EP2528069B1 - Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication - Google Patents

Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication Download PDF

Info

Publication number
EP2528069B1
EP2528069B1 EP11167585.6A EP11167585A EP2528069B1 EP 2528069 B1 EP2528069 B1 EP 2528069B1 EP 11167585 A EP11167585 A EP 11167585A EP 2528069 B1 EP2528069 B1 EP 2528069B1
Authority
EP
European Patent Office
Prior art keywords
linear region
gap inductor
multi gap
insulated conductive
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11167585.6A
Other languages
German (de)
English (en)
Other versions
EP2528069A1 (fr
Inventor
Franc Zajc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zajc Franc
Original Assignee
Zajc Franc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zajc Franc filed Critical Zajc Franc
Priority to EP11167585.6A priority Critical patent/EP2528069B1/fr
Priority to EP12172102A priority patent/EP2530688A1/fr
Publication of EP2528069A1 publication Critical patent/EP2528069A1/fr
Application granted granted Critical
Publication of EP2528069B1 publication Critical patent/EP2528069B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/061Winding flat conductive wires or sheets
    • H01F41/063Winding flat conductive wires or sheets with insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F2027/2857Coil formed from wound foil conductor

Definitions

  • the present invention relates to a multi-gap inductor core, a multi-gap inductor, especially for high-frequency (HF) applications, a transformer, and a corresponding manufacturing method.
  • HF high-frequency
  • a multi-gap inductor core according to the preamble of claim 1 is known from any of documents GB 2 037 089 A , US 5,676,768 A , EP 2 209 128 A1 , US 2009/0206971 A1 , and US 2002/0132136 A1 .
  • GB 1 562 276 discloses a method of making a magnetic circuit including an air gap, wherein spherical glass particles embedded in an adhesive determine the air gap width.
  • DE 100 40 415 C1 discloses a flat-band winding having three linear conductor regions, wherein first and second conductor regions are orthogonally connected by a third conductor region and run in anti-parallel.
  • WO 2007/136288 A1 discloses flat-band windings wherein a stack of insulated flat bands form the flat-band winding.
  • US 7,573,362 B2 discloses a high-current, multiple air gap, conduction-cooled, stacked lamination inductor.
  • the magnetic core section of this known inductor includes substantially rectangular profiled magnetic laminations arranged in a stack.
  • converters are designed which use working frequencies that for small power converters up to 10 V have risen into the MHz range.
  • the research of middle power converters up to 200V and high power converters up to 500V is seeking to reach frequencies in the range of 300 kHz up to 1 MHz.
  • the inductor presents an important part regarding the losses and the size. Particularly, the inductor's size should be minimal, and if possible, the inductor shape should be square and the inductor should have the lowest possible AC/DC resistance ratio at the desired working frequency. In the existing inductors which are used in the high frequency area the skin effect, proximity effect and fringing effect are the reason for comparatively high losses and correspondingly required big size.
  • TC denotes a toroidal ferrite core with an air gap AG and having strand wire SW wound around the core TC.
  • the prior art inductors shown in Fig. 14 show a favourable AC/DC current resistance ratio, however, their field radiation is high, their size is big, and their shape is inconvenient to be fixed on a circuit board.
  • High-frequency current in circular or square-shape free wires is conducted only in the wire surface area which is called skin effect. That effects that the known inductors wound with such wires to have very low resistance and also high inductivity vary their resistance with increasing frequency very dramatically. Therefore, the high-frequency losses make the known inductors only useful for low alternating current frequencies.
  • the air gap also contributes to increase the high-frequency losses.
  • the magnetic flux exits the core in the area of the air gap and enters the winding causing heating of the winding. Even the replacement of a single air gap by plural air gaps does not reduce the effect of this heating phenomenon very much at high frequencies.
  • the permeability of a corresponding inductor depends very much on the magnetic density.
  • the composite ferrite material has a much lower saturation level than the sintered ferrite material. This effects that the inductivity of such composite ferrite material inductors varies drastically with current changes.
  • the invention provides a multi gap inductor core as defined in independent claim 1, a multi gap inductor as defined in independent claim 5, and a corresponding manufacturing method as defined in independent claim 10.
  • the multi gap core prevents the flux scattering out of the gap.
  • the laminations are connected to each other with respective hardened fixing layers. Spacer means are embedded in the fixing layers to control the respective gaps. High viscous glue mixed with spherical particles as distance balls can be used as fixing layer.
  • the spherical particles can very accurately define the thickness of the gap between adjacent laminations, if their diameter distribution is in a narrow range, i.e. 20 ⁇ m ⁇ 2 ⁇ m. Such diameter distributions may, for example, be obtained with filtered carbon particles. Morever spherical distance balls are well suited to provide a monolayer as homogeneous spacer means. In another aspect of the invention, pre-patterned bumps are used as homogeneous spacer means.
  • the magnetic lamination sheets have a thickness between 0,1 and 1 mm and/or the predetermined gap thickness is between 10 and 100 ⁇ m.
  • the invention is well suited for high ripple current applications at high frequencies.
  • Fig. 1 shows a cross-section of a multi gap inductor core according to an embodiment of the present invention.
  • reference sign 1 denotes a multi gap inductor core according an embodiment of the present invention.
  • the core 1 includes a plurality of seven magnetic lamination sheets 2a-2g made of a ferrite material with lowest possible losses for the desired frequency range.
  • Reference sign HA denotes a length axis of the core 1, i.e. along the staggering direction of the laminations 2a-2g.
  • an appropriate ferrite material would be Ferrouxcube 3F45.
  • d1 minimum lamination thickness of about 0,2 mm can be reached, allowing the permeability to be low and to have a good gap distribution.
  • Each glue layer 3a-3f includes a spacer means 4 in form of spherical particles made of carbon, so-called glassy carbon spherical powder, which define a gap G having a predetermined thickness d2 between each corresponding pair of magnetic lamination sheets 2a-2g. Since a narrow size diameter distribution can be obtained by filtering such carbon material, the diameter d3 of the carbon particles 4 substantially equals the predetermined thickness d2 of the gap G. In other words, there is a monolayer of carbon particles included in the hardened glue layers 3a-3f acting as said mechnical spacer means.
  • the core 1 allows the production of an inductor having excellent performance and comparatively low losses in the desired frequency range, here 1 MHz.
  • the total gap of the core of Fig. 1 is the sum of all gaps G from where the magnetic field is dissipated only in a very small area causing no additional losses in the winding. The winding therefore can take the space very close to the core 1.
  • Fig. 2 shows a cross-section of a multi gap inductor core according to the first embodiment of the present invention in order to explain a corresponding manufacturing method thereof.
  • the desired number of magnetic lamination sheets 2a-2g is stacked on top of each other, wherein between the pairs of adjacent magnetic lamination sheets the glue layers 3a-3f are dispensed by appropriate dispensing means.
  • the glue layer is a premix of glue and the spherical carbon particles 4.
  • the concentration of the particles in the glue is typically between 0,1 and 3 %, preferably 1 %. If the volume concentration is too high there would be the risk that the particles stick together making the gap thickness d2 inhomogeneous. On the other hand, if the volume concentration of the particles is too low, the particles could be not evenly distributed over the area between adjacent laminations and therefore also make the thickness d2 inhomogeneous. Despite of these lower and upper limitations which can normally be found very easily by experiments, the range of applicable concentrations still stays broad.
  • a pressure P is applied on the stack such that the spherical carbon particles 4 can exactly match and define the gap G with the predetermined thickness d2 according to their own diameters d3.
  • glue e.g. epoxy glue
  • the hardening can then be performed at room temperature or elevated temperatures, while the application of pressure P is continued until the stack is completely hardened.
  • Fig. 3, 4 are perspective views in order to explain the step of separating individual multi gap inductor cores from the hardened stack manufactured as explained in Fig. 2 .
  • the dimensions of the stack orthogonal to the length axis HA do not correspond to the dimensions of the finished core.
  • the dimensions of the hardened stack 100 are 80 mm width, 50 mm depth, and 25 mm length.
  • the hardened stack 100 is cut by means of a wafer saw (i.e. diamond saw) or wire saw into rows 100a and then into the cores 1', where the laminations are labelled 2a'-2m' and the glue/spacer layers 3a'-3l'.
  • a wafer saw i.e. diamond saw
  • wire saw i.e. wire saw
  • arbitrary core shapes may be obtained, for example, circular shapes as shown in Fig. 4 for the core 1" including laminations 2a"-2n" and glue/spacer layers 3a"-31".
  • This manufacturing method allows an accuracy of typically 5% of the inductance value and very small gaps.
  • 1,3 mm of gap were distributed among 65 ferrite sheets.
  • the tolerance accuracy can be improved by sorting out and assembling together two or more partial core stacks in order to provide air gaps with desired small tolerances.
  • Fig. 5a is a plain view of a first example of an insulated conductive flat band (also sometimes denoted in the art as strip) used as a winding in connection with the multi gap inductor core according to the embodiments of the present invention
  • Fig. 5b,c are perspective views of the insulated conductive flat band shown in Fig. 5a in order to illustrate a first winding procedure.
  • the insulated conductive flat band 5 shown in Fig. 5a-c is made of insulated conductive material such as copper or aluminum and includes a first linear region SR, a second linear region SL and a third linear region SM.
  • the width b1 of the first linear region SR is equal to the width b1 of the second linear region SL
  • the width b2 of the third linear region SM is 2 x b1 + S, where S is a given distance. This means that the first and second linear regions SR, SL are displaced by the distance S.
  • first and second linear regions SR, SL are orthogonally connected to the third linear region SM and run in anti-parallel directions as may be clearly obtained from Fig. 5a .
  • Virtual segments SR1-SR5 of the first linear region SR having a length I are denoted in order to show the folding lines when winding the insulated conductive flat band 5 around a core according to an embodiment of the present invention occurs.
  • Analogously SL1-SL5 denote virtual segments of the second linear region SL having all the length I which is a little bit larger than the diameter of the core to be used.
  • the first linear region SR and the second linear region SL are wound in opposite directions FU (clockwise) and FG (counter-clockwise) around the third linear region SM in order to form the winding around the core of the embodiments of the present invention.
  • Fig. 6 is a perspective view of the first example of insulated conductive flat band used as a winding in connection with the multi gap inductor core according to the embodiments of the present invention after the first winding procedure is finished.
  • a finished winding 5' made of an insulated conductive flat band as shown in Figs. 5a-c is shown in Fig. 6 .
  • the ends E1, E2 of the finished winding 5' are orthogonal to the length axis HA of the core to be inserted into the finished winding 5'.
  • Fig. 7 shows a cross-section of a multi gap inductor having the winding type of Fig. 6 according to another embodiment of the present invention.
  • the finished inductor of Fig. 7 includes a multi gap core 1"' having 20 laminations with intervening glue/spacer layers as explained in connection with Figs. 1 and 2 and having a surrounding winding 5" in analogy to the winding 5' described with reference to Fig. 6 , however, having a larger number of winding turns.
  • Fig. 7 the gap ⁇ between the core 1"' and the winding 5" can be made very small.
  • the section A of Fig. 7 is shown in enlarged form on the righthand side of Fig. 7 and also shows the space s which corresponds to the distance S between the first and second linear regions SR, SL.
  • Reference sign V finally denotes a magnetic shielding which surrounds the inductor according to this embodiment and closes the magnetic field of the coil.
  • Fig. 8 shows a cross-section of a multi gap inductor having a strand wire winding type according to still another embodiment of the present invention.
  • Fig. 9a is a plain view of a second example of an insulated conductive flat band used as a winding in connection with the multi gap inductor core according to the embodiments of the present invention
  • Fig. 9b , c are perspective views of multiple parallel windings of the insulated conductive flat band shown in Fig. 9a in order to illustrate a second winding procedure.
  • the insulated conductive flat band 25 shown in Fig. 9a includes first linear region SU, a second linear region SO and a third linear region SM'.
  • the third linear region SM' is substantially orthogonally connected to the first linear region SU and to said second linear region SO, wherein the first linear region SU and the second linear region SO are displaced by a distance S, however, in contrast to the example in Fig. 5a run in parallel.
  • the distance S arises from the difference of the width b2 of the third linear region SM' and the sum of the width b1 of the first and second linear regions SU, SO.
  • virtual segments SU1-SU5 of the first linear region SU and virtual segments SO1-SO5 of the second linear region SO are depicted in order to clarify the folding lines when the insulated conductive flat band 25 of Fig. 9a is wound to form a winding around a core according to an embodiment of the present invention.
  • a plurality of insulated conductive flat bands of the 25, 25', 25", 25"' of the type shown in Fig. 9a is isolatedly stacked on top of each other.
  • the isolation can be achieved by using a foil, e.g. Kapton foil a resin or a native or artificial oxide on the surface of the insulated conductive flat bands 25, 25', 25", 25"'.
  • the stack of insulated conductive flat bands 25, 25', 25", 25'" shown in Fig. 9b is then wound in opposite directions FU (clockwise) and FG (anticlockwise) around the third linear regions of the insulated conductive flat bands 25, 25', 25", 25"' in order to form the winding around a core according to an embodiment of the present invention.
  • Fig. 10 is a perspective view of the second example of multiple parallel windings of insulated conductive flat band used as a winding in connection with the multi gap inductor core according to the embodiments of the present invention after the second winding procedure is finished.
  • the final winding shape is shown in Fig. 10 , wherein the ends E1', E2' are also bend orthogonal to the length axis HA of the core in accordance with the embodiments of the present invention to be inserted into the wound winding.
  • the outer flat band 25 on one side becomes the inner flat band on the other side when wound in opposite directions FU, FG.
  • This contributes to counteract the proximity effect which otherwise would tend to shift the high-frequency current in the outermost flat band area.
  • the stack sequence change equalizes the induced voltage along the bands in order to avoid a current along the bands.
  • Fig. 11 a,b are plain views of the first example of insulated conductive flat band in form of a first and second specially stacked flat bands used as a winding in connection with the multi gap inductor core according to the embodiments of the present invention.
  • winding around a core in accordance with the embodiments described is made of two insulated conductive flat bands 5a, 5b of the type shown in Fig. 5a which are specially stacked on top of each other in an isolated manner.
  • SRa, SRb denote the corresponding first linear region of the first and second flat band 5a, 5b and SLa
  • SLb denote the corresponding second linear region of the flat bands 5a, 5b
  • SMa and SMb correspond to a respective third linear region connecting the first and second linear regions of the flat bands 5a, 5b.
  • the insulated conductive flat bands 5a, 5b shown in Fig. 11 a are stacked isolatedly on each other such that there is a crossover such that on one side the first linear region SRa of the first insulated conductive flat band 5a lies above the first linear region SRb of the second insulated conductive flat band 5b, however, on the other side the second linear region SLa of the first insulated conductive flat band 5a lies below the second linear region SLb of the second insulated conductive flat band 5b.
  • the crossover region there is a small lateral gap S' x S between the insulated conductive flat bands 5a, 5b.
  • Fig. 12 shows a partial cross-section of a multi gap inductor core which is not part of the present invention.
  • spacer means 4' includes a photolithgraphically structured Al 2 O 3 layer having a plurality of cube shape bumps 4' between which the hardended fixing layers 3f etc. are provided.
  • the fixing layer 3f is not made of glue but of adhesive wax.
  • Fig. 13 shows a schematic view of a transformer including a multi gap inductor core according to an embodiment of the present invention.
  • reference sign 1 denotes a multi gap inductor core according to the embodiment of the present invention shown in Fig. 1
  • W1, W2 denote a primary and secondary winding wound around the core so as to form a transformer T.
  • various materials can be used for the laminations, the fixing material and the windings, and the invention is not restricted to the materials and dimensions mentioned hereinbefore.
  • the fixing material are Teflon, resist and grease which can be sufficiently hardenend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Claims (13)

  1. Noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"'), comprenant :
    - une première pluralité de feuilles de laminage magnétiques (2a-2g ; 2a'-2m' ; 2a"-2n") constituées d'un matériau de noyau magnétique disposé dans une pile ;
    - une seconde pluralité de couches de fixation (3a-3f ; 3a'-31' ; 3a"-31") constituées d'un matériau de fixation ;
    dans lequel chaque couche de fixation (3a-3f ; 3a'-3l' ; 3a"-3l") est disposée entre une paire correspondante de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") ;
    dans lequel chaque couche de fixation (3a-3f ; 3a'-3l' ; 3a"-31") comprend des moyens d'espacement mécaniques embarqués (4 ; 4') qui définissent un espace (G) ayant une épaisseur prédéterminée (d2) entre une paire correspondante de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") ;
    caractérisé par le fait que
    le moyen d'espacement magnétique (4 ; 4') comporte des particules essentiellement sphériques (4) ;
    un diamètre (d3) des particules sphériques (4) est essentiellement égal à ladite épaisseur prédéterminée (d2) ; et
    les particules (4) sont des particules de carbone sphériques (14).
  2. Noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1"; 1"') selon la revendication 1, dans lequel le matériau de fixation est de la colle.
  3. Noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; ; 1" ') selon l'une des revendications 1 ou 2, dans lequel les feuilles de laminage magnétiques (2a-2g ; 2a'-2m' ; 2a"-2n") sont des feuilles ferromagnétiques, particulièrement des feuilles de ferrite.
  4. Noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') selon l'une des revendications 1 à 3, dans lequel les feuilles de laminage magnétiques (2a-2g ; 2a'-2m' ; 2a"-2n") ont une épaisseur située entre 0,1 et 1 mm et/ou l'épaisseur d'espace prédéterminée (d2) est située entre 10 et 100 µm.
  5. Inducteur à plusieurs espaces, comprenant :
    - un noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') selon l'une des revendications 1 à 4 ; et
    - un enroulement de bande plate (5 ; 5' ; 5" ; 25, 25', 25", 25"' ; 5a, 5b) et/ou un enroulement de fil toronné (50) enroulé(s) autour d'un axe longitudinal (HA) du noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1'' ; 1"').
  6. Inducteur à plusieurs espaces selon la revendication 5, comportant un enroulement de bande plate comprenant au moins une bande plate conductrice isolée (5 ; 5' ; 5" ; 5a, 5b) ayant une première région linéaire (SR ; SRa ; SRb), une seconde région linéaire (SL ; SLa ; SLb), et une troisième région linéaire (SM ; SMa ; SMb), dans lequel la troisième région linéaire (SM ; SMa ; SMb) est essentiellement reliée de manière orthogonale à ladite première région linéaire (SR ; SRa ; SRb) et à ladite seconde région linéaire (SL ; SLa ; SLb) de telle sorte que ladite première région linéaire (SR ; SRa ; SRb) et ladite seconde région linéaire (SL ; SLa ; SLb) sont déplacées sur une distance (S) et se dirigent de manière antiparallèle, et dans lequel ladite première région linéaire (SR ; SRa ; SRb) et ladite seconde région linéaire (SL ; SLa ; SLb) sont enroulées dans des directions opposées (FU, FG) autour du noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; ; 1"' ) et autour de ladite troisième région (SM ; SMa ; SMb).
  7. Inducteur à plusieurs espaces selon la revendication 6, dans lequel une première et une seconde desdites bandes plates conductrices (5a, 5b) sont empilées de manière isolée l'une sur l'autre de telle sorte qu'il y a un croisement tel que, sur une face, la première région linéaire (SRa) de la première bande plate conductrice isolée (5a) se situe au-dessus de la première région linéaire (SRb) de la seconde bande plate conductrice isolée (5b) et, sur l'autre face, la seconde région linéaire (SLa) de la première bande plate conductrice isolée (5a) se situe sous la seconde région linéaire (SLb) de la seconde bande plate conductrice isolée (5b), et dans lequel les première et seconde bandes plates conductrices isolées (5a, 5b) sont enroulées dans des directions opposées (FU, FG) autour du noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"').
  8. Inducteur à plusieurs espaces selon la revendication 5, comprenant un enroulement de bande plate comprenant au moins une bande plate conductrice isolée (25, 25', 25", 25"') comprenant une première région linéaire (SU), une seconde région linéaire (SO), et une troisième région linéaire (SM'), dans lequel la troisième région linéaire (SM') est essentiellement reliée de manière orthogonale à ladite première région linéaire (SU) et à ladite seconde région linéaire (SO) de telle sorte que ladite première région linéaire (SU) et ladite seconde région linéaire (SO) sont déplacées sur une distance (S) et se dirigent de manière parallèle, et dans lequel ladite première région linéaire (SU) et ladite seconde région linéaire (SO) sont enroulées dans des direction opposées (FU, FG) autour du noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') et autour de ladite troisième région (SM').
  9. Inducteur à plusieurs espaces selon la revendication 8, dans lequel une pluralité desdites bandes plates conductrices isolées (25, 25', 25", 25"') sont empilées de manière isolée les unes sur les autres, et dans lequel la pluralité empilée desdites bandes plates conductrices isolées (25, 25', 25", 25"') est enroulée dans des directions opposées (FU, FG) autour du noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') de telle sorte que la séquence d'empilage est modifiée.
  10. Procédé de fabrication de noyaux d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') selon la revendication 1 comportant les étapes de :
    - empilage d'une première pluralité de feuilles de laminage magnétiques (2a-2g ; 2a'-2m' ; 2a"-2n") constituées d'un matériau de noyau magnétique ;
    - distribution de la seconde pluralité de couches de fixation (3a-3f ; 3a'-3l' ; 3a"-3l") constituées d'un matériau de fixation entre chaque paire de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") ;
    - fourniture de moyens d'espacement mécaniques embarqués (4 ; 4') entre chaque paire de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") embarquées dans lesdites couches de fixation (3a-3f ; 3a"-3l" ; 3a"-3l") ;
    - pression de ladite première pluralité empilée de feuilles de laminage magnétiques (2a-2g ; 2a'-2m' ; 2a"-2n") ayant ladite seconde pluralité de couches de fixation (3a-3f ; 3a"-31" ; 3a"-3l") et lesdits moyens d'espacement (4 ; 4") entre chaque paire de feuilles de laminage magnétiques adjacentes (2a2g ; 2a'-2m' ; 2a"-2n") de telle sorte que lesdits moyens d'espacement mécaniques embarqués (4 ; 4') définissent un espace (G) ayant l'épaisseur prédéterminée (d2) entre une paire correspondante de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") ;
    - durcissement desdites couches de fixation (3a-3f ; 3a'-3l' ; 3a"-3l") en exerçant une pression de manière à former une pile durcie ; et
    - fourniture de l'un ou plusieurs des noyaux d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') depuis ladite pile durcie.
  11. Procédé selon la revendication 10, dans lequel ladite pile durcie est coupée au moyen d'une scie, préférentiellement une scie à plaquettes ou une scie à fil, afin de fournir lesdits un ou plusieurs noyaux d'inducteur à plusieurs espaces (1 ; 1" ; 1" ; 1"') depuis ladite pile durcie.
  12. Procédé selon la revendication 10 ou 11, dans lequel lesdites couches de fixation (3a-3f ; 3a"-31" ; 3a"-3l") sont distribuées entre lesdites paires correspondantes de feuilles de laminage magnétiques adjacentes (2a-2g ; 2a'-2m' ; 2a"-2n") sous forme de prémélange de colle comme ledit matériau de fixation et lesdits moyens d'espacement mécanique embarqués (4 ; 4').
  13. Transformateur (T) contenant un noyau d'inducteur à plusieurs espaces (1 ; 1' ; 1" ; 1"') selon l'une des revendications 1 à 4.
EP11167585.6A 2011-05-26 2011-05-26 Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication Not-in-force EP2528069B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11167585.6A EP2528069B1 (fr) 2011-05-26 2011-05-26 Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication
EP12172102A EP2530688A1 (fr) 2011-05-26 2011-05-26 Enroulement de bande plate pour cýur dýinducteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11167585.6A EP2528069B1 (fr) 2011-05-26 2011-05-26 Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP12172102.1 Division-Into 2012-06-15

Publications (2)

Publication Number Publication Date
EP2528069A1 EP2528069A1 (fr) 2012-11-28
EP2528069B1 true EP2528069B1 (fr) 2013-12-18

Family

ID=45346184

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11167585.6A Not-in-force EP2528069B1 (fr) 2011-05-26 2011-05-26 Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication
EP12172102A Withdrawn EP2530688A1 (fr) 2011-05-26 2011-05-26 Enroulement de bande plate pour cýur dýinducteur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12172102A Withdrawn EP2530688A1 (fr) 2011-05-26 2011-05-26 Enroulement de bande plate pour cýur dýinducteur

Country Status (1)

Country Link
EP (2) EP2528069B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300440A1 (en) * 2013-04-05 2014-10-09 Hamilton Sundstrand Corporation Inductor gap spacer
CN108597801A (zh) * 2018-04-20 2018-09-28 江西特种变压器厂 一种可减小涡流损耗的浇注箔式线圈及其制造方法
KR20230072486A (ko) 2020-09-21 2023-05-24 이브이알 모터스 엘티디. 방사상 플럭스 전기 기계
CN113707443B (zh) * 2021-08-23 2023-03-31 横店集团东磁股份有限公司 一种纳米晶磁芯的制备方法及纳米晶磁芯

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2718274A1 (de) * 1977-04-25 1978-10-26 Vogt Gmbh & Co Kg Verfahren zur herstellung definierter luftspalte in magnetischen kreisen
NL7811481A (nl) * 1978-11-22 1980-05-27 Philips Nv Transformator met luchtspleet.
JP3127613B2 (ja) * 1992-10-13 2001-01-29 松下電器産業株式会社 磁気ヘッド及びその製造方法
JPH08264342A (ja) * 1995-03-17 1996-10-11 Omron Corp コイル装置
WO1997026700A1 (fr) * 1996-01-18 1997-07-24 Shibaura Engineering Works Co., Ltd. Moteur destine a etre monte sur un vehicule
DE10040415C1 (de) * 2000-08-18 2002-01-10 Robert Seuffer Gmbh & Co Kg Induktives Bauelement
US6660412B2 (en) * 2001-03-15 2003-12-09 Waseem A. Roshen Low loss, high frequency composite magnetic material and methods of making the same
JP2004207700A (ja) * 2002-12-11 2004-07-22 Canon Inc 電子部品およびその製造方法
US7573362B2 (en) 2005-10-11 2009-08-11 Hamilton Sunstrand Corporation High current, multiple air gap, conduction cooled, stacked lamination inductor
WO2007136288A1 (fr) * 2006-05-22 2007-11-29 Sergey Vasilievich Ivanov Procédé de bobinage de transformateur d'alimentation haute fréquence
JP4539730B2 (ja) * 2008-02-18 2010-09-08 トヨタ自動車株式会社 リアクトルのコア
EP2209128B1 (fr) * 2009-01-20 2015-03-04 ABB Research Ltd. Culasse magnétique avec entrefers
DE102009008405A1 (de) * 2009-02-11 2010-08-19 Keiper Gmbh & Co. Kg Stellantrieb

Also Published As

Publication number Publication date
EP2528069A1 (fr) 2012-11-28
EP2530688A1 (fr) 2012-12-05

Similar Documents

Publication Publication Date Title
US9287030B2 (en) Multi gap inductor core
US7864013B2 (en) Devices and methods for redistributing magnetic flux density
JP5642036B2 (ja) チップ型コイル部品
US8378777B2 (en) Magnetic electrical device
KR101433838B1 (ko) 인덕티브 구성요소 및 상기 인덕티브 구성요소를 제조하기 위한 방법
US11404205B2 (en) Magnetic coupling coil element and method of manufacturing the same
KR20010085376A (ko) 다층 인덕터
US20140167896A1 (en) Coupled inductor
EP2528069B1 (fr) Noyau d'inducteur à plusieurs espaces, inducteur à plusieurs espaces, transformateur et procédé de fabrication
KR20150143251A (ko) 코어 및 이를 갖는 코일 부품
US20170194088A1 (en) Isolation Transformer Topology
KR20140131418A (ko) 하이브리드형 파워 인덕터 및 그의 제조방법
CN113226726A (zh) 图案化磁芯
EP2787515B1 (fr) Élément d'espacement à intervalle d'inducteur
US20130257578A1 (en) Reconfiguring tape wound cores for inductors
WO2014167571A1 (fr) Bobines d'arrêt triphasées et leurs procédés de fabrication
KR20230025740A (ko) 독립형 커패시터들을 갖는 공진 lc 구조물
JP5098409B2 (ja) 巻線型電子部品用コア、その製造方法及び巻線型電子部品
JP7244708B2 (ja) コイル素子
US11515079B2 (en) Laminated coil
JP5620966B2 (ja) マルチギャップ誘導鉄心、マルチギャップインダクタ、変圧器、及び、マルチギャップ誘導鉄心の製造方法
Quilici Embedded magnetic power transformer
JP7296081B2 (ja) インダクタ
CN110942884A (zh) 电感器
JP7288651B2 (ja) 平面トランス

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 41/06 20060101ALN20130611BHEP

Ipc: H01F 3/14 20060101AFI20130611BHEP

Ipc: H01F 27/34 20060101ALI20130611BHEP

Ipc: H01F 27/28 20060101ALI20130611BHEP

INTG Intention to grant announced

Effective date: 20130704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 645930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011004211

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 645930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140418

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011004211

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

26N No opposition filed

Effective date: 20140919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011004211

Country of ref document: DE

Effective date: 20140919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110526

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200529

Year of fee payment: 10

Ref country code: FR

Payment date: 20200522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200603

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011004211

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210526

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531