EP2537427B1 - Cigarette filter having composite fiber structures - Google Patents

Cigarette filter having composite fiber structures Download PDF

Info

Publication number
EP2537427B1
EP2537427B1 EP12181299.4A EP12181299A EP2537427B1 EP 2537427 B1 EP2537427 B1 EP 2537427B1 EP 12181299 A EP12181299 A EP 12181299A EP 2537427 B1 EP2537427 B1 EP 2537427B1
Authority
EP
European Patent Office
Prior art keywords
fiber
filter
adsorbent
fibers
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12181299.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2537427A1 (en
Inventor
Norman Philip Andresen
Michael Francis Dube
Barbara Walker Arzonico
Ronald Keith Hutchens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RJ Reynolds Tobacco Co
Original Assignee
RJ Reynolds Tobacco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40983562&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2537427(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/124,891 external-priority patent/US8079369B2/en
Priority claimed from US12/124,874 external-priority patent/US8375958B2/en
Priority claimed from US12/392,725 external-priority patent/US8613284B2/en
Application filed by RJ Reynolds Tobacco Co filed Critical RJ Reynolds Tobacco Co
Publication of EP2537427A1 publication Critical patent/EP2537427A1/en
Application granted granted Critical
Publication of EP2537427B1 publication Critical patent/EP2537427B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • A24D3/0216Applying additives to filter materials the additive being in the form of capsules, beads or the like
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • A24D3/0225Applying additives to filter materials with solid additives, e.g. incorporation of a granular product
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/061Use of materials for tobacco smoke filters containing additives entrapped within capsules, sponge-like material or the like, for further release upon smoking
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/067Use of materials for tobacco smoke filters characterised by functional properties
    • A24D3/068Biodegradable or disintegrable
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/163Carbon

Definitions

  • Embodiments of the present invention relate to tobacco products, such as smoking articles (e.g., cigarettes), and more particularly, to cigarette filters.
  • smoking articles e.g., cigarettes
  • cigarette filters e.g., cigarette filters
  • US 2003/0200973 discloses a cigarette filter for removing gas phase constituents from mainstream cigarette smoke as the smoke is drawn through the filter, the filter including an activated carbon fiber filter section containing a bundle of activated carbon fibers substantially aligned with one another and having a common direction.
  • smokable material such as shredded tobacco (e.g., in cut filler form), surrounded by a paper wrapper, thereby forming a so-called “smokable rod” or "tobacco rod.”
  • a cigarette has a cylindrical filter element aligned in an end-to-end relationship with the tobacco rod.
  • a filter element comprises plasticized cellulose acetate tow circumscribed by a paper material known as "plug wrap.”
  • Certain filter elements can incorporate polyhydric alcohols.
  • the filter element is attached to one end of the tobacco rod using a circumscribing wrapping material known as "tipping paper.”
  • tipping paper a circumscribing wrapping material
  • a cigarette is employed by a smoker by lighting one end thereof and burning the tobacco rod. The smoker then receives mainstream smoke into his/her mouth by drawing on the opposite end (e.g., the filter end) of the cigarette.
  • Certain cigarettes incorporate filter elements having adsorbent materials dispersed therein, such as activated carbon or charcoal materials (collectively, carbonaceous materials) in particulate or granular form (i.e., powder).
  • an exemplary cigarette filter can possess multiple segments, and at least one of those segments can comprise particles of high carbon-content materials.
  • filters incorporating charcoal particles or activated carbon types of materials are set forth in U.S. Pat. Nos. 2,881,770 to Touey ; 3,101,723 to Seligman et al. ; 3,236,244 to Irby et al. ; 3,311,519 to Touey et al. ; 3,347,247 to Lloyd ; 3,349,780 to Sublett et al. ; 3,370,595 to Davis et al. ; 3,413,982 to Sublett et al.
  • such carbonaceous material types are typically in the form of particles or granules when incorporated into the filter elements.
  • granules of carbonaceous material can be incorporated into "dalmation” types of filter regions using the general types of techniques used for traditional dalmation filter manufacture. Techniques for production of dalmation filters are known, and representative dalmation filters have been provided commercially by Filtrona Greensboro Inc.
  • granules of carbonaceous material can be incorporated into "cavity” types of filter regions using the general types of techniques used for traditional "cavity” filter manufacture.
  • the invention provides a cigarette filter comprising at least one filter segment having one or more composite fiber structures imbedded therein, the composite fiber structure comprising a carrier fiber and an adsorbent fiber (e.g., a carbonaceous fiber), the adsorbent fiber comprising an adsorbent material.
  • adsorbent fiber e.g., a carbonaceous fiber
  • Exemplary carbonaceous fibers can be prepared by carbonization of a precursor fiber, such as phenolic fibers, cellulosic fibers, rayon fibers, acrylic fibers, and pitch fibers.
  • the filter comprises one or more segments of fibrous tow material, such as cellulose acetate tow.
  • the composite fiber structure can comprise multiple carrier fibers or multiple adsorbent fibers.
  • One or both of the carrier fiber and adsorbent fiber can be in the form of a yarn.
  • the entire composite fiber structure can also be in the form of a yarn.
  • the carrier fiber acts as a carrier for the adsorbent fiber, such as by enwrapping the adsorbent fiber around the carrier fiber.
  • the invention provides a cigarette filter comprising at least one filter segment having at least one degradable fiber imbedded therein, such as a biodegradable fiber.
  • the fiber can be any strand, thread, or yarn that has any of a variety of cross-sections, including a circular or a flattened cross-section.
  • the fiber can provide a visual difference or a textural/tactile difference to the filter element.
  • the fiber itself could alter the character or nature of the smoke passing through the filter, or optionally carry an additive capable of altering the character or nature of the smoke (e.g., such as one or more adsorbent materials, flavorants, deodorizing agents, or combinations thereof).
  • the additive can be carried by, or associated with, the degradable fiber using a variety of techniques, such as by absorption of the additive into the fiber structure, coating of the additive onto the fiber structure, adherence of a solid additive onto the surface of the fiber, or wrapping of an additive in the form of a fiber (e.g., a carbonaceous fiber) around the degradable fiber.
  • a fiber e.g., a carbonaceous fiber
  • biodegradable fibers include cellulosic fibers, polyvinyl alcohol, aliphatic polyesters, aliphatic polyurethanes, cis-polyisoprene, cis-polybutadiene, polyhydroxy alkanoates, polyanhydrides, and copolymers and blends thereof.
  • the biodegradable fiber is a bamboo fiber or a polylactic acid fiber.
  • the invention also includes smoking articles incorporating a filter element as described herein, such as a smoking article comprising a rod of smokable material circumscribed by a wrapping material, the rod of smokable material being attached to a cigarette filter according to the invention.
  • Embodiments of the present invention thus provide significant advantages as disclosed herein in further detail.
  • FIG. 1 there is shown a smoking article 10 in the form of a cigarette and possessing certain representative components of a smoking article produced or formed by the present invention.
  • the cigarette 10 includes a generally cylindrical rod 12 of a charge or roll of smokable filler material contained in a circumscribing wrapping material 16.
  • the rod 12 is conventionally referred to as a "tobacco rod.”
  • the ends of the tobacco rod 12 are open to expose the smokable filler material.
  • the cigarette 10 is shown as having one optional band 22 (e.g., a printed coating including a film-forming agent, such as starch, ethylcellulose, or sodium alginate) applied to the wrapping material 16, and that band circumscribes the cigarette rod in a direction transverse to the longitudinal axis of the cigarette. That is, the band 22 provides a cross-directional region relative to the longitudinal axis of the cigarette.
  • the band 22 can be printed on the inner surface of the wrapping material (i.e., facing the smokable filler material), or less preferably, on the outer surface of the wrapping material.
  • the cigarette can possess a wrapping material having one optional band, the cigarette also can possess wrapping material having further optional spaced bands numbering two, three, or more.
  • At one end of the tobacco rod 12 is the lighting end 18, and at the mouth end 20 is positioned a filter element 26.
  • the filter element 26 positioned adjacent one end of the tobacco rod 12 such that the filter element and tobacco rod are axially aligned in an end-to-end relationship, preferably abutting one another.
  • Filter element 26 may have a generally cylindrical shape, and the diameter thereof may be essentially equal to the diameter of the tobacco rod. The ends of the filter element 26 permit the passage of air and smoke therethrough.
  • the filter element 26 may be configured as shown in FIG. 2 , wherein the filter includes a first filter segment 32 positioned adjacent one end of the tobacco rod 12.
  • the first filter segment 32 includes filter material 40 (e.g., cellulose acetate tow impregnated with plasticizer, such as triacetin).
  • the filter element 26 may not be divided into segments, such as shown in FIG. 3 .
  • an adsorbent material/particulate 50 within the filter material 40 of the first segment may be inserted an adsorbent material/particulate 50. Previously, such adsorbent material 50 had been roughly inserted into the filter material 40.
  • the adsorbent material 50 had been inserted while in a loose particulate form, such as a powder or slurry. Further, within the filter material 40 of the first segment may also be optionally dispersed a plurality of particles 52 or otherwise breakable or rupturable capsules comprising a flavoring agent.
  • a carbonaceous material is used as the adsorbent material 50, at least a portion of the carbonaceous material, and typically virtually all of the carbonaceous material, is in intimate contact with an effective amount of a mixture of polyol ester (e.g., triacetin) and polyol (e.g., propylene glycol).
  • the filter element also can be incorporate other components that have the ability to alter the properties of the mainstream smoke that passes throughout the filter element. See, for example, U.S. Pat. Application Publication Nos. 2004/0237984 to Figlar et al. ; 2005/0268925 to Schluter et al. ; 2006/0130861 to Luan et al. ; and 2006/0174899 to Luan et al.
  • the filter element 26 may also possess a second filter segment 36 longitudinally disposed relative to the first segment 32 and positioned at the extreme mouth end of the cigarette 10.
  • the second filter segment 36 includes filter material 48 (e.g., cellulose acetate tow impregnated with plasticizer, such as triacetin) that is over-wrapped along the longitudinally extending surface thereof with circumscribing plug wrap material 28.
  • the second filter segment 36 may be substantially free of adsorbent and breakable or rupturable capsules, meaning that such additives are not visible when viewing the extreme mouth end of the filter element 26.
  • the filter element 26 is circumscribed along its outer circumference or longitudinal periphery by a layer of outer plug wrap 28.
  • the outer plug wrap 28 overlies each of the first filter segment 32 and the second filter segment 36, so as to provide a combined, two-segment filter element.
  • the filter element 26 is attached to the tobacco rod 12 using tipping material 46 (e.g., essentially air impermeable tipping paper), that circumscribes both the entire length of the filter element 26 and an adjacent region of the tobacco rod 12.
  • tipping material 46 e.g., essentially air impermeable tipping paper
  • the inner surface of the tipping material 46 is fixedly secured to the outer surface of the plug wrap 28 and the outer surface of the wrapping material 16 of the tobacco rod, using a suitable adhesive; and hence, the filter element and the tobacco rod are connected to one another. See also the tipping materials and configurations set forth in U.S. Pat. Publication No. 2008/0029111 to Dube et al.
  • a ventilated or air diluted smoking article can be provided with an optional air dilution mechanisms, such as a series of perforations 30, each of which extend through the tipping material and plug wrap.
  • the optional perforations 30 shown in FIG. 1 , can be made by various techniques known to those of ordinary skill in the art, such as laser perforation techniques. Alternatively, so-called off-line air dilution techniques can be used (e.g., through the use of porous paper plug wrap and pre-perforated tipping paper). For cigarettes that are air diluted or ventilated, the amount or degree of air dilution or ventilation can vary.
  • the amount of air dilution for an air diluted cigarette is greater than about 10 percent, generally is greater than about 20 percent, often is greater than about 30 percent, and sometimes is greater than about 40 percent.
  • the upper level for air dilution for an air diluted cigarette is less than about 80 percent, and often is less than about 70 percent.
  • air dilution is the ratio (expressed as a percentage) of the volume of air drawn through the air dilution means to the total volume and air and smoke drawn through the cigarette and exiting the extreme mouth end portion of the cigarette.
  • the smoker lights the lighting end 18 of the cigarette 10 using a match or cigarette lighter.
  • the smokable material 12 begins to burn.
  • the mouth end 20 of the cigarette 10 is placed in the lips of the smoker.
  • Thermal decomposition products e.g., components of tobacco smoke
  • Thermal decomposition products generated by the burning smokable material 12 are drawn through the cigarette 10, through the filter element 26, and into the mouth of the smoker.
  • certain amount of certain gaseous components of the mainstream smoke are removed from the mainstream smoke or neutralized by the adsorbent material 50 within the filter element 26.
  • Filters incorporating such adsorbent material 50 have the capability of capturing a wide range of mainstream tobacco smoke vapor phase components. If desired, prior to, during or after the smoking experience, the smoker can optionally squeeze the filter element. As a result, at least a portion of the optional breakable capsules that remain unbroken can be broken, and hence release the particles 52 of flavoring agent contained therein.
  • carbonaceous filter components e.g., activated charcoal particles
  • the filter element 26 could include more than the two segments set forth in FIG. 2 .
  • the filter element 26 could also include a cavity formed between two filter material segments, with the adsorbent material 50 and the optional flavoring agent 52 mixed together therein.
  • the filter segment comprising these additives it is not necessary for the filter segment comprising these additives to be located at the tobacco end of the filter.
  • the filter segment comprising the dispersed additives can be more centrally located within the filter element 26 with one or more filter segments toward each end that do not contain the additives.
  • a representative cigarette 10 can vary.
  • Preferred cigarettes are rod shaped, and can have diameters of about 7.5 mm (e.g., circumferences of about 20 mm to about 27 mm, often about 22.5 mm to about 25 mm); and can have total lengths of about 70 mm to about 120 mm, often about 80 mm to about 100 mm.
  • the length of the filter element 30 can vary. Typical filter elements can have total lengths of about 15 mm to about 40 mm, often about 20 mm to about 35 mm.
  • the downstream or mouth end filter segment often has a length of about 10 mm to about 20 mm; and the upstream or tobacco rod end filter segment often has a length of about 10 mm to about 20 mm.
  • suitable catalytic compounds e.g., for the conversion of carbon monoxide to carbon dioxide, can be incorporated into one or more segments of the filter element 26.
  • exemplary catalysts include noble metals (e.g., silver, gold, platinum), metal oxides, ceramics, and mixtures thereof.
  • one filter element 26 that may be formed in accordance with the present disclosure comprises multiple, longitudinally-extending segments. Each segment can have varying properties and may include various materials capable of filtration or adsorption of particulate matter and/or vapor phase compounds from the mainstream smoke. Typically, the filter element of various aspects of the invention includes 2 to 6 segments, frequently 2 to 4 segments. In some instances, the filter element 26 may include a mouth end segment and a tobacco end segment, with the tobacco end segment comprising the dispersed adsorbent material 50 and flavoring agent 52.
  • the filter element may incorporate adsorbent material/particulate 50.
  • adsorbent material 50 may be a material with relatively high surface area capable of adsorbing smoke constituents without a high degree of specificity, or a material that adsorbs certain compounds with a greater degree of specificity, such as an ion exchange resin.
  • exemplary types of adsorbent material may include activated carbon, a molecular sieve (e.g., zeolites and carbon molecular sieves), clay, an ion exchange resin, activated alumina, silica gel, meerschaum, and combinations thereof. Any adsorbent material, or mixture of materials, that has the ability to alter the character or nature of mainstream smoke passing through the filter element may be used.
  • Exemplary ion exchange resins comprise a polymer backbone, such as styrenedivinylbenzene (DVB) copolymers, acrylates, methacrylates, phenol formaldehyde condensates, and epichlorohydrin amine condensates, and a plurality of electrically charged functional groups attached to the polymer backbone, and can be a weak base anion exchange resin or a strong base anion exchange resin.
  • Commercially available embodiments of such resins include DIAION® ion-exchange resins available from Mitsubishi Chemical Corp.
  • DUOLITE® ion exchange resins available from Rohm and Haas (e.g., DUOLITE® A7), and XORBEX resins available from Dalian Trico Chemical Co. of China.
  • a preferred adsorbent is a carbonaceous material, which is a material that is composed primarily of carbon, and preferred carbonaceous materials are composed of virtually all carbon.
  • carbonaceous materials comprise carbon in amounts of more than about 85 percent, generally more than about 90 percent, often more than about 95 percent, and frequently more than about 98 percent, by weight.
  • the carbonaceous material can have the form of charcoal, but most preferably is an activated carbon material.
  • Activated carbon materials are high surface area materials. Exemplary activated carbon materials have surface areas of more than about 200 m 2 /g, often more than about 1000 m 2 /g, and frequently more than about 1500 m 2 /g, as determined using the Brunaver, Emmet and Teller (BET) method described in J. Amer. Chem.
  • the filter element 26 may incorporate an effective amount of adsorbent material 50, such as an effective amount of activated carbon.
  • the effective amount is an amount that, when incorporated into the filter element 26, provides some desired degree of alteration of the mainstream smoke of a cigarette incorporating that filter element 26.
  • a cigarette filter element incorporating activated carbon particles or granules can act to lower the yield of certain gas phase components of the mainstream smoke passing through that filter element.
  • the amount of carbonaceous material or other adsorbent within the filter element is at least about 20 mg, often at least about 30 mg, and frequently at least about 40 mg, on a dry weight basis.
  • the amount of carbonaceous material or other adsorbent material 50 within the filter element does not exceed about 500 mg, generally does not exceed about 400 mg, often does not exceed about 300 mg, and frequently does not exceed about 200 mg, on a dry weight basis.
  • the carbonaceous materials can be derived from synthetic or natural sources. Materials such as rayon or nylon can be carbonized, followed by treatment with oxygen to provide activated carbonaceous materials. Materials such as wood and coconut shells can be carbonized, followed by treatment with oxygen to provide activated carbonaceous materials.
  • the level of activity of the carbon may vary. Typically, the carbon has an activity of about 60 to about 150 Carbon Tetrachloride Activity (i.e., weight percent pickup of carbon tetrachloride).
  • Preferred carbonaceous materials are provided by carbonizing or pyrolyzing bituminous coal, tobacco material, softwood pulp, hardwood pulp, coconut shells, almond shells, grape seeds, walnut shells, macadamia shells, kapok fibers, cotton fibers, cotton linters, and the like.
  • suitable carbonaceous materials are activated coconut hull based carbons available from Calgon Corp. as PCB and GRC-11 or from PICA as G277, coal-based carbons available from Calgon Corp. as S-Sorb, Sorbite, BPL, CRC-11F, FCA and SGL, wood-based carbons available from Westvaco as WV-B, SA-20 and BSA-20, carbonaceous materials available from Calgon Corp.
  • Preferred carbonaceous materials are coconut shell types of activated carbons available from sources such as Calgon Carbon Corporation, Gowrishankar Chemicals, Carbon Activated Corp. and General Carbon Corp. See, also, for example, Activated Carbon Compendium, Marsh (Ed.) (2001).
  • Certain carbonaceous materials can be impregnated with substances, such as transition metals (e.g., silver, gold, copper, platinum, and palladium), nanoparticles, potassium bicarbonate, tobacco extracts, polyethyleneimine, manganese dioxide, eugenol, and 4-ketononanoic acid.
  • the carbon composition may also include one or more fillers, such as semolina.
  • Grape seed extracts may also be incorporated into the filter element 20 as a free radical scavenger.
  • Sintered or foamed carbon materials see, e.g., US Pat. No. 7,049,382 to Haftka et al.
  • gathered webs see, e.g., US Pat. Appl. Pub. Nos.
  • one aspect of the present disclosure involves engaging the adsorbent material 50 with a carrier material 55 prior to insertion of the resulting assembly into the filter element 26 (or a continuous filter rod before longitudinal severance thereof to form multiple filter elements 26 ). Selection of a suitable carrier material 55 may facilitate, for example, improved production by more effectively and efficiently inserting the now "captive" adsorbent material 50 into the filter element 26.
  • the adsorbent material 50 is carried by the carrier material 55 upon insertion thereof into the filter element 26.
  • the carrier material 55 may be in the form of, for example, a pellet ( FIG. 3A ), a capsule ( FIG. 3B ), a tube ( FIG. 3C ), a continuous elongate structure, a continuous strip, a strand or the like capable of receiving and "holding captive" the adsorbent material 50 ( FIG. 3D ) so as to facilitate insertion thereof into the filter element 26 in a cleaner, more effective manner
  • individual or multiple forms of the carrier material 55 may be inserted into the filter element 26.
  • individual or multiple capsules, tubes, pellets, etc. or combinations thereof may be inserted into the filter element 26 in accordance with various aspects.
  • the carrier material 55 may comprise a matrix material, such as, for example, a polymer material, which may be impregnated with the adsorbent material 50 (i.e., the adsorbent material 50 may be suspended in or otherwise held by the matrix material) such that the adsorbent material 50 may be carried with and by the matrix material into the filter element 26.
  • a matrix material such as, for example, a polymer material, which may be impregnated with the adsorbent material 50 (i.e., the adsorbent material 50 may be suspended in or otherwise held by the matrix material) such that the adsorbent material 50 may be carried with and by the matrix material into the filter element 26.
  • the matrix material may comprise a high-density or low-density polymer material, such as, for example, polyethylene or polypropylene, impregnated with the adsorbent material 50 or otherwise having the adsorbent material 50, such as, for example, a carbonaceous material (e.g., activated carbon, charcoal) dispersed therein.
  • a carbonaceous material e.g., activated carbon, charcoal
  • the adsorbent material 50 is relatively evenly dispersed, but such even dispersion may not be absolutely necessary.
  • the carrier material 55 is formed as a tubular or capsular member
  • the adsorbent material 50 may be inserted into the tubular or capsular member so as to be contained thereby upon insertion into the filter element 26.
  • the adsorbent material 50 may engage, contact, or otherwise interact with the continuous elongate structure such that the adsorbent material 50 can be carried into the filter element 26 thereby.
  • the continuous strip may be lengthwise wrapped around the adsorbent material 50 so as to contain the adsorbent material 50 therein (i.e., similar to a "tube") for insertion into the filter element 26.
  • the carrier material 55 may have a form that can be generally characterized as a containment or capturing vehicle for the adsorbent material 50 that hold the same in a relatively secure manner such that the adsorbent material 50 can be delivered into the filter element/rod 26 via the carrier material 55 in a captive manner, as compared to the loose powdered, granular, or particulate form of the adsorbent material 50 inserted within filter element 26 of smoking articles in some prior art processes.
  • the insertion or incorporation of the carrier material 55 carrying the adsorbent material 50 into the filter element 26 may be accomplished in a "cleaner" and more consistent and efficient manner (i.e., since the adsorbent material 50 is held “captive"), as compared to directing a loose powdered adsorbent material 50, or slurry form thereof, into the filter elements 26 (i.e., less dust, spillage, overflow, contamination, cross-contamination, etc.).
  • Such benefits may, in turn, translate into, for instance, less maintenance, a faster process, higher efficiency and/or more consistent delivery of the adsorbent material 50, and increased safety.
  • the carrier material 55 may be readily configured in any manner suitable for facilitating insertion thereof into individual filter elements 26.
  • a matrix material such as a gel-type substance or otherwise suitable substance may contain, though not necessarily through impregnation, the adsorbent material 50 in a form capable of being incorporated within an individual filter element 26.
  • the carrier material 55 carrying the adsorbent material 50 may comprise a strand, strip, or otherwise elongate structure that is severed to form individual portions capable of being inserted into the filter rod and/or filter element 26.
  • the carrier material 55 may be in the form of a pellet.
  • the pellets may be produced using devices such as the FL-M Series granulator equipment (e.g., FL-M-3) from Vector Corporation and as WP 120V and WP 200VN from Alexanderwerk, Inc.
  • Exemplary compaction devices such as compaction presses, are available as Colton 2216 and Colton 2247 from Vector Corporation and as 1200i, 2200i, 3200, 2090, 3090 and 4090 from Fette Compacting.
  • Devices for providing outer coating layers to compacted pelletized formulations are available as CompuLab 24, CompuLab 36, Accela-Cota 48 and Accela-Cota 60 from Thomas Engineering.
  • the pellets may be manufactured using a wide variety of extrusion techniques.
  • such pellets may be manufactured using co-extrusion techniques (e.g., using a twin screw extruder).
  • co-extrusion techniques e.g., using a twin screw extruder
  • successive wet or dry components or component mixtures can be placed within separate extrusion hoppers.
  • Steam, gases (e.g., ammonia, air, carbon dioxide, and the like), and humectants e.g., glycerin or propylene glycol
  • gases e.g., ammonia, air, carbon dioxide, and the like
  • humectants e.g., glycerin or propylene glycol
  • the contact of components is such that individual components (e.g., adsorbent material or flavoring agents) may be well embedded in the extrusion matrix or extrudate.
  • individual components e.g., adsorbent material or flavoring agents
  • the carrier material 55 carrying the adsorbent material 50 may be incorporated within a segment of a cavity filter (e.g., as pellets within the central cavity region of a three-segment or stage filter element).
  • the carrier material 55 carrying the adsorbent material 50 may be dispersed within a fibrous filter material (e.g., as pellets dispersed throughout a filter tow or gathered non-woven web material) as a segment of a longitudinally multi-segmented filter element (e.g., a two-segment filter element).
  • the adsorbent material 50 may be released from the carrier material 55 and into the filter material.
  • carrier material 55 may be dissolved, disintegrated, degraded, or otherwise destroyed in situ so as to release and/or disperse or otherwise effectively expose the adsorbent material 50 into the filter element 26 such that the adsorbent material 50 can have the desired effect on the mainstream smoke drawn through the filter element 26.
  • a representative cigarette filter element 26 may possess the adsorbent material 50 within at least one component or segment of the filter element in a manner sufficient to affect the mainstream smoke gas phase removal within the filter element 26.
  • the moisture content of the carbonaceous material can vary.
  • the moisture content of the carbonaceous material or other adsorbent within the filter element, prior to use of the cigarette incorporating that filter element is less than about 30 percent, often less than about 25 percent, and frequently less than about 20 percent, based on the combined weight of the carbonaceous material and moisture.
  • the moisture content of the carbonaceous material or other adsorbent within the filter element, prior to use of the cigarette incorporating that filter element is greater than about 3 percent, often greater than about 5 percent, and frequently greater than about 8 percent, based on the combined weight of the carbonaceous material and moisture.
  • an optional flavoring agent may also be impregnated or otherwise suspended or included within or on the carrier material 55, in addition to the adsorbent material 50. That is, the carrier material 55 may carry both the adsorbent material 50 and an optional flavoring agent into the filter element 26. As such, the complexity of the formation process for the filter element 26 and/or smoking article may be reduced.
  • the carrier material 55 may comprise a polymer matrix material impregnated with the adsorbent material 50, such as, for example, a carbonaceous material, and an optional flavoring agent.
  • a single insertion device/step may only be needed to insert the adsorbent material 50 and the optional flavoring agent, rather than using multiple insertion devices/steps to insert the adsorbent material 50 and the optional flavoring agent (i.e., in the form of a rupturable capsule) into the filter element 26.
  • the adsorbent material 50 may be formed as a sphere, pellet, capsule, tube or other structured object, with or without the carrier material 55.
  • the pellets may be manufactured using a wide variety of extrusion techniques.
  • such pellets may be manufactured using co-extrusion techniques (e.g., using a twin screw extruder).
  • a spherical carbon object may be formed so as to be more easily inserted into the filter material (e.g., cellulose acetate tow).
  • the as-formed adsorbent material 50 may be provided with a carrier material 55 in the form of an "outer shell" through the application of, for example, food grade shellac, ethyl cellulose, any suitable hydrophobic coating, or an electrostatically-applied material, to the adsorbent material object.
  • a resulting object may be inserted with an object-insertion device, as commonly known in the art, such as those used to insert rupturable capsules containing flavoring agents.
  • object-insertion device as commonly known in the art, such as those used to insert rupturable capsules containing flavoring agents.
  • spheres, capsules, or other forms of the adsorbent material 50 may be inserted in a similar manner (as well as embodiments wherein the carrier material 55 carries the adsorbent material 50 ).
  • one or more spherical carbon objects may be disposed within the filter material of the smoking article.
  • Such objects formed as a sphere, pellet, tube, etc. may provide a concentrated form of the adsorbent material 50 into the filter material.
  • the particles comprising the object may have to be released and/or dispersed into or otherwise exposed to the filter element 26 to have the desired effect.
  • a force physical, sound wave, or otherwise
  • the object is disposed in situ within the filter element 26 to rupture, crack, or otherwise break, degrade, or disintegrate the adsorbent material 50 and/or carrier material 55 comprising the object so as to disperse or otherwise release the adsorbent material 50 into the filter element 26 .
  • This step may occur at any point after which the object has been inserted into the filter material. That is, this step could be employed late in the manufacturing process, such as after fabrication of the entire smoking article. In other instances, the step may occur directly after insertion of the object into the filter rod.
  • the size and weight of a capsule may vary. Certain types of capsules are generally spherical in shape. However, suitable capsules may have other types of shapes, such as generally rectilinear, oblong, elliptical, or oval shapes. Exemplary generally spherical capsules have diameters of less than about 3.5 mm, generally less than about 1.5 mm, often less than about 1 mm, and frequently less than about 0.5 mm. For example, several capsules can be employed, and those capsules can be in the range of about 0.25 mm to about 2 mm in diameter.
  • a plurality of very small capsules can also be incorporated within the filter element (see, e.g., various microencapsulation options available from Euracli, which protect the active ingredient (from oxidation, humidity, etc.) and allows the active ingredient to be released at the desired moment either by rupture of the membrane when subjected to a precise mechanical action or via a protracted diffusion through the membrane for an extended effect), wherein such microcapsules may, in some instances, be held together in a cohesive manner by an appropriate binder material.
  • the total weight of the capsules contained within the filter may vary, but is typically greater than about 10 mg, often greater than about 20 mg, and can be greater than about 30 mg.
  • the total weight of the capsules is typically less than about 200 mg, often less than about 100 mg, and can be less than 50 mg.
  • the number of capsules incorporated into the filter element can vary, depending upon factors such as the size of the capsules, the character or nature of the payload (i.e., adsorbent material, optional flavoring agent or both), the positioning of the capsules within the filter element, and the like.
  • the number of capsules incorporated within the relevant region of the filter element can exceed about 5, can exceed about 10, can exceed about 20, can exceed about 40, and can even exceed about 100.
  • the number of capsules can be greater than about 500, and even greater than about 1,000. Larger numbers of capsules in certain embodiments can be advantageous because it can provide the smoker with increased control over the smoke-affecting properties of the payload.
  • Filter elements of the present invention can be incorporated within the types of cigarettes set forth in US Pat. Nos. 4,756,318 to Clearman et al. ; 4,714,082 to Banerjea et al. ; 4,771,795 to White et al. ; 4,793,365 to Sensabaugh et al. ; 4,989,619 to Clearman et al. ; 4,917,128 to Clearman et al. ; 4,961,438 to Korte ; 4,966,171 to Serrano et al. ; 4,969,476 to Bale et al. ; 4,991,606 to Serrano et al. ; 5,020,548 to Farrier et al.
  • filter elements of the present invention can be incorporated within the types of cigarettes that have been commercially marketed under the brand names "Premier” and "Eclipse” by R. J. Reynolds Tobacco Company. See, for example, those types of cigarettes described in Chemical and Biological Studies on New Cigarette Prototypes that Heat Instead of Burn Tobacco, R. J. Reynolds Tobacco Company Monograph (1988 ) and Inhalation Toxicology, 12:5, p. 1-58 (2000 ).
  • Cigarette rods typically are manufactured using a cigarette making machine, such as a conventional automated cigarette rod making machine.
  • exemplary cigarette rod making machines are of the type commercially available from Molins PLC or Hauni-Werke Korber & Co. KG.
  • cigarette rod making machines of the type known as MkX (commercially available from Molins PLC) or PROTOS (commercially available from Hauni-Werke Korber & Co. KG) can be employed.
  • MkX commercially available from Molins PLC
  • PROTOS commercially available from Hauni-Werke Korber & Co. KG
  • a description of a PROTOS cigarette making machine is provided in U.S. Patent No. 4,474,190 to Brand, at col. 5, line 48 through col. 8, line 3, which is incorporated herein by reference. Types of equipment suitable for the manufacture of cigarettes also are set forth in U.S.
  • the automated cigarette making machines of the type set forth herein provide a formed continuous cigarette rod or smokable rod that can be subdivided into formed smokable rods of desired lengths.
  • Various types of cigarette components including tobacco types, tobacco blends, top dressing and casing materials, blend packing densities and types of paper wrapping materials for tobacco rods, can be employed. See, for example, the various representative types of cigarette components, as well as the various cigarette designs, formats, configurations and characteristics, that are set forth in Johnson, Development of Cigarette Components to Meet Industry Needs, 52nd T.S.R.C. (Sept., 1998 ); U.S. Patent Nos. 5,101,839 to Jakob et al. ; 5,159,944 to Arzonico et al. ; 5,220,930 to Gentry and 6,779,530 to Kraker ; U.S. Patent Publication Nos.
  • the entire smokable rod is composed of smokable material (e.g., tobacco cut filler) and a layer of circumscribing outer wrapping material.
  • smokable material e.g., tobacco cut filler
  • another aspect of the present disclosure comprises an apparatus suitably configured for incorporating the adsorbent material 50 with the carrier material 55, and, in some instances, an optional flavoring agent 52, forming the filter element of the smoking article by incorporating the carrier material 55 carrying the adsorbent material 50, and/or for forming the smoking article itself having such a filter element incorporating the carrier material 55 / adsorbent material 50.
  • each rod has one or more forms of the carrier material 55 (e.g., pellets, capsules, strands, or combinations thereof) carrying the adsorbent material 50, disposed along the length of the rod, such that, when the rod is subdivided into rod portions, each rod portion includes at least one form of the carrier material 55 carrying the adsorbent material 50.
  • the carrier material 55 e.g., pellets, capsules, strands, or combinations thereof
  • each rod portion includes at least one form of the carrier material 55 carrying the adsorbent material 50.
  • Such apparatuses can incorporate equipment for supplying a continuous supply of filter material (e.g., a filter tow processing unit adapted to supply filter tow to a continuous rod forming unit).
  • a representative apparatus may also include, for example, an object delivery device such as a hopper and rotating wheel arrangement disclosed in U.S. Patent Application Publication No. US 2007/0068540 A1 to Thomas et al. , for supplying certain forms of the carrier material 55 carrying the adsorbent material 50 into the filter material.
  • an object delivery device such as a hopper and rotating wheel arrangement disclosed in U.S. Patent Application Publication No. US 2007/0068540 A1 to Thomas et al.
  • multiple forms of the carrier material 55 i.e., pellets and/or strands, or at least one of a pellet or strand in combination with at least one other of the pellet or strand
  • Arrangements for inserting such strands/objects into the filter material are disclosed, for example, in U.S. Patent Application No. 11/461,941 to Nelson et al. ( US 2008/0029118 A1 ) and U.S. Patent Application No. 11/760,983 to Stokes et al.
  • a rod-making apparatus 210 as illustrated in FIG. 4 may include a forming unit 450 configured to engage the adsorbent material 50 with the carrier material 55 in an on-line or off-line manner to form an insertion object.
  • the forming unit 450 may be configured to insert the adsorbent material 50 into a tubular or capsular member comprising the carrier material 55, to suspend the adsorbent material 50 in a matrix material comprising the carrier material 55, to engage the adsorbent material 50 with a continuous elongate member comprising the carrier material 55, and/or to wrap a continuous strip member comprising the carrier material 55 about the adsorbent material 50.
  • the insertion object can be delivered from the forming unit 450 to an insertion unit/device 214 configured to insert the carrier material 55 carrying the adsorbent material 50 into the filter material.
  • the forming unit may be in cooperation with or otherwise linked to such an insertion unit/device 214 (i.e., on-line vs off-line).
  • the forming unit 450 and the insertion unit/device 214 may be a single unit configured to perform both functions of forming the carrier material 55 carrying the adsorbent material 50, and inserting the carrier material 55 carrying the adsorbent material 50 into the filter material.
  • the filter material may be formed into a continuous rod having the carrier material 55 carrying the adsorbent material 50 disposed therein and extending along the longitudinal axis thereof.
  • the continuous rod then may be subdivided at predetermined intervals so as to form a plurality of filter rods or rod portions such that each rod portion includes at least a portion of the adsorbent material 50 therein.
  • the carrier material 55 comprising, for example, a pellet and a strand
  • the pellets may be disposed at predetermined positions within and along the filter rod or filter element, while the strand, if any, extends through the filter rod or filter element.
  • an exemplary rod-making apparatus 210 may include a rod-forming unit 212 (e.g., a KDF-2 unit available from Hauni-Werke Korber & Co. KG) and an object-insertion unit 214 suitably adapted to provide for placement of the insertion object(s) along a continuous length of filter material 40.
  • the continuous length or web of filter material may be supplied from a source (not shown) such as a storage bale, bobbin, spool or the like.
  • the filter material 40 may be processed using a filter material processing unit 218.
  • the continuous length of filter material has the carrier material 55 carrying the adsorbent material 50 incorporated therein by the object insertion unit 214, and is then passed through the rod-forming unit 212 to thereby forming a continuous rod 220.
  • the continuous rod 220 can be subdivided using a rod cutting assembly 222 into a plurality of rod portions 205 each having at least a portion of the adsorbent material 50 disposed therein.
  • the succession or plurality of rod portions 205 may be collected for use in collection device 226 which may be a tray, a rotary collection drum, conveying system, or the like. If desired, the rod portions can be transported directly to a cigarette making machine.
  • the filter material 40 can vary, and can be any material of the type that can be employed for providing a tobacco smoke filter for cigarettes.
  • a traditional cigarette filter material is used, such as cellulose acetate tow, gathered cellulose acetate web, polypropylene tow, gathered cellulose acetate web, gathered paper, strands of reconstituted tobacco, or the like.
  • filamentary tow such as cellulose acetate, polyolefins such as polypropylene, or the like.
  • One highly preferred filter material that can provide a suitable filter rod is cellulose acetate tow having 3 denier per filament and 40,000 total denier.
  • cellulose acetate tow having 3 denier per filament and 35,000 total denier can provide a suitable filter rod.
  • cellulose acetate tow having 8 denier per filament and 40,000 total denier can provide a suitable filter rod.
  • Filamentary tow such as cellulose acetate
  • Filamentary tow may be processed using a conventional filter tow processing unit 218 such as a commercially available E-60 supplied by Arjay Equipment Corp., Winston-Salem, N.C.
  • a plasticizer such as triacetin or carbowax
  • the plasticizer component of the filter material comprises triacetin and carbowax in a 1:1 ratio by weight.
  • the total amount of plasticizer is generally about 4 to about 20 percent by weight, preferably about 6 to about 12 percent by weight.
  • the continuous length of filter material 40 may be pulled through a block 230 by the action of the rod-forming unit 212, and the carrier material 55 carrying the adsorbent material 50 may be inserted along the length of and within the web of filter material.
  • the carrier material 55 carrying the adsorbent material 50 may also be introduced into the filter material at other points in the process, and this exemplary embodiment is not intended to be limiting in that regard.
  • the filter material may be further directed into a gathering region 232 of the rod-forming unit 212.
  • the gathering region can have a tongue and horn configuration, a gathering funnel configuration, stuffer or transport jet configuration, or other suitable type of gathering device.
  • the tongue 232 provides for further gathering, compaction, conversion or formation of the cylindrical composite from block 230 into an essentially cylindrical (i.e., rod-like) shape whereby the continuously extending strands or filaments of the filter material extend essentially along the longitudinal axis of the cylinder so formed.
  • the carrier material 55 carrying the adsorbent material 50 may also be placed into the filter material in the gathering region 232, as appropriate.
  • the filter material 40 which has been compressed into a cylindrical composite, is received further into the rod-forming unit 212.
  • the cylindrical composite is fed into wrapping mechanism 234, which includes endless garniture conveyer belt 236 or other garniture device.
  • the garniture conveyer belt 236 is continuously and longitudinally advanced using advancing mechanism 238 such as a ribbon wheel or cooperating drum so as to transport the cylindrical composite through wrapping mechanism 234.
  • the wrapping mechanism provides a strip of wrapping material 28 (e.g., non-porous paper plug wrap) to the outer surface of the cylindrical composite in order to produce the continuous wrapped rod 220.
  • the carrier material 55 carrying the adsorbent material 50 may also be engaged with the filter material in the wrapping or garniture region 232, as appropriate.
  • the elongate member as otherwise disclosed herein, may be in the form of a wrapping material 28 having the carrier material 55 carrying the adsorbent material 50 attached thereto or otherwise engaged therewith.
  • the strip or web of wrapping material 28 may provided from rotatable bobbin 242.
  • the wrapping material may be drawn from the bobbin, trained over a series of guide rollers, passed under block 230, and enter the wrapping mechanism 234 of the rod-forming unit.
  • the endless garniture conveyer belt 236 transports both the strip of wrapping material and the cylindrical composite in a longitudinally extending manner through the wrapping mechanism 234 while draping or enveloping the wrapping material about the cylindrical composite.
  • the seam formed by an overlapping marginal portion of wrapping material has adhesive (e.g., hot melt adhesive) applied thereto at applicator region 244 in order that the wrapping material can form a tubular container for the filter material.
  • adhesive e.g., hot melt adhesive
  • the hot melt adhesive may be applied directly upstream of the wrapping material's entry into the garniture of the wrapping mechanism 234 or block 230, as the case may be.
  • the adhesive can be cooled using chill bar 246 in order to cause rapid setting of the adhesive. It is understood that various other sealing devices and other types of adhesives can be employed in providing the continuous wrapped rod.
  • the continuous wrapped rod 220 passes from the sealing device and is subdivided (e.g., severed) at regular intervals at the desired, predetermined length using cutting assembly 222 which includes as a rotary cutter, a highly sharpened knife, or other suitable rod cutting or subdividing device. It is particularly desirable that the cutting assembly does not flatten or otherwise adversely affect the shape of the rod.
  • the rate at which the cutting assembly severs the continuous rod at the desired points is controlled via an adjustable mechanical gear train (not shown), or other suitable device.
  • the rate at which the carrier material 55 carrying the adsorbent material 50 is inserted into the continuous web of filter material may be in a direct relationship to the speed of operation of the rod-making machine.
  • the insertion unit can be geared in a direct drive relationship to the drive assembly of the rod-making apparatus.
  • the insertion unit 214 can have a direct drive motor synchronized with the drive assembly of the rod-forming unit.
  • the insertion unit 214 may be configured to be in communication with an inspection/detection system 247, for example, in the form of a feedback loop, whereby some defects detected by the inspection/detection system 247 may be eliminated by adjusting the upstream insertion unit 214.
  • embodiments of the present disclosure are also directed to maintaining or increasing the production rate of the rod-making machine, without adversely affecting the placement of the carrier material 55 carrying the adsorbent material 50 within the filter material.
  • the insertion unit 214 may include a rotatable insertion member 248 having the shape of a wheel, which may be positioned so as to rotate in a vertical plane.
  • the insertion unit 214 may also include a hopper assembly 252 and/or other transfer device for feeding or otherwise providing transfer of various forms of the carrier material 55 (such as, for example, pellets) to insertion member 248.
  • the carrier material 55 such as, for example, pellets
  • the carrier material 55 on the peripheral face of the wheel is brought into contact with the filter material 40 within the block 230, where the carrier material 55 is ejected from the pockets into the gathered filter material 40 . Details of such an object-insertion arrangement are further detailed, for example, in U.S. Patent No. 7,115,085 to Deal ; U.S. Patent No.
  • Such object-insertion apparatuses may include, for example, a tongue or tongue portion configured to gather the supply of filter material into a continuous rod and/or an insertion unit for inserting a tubular member having the adsorbent material 50 therein into the filter material.
  • various forms of the carrier material 55 may be serially attached or otherwise serially engaged with each other so as to form a continuous chain, wherein the insertion unit 214 may be configured to place the continuous chain into the filter material.
  • Certain forms of the carrier material 55 may also be attached or otherwise engaged with an elongate member, wherein the elongate member may comprise, for example, a strand, and the carrier material 55 is thus strung together by the strand.
  • the carrier material 55 i.e., pellets and/or strands
  • at least one of a pellet or strand in combination with at least one other of the pellet or strand may be inserted into the filter material by the insertion unit 214 .
  • One arrangement for inserting a strand into the filter material is disclosed, for example, in U.S. Patent Application No. 11/461,941 to Nelson et al.
  • the elongate member may also be configured to extend laterally (i.e., as a two dimensional sheet).
  • the rod-forming apparatus 210 may include a garniture device configured to wrap the elongate member having the adsorbent material 50 attached thereto about the filter material such that the elongate member forms a wrap encompassing the filter material and the adsorbent material 50 such as disclosed in U.S. Patent Application No. 11/760,983 to Stokes et al.
  • the adsorbent material may be released from the carrier material and into the filter material.
  • the carrier material 55 may be dissolved, disintegrated, degraded, or otherwise destroyed so as to release and/or disperse the adsorbent material 50 into the filter material so as to allow the adsorbent material 50 to have the desired effect on the mainstream smoke drawn through the filter element.
  • the release of the adsorbent material into the filter material may occur before or after the continuous rod has been severed into filter segments (e.g., filter element 26 ). Such release can occur during the manufacturing process or, in some instances, may be effectuated by the smoker prior to smoking the smoking article.
  • an adsorbent material releasing unit 400 may be provided downstream in the production line from the insertion unit 214, wherein the adsorbent material releasing unit 400 may be configured to interact with the carrier material 55 in situ within the filter element so as to release the adsorbent material 50 into the filter material using, for example, a thermal process, an ultrasonic process, or any other suitable mechanism for releasing the adsorbent material 50 from the carrier material 55.
  • the adsorbent material 50 may be, for example, plasticized (i.e., moistened to form a "paste") such that the resulting object is resilient, flexible, and/or otherwise capable of being handled (see, e.g., US Pat. No. 4,862,905 to Green, Jr. et al. ).
  • the adsorbent material 50 can then be processed into a releasable form, for instance, by a heating and/or drying procedure applied to the filter element having the object therein. That is, the heating/drying process may cause the plasticizer to be removed from the object, which then becomes brittle or otherwise breakable.
  • the filter element can then be mechanically processed, for example, through opposed rollers, through an "impact” process (i.e., sonic vibration, heating/cooling cycles, etc.), and/or through an irradiation procedure (i.e., microwave energy causing the expansion of liquid/gas associated with the object, leading to the breakdown of the object structure).
  • an "impact” process i.e., sonic vibration, heating/cooling cycles, etc.
  • irradiation procedure i.e., microwave energy causing the expansion of liquid/gas associated with the object, leading to the breakdown of the object structure.
  • various forms of the adsorbent material 50 may be disposed in a closed cell foam as the carrier material 55, wherein, once inserted into a filter element 20, may be irradiated or heated to break down the foam and release the adsorbent material therefrom.
  • the carrier material 55 may comprise an open cell foam, wherein, for example, air and/or physical force may be used to release the adsorbent material 50 once the object is inserted into the filter element 20.
  • the carrier material 55 may be provided, for example, in the form of a breakable capsule, a "capsule-in-capsule," or a strand, formed of a water- or other liquid-soluble polymer and configured to carry the adsorbent material 50.
  • a soluble polymer may comprise, for example, polylactic acid, polyvinyl alcohol (PVA), starches and/or starch-based polymers, carrageenans, polyvinyl acetate, hydroxypropylcellulose, pullulan, carboxymethylcellulose and its salts (i.e., alkali metal salts), alginates and their salts, gelatin, and/or any other suitable polymers or combinations thereof.
  • the object can be relatively larger than previous "solid state" objects inserted into filter elements (i.e., relatively larger than between about 2 mm and about 3.5 mm).
  • a control system may include appropriate control hardware and/or software.
  • An exemplary control system 290 can incorporate, for example, a Siemens 315-2DP Processor, a Siemens FM352-5 Boolean Processor and a 16 input bit/16 output bit module.
  • Such a system can utilize a system display 293, such as a Siemens MP370 display.
  • An exemplary rod-making unit 212 may include controls configured, for a rod of desired length, to adjust the speed of the knife of the severing unit to be timed relative to the speed of continuous rod formation.
  • a first encoder 296, by way of connection with the drive belt of the rod-making unit, and the control unit 299 of the insertion unit, may provide a reference of the knife position of the cutting assembly relative to the wheel position of the insertion unit.
  • the first encoder 296 may provide one manner of controlling the speed of rotation of the wheel of the insertion unit relative to the speed at which continuous web of filter tow passes through the rod-making unit.
  • An exemplary first encoder 296 is available as a Heidenhain Absolute 2048 encoder.
  • the adsorbent material 50 and the carrier material 55 are both in the form of a fiber, with the adsorbent material fiber comprising or incorporating an adsorbent material as defined herein.
  • the fibers can comprise conventional staple fiber as well as substantially continuous structures, such as continuous filaments.
  • the fibers of the invention can be hollow or solid, and can have a substantially round or circular cross section or non-circular cross sections (e.g., oval, square, rectangular, multi-lobed, and the like).
  • the fibers can be in the form of a single thread or filament or in the form of a multiple thread or filament structure, such as in the form of a yarn or other structure wherein multiple filaments are bonded, twisted, or entangled together.
  • the fibers can be adapted for unraveling after insertion into a filter so as to increase the available surface area of the adsorbent fiber.
  • the fibers can be formed by any fiber-forming process known in the art, including extrusion, melt-spinning, solution spinning, and the like.
  • the color of each fiber can vary, but the adsorbent fiber will often appear black where the adsorbent fiber is a carbonaceous fiber as described herein.
  • the fibers used for the adsorbent material 50 or the carrier material 55 can be constructed of natural or synthetic materials.
  • Exemplary natural fibers include cotton, linen, jute, hemp, cotton, wool, and wood pulp.
  • Exemplary synthetic polymers that can be used to form the fibers include polyamides, polyamines, polyimides, polyacrylics, polycarbonates, polydienes, polyepoxides, polyesters, polyethers, polyfluorocarbons, polyolefins, polyphenylenes, silicon containing polymers, polyurethanes, polyvinyls, polyacetals, polyarylates, modified cellulosic fibers (e.g., cellulose acetate), copolymers thereof, terpolymers thereof, and mixtures thereof.
  • Non-limiting examples of specific polymeric materials useful as the fiber material according to the present invention include the following: Nylon 6, Nylon 6/6, Nylon 12, polyaspartic acid, polyglutamic acid, polyacrylamide, polyacrylonitrile, esters of methacrylic acid and acrylic acid, polybisphenol A carbonate, polypropylene carbonate, polybutadiene, polyisoprene, polynorbonene, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polycaprolactone, polyglycolide, polylactide, polyhydroxybutyrate, polyhydroxyvalerate, polyethylene adipate, polybutylene adipate, polypropylene succinate, polyethylene glycol, polybutylene glycol, polypropylene oxide, polyoxymethylene, polytetramethylene ether, polytetrahydrofuran, polyepichlorohydrin, urea-formaldehyde, melamine-formaldehyde
  • the adsorbent material 50 can be incorporated into the adsorbent fiber in any manner known in the art, including by adhering adsorbent particles to the fiber, by imbedding or suspending adsorbent particles within the fiber, or by forming a fiber and then chemically altering the fiber such that an adsorbent material is formed (e.g., carbonization of a fiber).
  • the adsorbent fiber is constructed of a carbonaceous material (i.e., a carbon fiber).
  • Carbon fibers can be described as fibers obtained by the controlled pyrolysis of a precursor fiber. Since carbon is typically difficult to shape into fiber form, commercial carbon fibers are often made by extrusion of a precursor material into filaments, which is followed by carbonization, usually at high temperature. Common precursors for carbon fibers include rayon, acrylic fibers (such as polyacrylonitrile or PAN), and pitch (which can include isotropic pitch and anisotropic mesophase pitch, as well as meltblown pitch fibers). Other precursors, such as cellulose, may also be converted to carbon fibers.
  • rayon rayon
  • acrylic fibers such as polyacrylonitrile or PAN
  • pitch which can include isotropic pitch and anisotropic mesophase pitch, as well as meltblown pitch fibers.
  • Other precursors, such as cellulose may also be converted to carbon fibers.
  • KYNOLTM novoloid fibers are high-performance phenolic fibers that are transformed into activated carbon by a one-step process combining both carbonization and activation.
  • Forming carbon fibers from rayon or acrylics generally consists of stabilization, carbonization, and graphitization, each taking place at successively higher temperatures, to sufficiently remove non-carbon species, such as oxygen, nitrogen, and hydrogen.
  • Preparation of fibers using pitch also typically includes stabilization and carbonization; however, pitch is typically spun as part of the carbon fibers include Toray Industries, Toho Tenax, Mitsubishi, Sumitomo Corporation, Hexcel Corp., Cytec Industries, Zoltek Companies, and SGL Group.
  • Carbon fibers are often classified in three separate ways. First, they can be classified based on modulus and strength. Examples include ultra high modulus (UHM) fibers (modulus >450 Gpa); high modulus (HM) fibers (modulus between 350 and 450 Gpa); intermediate modulus (IM) fibers (modulus between 200 and 350 Gpa); low modulus, high tensile (HT) fibers (modulus ⁇ 100 Gpa and tensile strength >3.0 Gpa); and super high tensile (SHT) fibers (tensile strength >4.5 Gpa).
  • UHM ultra high modulus
  • HM high modulus
  • IM intermediate modulus
  • HT high tensile
  • SHT super high tensile
  • carbon fibers can be classified based on the precursor material used to prepare the fiber (e.g., PAN, rayon, pitch, mesophase pitch, isotropic pitch, or gas phase grown fibers).
  • carbon fibers can be classified based on the final heat treatment temperature. Examples include Type-I, high heat treatment (HTT) fibers (final heat treatment temperature above 2,000 °C), Type-II, intermediate heat treatment (IHT) fibers (final heat treatment temperature around 1,500 °C), and Type-III low heat treatment (LHT) fibers (final heat treatment not greater than 1,000 °C). Any of the above classifications of carbon fibers could be used in the present invention.
  • the size of the carrier fiber and the adsorbent fiber can vary without departing from the invention. Typically, fiber sizes vary from about 0.5 denier to about 20 denier.
  • the size of the adsorbent fiber will often depend, at least in part, on the desired amount of adsorbent in the filter element. For example, the size of the adsorbent fiber can be determined based on the desired weight of adsorbent in the filter, such as the weight ranges for carbonaceous materials set forth herein.
  • the carrier fiber and the adsorbent fiber can be connected or associated with each other for purposes of insertion into a cigarette filter material using any of a variety of methods, including wrapping, intertwining or weaving the two fiber types together, bonding the fiber types together using an adhesive or binder, co-extruding the fibers, or tying the fiber types together using a separate connecting element, such as a separate thread or clip.
  • Each composite fiber structure i.e., combination of a carrier fiber and an adsorbent fiber
  • the filter material incorporates a fiber material that is degradable, meaning the fiber is capable of undergoing degradation or decomposition, for example through chemical reaction that breaks down the fiber into decomposition products, under environmental conditions associated with disposal of the fiber material.
  • a fiber material that is degradable meaning the fiber is capable of undergoing degradation or decomposition, for example through chemical reaction that breaks down the fiber into decomposition products, under environmental conditions associated with disposal of the fiber material.
  • One exemplary type of degradation is biodegradation.
  • biodegradable fiber refers to a polymeric fiber material that degrades under aerobic and/or anaerobic conditions in the presence of bacteria, fungi, algae, and other microorganisms to carbon dioxide/methane, water and biomass, although materials containing heteroatoms can also yield other products such as ammonia or sulfur dioxide.
  • Biomass generally refers to the portion of the metabolized materials incorporated into the cellular structure of the organisms present or converted to humus fractions indistinguishable from material of biological origin.
  • exemplary biodegradable fibers include, without limitation, cellulosic or other organic plant-derived fibers (e.g., cotton, wool, cedar, hemp, bamboo, kapok, or flax), polyvinyl alcohol, aliphatic polyesters, aliphatic polyurethanes, cis-polyisoprene, cis-polybutadiene, polyhydroxy alkanoates, polyanhydrides, and copolymers and blends thereof.
  • aliphatic polyester refers to polymers having the structure -[C(O)-R-O] n , wherein n is an integer representing the number of monomer units in the polymer chain and R is an aliphatic hydrocarbon, preferably a C1-C10 alkylene, more preferably a C1-C6 alkylene (e.g., methylene, ethylene, propylene, isopropylene, butylene, isobutylene, and the like), wherein the alkylene group can be a straight chain or branched.
  • Exemplary aliphatic polyesters include polyglycolic acid (PGA), polylactic acid (PLA) (e.g., poly(L-lactic acid) or poly(DL-lactic acid)), polyhydroxy butyrate (PHB), polyhydroxy valerate (PHV), polycaprolactone (PCL), and copolymers thereof.
  • PGA polyglycolic acid
  • PLA polylactic acid
  • PHB polyhydroxy butyrate
  • PV polyhydroxy valerate
  • PCL polycaprolactone
  • the biodegradable fiber is a bamboo fiber or a PLA fiber.
  • Suitable bamboo fibers are described, for example, in U.S. Pat. No. 7,313,906 to Zhou et al. , which is incorporated by reference herein.
  • bamboo fibers are commercially available from China Bambro Textile Co., Ltd.
  • PLA fibers can be derived from corn or made synthetically.
  • Suitable PLA fibers are described in U.S. Pat. No. 7,445,841 to Kaijiyama et al. and are commercially available from NatureWorks LLC.
  • the degradable fiber can be utilized in the form of a single strand or as part of a multi-strand yarn structure.
  • the fibrous material can be used in the form of a sheet.
  • the degradable fiber can be used in combinations containing multiple fiber types, such as degradable fiber materials of different types woven together or otherwise combined into a unitary structure or combinations of degradable fibers with non-degradable fibers and/or adsorbent fibers woven together or otherwise combined into a unitary structure (e.g., combining bamboo fibers, cotton fibers, and carbon fibers into a single fiber structure such as a single yarn structure).
  • multiple fiber types could be combined or mixed within a single fiber strand.
  • the fiber often will be comprised primarily of the given fiber material (e.g., above about 50% by weight based on the total weight of the fiber) or consist essentially of the fiber material (e.g., above about 90% by weight) or consist virtually entirely of the fiber material (e.g., above about 98% by weight or about 100% by weight).
  • a fiber described as a "bamboo fiber” can incorporate relatively minor amounts of bamboo fibrous material (e.g., in combination with other types of fibrous materials or in combination with additives), or be comprised primarily of bamboo fibrous material, or consist essentially of bamboo fibrous material, or consist virtually entirely of bamboo fibrous material.
  • the degradable fibers can act as a carrier fiber for an adsorbent material (e.g., a carbon fiber) as described herein, or as a carrier for other additives adapted to alter the flavor or aroma of a smoking article, or as a carrier for both an adsorbent material and a flavor/aroma additive.
  • an adsorbent material e.g., a carbon fiber
  • the inherent properties of the degradable fiber itself may alter the character or nature of the smoke passing through the filter.
  • Exemplary flavoring agents or aroma agents include any solid or liquid composition that can be incorporated into a fiber structure by, for example, absorption, adhesion, or physical entanglement within a fibrous structure.
  • the additives can be any composition capable of altering the character or nature of the smoke passing through the filter material, such as by action of a flavorant or a deodorizing agent.
  • exemplary additives include natural or synthetic flavorants that can alter the flavor and/or aroma of mainstream smoke, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity or spice.
  • flavors or aromas include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, and any combinations thereof. See also, Leffingwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972 ). Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus.
  • exemplary deodorizing agents include any composition adapted to mask or remove tobacco smoke aroma.
  • One exemplary composition comprises inorganic salts and odor adsorbents such as described in U.S. Pat. No. 7,407,922 to Leskowitz .
  • Another deodorizing composition contains a mandarin orange essential oil fraction such as described in U.S. Pat. No. 7,434,586 to Higashi et al.
  • the degradable fiber can be incorporated into a filter material in the same manner as described herein for the carrier fiber/adsorbent material embodiments.
  • the degradable fiber could be utilized as the carrier fiber in the composite fiber structures set forth in FIGS. 5 and 6 .
  • the degradable fiber can be imbedded in a filter material without a second fiber structure.
  • a degradable fiber comprising a flavoring agent could be added to a filter material.
  • the degradable fiber, with or without additives as described herein can be incorporated into any of the wrapping materials utilized in a smoking article filter, such as in the plug wrap or tipping material.
  • the degradable fiber can be replaced with a non-degradable fiber, such as any of the numerous synthetic fiber materials described herein that are not typically viewed as degradable in nature (e.g., polyethylene terephthalate or polypropylene).
  • the non-degradable fiber can be used in any of the applications described herein for degradable fibers. Both the degradable fibers and the non-degradable fibers can be derived from natural materials, synthetic materials, or materials of a natural origin that have been chemically modified.
  • the number of degradable or non-degradable fibers imbedded within a filter element can vary. Typical ranges of the number of fiber insertions within a filter element segment include 1 to about 500 fiber insertions, more typically 1 to about 100, and often 1 to about 50.
  • FIG. 5 illustrates one example of a composite fiber structure 60 imbedded within a filter segment 32.
  • the number of composite fiber structures can vary.
  • An exemplary range of the number of composite fiber structures 60 incorporated into a filter 26 is 1 to about 500, more typically 1 to about 100, and often 1 to about 50.
  • the composite fiber structures 60 can be included in a single segment 32 of a multi-segment filter 26 as shown in FIG. 5 , or the composite fiber structures can be imbedded within a filter element comprising only a single segment or can extend throughout multiple sections of a multi-segment filter.
  • the composite fiber structures 60 can extend linearly in the longitudinal direction of the cigarette filter as shown in FIG.
  • the composite fiber structure 60 can include at least one carrier fiber 62 and at least one adsorbent fiber 64.
  • one method of connecting the two fiber types is to wrap the adsorbent fiber 64 around the carrier fiber 62.
  • the number of wraps of the adsorbent fiber 64 per unit of length of the carrier fiber 62 can vary, and will depend on a number of factors including the desired amount of adsorbent material in the filter element.
  • An exemplary range of wrappings of the adsorbent fiber 64 around the carrier fiber 62 is 1 to about 50 circumferential wrappings of the adsorbent fiber per inch of carrier fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
EP12181299.4A 2008-05-21 2009-05-21 Cigarette filter having composite fiber structures Active EP2537427B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/124,891 US8079369B2 (en) 2008-05-21 2008-05-21 Method of forming a cigarette filter rod member
US12/124,874 US8375958B2 (en) 2008-05-21 2008-05-21 Cigarette filter comprising a carbonaceous fiber
US12/392,725 US8613284B2 (en) 2008-05-21 2009-02-25 Cigarette filter comprising a degradable fiber
EP09751566.2A EP2323506B2 (en) 2008-05-21 2009-05-21 Apparatus and associated method for forming a filter component of a smoking article and smoking articles made therefrom

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP09751566.2A Division-Into EP2323506B2 (en) 2008-05-21 2009-05-21 Apparatus and associated method for forming a filter component of a smoking article and smoking articles made therefrom
EP09751566.2A Division EP2323506B2 (en) 2008-05-21 2009-05-21 Apparatus and associated method for forming a filter component of a smoking article and smoking articles made therefrom
EP09751566.2 Division 2009-05-21

Publications (2)

Publication Number Publication Date
EP2537427A1 EP2537427A1 (en) 2012-12-26
EP2537427B1 true EP2537427B1 (en) 2016-08-17

Family

ID=40983562

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09751566.2A Active EP2323506B2 (en) 2008-05-21 2009-05-21 Apparatus and associated method for forming a filter component of a smoking article and smoking articles made therefrom
EP12181299.4A Active EP2537427B1 (en) 2008-05-21 2009-05-21 Cigarette filter having composite fiber structures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09751566.2A Active EP2323506B2 (en) 2008-05-21 2009-05-21 Apparatus and associated method for forming a filter component of a smoking article and smoking articles made therefrom

Country Status (5)

Country Link
EP (2) EP2323506B2 (es)
JP (2) JP5438760B2 (es)
CN (2) CN103222684B (es)
ES (2) ES2420685T5 (es)
WO (1) WO2009143338A2 (es)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0905210D0 (en) 2009-03-26 2009-05-13 British American Tobacco Co Rod for a smoking article and method and apparatus for manufacture
GB0922254D0 (en) * 2009-12-21 2010-02-03 British American Tobacco Co Enhancing the disintegration and/or degradation of a smoking article
WO2012054111A1 (en) * 2010-10-06 2012-04-26 Celanese Acetate Llc Smoke filters for smoking devices with porous masses having a carbon particle loading and an encapsulated pressure drop
CN101828770A (zh) * 2010-05-11 2010-09-15 四川三联卷烟材料有限公司 笑脸滤棒
US9149070B2 (en) * 2011-07-14 2015-10-06 R.J. Reynolds Tobacco Company Segmented cigarette filter for selective smoke filtration
UA115426C2 (uk) * 2011-09-09 2017-11-10 Філіп Морріс Продактс С.А. Фільтр з полімерною вставкою для курильного виробу
US10064429B2 (en) * 2011-09-23 2018-09-04 R.J. Reynolds Tobacco Company Mixed fiber product for use in the manufacture of cigarette filter elements and related methods, systems, and apparatuses
GB201116425D0 (en) * 2011-09-23 2011-11-02 British American Tobacco Co Filter materials and uses thereof
US20130085052A1 (en) 2011-09-29 2013-04-04 R. J. Reynolds Tobacco Company Apparatus for Inserting Microcapsule Objects into a Filter Element of a Smoking Article, and Associated Method
EP2625975A1 (en) 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having an aerosol-cooling element
EP2625974A1 (en) * 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having a flavour-generating component
WO2013098410A2 (en) 2011-12-30 2013-07-04 Philip Morris Products S.A. Smoking article with front-plug and method
AR089602A1 (es) 2011-12-30 2014-09-03 Philip Morris Products Sa Articulo generador de aerosoles para usar con un dispositivo generador de aerosoles
MY170381A (en) 2011-12-30 2019-07-27 Philip Morris Products Sa Smoking article with front-plug and aerosol-forming substrate and method
US9854833B2 (en) 2012-02-16 2018-01-02 R. J. Reynolds Tobacco Company Apparatus and associated method for forming a filter component of a smoking article
GB2503644A (en) * 2012-05-03 2014-01-08 British American Tobacco Co Filter
CN104379003B (zh) 2012-05-31 2020-02-07 菲利普莫里斯生产公司 用于在气溶胶生成物品中使用的带有香味的杆
AR091509A1 (es) 2012-06-21 2015-02-11 Philip Morris Products Sa Articulo para fumar para ser usado con un elemento de calentamiento interno
US9179709B2 (en) * 2012-07-25 2015-11-10 R. J. Reynolds Tobacco Company Mixed fiber sliver for use in the manufacture of cigarette filter elements
CN103054181B (zh) * 2012-12-27 2015-02-11 广东中烟工业有限责任公司 一种咖啡或可可复合颗粒滤棒及其制备方法
RS58290B1 (sr) 2013-03-28 2019-03-29 Philip Morris Products Sa Proizvod za pušenje koji sadrži element za oslobađanje arome
US20150027468A1 (en) * 2013-07-25 2015-01-29 Altria Client Services Inc. Electronic smoking article
CN104432503B (zh) * 2013-09-18 2018-05-22 贵州中烟工业有限责任公司 一种缓释型酒香卷烟芯线及其制备和应用
JP2016220545A (ja) * 2013-10-25 2016-12-28 日本たばこ産業株式会社 シガレット用のフィルタ
RS57124B1 (sr) * 2013-12-20 2018-07-31 Philip Morris Products Sa Proizvod za pušenje sa filterom koji sadrži kapsulu
CN104005256A (zh) * 2014-05-30 2014-08-27 滁州卷烟材料厂 一种防水安全烟用接装纸原纸及其制备方法
CN104018401A (zh) * 2014-05-30 2014-09-03 滁州卷烟材料厂 一种具有保健功能的水松纸原纸及其制备方法
CN104005257B (zh) * 2014-05-30 2016-06-08 滁州卷烟材料厂 一种耐水可降解的水松纸原纸及其制备方法
CN104005259B (zh) * 2014-05-30 2016-06-08 滁州卷烟材料厂 一种具有阻燃效果的高透气水松纸原纸及其制备方法
JP6784754B2 (ja) * 2015-09-03 2020-11-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生物品内でセグメントとして使用するためのエアロゾル発生物品および低抵抗支持要素
US10524500B2 (en) 2016-06-10 2020-01-07 R.J. Reynolds Tobacco Company Staple fiber blend for use in the manufacture of cigarette filter elements
JP6041415B1 (ja) * 2016-07-04 2016-12-07 田山 ▲吉▼基 フィルタ付シガレットのフィルタにおいて吸引時タール成分1mg以下にする方法。
RU2763805C2 (ru) * 2017-04-14 2022-01-11 Филип Моррис Продактс С.А. Фильтрующий компонент
GB201717567D0 (en) * 2017-10-25 2017-12-06 British American Tobacco Investments Ltd A filter for a smoking article or an aerosol generating product
CN108378416B (zh) * 2018-03-05 2020-05-12 滁州卷烟材料厂 一种三段插接式复合多位截流滤嘴
CN108685192A (zh) * 2018-06-27 2018-10-23 常州龙途新材料科技有限公司 一种用于非燃烧烟的可降解气味产生元件及香烟制品
WO2021071239A1 (ko) * 2019-10-07 2021-04-15 주식회사 이엠텍 전기 가열식 흡연 물품 내에 삽입될 수 있는 액상 카트리지의 제조 장치 및 제조 방법
EP3918929A1 (en) 2020-06-03 2021-12-08 International Tobacco Machinery Poland SP. Z O.O. Method and apparatus for manufacturing of rods
GB2614895A (en) * 2022-01-21 2023-07-26 Essentra Filter Products Dev Co Pte Ltd A sustainable smoking article element

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881770A (en) 1954-05-27 1959-04-14 Eastman Kodak Co Fibrous tobacco smoke filters
NL252242A (es) 1959-06-03
US3101723A (en) 1960-11-15 1963-08-27 Philip Morris Inc Fibrous cigarette filter
NL282359A (es) 1961-09-19
US3311519A (en) 1964-01-28 1967-03-28 Eastman Kodak Co Additive filter
GB1058343A (en) 1964-04-20 1967-02-08 Philip Morris Inc Filter unit for smoking articles
US3347247A (en) 1964-05-14 1967-10-17 Philip Morris Inc Tobacco smoke filter
US3349780A (en) 1964-11-04 1967-10-31 Eastman Kodak Co Acetate filter elements containing carbon
US3366121A (en) 1964-12-15 1968-01-30 H 2 O Filter Corp Filter cigarettes
US3370595A (en) 1965-01-04 1968-02-27 Celanese Corp Smoke filters
DE1300854B (de) 1965-05-14 1969-08-07 Reemtsma H F & Ph Filter fuer Zigaretten
US3319629A (en) 1965-05-20 1967-05-16 American Cyanamid Co Filter cigarette
US3217715A (en) 1965-05-24 1965-11-16 American Filtrona Corp Smoke filter and smoking devices formed therewith
US3413982A (en) 1965-08-04 1968-12-03 Eastman Kodak Co Tobacco smoke filter employing ethylene copolymer bonding material
US3428049A (en) 1965-12-21 1969-02-18 American Tobacco Co Tobacco smoke filter element
US3602231A (en) 1969-12-12 1971-08-31 H 2 D Filter Corp The Means for audible detection of the activation of a filter for smoking devices
IL37274A0 (en) * 1970-07-29 1971-10-20 Celfil Co Filters for tobacco products and method for their manufacture
US3648711A (en) 1970-08-11 1972-03-14 American Filtrona Corp Tobacco smoke filter
GB1331096A (en) 1970-10-07 1973-09-19 British American Tobacco Co Tobacco-smoke filters
BE787501A (fr) 1971-08-12 1973-02-12 Rhone Poulenc Textile Articles textiles pour vetements de protection et procede pour les obtenir
DE2232892A1 (de) 1972-07-05 1974-01-24 Hauni Werke Koerber & Co Kg Vorrichtung zum umhuellen eines endlosen tabakstranges
US3972335A (en) 1972-09-20 1976-08-03 Calgon Corporation Mentholated cigarette filter
US3957563A (en) 1974-02-22 1976-05-18 Brown & Williamson Tobacco Corporation Method and apparatus for the manufacture of filter rods containing particulate material by a split rod technique
CH613850A5 (es) 1976-11-26 1979-10-31 Baumgartner Papiers Sa
JPS5388400A (en) * 1977-01-13 1978-08-03 Toho Rayon Co Ltd Cigarette filter
DE2703288A1 (de) 1977-01-27 1978-08-03 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum siegeln einer naht eines strangfoermigen produktes der tabakverarbeitenden industrie
CH608177A5 (es) 1977-02-21 1978-12-29 Neukomm Serge
US4174720A (en) 1977-04-26 1979-11-20 Liggett Group Inc. Glue transfer apparatus for cigarette filters
GB2020158B (en) 1978-04-21 1982-11-24 Cigarette Components Ltd Production of tobacco smoke filters
US4474190A (en) 1981-03-21 1984-10-02 Hauni-Werke Korber & Co. Kg Method and apparatus for regulating the operation of machines for the production of cigarettes or the like
DE3345608A1 (de) 1983-02-04 1984-08-09 Hauni-Werke Körber & Co KG, 2050 Hamburg Verfahren und vorrichtung zum bilden von stabfoermigen artikeln der tabakverarbeitenden industrie
IT1178561B (it) 1983-10-12 1987-09-09 Hauni Werke Koerber & Co Kg Procedimento e dispositivo per formare un filone di tabacco, e sigarette prodotte mediante un filone di tale tipo
JPS60224816A (ja) 1984-04-20 1985-11-09 Nikkiso Co Ltd 気相成長による炭素繊維の製造方法
US5012823A (en) 1984-08-03 1991-05-07 Philip Morris Incorporated Tobacco processing
US5020548A (en) 1985-08-26 1991-06-04 R. J. Reynolds Tobacco Company Smoking article with improved fuel element
US4793365A (en) 1984-09-14 1988-12-27 R. J. Reynolds Tobacco Company Smoking article
CN1024996C (zh) 1984-12-21 1994-06-15 美国J·R瑞诺兹烟草公司 吸烟制品
US4781203A (en) 1985-05-15 1988-11-01 Hue Paul D Method and apparatus for making self-extinguishing cigarette
US4989619A (en) 1985-08-26 1991-02-05 R. J. Reynolds Tobacco Company Smoking article with improved fuel element
US5033483A (en) 1985-10-28 1991-07-23 R. J. Reynolds Tobacco Company Smoking article with tobacco jacket
US4756318A (en) 1985-10-28 1988-07-12 R. J. Reynolds Tobacco Company Smoking article with tobacco jacket
US4917128A (en) 1985-10-28 1990-04-17 R. J. Reynolds Tobacco Co. Cigarette
ZA87623B (en) 1986-03-10 1987-11-25 Gen Electric Apparatus for monitoring temperatures of implements during brazing
US5076297A (en) 1986-03-14 1991-12-31 R. J. Reynolds Tobacco Company Method for preparing carbon fuel for smoking articles and product produced thereby
US4771795A (en) 1986-05-15 1988-09-20 R. J. Reynolds Tobacco Company Smoking article with dual burn rate fuel element
DE3631227C2 (de) 1986-09-13 1994-09-01 Hauni Werke Koerber & Co Kg Verfahren und Vorrichtung zum Herstellen von Zigaretten
GB8622606D0 (en) 1986-09-19 1986-10-22 Imp Tobacco Ltd Smoking article
US5052413A (en) 1987-02-27 1991-10-01 R. J. Reynolds Tobacco Company Method for making a smoking article and components for use therein
US5268158A (en) 1987-03-11 1993-12-07 Hercules Incorporated High modulus pan-based carbon fiber
US4862905A (en) 1987-06-15 1989-09-05 R. J. Reynolds Tobacco Company Rods containing pelletized material
DE3725364A1 (de) 1987-07-31 1989-02-09 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum bilden eines stranges aus fasern von tabak oder einem anderen rauchfaehigen material
US4821749A (en) 1988-01-22 1989-04-18 R. J. Reynolds Tobacco Company Extruded tobacco materials
US4811745A (en) 1988-02-04 1989-03-14 Hercules Incorporated Method and device for control of by-products from cigarette smoke
US5074321A (en) 1989-09-29 1991-12-24 R. J. Reynolds Tobacco Company Cigarette
US5137034A (en) 1988-05-16 1992-08-11 R. J. Reynolds Tobacco Company Smoking article with improved means for delivering flavorants
US5360023A (en) 1988-05-16 1994-11-01 R. J. Reynolds Tobacco Company Cigarette filter
US5271419A (en) 1989-09-29 1993-12-21 R. J. Reynolds Tobacco Company Cigarette
US5076296A (en) 1988-07-22 1991-12-31 Philip Morris Incorporated Carbon heat source
US5159940A (en) 1988-07-22 1992-11-03 Philip Morris Incorporated Smoking article
US4966171A (en) 1988-07-22 1990-10-30 Philip Morris Incorporated Smoking article
US4991606A (en) 1988-07-22 1991-02-12 Philip Morris Incorporated Smoking article
US4925602A (en) 1988-08-10 1990-05-15 Filter Materials Limited Method for improving the crimping of polyolefin filter tow
GB8819291D0 (en) 1988-08-12 1988-09-14 British American Tobacco Co Improvements relating to smoking articles
US4947874A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
GB8823388D0 (en) 1988-10-05 1988-11-09 Cigarette Components Ltd Tobacco smoke filter containing particulate additive
US5040551A (en) 1988-11-01 1991-08-20 Catalytica, Inc. Optimizing the oxidation of carbon monoxide
US5211684A (en) 1989-01-10 1993-05-18 R. J. Reynolds Tobacco Company Catalyst containing smoking articles for reducing carbon monoxide
GB8901579D0 (en) 1989-01-25 1989-03-15 Imp Tobacco Co Ltd Improvements to smoking articles
US5536486A (en) 1989-03-15 1996-07-16 Petoca Ltd. Carbon fibers and non-woven fabrics
DE3910059C1 (en) 1989-03-28 1990-11-15 B.A.T. Cigarettenfabriken Gmbh, 2000 Hamburg, De Smokable article
US4961438A (en) 1989-04-03 1990-10-09 Brown & Williamson Tobacco Corporation Smoking device
US5101839A (en) 1990-08-15 1992-04-07 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
US5105836A (en) 1989-09-29 1992-04-21 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
JP2947574B2 (ja) 1989-11-17 1999-09-13 ダイセル化学工業株式会社 高捲縮弾性率アセテートトウおよびその製造方法
JP2717232B2 (ja) 1990-01-12 1998-02-18 群栄化学工業株式会社 活性炭繊維構造体及びその製造方法
US5338605A (en) 1990-01-31 1994-08-16 Ketema, Inc. Hollow carbon fibers
US5027837A (en) 1990-02-27 1991-07-02 R. J. Reynolds Tobacco Company Cigarette
US5099861A (en) 1990-02-27 1992-03-31 R. J. Reynolds Tobacco Company Aerosol delivery article
US5183062A (en) 1990-02-27 1993-02-02 R. J. Reynolds Tobacco Company Cigarette
DE4006843C2 (de) 1990-03-05 2001-10-18 Hauni Werke Koerber & Co Kg Format für eine Strangmaschine zum Herstellen von Rauchartikeln oder Filterstäben
US5191905A (en) * 1990-03-16 1993-03-09 Costarica Sogo Kaihatsu Co., Ltd. Filter cigarette having filter containing absorptive synthetic graft polymer fibers produced from irradiated polyethylene reacted with vapor phase styrene or absorptive synthetic magnetic fibers
US5131416A (en) 1990-12-17 1992-07-21 R. J. Reynolds Tobacco Company Cigarette
US5159944A (en) 1990-05-24 1992-11-03 R. J. Reynolds Tobacco Company Cigarette
US5240014A (en) 1990-07-20 1993-08-31 Philip Morris Incorporated Catalytic conversion of carbon monoxide from carbonaceous heat sources
US5396911A (en) 1990-08-15 1995-03-14 R. J. Reynolds Tobacco Company Substrate material for smoking articles
US5148821A (en) 1990-08-17 1992-09-22 R. J. Reynolds Tobacco Company Processes for producing a smokable and/or combustible tobacco material
US5622190A (en) 1990-08-24 1997-04-22 Philip Morris Incorporated Concentric smoking filter having cellulose acetate tow periphery and carbon-particle-loaded web filter core
US5105837A (en) 1990-08-28 1992-04-21 R. J. Reynolds Tobacco Company Smoking article with improved wrapper
US5065776A (en) 1990-08-29 1991-11-19 R. J. Reynolds Tobacco Company Cigarette with tobacco/glass fuel wrapper
US5191906A (en) 1990-10-30 1993-03-09 Philip Morris Incorporated Process for making wrappers for smoking articles which modify the burn rate of the smoking article
US5156169A (en) 1990-11-06 1992-10-20 R. J. Reynolds Tobacco Company Apparatus for making cigarettes
US5240016A (en) 1991-04-19 1993-08-31 Philip Morris Incorporated Thermally releasable gel-based flavor source for smoking articles
US5178167A (en) 1991-06-28 1993-01-12 R. J. Reynolds Tobacco Company Carbonaceous composition for fuel elements of smoking articles and method of modifying the burning characteristics thereof
US5482773A (en) 1991-07-01 1996-01-09 E. I. Du Pont De Nemours And Company Activated carbon-containing fibrids
US5220930A (en) 1992-02-26 1993-06-22 R. J. Reynolds Tobacco Company Cigarette with wrapper having additive package
CA2090918C (en) 1992-03-25 2006-01-17 Robert Leonard Meiring Components for smoking articles and process for making same
US5387285A (en) 1992-06-02 1995-02-07 R. J. Reynolds Tobacco Company Apparatus for injecting a fluid into filter tow
JPH0617321A (ja) 1992-06-25 1994-01-25 Morinobu Endo ピッチ系活性炭素繊維
GB9214267D0 (en) 1992-07-04 1992-08-19 British American Tobacco Co Improvements relating to smoking articles
US5345955A (en) 1992-09-17 1994-09-13 R. J. Reynolds Tobacco Company Composite fuel element for smoking articles
US5469871A (en) 1992-09-17 1995-11-28 R. J. Reynolds Tobacco Company Cigarette and method of making same
PH30299A (en) 1993-04-07 1997-02-20 Reynolds Tobacco Co R Fuel element composition
US5468266A (en) 1993-06-02 1995-11-21 Philip Morris Incorporated Method for making a carbonaceous heat source containing metal oxide
US5404890A (en) 1993-06-11 1995-04-11 R. J. Reynolds Tobacco Company Cigarette filter
US6631722B2 (en) * 1993-09-30 2003-10-14 British-American Tobacco Company Limited Tobacco smoke filter elements
BE1007973A7 (fr) * 1994-02-15 1995-11-28 Hens Olivier Filtre.
HU227234B1 (en) 1994-09-07 2010-11-29 British American Tobacco Co Smoking article, smoking article wrapper and process for producing thereof
US6089857A (en) 1996-06-21 2000-07-18 Japan Tobacco, Inc. Heater for generating flavor and flavor generation appliance
US5911224A (en) * 1997-05-01 1999-06-15 Filtrona International Limited Biodegradable polyvinyl alcohol tobacco smoke filters, tobacco smoke products incorporating such filters, and methods and apparatus for making same
JP2931810B1 (ja) * 1998-03-31 1999-08-09 日本たばこ産業株式会社 生分解性セルロースアセテート成形品およびたばこ用フィルタープラグ
DE19844167A1 (de) 1998-09-25 2000-04-06 Ticona Gmbh Aktivkohlefilter
WO2000053832A1 (fr) * 1999-03-11 2000-09-14 Japan Tobacco Inc. Constructions biodegradables en acetate de cellulose et filtre pour tabac
ES2276193T3 (es) 1999-06-18 2007-06-16 Toray Industries, Inc. Resina de acido poliactico, productos textiles obtenidos de la misma y procedimientos para producir productos textiles.
US6360751B1 (en) 1999-12-01 2002-03-26 R. J. Reynolds Tobacco Company Asymmetrical trimmer disk apparatus
GB9928853D0 (en) 1999-12-07 2000-02-02 British American Tobacco Co Improvements relating to smoking articles
US7223376B2 (en) 2000-02-10 2007-05-29 Industrial Technology And Equipment Company Apparatus and method for making carbon fibers
MY128157A (en) 2000-04-20 2007-01-31 Philip Morris Prod High efficiency cigarette filters having shaped micro cavity fibers impregnated with adsorbent or absorbent materials
US6537186B1 (en) 2000-07-05 2003-03-25 Baumgartner Papiers S.A. Process and apparatus for high-speed filling of composite cigarette filters
ES2271059T3 (es) 2000-08-29 2007-04-16 Japan Tobacco Inc. Metodo de fabricacion de un articulo para fumar con baja propagacion de fuego.
DK1329165T3 (da) 2000-09-08 2006-03-06 Japan Tobacco Inc Fremgangsmåde og indretning til fremstilling af cigaretter med lille flammeudbredelse
US6789547B1 (en) 2000-10-31 2004-09-14 Philip Morris Incorporated Carbon technology
ATE410082T1 (de) 2000-11-06 2008-10-15 Japan Tobacco Inc Desodorisierungszusammensetzung für tabakgeruch, desodorisierungsmittel für tabakgeruch und zigaretten- und tabakpackung mit vermindertem sekundärrauchgeruch
AU2002228901A1 (en) 2000-11-10 2002-05-21 Vector Tobacco (Bermuda) Ltd. Method and product for removing carcinogens from tobacco smoke
JP3941384B2 (ja) 2000-12-05 2007-07-04 アイダエンジニアリング株式会社 駆動装置並びにプレス機械のスライド駆動装置及び方法
CN1216556C (zh) 2001-02-22 2005-08-31 菲利普莫里斯生产公司 下游加入有香味的香烟和过滤嘴
US7275548B2 (en) 2001-06-27 2007-10-02 R.J. Reynolds Tobacco Company Equipment for manufacturing cigarettes
US20030066539A1 (en) 2001-08-01 2003-04-10 Figlar James N. Cigarette Filter
US7237559B2 (en) 2001-08-14 2007-07-03 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US6598607B2 (en) 2001-10-24 2003-07-29 Brown & Williamson Tobacco Corporation Non-combustible smoking device and fuel element
US6532965B1 (en) 2001-10-24 2003-03-18 Brown & Williamson Tobacco Corporation Smoking article using steam as an aerosol-generating source
US6913784B2 (en) 2001-11-30 2005-07-05 Philip Morris Usa Inc. Continuous process for impregnating solid adsorbent particles into shaped micro-cavity fibers and fiber filters
DE50111161D1 (de) 2001-12-18 2006-11-16 Bat Cigarettenfab Gmbh Filter für einen rauchbaren Artikel
MY135471A (en) 2002-01-09 2008-04-30 Philip Morris Prod Cigarette filter with beaded carbon
US6779530B2 (en) 2002-01-23 2004-08-24 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
DE10202847A1 (de) 2002-01-24 2003-08-07 Hauni Maschinenbau Ag Einlauffinger einer Formateinrichtung
DE10205055A1 (de) 2002-02-07 2003-08-14 Hauni Maschinenbau Ag Verfahren und Vorrichtung zum Fördern eines Hüllstreifens in einer Maschine der tabakverarbeitenden Industrie
US20030159703A1 (en) 2002-02-22 2003-08-28 Zuyin Yang Flavored carbon useful as filtering material of smoking article
US7074170B2 (en) 2002-03-29 2006-07-11 Philip Morris Usa Inc. Method and apparatus for making cigarette filters with a centrally located flavored element
US7552735B2 (en) * 2002-04-12 2009-06-30 Philip Morris Usa Inc. Activated carbon fiber cigarette filter
DE10217410A1 (de) * 2002-04-18 2003-10-30 Hauni Maschinenbau Ag Zigarettenfilter und Verfahren zur Herstellung desselben
GB0209690D0 (en) 2002-04-27 2002-06-05 British American Tobacco Co Improvements relating to smoking articles and smokable filler materials therefor
KR100770519B1 (ko) 2002-08-09 2007-10-25 브리티쉬 아메리칸 토바코 (인베스트먼츠) 리미티드 개량 필터부착 담배 및 그 제조방법
US7281540B2 (en) 2002-12-20 2007-10-16 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US7234471B2 (en) 2003-10-09 2007-06-26 R. J. Reynolds Tobacco Company Cigarette and wrapping materials therefor
US7784471B2 (en) 2003-01-09 2010-08-31 Philip Morris Usa Inc. Cigarette filter with beaded carbon
CN100557106C (zh) 2003-02-27 2009-11-04 株洲雪松麻业有限责任公司 一种含有竹原纤维的纺纱及其制作方法
US7370657B2 (en) 2003-04-02 2008-05-13 Philip Morris Usa Inc. Activated carbon-containing sorbent
GB0310034D0 (en) 2003-04-30 2003-06-04 British American Tobacco Co Improvements relating to material application to rod wrappers
GB0316171D0 (en) 2003-07-10 2003-08-13 British American Tobacco Co Improvements relating to smoking article filters
DE502004003664D1 (de) 2003-09-03 2007-06-14 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Herstellung eines Filterstrangs
US7115085B2 (en) 2003-09-12 2006-10-03 R.J. Reynolds Tobacco Company Method and apparatus for incorporating objects into cigarette filters
US20050066986A1 (en) 2003-09-30 2005-03-31 Nestor Timothy Brian Smokable rod for a cigarette
US7240678B2 (en) * 2003-09-30 2007-07-10 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
JP4795959B2 (ja) * 2003-09-30 2011-10-19 アール・ジエイ・レイノルズ・タバコ・カンパニー 吸着性材料を組み込むフィルタ付き紙巻きタバコ
US7856990B2 (en) 2003-09-30 2010-12-28 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US8381738B2 (en) 2003-12-22 2013-02-26 Philip Morris Usa Inc. Composite materials and their use in smoking articles
GB0404324D0 (en) 2004-02-27 2004-03-31 British American Tobacco Co Smoking article and apparatus and process for manufacturing a smoking article
UA88469C2 (uk) 2004-05-24 2009-10-26 Бритиш Американ Тобакко (Инвестментс) Лимитед Молекулярно вдрукований полімер, селективний щодо нітрозамінів, спосіб його одержання (варіанти), застосування, способи визначення наявності та кількісного вмісту нітрозамінів в тютюновому продукті, спосіб обробки тютюнового продукту, спосіб виготовлення тютюнового матеріалу, курильний виріб та фільтр для тютюнового диму
GB0411988D0 (en) 2004-05-28 2004-06-30 British American Tobacco Co Smoking articles and smoking materials
US20050268925A1 (en) 2004-06-03 2005-12-08 Brown & Williamson Tobacco Corporation Application of mesoporous molecular sieves as selective smoke filtration additives
WO2006051422A1 (en) 2004-11-10 2006-05-18 Philip Morris Products S.A. Capsuled adsorbent flavored filter
GB0426615D0 (en) * 2004-12-03 2005-01-05 Filtrona Suisse Sa Tobacco smoke filter
US20070261706A1 (en) 2004-12-15 2007-11-15 Ashesh Banerjea Cigarette with carbon on tow filter
US8408216B2 (en) 2004-12-22 2013-04-02 Philip Morris Usa Inc. Flavor carrier for use in smoking articles
US20060144410A1 (en) 2004-12-30 2006-07-06 Philip Morris Usa Inc. Surface-modified activated carbon in smoking articles
US8539957B2 (en) 2005-01-14 2013-09-24 Philip Morris Usa Inc. Cigarettes and cigarette filters including activated carbon for removing nitric oxide
GB0506278D0 (en) 2005-03-29 2005-05-04 British American Tobacco Co Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials
US7878209B2 (en) 2005-04-13 2011-02-01 Philip Morris Usa Inc. Thermally insulative smoking article filter components
EP1738821A1 (en) 2005-06-17 2007-01-03 British American Tobacco Italia S.p.A. Method of reducing the level of nitrogen oxides in a medium by absorption with resorcin¬4|arenes
GB0514959D0 (en) 2005-07-21 2005-08-24 British American Tobacco Co Smoking article
US20070215167A1 (en) 2006-03-16 2007-09-20 Evon Llewellyn Crooks Smoking article
GB0517551D0 (en) * 2005-08-27 2005-10-05 Acetate Products Ltd Process for making filter tow
KR100664827B1 (ko) 2005-09-06 2007-01-04 브리티쉬 아메리칸 토바코 코리아 (주) 담배필터 감지 시스템 및 그 방법
US20070056600A1 (en) 2005-09-14 2007-03-15 R. J. Reynolds Tobacco Company Filtered smoking article
US7479098B2 (en) 2005-09-23 2009-01-20 R. J. Reynolds Tobacco Company Equipment for insertion of objects into smoking articles
US7407922B2 (en) 2005-10-13 2008-08-05 S.C. Johnson & Son, Inc. Deodorizing compositions
BRPI0707887A2 (pt) * 2006-01-27 2011-05-10 British American Tobacco Co mÉtodo de preparar uma haste para uso na preparaÇço de um artigo para fumar, aparelho para preparar uma haste adequada para uso na preparaÇço de um artigo para fumar, haste, e, cigarro
GB0603126D0 (en) 2006-02-16 2006-03-29 British American Tobacco Co Improvements relating to smoking articles and filters therefor
PL1993389T3 (pl) 2006-03-10 2010-09-30 British American Tobacco Investments Ltd Filtr do artykułu dla palaczy
DE102006025738B3 (de) * 2006-05-31 2007-11-08 Hauni Maschinenbau Ag Einbringen von Zusatzstoffen in einen Filterstrang
US7740019B2 (en) 2006-08-02 2010-06-22 R.J. Reynolds Tobacco Company, Inc. Equipment and associated method for insertion of material into cigarette filters
US7789089B2 (en) 2006-08-04 2010-09-07 R. J. Reynolds Tobacco Company Filtered cigarette possessing tipping material
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
AU2008281436A1 (en) * 2007-08-01 2009-02-05 Philip Morris Products S.A. Degradable cigarette filters

Also Published As

Publication number Publication date
EP2323506B1 (en) 2013-04-10
WO2009143338A2 (en) 2009-11-26
CN102046033B (zh) 2013-12-04
CN103222684B (zh) 2015-11-18
WO2009143338A3 (en) 2010-01-21
EP2323506A2 (en) 2011-05-25
EP2323506B2 (en) 2016-07-27
ES2420685T3 (es) 2013-08-26
CN103222684A (zh) 2013-07-31
ES2603646T3 (es) 2017-02-28
ES2420685T5 (es) 2017-02-10
JP5905432B2 (ja) 2016-04-20
JP2014036659A (ja) 2014-02-27
EP2537427A1 (en) 2012-12-26
CN102046033A (zh) 2011-05-04
JP2011520469A (ja) 2011-07-21
JP5438760B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
EP2537427B1 (en) Cigarette filter having composite fiber structures
EP2403365B1 (en) Cigarette filter comprising a degradable fiber
US8375958B2 (en) Cigarette filter comprising a carbonaceous fiber
US8079369B2 (en) Method of forming a cigarette filter rod member
US8739802B2 (en) Filtered cigarette
EP2713782B1 (en) Coated paper filter
JP5931866B2 (ja) 多機能性繊維状煙改変材料を含むフィルター要素
US20170042222A1 (en) Smoking article filters
US10064429B2 (en) Mixed fiber product for use in the manufacture of cigarette filter elements and related methods, systems, and apparatuses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2323506

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20130625

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009040545

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A24D0003020000

Ipc: A24D0003160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A24D 3/02 20060101ALI20160212BHEP

Ipc: A24D 3/08 20060101ALI20160212BHEP

Ipc: A24D 3/16 20060101AFI20160212BHEP

Ipc: A24D 3/06 20060101ALI20160212BHEP

INTG Intention to grant announced

Effective date: 20160310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2323506

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 820169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009040545

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 820169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161219

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2603646

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009040545

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230330

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 15

Ref country code: FR

Payment date: 20230411

Year of fee payment: 15

Ref country code: ES

Payment date: 20230601

Year of fee payment: 15

Ref country code: DE

Payment date: 20230331

Year of fee payment: 15