EP2516006A1 - Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern - Google Patents

Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern

Info

Publication number
EP2516006A1
EP2516006A1 EP11702975A EP11702975A EP2516006A1 EP 2516006 A1 EP2516006 A1 EP 2516006A1 EP 11702975 A EP11702975 A EP 11702975A EP 11702975 A EP11702975 A EP 11702975A EP 2516006 A1 EP2516006 A1 EP 2516006A1
Authority
EP
European Patent Office
Prior art keywords
collimator
resolution
offset
irradiation
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11702975A
Other languages
English (en)
French (fr)
Inventor
Oliver Heid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2516006A1 publication Critical patent/EP2516006A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head

Definitions

  • the invention relates to a radiotherapy device and to a method for generating an increased resolution in irradiated irradiation fields and - associated therewith - the irradiated dose distribution.
  • Radiation therapy devices are used in a known manner for treatmen ⁇ development of diseases such as tumors.
  • high-energy X-rays are usually irradiated to a target volume to be irradiated, such as a human body or a phantom for research or research
  • the dose distribution is adapted to the target volume to be irradiated.
  • the radiotherapy device has:
  • a radiation source for example an X-ray source, from which a beam for irradiation can be directed to a target volume from at least two mutually opposite directions,
  • a collimator having a plurality of collimator elements for confining the treatment beam to produce a collimator element
  • the dose distribution in the irradiation volume is determined by sequential application of two
  • Beam bundles composed of opposite spatial directions, wherein the axes of the beams are offset by a fraction ⁇ part, for example, by half or by a quarter, the resolution of the collimator.
  • the resolution of the achievable in Bestrah ⁇ lung volume dose distribution is effectively doubled.
  • the invention thus permits to achieve an improved ver ⁇ local dose distribution in radiation therapy equipment such as X-ray therapy devices.
  • the advantage with such a radiation therapy device is a halving or quartering of the collimator elements required for achieving a certain resolution of the dose distribution, eg lamellae or needles, depending on the design of the collimator. It can thus achieve a significant association ⁇ fold increase and reduce the complexity of Strahlformungsme ⁇ mechanism.
  • the radiation from opposite directions can take place sequentially.
  • the width of a Lamel ⁇ le, for example, - - with a collimator for example, by extending the collimator a minimum resolution in a direction of an saudi ⁇ dimensional irradiation field be predetermined or depending on the design of the collimator in the two directions of the two-dimensional irradiation field.
  • This resolution can be increased if, in the second irradiation field irradiated from the opposite direction, an offset of the beam takes place in exactly this direction by a fraction of the resolution of the collimator.
  • the radiation therapy device may be a cylindrical geometry aufwei ⁇ sen, which means that the radiation source and the collimator are mounted for rotation about an axis of rotation around an isocenter.
  • the collimator can be arranged such that the expansion of the collimator elements predetermines a minimum resolution of the irradiation field in the direction of the axis of rotation.
  • Offset device may then be configured to effect an offset along the axis of rotation.
  • the desalination is effected here by offsetting in the direction of rotation, e.g. by a quarter or by half the resolution.
  • the radiation source and the collimator can also be rotatably mounted about an axis of rotation about an isocenter, and the collimator can be arranged such that the extension of the collimator defining a minimum resolution of the irradiation field in a direction perpendicular to Rota ⁇ tion axis.
  • the offset device is then purchasedbil ⁇ det to cause an offset perpendicular to the axis of rotation.
  • the field is offset by a quarter, results in Ein ⁇ radiation from opposite directions, an offset by a total of half the resolution of the irradiation field.
  • This embodiment has the advantage that the offset in pure ent ⁇ oppositely radiated fields caused by the geometrical arrangement of the collimator generic already an advantage.
  • the second irradiation field is offset from the first irradiation field by a fraction of the resolution.
  • the second irradiation field may be sequentially irradiated to the first irradiation field and offset by a quarter or a half of the resolution.
  • the radiation source and the collimator can be rotatably mounted about an axis of rotation about an isocenter, and the irradiation fields can be offset from one another along the axis of rotation.
  • the rotation of the radiation source and of the collimator can take place helically around the axis of rotation.
  • the radiation source and the collimator can to have a Rotati ⁇ onsachse rotatably supported, wherein a resolution of the irradiation field in a direction perpendicular to the axis of rotation is defined by the extension of the collimator, and the offset perpendicularly saufin ⁇ det to the rotation axis.
  • the field applied by the collimator may be arranged to an isocentrically aligned radius such that the field is offset from the radius by a quarter of the resolution of the irradiation field.
  • Fig. 2 is a representation of how the resolution increase in a
  • Radiotherapy device can be achieved.
  • Fig. 3 is a representation of how the resolution increase in a
  • Radiotherapy device according to another embodiment ⁇ form can be achieved.
  • FIG. 4 shows the offset of the irradiation field in FIG.
  • Fig. 3 illustrated embodiment with respect to a central, isocentric radius.
  • Fig. 1 shows a first irradiation field 11 and a Questionla ⁇ GERTES second irradiation field 13.
  • the first irradiation ⁇ field 11 is shown by a solid line, the second irradiation field 13 by a broken line.
  • the first irradiation field 11 is applied in the irradiation volume by applying a beam from a first direction and limited by a collimator.
  • the width of the collimator - for example lamellae - is the on ⁇ solution of the first irradiation field 11 adjacent loading in one direction.
  • the irradiation of the second irradiation field 13 takes place from the opposite spatial direction, specifically in such a way that the second irradiation field 13 is offset in the direction in which the resolution limitation is predetermined by the collimator design. Shown here is an offset by half the resolution, other fractions than offset are possible.
  • Fig. 2 shows a radiotherapy device 21, in which a
  • Radiation source 23 and a collimator 25 can be rotated about an axis of rotation 27. Other components of the Strahlenthera ⁇ pie réelles 21 are not shown for clarity.
  • the rotation of the radiation source 23 and of the collimator 25 about the target volume (not shown) to be irradiated takes place along a helical path 29.
  • the path 29 is selected such that upon irradiation of the irradiation fields 11, 13 from different directions, an offset of the irradiation fields 11, 13 exactly by half by the collimator 25 predetermined resolution takes place.
  • the displacement device the fields provides the displacement of the irradiation, the mechanism that allows the helical Bahnbewe ⁇ supply of the radiation source 23 and the collimator 25 corresponds.
  • Fig. 3 shows a radiotherapy device 21, in which a
  • Radiation source 23 and a collimator 25 can be rotated about an axis of rotation 27.
  • Other components of the Strahlenthera ⁇ pie réelles 21 are not shown for clarity.
  • the rotation of the radiation source 23 and of the collimator 25 about the target volume to be irradiated takes place along a circular path 29 '.
  • the irradiation of the radiation fields 11, 13 is chosen such that follows at a ⁇ radiation of the radiation fields 11, 13 from different directions, a displacement of the radiation fields 11, 13 ER- exactly in half by the collimator 25 predetermined resolution.
  • the offset takes place along a direction which is perpendicular to the axis of rotation 27.
  • the offset device that provides for the displacement of the irradiation fields corresponds to the mechanism that allows the irradiation of a field by a quarter of the resolution offset to an isocentric, imaginary radius 31.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Die Erfindung betrifft ein Strahlentherapiegerät, aufweisend: - eine Strahlenquelle, von der aus ein Strahl zur Bestrahlung auf ein Zielvolumen aus zumindest zwei einander entgegengesetzten Richtungen richtbar ist, - einen Kollimator mit einer Vielzahl von Kollimatorelementen zum Eingrenzen des Behandlungsstrahls zum Erzeugen eines Bestrahlungsfeldes, wobei durch die Ausdehnung der Kollimatorelemente eine Auflösung des Bestrahlungsfeldes vorgegeben wird, und - eine Versatzvorrichtung, welche bewirkt, dass die Einstrahlung entgegengesetzter Bestrahlungsfelder unter einem Versatz derart erfolgt, dass die beiden entgegengesetzten Bestrahlungsfelder gegeneinander um einen Bruchteil der Auflösung zueinander versetzt sind. Weiterhin betrifft die Erfindung ein Verfahren zur Erzeugung einer Auflösungserhöhung bei eingestrahlten Bestrahlungsfeldern bei einem Strahlentherapiegerät, - Erzeugen eines ersten Bestrahlungsfeldes mit Hilfe eines Kollimators, der einen von einer ersten Raumrichtung ausgesendeten Strahl begrenzt und der eine Vielzahl von Kollimatorelementen umfasst, die eine Auflösung des Bestrahlungsfeldes vorgeben, - Erzeugen eines zweiten Bestrahlungsfeldes mit Hilfe des Kollimators, der einen weiteren, von einer zweiten Raumrichtung ausgesendeten Strahl begrenzt, wobei das zweite Bestrahlungsfeld zu dem ersten Bestrahlungsfeld um einen Bruchteil der Auflösung zueinander versetzt ist.

Description

Beschreibung
Strahlentherapiegerät sowie Verfahren zum Erzeugen einer Auf¬ lösungserhöhung bei eingestrahlten Bestrahlungsfeldern
Die Erfindung betrifft ein Strahlentherapiegerät sowie ein Verfahren zum Erzeugen einer erhöhten Auflösung bei eingestrahlten Bestrahlungsfeldern und - damit verbunden - der eingestrahlten Dosisverteilung.
Strahlentherapiegeräte werden in bekannter Weise zur Behand¬ lung von Erkrankungen wie beispielsweise Tumoren eingesetzt. Hierbei werden üblicherweise hochenergetische Röntgenstrahlen auf ein zu bestrahlendes Zielvolumen wie zum Beispiel einem menschlichen Körper oder einem Phantom zu Forschungs- oder
Wartungszwecken eingestrahlt. Die Dosisverteilung wird an das zu bestrahlende Zielvolumen angepasst.
Dies wird üblicherweise durch hochauflösende Kollimatoren er- reicht, die den Strahl seitlich begrenzen. Je hochauflösender ein Kollimator ist, d.h. je feiner ein durch den Kollimator erzeugtes Bestrahlungsfeld abgestuft werden kann, desto ge¬ nauer kann eine gewünschte Dosisverteilung appliziert werden. Hochauflösende Kollimatoren erfordern jedoch eine aufwändige Konstruktion und sind vergleichsweise teuer.
Es ist die Aufgabe der Erfindung ein Strahlentherapiegerät anzugeben, das eine hohe Auflösung der eingestrahlten Dosis- Verteilung auch bei einer einfacheren Konstruktion eines Kollimators erlaubt. Weiterhin ist es die Aufgabe der Erfindung, ein entsprechendes Verfahren zum Erzeugen einer Auflösungser- höhung bei eingestrahlten Bestrahlungsfeldern bereitzustellen .
Die Aufgabe der Erfindung wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen der Er- findung finden sich in den Merkmalen der abhängigen Ansprüche .
Das erfindungsgemäße Strahlentherapiegerät weist auf:
- eine Strahlenquelle, beispielsweise eine Röntgenstrahlen- quelle, von der aus ein Strahl zur Bestrahlung auf ein Zielvolumen aus zumindest zwei einander entgegengesetzten Richtungen richtbar ist,
- einen Kollimator mit einer Vielzahl von Kollimatorelementen zum Eingrenzen des Behandlungsstrahls zum Erzeugen eines
Bestrahlungsfeldes, wobei durch die Ausdehnung der Kollima¬ torelemente eine Auflösung des Bestrahlungsfeldes vorgege¬ ben ist, und
- eine Versatzvorrichtung, welche bewirkt, dass die Einstrah- lung entgegengesetzter Bestrahlungsfelder unter einem Versatz erfolgt, sodass die beiden entgegengesetzten Bestrahlungsfelder gegeneinander um einen Bruchteil der Auflösung zueinander versetzt sind. Erfindungsgemäß wird die Dosisverteilung im Bestrahlungsvolu¬ men durch sequentielle Anwendung zweier
Strahlenbündel aus entgegengesetzten Raumrichtungen zusammengesetzt, wobei die Achsen der Strahlenbündel um einen Bruch¬ teil, z.B. um die Hälfte oder um ein Viertel, der Auflösung des Kollimators versetzt sind. Die Auflösung der im Bestrah¬ lungsvolumen erreichbaren Dosisverteilung wird dadurch effektiv verdoppelt. Die Erfindung erlaubt es folglich, eine ver¬ besserte lokale Dosisverteilung bei Strahlentherapiegeräten wie Röntgenstrahlentherapiegeräten zu erreichen.
Der Vorteil bei einem derartigen Strahlentherapiegerät ist eine Halbierung bzw. Viertelung der zur Erreichung einer bestimmten Auflösung der Dosisverteilung erforderlichen Kollimatorelemente, z.B. Lamellen oder Nadeln, je nach Bauweise des Kollimators. Es lässt sich damit eine wesentliche Verein¬ fachung erreichen und die Komplexität des Strahlformungsme¬ chanismus reduzieren. Die Einstrahlung aus entgegengesetzten Richtungen kann se- quenziell erfolgen.
Bei einem Kollimator kann beispielsweise durch die Ausdehnung der Kollimatorelemente - zum Beispiel die Breite einer Lamel¬ le - eine minimale Auflösung in einer Richtung eines zweidi¬ mensionalen Bestrahlungsfeldes vorgegeben sein oder je nach Bauweise des Kollimators auch in den zwei Richtungen des zweidimensionalen Bestrahlungsfeldes. Diese Auflösung kann erhöht werden, wenn bei dem zweiten, aus entgegengesetzter Richtung eingestrahlten Bestrahlungsfeld einen Versatz des Strahlenbündels in genau diese Richtung um einen Bruchteil der Auflösung des Kollimators erfolgt. Das Strahlentherapiegerät kann eine Zylindergeometrie aufwei¬ sen, d.h. dass die Strahlenquelle und der Kollimator um eine Rotationsachse um ein Isozentrum drehbar gelagert sind. Der Kollimator kann derart angeordnet sein, dass die Ausdehnung der Kollimatorelemente eine minimale Auflösung des Bestrah- lungsfeldes in Richtung der Rotationsachse vorgibt. Die
Versatzvorrichtung kann dann ausgebildet sein, einen Versatz entlang der Rotationsachse zu bewirken. Die Desachsierung erfolgt hier durch Versatz in Drehrichtung, z.B. um ein Viertel oder um die Hälfte der Auflösung.
Dies kann beispielsweise bewerkstelligt werden, indem die Ro¬ tation der Strahlenquelle und des Kollimators helixartig um die Rotationsachse erfolgt. Bei einer halben Umdrehung kann ein Versatz des Bestrahlungsfeldes von z.B. einer Hälfte oder einem Viertel der Auflösung des Bestrahlungsfeldes erfolgen. Dies kann z.B. erreicht werden, in dem der Kollimator und die Strahlquelle bei Rotation gleichzeitig eine Linearbewegung entlang der Drehachse ausführen. Die Bewegung wird damit helixartig .
Die Strahlenquelle und der Kollimator können aber auch um eine Rotationsachse um ein Isozentrum drehbar gelagert sein, und der Kollimator kann dabei derart angeordnet sein, dass die Ausdehnung der Kollimatorelemente eine minimale Auflösung des Bestrahlungsfeldes in einer Richtung senkrecht zur Rota¬ tionsachse vorgibt. Die Versatzvorrichtung ist dann ausgebil¬ det, einen Versatz senkrecht zur Rotationsachse zu bewirken.
Dies kann beispielsweise bewerkstelligt werden, indem die Versatzvorrichtung bewirkt, dass das durch den Kollimator applizierte Feld derart zu einem isozentrisch ausgerichteten Radius angeordnet ist, dass das Feld um ein Viertel der Auf- lösung des Bestrahlungsfeldes zum Radius versetzt ist. Indem das Feld um ein Viertel versetzt ist, ergibt sich bei Ein¬ strahlung aus entgegengesetzten Richtungen ein Versatz um insgesamt die Hälfte der Auflösung des Bestrahlungsfeldes. Diese Ausführung hat den Vorteil, dass rein durch die geomet- rische Anordnung des Kollimators bereits der Versatz bei ent¬ gegengesetzt eingestrahlten Feldern bewirkt wird.
Das erfindungsgemäße Verfahren zur Erzeugung einer Auflösungserhöhung bei eingestrahlten Bestrahlungsfeldern bei ei- nem Strahlentherapiegerät, weist folgende Schritte auf:
- Erzeugen eines ersten Bestrahlungsfeldes mit Hilfe eines Kollimators, der einen von einer ersten Raumrichtung ausgesendeten, zu applizierenden Strahl begrenzt und der eine Vielzahl von Kollimatorelementen umfasst, die eine Auflö- sung des Bestrahlungsfeldes vorgeben,
- Erzeugen eines zweiten Bestrahlungsfeldes mit Hilfe des Kollimators, der einen weiteren, von einer zweiten Raumrichtung ausgesendeten Strahl begrenzt,
wobei das zweite Bestrahlungsfeld zu dem ersten Bestrahlungs- feld um einen Bruchteil der Auflösung zueinander versetzt ist .
Das zweite Bestrahlungsfeld kann sequentiell zu dem ersten Bestrahlungsfeld eingestrahlt werden und um ein Viertel oder eine Hälfte der Auflösung versetzt sein. Die Strahlenquelle und der Kollimator können um eine Rotationsachse um ein Isozentrum drehbar gelagert sein, und die Bestrahlungsfelder können zueinander entlang der Rotationsachse versetzt sein. Die Rotation der Strahlenquelle und des Kollimators kann he- lixartig um die Rotationsachse erfolgen.
Die Strahlenquelle und der Kollimator können um eine Rotati¬ onsachse drehbar gelagert sind, wobei durch die Ausdehnung der Kollimatorelemente eine Auflösung des Bestrahlungsfeldes in einer Richtung senkrecht zur Rotationsachse vorgegeben wird, und der Versatz senkrecht zur Rotationsachse stattfin¬ det. Z.B. kann das durch den Kollimator applizierte Feld derart zu einem isozentrisch ausgerichteten Radius angeordnet sein, dass das Feld um ein Viertel der Auflösung des Bestrahlungsfeldes zum Radius versetzt ist.
Die vorangehende und die folgende Beschreibung der einzelnen Merkmale, deren Vorteile und deren Wirkungen bezieht sich so¬ wohl auf die Vorrichtungskategorie als auch auf die Verfah¬ renskategorie, ohne dass dies im Einzelnen in jedem Fall ex¬ plizit erwähnt ist; die dabei offenbarten Einzelmerkmale kön¬ nen auch in anderen als den gezeigten Kombinationen erfindungswesentlich sein.
Ausführungsformen der Erfindung werden anhand der folgenden Zeichnung näher erläutert, ohne jedoch darauf beschränkt zu sein. Es zeigen:
Fig. 1 eine Darstellung zur Erläuterung des Prinzips, wie eine Auflösungserhöhung erreicht werden kann,
Fig. 2 eine Darstellung, wie die Auflösungserhöhung bei einem
Strahlentherapiegerät erreicht werden kann.
Fig. 3 eine Darstellung, wie die Auflösungserhöhung bei einem
Strahlentherapiegerät gemäß einer anderen Ausführungs¬ form erreicht werden kann.
Fig. 4 zeigt den Versatz des Bestrahlungsfeldes bei der in
Fig. 3 dargestellten Ausführungsform bezüglich eines zentralen, isozentrischen Radius. Fig. 1 zeigt ein erstes Bestrahlungsfeld 11 und ein überla¬ gertes zweites Bestrahlungsfeld 13. Das erste Bestrahlungs¬ feld 11 ist durch eine durchgezogene Linie dargestellt, das zweite Bestrahlungsfeld 13 durch eine gestrichelte Linie.
Ebenso eingezeichnet sind die Projektionen der Kollimatorele¬ mente 15, die jeweils das Bestrahlungsfeld erzeugen. Das erste Bestrahlungsfeld 11 wird in dem Bestrahlungsvolumen appliziert, indem ein Strahl aus einer ersten Richtung appliziert und durch einen Kollimator begrenzt wird. Durch die Breite der Kollimatorelemente - z.B. Lamellen - ist die Auf¬ lösung des ersten Bestrahlungsfeldes 11 in einer Richtung be- grenzt.
Die Einstrahlung des zweiten Bestrahlungsfeldes 13 erfolgt aus entgegengesetzter Raumrichtung und zwar derart, dass das zweite Bestrahlungsfeld 13 in der Richtung, in der die Auflö- sungsbegrenzung durch die Kollimatorbauweise vorgegeben ist, versetzt ist. Hier dargestellt ist ein Versatz um die Hälfte der Auflösung, es sind auch andere Bruchteile als Versatz möglich . Die Dosisverteilung, die sich aus beiden Bestrahlungsfeldern 11, 13 zusammensetzt, weist dadurch eine Auflösung auf, die doppelt so groß ist wie die durch den Kollimator vorgegebene Auflösung . Fig. 2 zeigt ein Strahlentherapiegerät 21, bei dem eine
Strahlenquelle 23 und ein Kollimator 25 um eine Drehachse 27 rotiert werden können. Weitere Komponenten des Strahlenthera¬ piegeräts 21 sind der Übersichtlichkeit halber nicht gezeigt. Die Rotation der Strahlenquelle 23 und des Kollimators 25 um das zu bestrahlende Zielvolumen (nicht dargestellt) erfolgt entlang einer helixartigen Bahn 29. Die Bahn 29 ist derart gewählt, dass bei Einstrahlung der Bestrahlungsfelder 11, 13 aus unterschiedlichen Richtungen ein Versatz der Bestrahlungsfelder 11, 13 genau um die Hälfte durch den Kollimator 25 vorgegebenen Auflösung erfolgt. In diesem Fall entspricht die Versatzvorrichtung, die für den Versatz der Bestrahlungs- felder sorgt, dem Mechanismus, der die helixartige Bahnbewe¬ gung der Strahlenquelle 23 und des Kollimators 25 ermöglicht.
Fig. 3 zeigt ein Strahlentherapiegerät 21, bei dem eine
Strahlenquelle 23 und ein Kollimator 25 um eine Drehachse 27 rotiert werden können. Weitere Komponenten des Strahlenthera¬ piegeräts 21 sind der Übersichtlichkeit halber nicht gezeigt.
Die Rotation der Strahlenquelle 23 und des Kollimators 25 um das zu bestrahlende Zielvolumen (nicht dargestellt) erfolgt entlang einer kreisförmigen Bahn 29'. Die Einstrahlung der Bestrahlungsfelder 11, 13 ist derart gewählt, dass bei Ein¬ strahlung der Bestrahlungsfelder 11, 13 aus unterschiedlichen Richtungen ein Versatz der Bestrahlungsfelder 11, 13 genau um die Hälfte durch den Kollimator 25 vorgegebenen Auflösung er- folgt. Der Versatz erfolgt entlang einer Richtung, die senkrecht zur Rotationsachse 27 steht.
In diesem Fall entspricht die Versatzvorrichtung, die für den Versatz der Bestrahlungsfelder sorgt, dem Mechanismus, der die Einstrahlung eines Feldes um ein Viertel der Auflösung versetzt zu einem isozentrischen, gedachten Radius 31 ermöglicht .
Dies ist anhand von Fig. 4 nochmals erläutert. Dadurch, dass ein Bestrahlungsfeld um ein Viertel versetzt zu einem iso¬ zentrischen Radius eingestrahlt wird, wird bei entgegenge¬ setzter Einstrahlung ein Versatz von insgesamt einer Hälfte der Auslösung des Bestrahlungsfeldes erreicht. Die Ausführungsformen gemäß Fig. 3 und Fig. 4 können miteinander kombiniert werden, beispielsweise bei einem Kollimator, der derart beschaffen ist, dass in beiden Richtungen seines Bestrahlungsfeldes eine Auflösungsbegrenzung vorgegeben wird. Bezugs zeichenliste
11 erstes Bestrahlungsfeld
13 zweites Bestrahlungsfeld
15 Projektionen der Kollimatorelemente
21 Strahlentherapiegerät
23 Strahlenquelle
25 Kollimator
27 Rotationsachse
29 helixartige Bahn
29 ' kreisförmige Bahn
31 isozentrischer Radius

Claims

Patentansprüche
1. Strahlentherapiegerät (21), aufweisend:
- eine Strahlenquelle (23) , von der aus ein Strahl zur Be- Strahlung auf ein Zielvolumen aus zumindest zwei einander entgegengesetzten Richtungen richtbar ist,
- einen Kollimator (25) mit einer Vielzahl von Kollimatorelementen zum Eingrenzen des Behandlungsstrahls zum Erzeugen eines Bestrahlungsfeldes (11, 13), wobei durch die Ausdeh- nung der Kollimatorelemente eine Auflösung des Bestrah¬ lungsfeldes (11, 13) vorgegeben wird, und
- eine Versatzvorrichtung, welche bewirkt, dass die Einstrahlung entgegengesetzter Bestrahlungsfelder (11, 13) unter einem Versatz derart erfolgt, dass die beiden entgegenge- setzt eingestrahlten Bestrahlungsfelder (11, 13) zueinander um einen Bruchteil der Auflösung versetzt sind.
2. Strahlentherapiegerät (21) nach Anspruch 1,
wobei die Versatzvorrichtung ausgebildet ist, einen Versatz von einem Viertel oder der Hälfte der durch die Kollimatore lemente vorgegebenen Auflösung zu bewirken.
3. Strahlentherapiegerät (21) nach Anspruch 1 oder 2, wobei die Strahlenquelle (23) und der Kollimator (25) um eine Rotationsachse (27) drehbar gelagert sind, wobei durch die
Ausdehnung der Kollimatorelemente eine Auflösung des Bestrahlungsfeldes (11, 13) in Richtung der Rotationsachse (27) vor¬ gegeben wird, und wobei die Versatzvorrichtung ausgebildet ist, einen Versatz entlang der Rotationsachse (27) zu bewir- ken.
4. Strahlentherapiegerät (21) nach Anspruch 3,
wobei die Rotation der Strahlenquelle (23) und des Kollima¬ tors (25) helixartig erfolgt.
5. Strahlentherapiegerät (21) nach einem der vorhergehenden Ansprüche,
wobei die Strahlenquelle (23) und der Kollimator (25) um eine Rotationsachse (27) drehbar gelagert sind, wobei durch die Ausdehnung der Kollimatorelemente eine Auflösung des Bestrahlungsfeldes (11, 13) in einer Richtung senkrecht zur Rotati¬ onsachse (27) vorgegeben wird, und wobei die Versatzvorrichtung ausgebildet ist, einen Versatz senkrecht zur Rotations¬ achse (27) zu bewirken.
6. Strahlentherapiegerät (21) nach Anspruch 5,
wobei die Versatzvorrichtung bewirkt, dass das durch den Kol¬ limator applizierte Bestrahlungsfeld (11, 13) derart zu einem isozentrisch ausgerichteten Radius (31) angeordnet ist, dass das Bestrahlungsfeld (11, 13) um ein Viertel der Auflösung des Bestrahlungsfeldes (11, 13) zum Radius (31) versetzt ist.
7. Verfahren zur Erzeugung einer Auflösungserhöhung bei eingestrahlten Bestrahlungsfeldern (11, 13) bei einem Strahlen- therapiegerät (21),
- Erzeugen eines ersten Bestrahlungsfeldes (11) mit Hilfe ei¬ ner Strahlenquelle (23) und einem Kollimator (25) , der ei¬ nen von einer ersten Raumrichtung ausgesendeten, zu applizierenden Strahl der Strahlenquelle (23) begrenzt und der eine Vielzahl von Kollimatorelementen umfasst, die eine
Auflösung des Bestrahlungsfeldes (11) vorgeben,
- Erzeugen eines zweiten Bestrahlungsfeldes (13) mit Hilfe des Kollimators (25) , der einen weiteren, von einer zweiten Raumrichtung ausgesendeten Strahl begrenzt, wobei das zwei- te Bestrahlungsfeld (13) zu dem ersten Bestrahlungsfeld
(11) um einen Bruchteil der Auflösung zueinander versetzt ist .
8. Verfahren nach Anspruch 7,
wobei das zweite Bestrahlungsfeld zu dem ersten Bestrahlungs¬ feld um ein Viertel oder eine Hälfte der Auflösung versetzt ist .
9. Verfahren nach Anspruch 7 oder 8,
wobei die Strahlenquelle (23) und der Kollimator (25) um eine Rotationsachse (27) drehbar gelagert sind, wobei durch die Ausdehnung der Kollimatorelemente eine Auflösung des Bestrah- lungsfeldes (11, 13) in Richtung der Rotationsachse (27) vor¬ gegeben wird, und wobei die Bestrahlungsfelder (11, 13) zu¬ einander entlang der Rotationsachse (27) versetzt sind, wobei die Rotation der Strahlenquelle (23) und des Kollimators (25) insbesondere helixartig um die Rotationsachse (27) erfolgt.
10. Verfahren nach einem der Ansprüche 7 bis 9, wobei die Strahlenquelle (23) und der Kollimator (25) um eine Rotati¬ onsachse (27) drehbar gelagert sind, wobei durch die Ausdeh¬ nung der Kollimatorelemente eine Auflösung des Bestrahlungs- feldes (11, 13) in einer Richtung senkrecht zur Rotationsach¬ se (27) vorgegeben wird, und der Versatz senkrecht zur Rotationsachse (27) stattfindet.
11. Verfahren nach einem der Ansprüche 7 bis 10,
wobei das durch den Kollimator (25) applizierte Bestrahlungs¬ feld (11, 13) derart zu einem isozentrisch ausgerichteten Radius (31) angeordnet ist, dass das Bestrahlungsfeld (11, 13) um ein Viertel der Auflösung des Bestrahlungsfeldes (11, 13) zum Radius (31) versetzt ist.
EP11702975A 2010-02-24 2011-02-02 Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern Withdrawn EP2516006A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010009018A DE102010009018A1 (de) 2010-02-24 2010-02-24 Strahlentherapiegerät sowie Verfahren zum Erzeugen einer Auflösungserhöhung bei eingestrahlten Bestrahlungsfeldern
PCT/EP2011/051460 WO2011104076A1 (de) 2010-02-24 2011-02-02 Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern

Publications (1)

Publication Number Publication Date
EP2516006A1 true EP2516006A1 (de) 2012-10-31

Family

ID=43709176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11702975A Withdrawn EP2516006A1 (de) 2010-02-24 2011-02-02 Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern

Country Status (10)

Country Link
US (1) US20120314840A1 (de)
EP (1) EP2516006A1 (de)
JP (1) JP2013520256A (de)
CN (1) CN102762257A (de)
BR (1) BR112012021176A2 (de)
CA (1) CA2790793A1 (de)
DE (1) DE102010009018A1 (de)
IN (1) IN2012DN06647A (de)
RU (1) RU2012140348A (de)
WO (1) WO2011104076A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204714A1 (en) * 2017-05-05 2018-11-08 Radiabeam Technologies, Llc Compact high gradient ion accelerating structure
US10212800B2 (en) 2017-03-24 2019-02-19 Radiabeam Technologies, Llc Compact linear accelerator with accelerating waveguide
US10932354B2 (en) 2017-06-01 2021-02-23 Radiabeam Technologies, Llc Split structure particle accelerators
US11612049B2 (en) 2018-09-21 2023-03-21 Radiabeam Technologies, Llc Modified split structure particle accelerators

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868843A (en) * 1986-09-10 1989-09-19 Varian Associates, Inc. Multileaf collimator and compensator for radiotherapy machines
US5160847A (en) * 1989-05-03 1992-11-03 The Parvus Corporation Dynamic multivane electron arc beam collimator
JP2888737B2 (ja) * 1992-08-31 1999-05-10 三菱電機株式会社 放射線治療装置
JP3447362B2 (ja) * 1994-03-25 2003-09-16 株式会社東芝 放射線治療計画装置
DE69529857T2 (de) * 1994-03-25 2004-01-08 Kabushiki Kaisha Toshiba, Kawasaki Strahlentherapie-System
US6600810B1 (en) * 1998-08-10 2003-07-29 Siemens Medical Solutions Usa, Inc. Multiple layer multileaf collimator design to improve resolution and reduce leakage
US6813336B1 (en) * 2000-08-17 2004-11-02 Siemens Medical Solutions Usa, Inc. High definition conformal arc radiation therapy with a multi-leaf collimator
US6330300B1 (en) * 2000-08-23 2001-12-11 Siemens Medical Solutions Usa, Inc. High definition intensity modulating radiation therapy system and method
US6661871B2 (en) * 2001-09-28 2003-12-09 Siemens Medical Solutions Usa, Inc. System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator by minimizing junctions
US6929398B1 (en) * 2002-07-11 2005-08-16 Analogic Corporation Two-piece pallet assembly for patient table
JP4241518B2 (ja) * 2004-06-15 2009-03-18 株式会社Ihi マルチリーフコリメータ
JP5074394B2 (ja) * 2005-07-25 2012-11-14 オットー、カール 放射線治療の計画及び照射方法並びに装置
US7880154B2 (en) * 2005-07-25 2011-02-01 Karl Otto Methods and apparatus for the planning and delivery of radiation treatments
CN101021597B (zh) * 2007-02-16 2010-05-26 浙江大学 微小相位延迟量光延迟线阵列开关
JP2008206822A (ja) * 2007-02-27 2008-09-11 Toshiba Corp 放射線治療装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011104076A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212800B2 (en) 2017-03-24 2019-02-19 Radiabeam Technologies, Llc Compact linear accelerator with accelerating waveguide
WO2018204714A1 (en) * 2017-05-05 2018-11-08 Radiabeam Technologies, Llc Compact high gradient ion accelerating structure
US11540382B2 (en) 2017-05-05 2022-12-27 Radiabeam Technologies, Llc Compact high gradient ion accelerating structure
US10932354B2 (en) 2017-06-01 2021-02-23 Radiabeam Technologies, Llc Split structure particle accelerators
US11950352B2 (en) 2017-06-01 2024-04-02 Radiabeam Technologies, Llc Split structure particle accelerators
US11612049B2 (en) 2018-09-21 2023-03-21 Radiabeam Technologies, Llc Modified split structure particle accelerators
US11800631B2 (en) 2018-09-21 2023-10-24 Radiabeam Technologies, Llc Modified split structure particle accelerators

Also Published As

Publication number Publication date
CA2790793A1 (en) 2011-09-01
CN102762257A (zh) 2012-10-31
IN2012DN06647A (de) 2015-10-09
WO2011104076A1 (de) 2011-09-01
US20120314840A1 (en) 2012-12-13
BR112012021176A2 (pt) 2016-05-17
DE102010009018A1 (de) 2011-08-25
JP2013520256A (ja) 2013-06-06
RU2012140348A (ru) 2014-03-27

Similar Documents

Publication Publication Date Title
DE112005002171B4 (de) Teilchenstrahl-Bestrahlungsverfahren und dafür verwendete Teilchenstrahl-Bestrahlungsvorrichtung
DE102005041122B3 (de) Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System
DE102004048212B4 (de) Strahlentherapieanlage mit Bildgebungsvorrichtung
DE102008010958B4 (de) Konformales Mehrschicht-Strahlentherapiesystem und dieses verwendende Teilchenstrahl-Therapievorrichtung
DE102009032275A1 (de) Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
DE102007036035A1 (de) Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens
DE112005002154T5 (de) Teilchenstrahlbestrahlungsverfahren und Teilchenstrahlbestrahlungsvorrichtung für ein derartiges Verfahren
EP1148911A2 (de) Gantry-system und verfahren zum betrieb des systems
EP1448267A1 (de) Kollimator für energiereiche strahlung und programm zur steuerung des kollimators
WO2007054511A1 (de) Partikeltherapieanlage, therapieplan und bestrahlungsverfahren für eine derartige partikeltherapieanlage
EP1987859A2 (de) Partikeltherapieanlage
DE102007014715A1 (de) Bestimmung von Steuerparametern für eine Bestrahlung eines bewegten Zielvolumens in einem Körper
DE102010062533A1 (de) Strahlentherapieanlage
DE102004057726A1 (de) Medizinische Untersuchungs- und Behandlungseinrichtung
EP2516006A1 (de) Strahlentherapiegerät sowie verfahren zum erzeugen einer auflösungserhöhung bei eingestrahlten bestrahlungsfeldern
DE102009032429B4 (de) Strahlentherapiegerät mit rotierbarer Gantry
WO2009106603A1 (de) Teilchenstrahl-therapiesystem
EP2528064A1 (de) Multiple Reichweitenmodulatoren
DE10041473B4 (de) Vorrichtung zur Bestrahlung von Gewebe
EP2512596B1 (de) Medizinisches, mit röntgenstrahlen arbeitendes gerät sowie verfahren zum betreiben eines solchen
DE102016225798B4 (de) Einrichtung zum Bestrahlen eines Gewebes zur Strahlentherapie mit aufgeweiteten Teilchenstrahlen
EP1620181A1 (de) Verfahren und vorrichtung zur erzeugung eines intensitätsmodulierten strahlenbündels
DE10257206A1 (de) Röntgenbestrahlungseinrichtung
WO2010088990A1 (de) Strahlentherapiegerät
DE2164207B2 (de) Einrichtung zur bestrahlung mit energiereichen elektronen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150303