making three-dimensional parts |
ES2386602T3 (es) | 2009-08-25 | 2012-08-23 | Bego Medical Gmbh | Dispositivo y procedimiento para la producción continua generativa |
DE102009055966B4 (de) | 2009-11-27 | 2014-05-15 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102009056696B4 (de) | 2009-12-02 | 2011-11-10 | Prometal Rct Gmbh | Baubox für eine Rapid-Prototyping-Anlage |
US8211226B2 (en) | 2010-01-15 | 2012-07-03 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three-dimensional printer |
DE102010006939A1 (de) | 2010-02-04 | 2011-08-04 | Voxeljet Technology GmbH, 86167 | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013733A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013732A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010014969A1 (de) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
DE102010027071A1 (de) | 2010-07-13 | 2012-01-19 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik |
US8282380B2 (en) | 2010-08-18 | 2012-10-09 | Makerbot Industries | Automated 3D build processes |
DE102010056346A1 (de) | 2010-12-29 | 2012-07-05 | Technische Universität München | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
WO2012164078A2 (de) | 2011-06-01 | 2012-12-06 | Bam Bundesanstalt Für Materialforschung Und- Prüfung | Verfahren zum herstellen eines formkörpers sowie vorrichtung |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011111498A1 (de) | 2011-08-31 | 2013-02-28 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102011053205B4 (de) | 2011-09-01 | 2017-05-24 | Exone Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE102011119338A1 (de) | 2011-11-26 | 2013-05-29 | Voxeljet Technology Gmbh | System zum Herstellen dreidimensionaler Modelle |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
US9168697B2 (en) | 2012-08-16 | 2015-10-27 | Stratasys, Inc. | Additive manufacturing system with extended printing volume, and methods of use thereof |
US8888480B2 (en) | 2012-09-05 | 2014-11-18 | Aprecia Pharmaceuticals Company | Three-dimensional printing system and equipment assembly |
WO2014036643A1 (en) | 2012-09-07 | 2014-03-13 | Husky Injection Molding Systems Ltd. | Valve gate device |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
DE102012024266A1 (de) | 2012-12-12 | 2014-06-12 | Voxeljet Ag | Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver |
DE102013003303A1 (de) | 2013-02-28 | 2014-08-28 | FluidSolids AG | Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung |
US9403725B2 (en) | 2013-03-12 | 2016-08-02 | University Of Southern California | Inserting inhibitor to create part boundary isolation during 3D printing |
DE102013005855A1 (de) | 2013-04-08 | 2014-10-09 | Voxeljet Ag | Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder |
EP2818305B1 (de) * | 2013-06-25 | 2016-03-23 | SLM Solutions GmbH | Pulverauftragsvorrichtung und Betriebsverfahren für eine Pulverauftragsvorrichtung |
DE102013018182A1 (de) | 2013-10-30 | 2015-04-30 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem |
DE102013019716A1 (de) | 2013-11-27 | 2015-05-28 | Voxeljet Ag | 3D-Druckverfahren mit Schlicker |
DE102013018031A1 (de) | 2013-12-02 | 2015-06-03 | Voxeljet Ag | Wechselbehälter mit verfahrbarer Seitenwand |
DE102013020491A1 (de) | 2013-12-11 | 2015-06-11 | Voxeljet Ag | 3D-Infiltrationsverfahren |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
EP2886307A1 (de) | 2013-12-20 | 2015-06-24 | Voxeljet AG | Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
DE102014004692A1 (de) | 2014-03-31 | 2015-10-15 | Voxeljet Ag | Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung |
DE102014007584A1 (de) | 2014-05-26 | 2015-11-26 | Voxeljet Ag | 3D-Umkehrdruckverfahren und Vorrichtung |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
DE102014011544A1 (de) | 2014-08-08 | 2016-02-11 | Voxeljet Ag | Druckkopf und seine Verwendung |
DE102014014895A1 (de) | 2014-10-13 | 2016-04-14 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren |
DE102014018579A1 (de) | 2014-12-17 | 2016-06-23 | Voxeljet Ag | Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial |
DE102015006533A1 (de) | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015006363A1 (de) | 2015-05-20 | 2016-12-15 | Voxeljet Ag | Phenolharzverfahren |
DE102015008860A1 (de) | 2015-07-14 | 2017-01-19 | Voxeljet Ag | Vorrichtung zum Justieren eines Druckkopfes |
DE102015011503A1 (de) * | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
DE102015222100A1 (de) * | 2015-11-10 | 2017-05-11 | Eos Gmbh Electro Optical Systems | Beschichtungseinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts |
DE102015014964A1 (de) | 2015-11-20 | 2017-05-24 | Voxeljet Ag | Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum |
DE102015015353A1 (de) | 2015-12-01 | 2017-06-01 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor |
CN106885001A (zh) | 2015-12-16 | 2017-06-23 | 天津梓彦科技发展有限公司 | 一种新型封胶阀 |
DE102015016464B4 (de) | 2015-12-21 | 2024-04-25 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
US20180111198A1 (en) * | 2016-10-21 | 2018-04-26 | Velo3D, Inc. | Operation of three-dimensional printer components |
DE102016013610A1 (de) | 2016-11-15 | 2018-05-17 | Voxeljet Ag | Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken |
DE102016014349A1 (de) | 2016-12-02 | 2018-06-07 | Voxeljet Ag | Dosiervorrichtung und Beschichtersystem für das pulverbettbasierte Additive Manufacturing |
US10022794B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Additive manufacturing using a mobile build volume |
DE102017006860A1 (de) | 2017-07-21 | 2019-01-24 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler |
-
2018
- 2018-08-16 DE DE102018006473.6A patent/DE102018006473A1/de active Pending
-
2019
- 2019-08-15 WO PCT/DE2019/000222 patent/WO2020035100A1/de unknown
- 2019-08-15 US US17/267,580 patent/US11964434B2/en active Active
- 2019-08-15 EP EP19765964.2A patent/EP3837105A1/de active Pending
-
2024
- 2024-04-11 US US18/632,753 patent/US20240342994A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11964434B2 (en) | 2024-04-23 |
US20210316507A1 (en) | 2021-10-14 |
WO2020035100A1 (de) | 2020-02-20 |
DE102018006473A1 (de) | 2020-02-20 |
US20240342994A1 (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3271156B1 (de) | Verfahren und vorrichtung zum herstellen von 3d-formteilen mit doppelrecoater | |
EP3263338B1 (de) | Verfahren zum generativen herstellen eines dreidimensionalen objekts | |
EP3119591B1 (de) | 3d-drucker, 3d-druckeranordnung und generatives fertigungsverfahren | |
EP1951505B1 (de) | Verfahren und vorrichtung zum flächigen auftragen von fliessfähigem material | |
EP3086919B1 (de) | Vorrichtung und verfahren mit beschleunigter verfahrensführung für 3d- druckverfahren | |
EP3275654B1 (de) | Beschichtungseinheit, beschichtungsverfahren, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts | |
DE102004008168B4 (de) | Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung | |
EP1494841B1 (de) | Verfahren und vorrichtung zum auftragen von fluiden | |
WO2002083323A2 (de) | Verfahren und vorrichtung zum auftragen von fluiden | |
WO2016066317A1 (de) | Verfahren, vorrichtung und beschichtungsmodul zum herstellen eines dreidimensionalen objekts | |
EP3837105A1 (de) | Verschlussvorrichtung, 3d-druckvorrichtung und verfahren zum herstellen von 3d-formteilen | |
EP3638488A1 (de) | Beschichteranordnung für einen 3d-drucker | |
WO2021008641A1 (de) | Verfahren zur herstellung von 3d-formteilen mit variablen zieleigenschaften der gedruckten bildpunkte | |
DE102014010951A1 (de) | Verfahren und Vorrichtung zum Dosieren von formlosem Baumaterial in einem Schichtbauverfahren | |
EP3749470B1 (de) | 3d-drucker und generatives fertigungsverfahren | |
EP3758920A1 (de) | Vorrichtung und verfahren zum herstellen von 3d-formteilen mittels verbesserter partikelmaterialdosiereinheit | |
EP4359200A1 (de) | Verfahren und vorrichtung zum herstellen von 3d-formteilen mittels schichtaufbautechnik mittels keilklingenbeschichter | |
EP3668704A1 (de) | Anordnung und verfahren zur erzeugung einer 3d-struktur | |
WO2022100773A2 (de) | Verfahren zum auftragen von partikelförmigem baumaterial in einem 3d-drucker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210310 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220912 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B33Y 10/00 20150101ALI20231002BHEP Ipc: B33Y 30/00 20150101ALI20231002BHEP Ipc: B29C 64/214 20170101ALI20231002BHEP Ipc: B33Y 40/00 20200101ALI20231002BHEP Ipc: B29C 64/153 20170101ALI20231002BHEP Ipc: B29C 64/343 20170101ALI20231002BHEP Ipc: B29C 64/329 20170101AFI20231002BHEP |