EP2550330A1 - Procédé de réalisation de films adhésifs - Google Patents

Procédé de réalisation de films adhésifs

Info

Publication number
EP2550330A1
EP2550330A1 EP11709426A EP11709426A EP2550330A1 EP 2550330 A1 EP2550330 A1 EP 2550330A1 EP 11709426 A EP11709426 A EP 11709426A EP 11709426 A EP11709426 A EP 11709426A EP 2550330 A1 EP2550330 A1 EP 2550330A1
Authority
EP
European Patent Office
Prior art keywords
acid
components
mol
iii
dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11709426A
Other languages
German (de)
English (en)
Inventor
Liqun Ren
Gabriel Skupin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP11709426A priority Critical patent/EP2550330A1/fr
Publication of EP2550330A1 publication Critical patent/EP2550330A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a process for the production of cling foils using biodegradable polyesters obtainable by polycondensation of:
  • dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and hydrosilicic acid;
  • the invention relates to a process for the preparation of cling foils using the polymer components a) and b):
  • the invention relates to a process for the production of cling foils using the polymer components a), b) and c): a) 10 to 40 wt .-% of a biodegradable polyester according to claim 1 and
  • an aliphatic-aromatic polyester obtainable by polycondensation of: i) 40 to 70 mol%, based on components i to ii, of one or more dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: Succinic, adipic, sebacic, azelaic and brassylic acids; ii) 60 to 30 mol%, based on the components i to ii, of a terephthalic acid derivative; iii) 98 to 102 mol%, based on components i to ii, of a C 2 -C 8 -alkylenediol or C 2 -C 6 -oxyalkylenediol; iv) 0 to 2% by weight, based on the polymer obtainable from components i to iii, of an at least trifunctional crosslinker or difunctional chain extender;
  • Titanium catalysts such as tetra (isopropyl) orthotitanate and in particular tetrabutyl orthotitanate (TBOT) have the advantage over the tin, antimony, cobalt and lead catalysts commonly used in the literature, such as tin dioctanoate, that residual amounts of the catalyst or secondary product of the catalyst remaining in the product are less toxic are.
  • TBOT tetrabutyl orthotitanate
  • the polyesters according to the invention are optionally subsequently chain-extended according to the processes described in WO 96/15173 and EP-A 488 617.
  • the prepolyester is reacted, for example, with chain extenders vib), as with diisocyanates or with epoxy-containing polymethacrylates, in a chain extension reaction to give a polyester having a viscosity of 60 to 450 ml / g, preferably 80 to 250 ml / g.
  • a mixture of the dicarboxylic acids is initially condensed in the presence of an excess of diol together with the catalyst initially.
  • the terephthalic acid ii is used in 20 to 35 mol%, based on the acid components i and ii.
  • Terephthalic acid and the aliphatic dicarboxylic acid can be used either as the free acid or in the form of ester-forming derivatives.
  • Particularly suitable ester-forming derivatives are the di-C 1 - to C 6 -alkyl esters, such as dimethyl, diethyl, di-n-propyl, diisopropyl, di-n-butyl, diisobutyl, di-t-butyl, Di-n-pentyl, di-iso-pentyl or di-n-hexyl esters to name.
  • Anhydrides of dicarboxylic acids can also be used.
  • the dicarboxylic acids or their ester-forming derivatives can be used individually or as a mixture.
  • the said polyesters may have hydroxyl and / or carboxyl end groups in any ratio.
  • the abovementioned partially aromatic polyesters can also be end-group-modified.
  • OH end groups can be acid-modified by reaction with phthalic acid, phthalic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid or pyromellitic anhydride. Preference is given to polyesters having acid numbers of less than 1.5 mg KOH / g.
  • the polyesters of the invention generally have a number average molecular weight (Mn) in the range from 5000 to 100,000, in particular in the range from 10,000 to 60,000 g / mol, preferably in the range from 15,000 to 38,000 g / mol, a weight-average molecular weight (Mw) from 30,000 to 300,000, preferably 60,000 to 200,000 g / mol, and a Mw / Mn ratio of 1 to 15, preferably 2 to 8.
  • the viscosity number is between 30 and 450, preferably from 50 to 400 ml / g and in particular preferably from 80 to 250 ml / g (measured in o-dichlorobenzene / phenol (weight ratio 50/50)).
  • the melting point is in the range of 85 to 150, preferably in the range of 95 to 140 ° C.
  • Natural fibers are, for example, cellulose fibers, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
  • cellulose fibers for example, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
  • Ceisal for example, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
  • Preferred fibrous fillers are glass fibers, carbon fibers, aramid fibers, potassium titanate fibers and natural fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or in particular as chopped glass in the commercial forms. These fibers generally have a diameter of 3 to 30 ⁇ , preferably 6 to 20 ⁇ and special preferably from 8 to 15 ⁇ on.
  • the fiber length in the compound is generally 20 ⁇ to ⁇ ⁇ , preferably 180 to 500 ⁇ and more preferably 200 to 400 ⁇ .
  • the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastic, for example with a silane compound.
  • the biodegradable polyester or polyester mixtures may contain further ingredients known to the person skilled in the art but not essential to the invention.
  • the customary in plastics technology additives such as stabilizers;
  • Plasticizers such as citric acid esters (especially acetyl tributyl citrate), glyceric acid esters such as triacetylglycerol or ethylene glycol derivatives, surfactants such as polysorbates, palmitates or laurates; Waxes such as beeswax or beeswax esters; Antistatic, UV absorber; UV-stabilizer; Antifog agents or dyes.
  • the additives are used in concentrations of 0 to 5 wt .-%, in particular 0.1 to 2 wt .-% based on the polyesters of the invention. Plasticizers may be present in 0.1 to 10% by weight in the polyesters of the invention.
  • lubricants or mold release agents are in particular hydrocarbons, fatty alcohols, higher carboxylic acids, metal salts of higher carboxylic acids such as calcium or zinc stearate, fatty acid amides such as erucic acid amide and wax types, z.
  • lubricants are erucic acid amide and / or wax types, and more preferably combinations of these lubricants.
  • Preferred types of wax are beeswax and Esterwachse, in particular glycerol monostearate or dimethylsiloxane or polydimethylsiloxane such as Belsil ® DM Fa. Wacker.
  • the component e is usually added in 0.05 to 5.0 wt .-% and preferably 0.1 to 2.0 wt .-% based on the biodegradable polyester.
  • a preferred formulation of the biodegradable polyester comprises: a) 99.9 to 98% by weight of an aliphatic-aromatic polyester obtainable by polycondensation of: 65 to 80 mol%, based on the components i to ii, of one or more dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and brassylic acid;
  • a lubricant or release agent 0.1 to 2 wt .-% of a lubricant or release agent.
  • Preference is furthermore Clingfolien containing the aforementioned formulations.
  • Typical polyester mixtures for cling film preparation contain: a) 5 to 95% by weight, preferably 10 to 40% by weight and particularly preferably 25 to 35% by weight of a biodegradable polyester according to Claim 1 and b) 95 to 50% by weight. %, preferably 90 to 60 wt .-% and particularly preferably 75 to 65 wt .-% of an aliphatic-aromatic polyester obtainable by polycondensation of: i) 40 to 60 mol%, based on the components i to ii, of one or a plurality of dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and brassylic acid; ii) 60 to 40 mol%, based on the components i to ii, of a terephthalic acid derivative; iii) 98 to 102 mol%, based on components i to ii, of
  • polymer mixtures are suitable for the production of cling foils: a) 10 to 40% by weight, preferably 20 to 30% by weight, of a biodegradable polyester according to claim 1 and
  • Alkylenediols or C 2 -C 6 -oxyalkylenediols vi) 0 to 2 wt .-%, based on the polymer obtainable from the components to iii, of an at least trifunctional crosslinker or difunctional Ketten tenverinaterers;
  • a compatibilizer 0 to 2 wt .-% of a compatibilizer.
  • the aforementioned polyester mixtures comprising the components a) and b) or a), b) and c) are suitable as Clingfolien due to their excellent recovery behavior.
  • the polymer mixtures in turn preferably contain from 0.05 to 2% by weight of a compatibilizer.
  • Preferred compatibilizers are carboxylic acid anhydrides, such as maleic anhydride, and in particular the previously described epoxide group-containing copolymers based on styrene, acrylic esters and / or methacrylic acid esters.
  • the epoxy groups bearing units are preferably glycidyl (meth) acrylates.
  • the epoxy-containing copolymers of the above type are sold for example by BASF Resins BV under the trademark Joncryl ® ADR. Is particularly suitable as compatibilizers, for example, Joncryl ADR ® 4368.
  • As a biodegradable polyester (component b) is suitable, for example, re Polymilchkla-.
  • Polylactic acid having the following property profile is preferably used:
  • a melt volume rate (MVR at 190 ° C. and 2.16 kg according to ISO 1 133 of 0.5 to 30, preferably 2 to 18 ml / 10 minutes)
  • Preferred polylactic acids are, for example, NatureWorks® 3001, 3051, 3251, 4020, 4032 or 4042D (polylactic acid from NatureWorks or NL-Naarden and USA Blair / Kansas).
  • Polyhydroxyalkanoates are understood as meaning primarily poly-4-hydroxybutyrates and poly-3-hydroxybutyrates, furthermore copolyesters of the abovementioned hydroxybutyrates with 3-hydroxyvalerates or 3-hydroxyhexanoate are included.
  • Poly-3-hydroxybutyrate-co-4-hydroxybutyrates are known in particular from Metabolix. They are sold under the trade name Mirel®.
  • Poly-3-hydroxybutyrate-co-3-hydroxyhexanoates are known from the company P & G or Kaneka.
  • Poly-3-hydroxybutyrates are sold, for example, by PHB Industrial under the brand name Biocycle® and by Tianan under the name Enmat®.
  • the polyhydroxyalkanoates generally have a molecular weight Mw of from 100,000 to 1,000,000, and preferably from 300,000 to 600,000.
  • Polycaprolactone is marketed by the company. Daicel under the product names Placcel ®.
  • Polyalkylene carbonates are understood as meaning, in particular, polyethylene carbonate and polypropylene propylene carbonate.
  • Partly aromatic (aliphatic-aromatic) polyesters based on aliphatic diols and aliphatic / aromatic dicarboxylic acids (component c) are also understood to mean polyester derivatives such as polyether esters, polyester amides or polyetherresteramides.
  • Suitable partially aromatic polyesters include linear non-chain-extended polyesters (WO 92/09654).
  • aliphatic / aromatic polyesters of butanediol, terephthalic acid and aliphatic C6-Ci8 dicarboxylic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid and brassylic acid (for example as described in WO 2006/097353 to 56) suitable mixing partners.
  • Preferred are chain-extended and / or branched partially aromatic polyesters. The latter are known from the aforementioned documents WO 96/15173 to 15176, 21689 to 21692, 25446, 25448 or WO 98/12242, to which reference is expressly made. Mixtures of different partially aromatic polyesters are also possible.
  • biodegradable for a substance or a substance mixture is fulfilled if this substance or the substance mixture according to DIN EN 13432 has a percentage degree of biodegradation of at least 90%.
  • biodegradability causes the polyester blends to disintegrate in a reasonable and detectable time.
  • Degradation can be effected enzymatically, hydrolytically, oxidatively and / or by the action of electromagnetic radiation, for example UV radiation, and is usually effected for the most part by the action of microorganisms such as bacteria, yeasts, fungi and algae.
  • the biodegradability can be quantified, for example, by mixing polyesters with compost and storing them for a certain period of time. For example, according to DIN EN 13432 (referring to ISO 14855), C02-free air is allowed to flow through matured compost during composting and subjected to a defined temperature program.
  • the biodegradability is determined by the ratio of the net CO 2 release of the sample (after subtraction of CO 2 release by the compost without sample) to the maximum CO 2 release of the sample (calculated from the carbon content of the sample) as a percentage of the CO 2 release defined biodegradation.
  • Biodegradable polyesters mixtures generally show signs of decomposition after only a few days of composting, such as fungal growth, cracking and hole formation. Other methods of determining biodegradability are described, for example, in ASTM D 5338 and ASTM D 6400-4.
  • the Clingfolien (cling film) are generally produced in the thickness range of 10 to 25 ⁇ .
  • the usual manufacturing process is the tubular film extrusion in a monolayer film.
  • chill-roll extrusion has also established itself as a process for coextruded cling films.
  • the cling foils hitherto on the market consist mainly of PVC, plasticizers (e.g., 20-30% dioctyl phthalate), and anti-fog additives which prevent the film from fogging during temperature cycling.
  • plasticizers e.g., 20-30% dioctyl phthalate
  • anti-fog additives which prevent the film from fogging during temperature cycling.
  • cling foils based on LDPE have prevailed, but they require a clinging additive (polyisobutylene).
  • Cling foils made of PE also contain anti-fog additives.
  • a specific version of the cling foil contains a styrene / butadiene copolymer (styroflex), which has excellent recovery on deformation. These films are produced in 3 layers. The outer layers contain an ethylenevinyl acetate, which is equipped with antifogging additives. The middle layer contains the styrene / butadiene copolymer which provides strength, extensibility and resilience. Cling foils are used for the packaging of fruits and vegetables as well as fresh meat, bones and fish. You have the following requirement profile:
  • Films of biodegradable polyester according to claim 1 have good film properties and can be very good to 10 ⁇ undress.
  • the mechanical properties such as longitudinal and transverse strength for extrusion and puncture resistance are at a high level.
  • Tubular films made from these polyesters show a highly elastomeric behavior. They achieve higher strengths than PVC before the film breaks. Therefore, one is Modification of the stiffness-toughness ratio by the use of branching agents and the reduction of the terephthalic acid content for Clingfolien useful.
  • Cling foils made from these polyesters can also be equipped with anti-fog additives. The transparency of these cling foils is sufficient for most applications. However, they are not quite as transparent as PVC and therefore distinguishable from traditional PVC.
  • the Clingfolien invention impressed by the improved hysteresis (resilience of deformations).
  • the cling foils of the present invention are also easier to cut without tearing longitudinally to the direction of extrusion, since with lower terephthalic acid content and increased branching, the strong anisotropy of the film is reduced.
  • the weldability of the cling foils of the invention is at a similar level as PVC or PE.
  • the molecular weights Mn and Mw of the semiaromatic polyesters were determined in accordance with DIN 55672-1 eluent hexafluoroisopropanol (HFIP) + 0.05% by weight of trifluoroacetic acid potassium salt; The calibration was carried out with narrowly distributed polymethyl methacrylate standards. The determination of the viscosity numbers was carried out according to DIN 53728 Part 3, January 3, 1985, capillary viscometry. A micro Ubbelohde viscometer, type M-II was used. The solvent used was the mixture: phenol / o-dichlorobenzene in a weight ratio of 50/50.
  • the hysteresis test was carried out on 60 ⁇ thick films according to DIN 53835 at 23 ° C. The film was first loaded at 120 mm / min. After reaching the 50% elongation was relieved without holding time again. Then was waited for 5 minutes. This was followed by the second cycle with 100% stretch in the top.
  • the degradation rates of the biodegradable polyester blends and the blends prepared for comparison were determined as follows:
  • films having a thickness of 30 ⁇ m were produced by pressing at 190 ° C. These films were each cut into square pieces with edge lengths of 2 x 5 cm. The weight of these pieces of film was determined in each case and defined as "100% by weight.” Over a period of four weeks, the pieces of film were heated to 58 ° C. in a drying box in a plastic can filled with humidified compost remain- Bending weight of the film pieces measured and converted to wt .-% (based on the determined at the beginning of the test and defined as "100 wt .-%" weight).
  • a polybutylene terephthalate adipate prepared as follows: 1, 10.1 g of dimethyl terephthalate (27 mol%), 224 g of adipic acid (73 mol%), 246 g of 1,4-butanediol (130 mol%) and 0.34 ml of glycerol (0.1% by weight based on the polymer) were mixed together with 0.37 ml of tetrabutyl orthotitanate (TBOT), the molar ratio between alcohol components and acid component being 1.30.
  • TBOT tetrabutyl orthotitanate
  • the reaction mixture was heated to a temperature of 210 ° C and held at this temperature for 2 hours. Subsequently, the temperature was raised to 240 ° C and gradually evacuated. The excess dihydroxy compound was distilled off under a vacuum of less than 1 mbar over a period of 3 h.
  • the polyester A1 thus obtained had a melting point of 60 ° C and a V
  • a polybutylene terephthalate adipate prepared as follows: 583.3 g of dimethyl terephthalate (27 mol%), 1280.2 g of adipic acid (73 mol%), 1405.9 g of 1,4-butanediol (130 mol%) and 37 g Glycerol (1, 5 wt .-% based on the polymer) were mixed together with 1 g of tetrabutyl orthotitanate (TBOT), wherein the molar ratio between alcohol components and acid component was 1.30.
  • TBOT tetrabutyl orthotitanate
  • polyester A3 had a melting point of 60 ° C and a VZ of 146 ml / g. Polyester A3
  • a polybutylene terephthalate adipate prepared as follows: 697.7 g of terephthalic acid (35 mol%), 1 139.9 g of adipic acid (65 mol%), 1405.9 g of 1,4-butanediol
  • polyester A3 had a melting point of 80 ° C (broad) and a VZ of 191 ml / g. Polyester A4
  • a polybutylene terephthalate adipate prepared as follows: 726.8 g of terephthalic acid (35 mol%), 1 187.4 g of adipic acid (65 mol%), 1464.5 g of 1,4-butanediol
  • the reaction mixture was heated to a temperature of 210 ° C and held at this temperature for 2 hours. Subsequently, the temperature was raised to 240 ° C and gradually evacuated. The excess dihydroxy compound was distilled off under a vacuum of less than 1 mbar over a period of 3 h.
  • the polyester A4 thus obtained had a melting point of 80 ° C and a VZ of 157 ml / g.
  • a polybutylene terephthalate adipate prepared as follows: 87.3 kg of dimethyl terephthalate (44 mol%), 80.3 kg of adipic acid (56 mol%), 17 g of 1, 4-butanediol and 0.2 kg of glycerol (0, 1% by weight based on the polymer) were mixed together with 0.028 kg of tetrabutyl orthotitanate (TBOT), the molar ratio between alcohol components and acid component being 1.30.
  • TBOT tetrabutyl orthotitanate
  • the reaction mixture was heated to a temperature of 180 ° C and reacted at this temperature for 6 hours. Subsequently, the temperature was raised to 240 ° C and the excess dihydroxy compound distilled off under vacuum over a period of 3h.
  • the polyester B1 thus obtained had a melting temperature of 1 19 ° C and a molecular weight (M n ) of 23000 g / mol, molecular weight (M w ) of 13000 g / mol.
  • polyesters A1, A3, A4 and Comparative Example B1 were hot presses to the press foils FA1; FA3, FA4 and comparative film FB1 processed and subjected to a hysteresis test.
  • the hysteresis test was carried out on 60 m thick films according to DIN 53835 at 23 ° C. First the slides were cut to 4mm * 25mm. Such film was then loaded at 120 mm / min. After reaching the 50% elongation, the film was relieved without holding time (first measurement of the resilience). Then it waited 6 minutes. This was followed by the second cycle with the 100% stretch in the top.
  • the films which consist of a polyester with a low terephthalic acid content such as, for example, FA1, had a higher restoring force than the comparison film FB1.
  • a further increase in the restoring force experienced films with a high crosslinking agent content (FA3 compared to FA4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

La présente invention concerne un procédé de réalisation de films adhésifs, par utilisation de polyesters biodégradables qui peuvent être obtenus par polycondensation de : i) 65 à 80 % molaires, rapportés aux constituants i à ii, d'un ou de plusieurs dérivés d'acide dicarboxylique ou acides dicarboxyliques choisis dans le groupe comprenant l'acide succinique, l'acide adipique, l'acide sébacique, l'acide azélaïque et l'acide brassylique; ii) 35 à 20 % molaires, rapportés aux constituants i à ii, d'un dérivé d'acide téréphtalique; iii) 98 à 102 % molaires, rapportés aux constituants i à ii, d'un alkylènediol en C2-C8 ou d'un oxyalkylènediol en C2-C6; iv) 0,1 à 2 % en poids, rapportés au polymère obtenu à partir des constituants i à iii, d'un agent de réticulation au moins trifonctionnel ou d'un allongeur de chaîne au moins bifonctionnel. L'invention a également pour objet des mélanges polymères qui conviennent particulièrement pour la réalisation de films adhésifs et des films adhésifs qui contiennent des polyesters biodégradables.
EP11709426A 2010-03-24 2011-03-23 Procédé de réalisation de films adhésifs Withdrawn EP2550330A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11709426A EP2550330A1 (fr) 2010-03-24 2011-03-23 Procédé de réalisation de films adhésifs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10157598 2010-03-24
EP11709426A EP2550330A1 (fr) 2010-03-24 2011-03-23 Procédé de réalisation de films adhésifs
PCT/EP2011/054386 WO2011117265A1 (fr) 2010-03-24 2011-03-23 Procédé de réalisation de films adhésifs

Publications (1)

Publication Number Publication Date
EP2550330A1 true EP2550330A1 (fr) 2013-01-30

Family

ID=44247002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11709426A Withdrawn EP2550330A1 (fr) 2010-03-24 2011-03-23 Procédé de réalisation de films adhésifs

Country Status (6)

Country Link
EP (1) EP2550330A1 (fr)
KR (1) KR20130010080A (fr)
CN (1) CN102869723A (fr)
AU (1) AU2011231669A1 (fr)
CA (1) CA2792845A1 (fr)
WO (1) WO2011117265A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000015022A1 (it) 2020-06-23 2021-12-23 Novamont Spa Pellicole per l’imballaggio con agente antiappannante

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102848581B (zh) * 2012-10-03 2014-12-24 广东华业包装材料有限公司 3-羟基丁酸-4-羟基丁酸共聚物薄膜的流延成型方法
CN104059341B (zh) * 2014-06-24 2016-03-30 新疆康润洁环保科技股份有限公司 一种纳米银聚酯生物降解保鲜膜及其制备和应用
CN104356372B (zh) * 2014-10-27 2016-10-26 清华大学 一种枝化脂肪-芳香族共聚酯及其合成方法
CN109401212B (zh) * 2017-08-16 2022-12-13 中国石油化工股份有限公司 聚酯组合物和热收缩薄膜及其制备方法
CN109401216B (zh) * 2017-08-16 2022-07-12 中国石油化工股份有限公司 聚酯组合物和功能层及其制备方法和应用
EP3530694A4 (fr) 2016-10-21 2020-06-10 China Petroleum&Chemical Corporation Composition de polyester, son procédé de préparation et son utilisation
CN109401211B (zh) * 2017-08-16 2022-12-13 中国石油化工股份有限公司 聚酯组合物和医用肢体固定支架及其制备方法
CN109401213B (zh) * 2017-08-16 2022-07-12 中国石油化工股份有限公司 聚酯组合物和3d打印线材及其制备方法
CN109401215B (zh) * 2017-08-16 2022-07-12 中国石油化工股份有限公司 聚酯组合物和无纺布及其制备方法和应用
CN109401214B (zh) * 2017-08-16 2022-06-21 中国石油化工股份有限公司 聚酯组合物和弹性纤维及其制备方法
KR102436243B1 (ko) * 2020-10-20 2022-08-26 주식회사 안코바이오플라스틱스 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법
CN114763429B (zh) * 2021-05-17 2024-01-26 瑞拓峰高新科技有限公司 一种具有高度相容性的生物降解聚酯合金的合成方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488617B1 (fr) 1990-11-26 1997-09-17 Showa Highpolymer Co., Ltd. Une méthode pour la préparation de polyester saturé
KR100220443B1 (ko) 1990-11-30 1999-09-15 그윈넬 해리 제이 지방족-방향족 코폴리에스테르 및 셀룰로스 에스테르/중합체 배합물
IT1245408B (it) 1991-02-20 1994-09-20 Butterfly Srl Composizioni polimeriche biodegradabili a base di amido e di polimero termoplastico
HU216971B (hu) 1991-05-03 1999-10-28 Novamont S.P.A. Keményítő- és hőrelágyulóműanyag-alapú, biológiailag lebomló polimerkompozíciók
IT1256914B (it) 1992-08-03 1995-12-27 Novamont Spa Composizione polimerica biodegradabile.
DE19508737A1 (de) * 1995-03-10 1996-09-12 Biotechnolog Forschung Gmbh Biologisch abbaubarer Polyester und Werkstoff daraus
DE4440858A1 (de) 1994-11-15 1996-05-23 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19638488A1 (de) 1996-09-20 1998-03-26 Basf Ag Biologisch abbaubare Polyester
US5883199A (en) 1997-04-03 1999-03-16 University Of Massachusetts Polyactic acid-based blends
DE10258227A1 (de) * 2002-12-09 2004-07-15 Biop Biopolymer Technologies Ag Biologisch abbaubare Mehrschichtfolie
CN101098932B (zh) * 2005-01-12 2011-08-17 巴斯福股份公司 可生物降解聚酯混合物
ITMI20050452A1 (it) 2005-03-18 2006-09-19 Novamont Spa Poliestere biodegradabile alifatico-aromatico
BRPI0815409B1 (pt) 2007-08-17 2023-01-24 Basf Se Processos para a produção fermentativa de um composto, e para a produção de um composto, e, uso de uma cepa bacteriana
KR101543489B1 (ko) 2008-04-15 2015-08-10 바스프 에스이 생분해성 폴리에스테르의 연속 제조 방법
EP2268704A1 (fr) 2008-04-15 2011-01-05 Basf Se Procédé de fabrication en continu de polyesters biodégradables
EP2166094A1 (fr) * 2008-09-23 2010-03-24 Ecole Normale Superieure De Lyon Procédés pour le prolongement des avantages sanitaires déclenchés par une restriction alimentaire utilisant un inhibiteur de la sphingosine kinase
SE534029C2 (sv) * 2009-07-10 2011-04-05 Billeruds Ab Biologiskt nedbrytbar vidhäftande film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011117265A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000015022A1 (it) 2020-06-23 2021-12-23 Novamont Spa Pellicole per l’imballaggio con agente antiappannante
WO2021260031A1 (fr) 2020-06-23 2021-12-30 Novamont S.P.A. Films d'emballage avec agent antibuée

Also Published As

Publication number Publication date
CA2792845A1 (fr) 2011-09-29
CN102869723A (zh) 2013-01-09
AU2011231669A1 (en) 2012-10-25
KR20130010080A (ko) 2013-01-25
WO2011117265A1 (fr) 2011-09-29

Similar Documents

Publication Publication Date Title
EP2350162B1 (fr) Polyesters aliphatiques
WO2011117265A1 (fr) Procédé de réalisation de films adhésifs
EP2331603B1 (fr) Polyesters aliphatiques-aromatiques
EP2920245B1 (fr) Mélange de polyester biodégradable
EP2331634B1 (fr) Melanges de polymeres biodegradables
EP2550329B1 (fr) Procédé pour la préparation des films
EP2499189A1 (fr) Procédé de fabrication de films rétractables
BRPI0611457A2 (pt) poliésteres alifáticos-aromáticos biodegradáveis
US20110237750A1 (en) Process for film production
EP2736973A1 (fr) Film de polyester biodégradable
US20110237743A1 (en) Process for producing clingfilms
WO2015086463A1 (fr) Mélange de polymères pour film barrière
EP3140350A1 (fr) Article moulé par injection
EP2888323A2 (fr) Mélanges polymères pour la fabrication de pièces moulées par injection à parois minces
WO2019011643A1 (fr) Film biodégradable pour emballage alimentaire
EP3227352A1 (fr) Polyester biodégradable
EP2826817B1 (fr) Mélange de polyester biodégradable
EP3891208B1 (fr) Procédé de purification d'un (co)polyester
WO2012126921A1 (fr) Polyester à base d'acide 2-méthylsuccinique
EP2888322B1 (fr) Utilisation de mélanges polymères pour la fabrication de cartouches, de pipettes, de cuvettes ou de porte-pipettes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131206

INTG Intention to grant announced

Effective date: 20131216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140429