EP2514052B2 - Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial - Google Patents
Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial Download PDFInfo
- Publication number
- EP2514052B2 EP2514052B2 EP10752780.6A EP10752780A EP2514052B2 EP 2514052 B2 EP2514052 B2 EP 2514052B2 EP 10752780 A EP10752780 A EP 10752780A EP 2514052 B2 EP2514052 B2 EP 2514052B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode material
- electrode
- weight
- spark plug
- und
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007772 electrode material Substances 0.000 title claims description 136
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 70
- 239000000463 material Substances 0.000 claims description 52
- 229910052759 nickel Inorganic materials 0.000 claims description 37
- 239000001301 oxygen Substances 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 229910052735 hafnium Inorganic materials 0.000 claims description 27
- 229910052727 yttrium Inorganic materials 0.000 claims description 27
- 229910052684 Cerium Inorganic materials 0.000 claims description 26
- 229910052746 lanthanum Inorganic materials 0.000 claims description 26
- 229910052715 tantalum Inorganic materials 0.000 claims description 26
- 229910052726 zirconium Inorganic materials 0.000 claims description 26
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 15
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 35
- 239000000956 alloy Substances 0.000 description 19
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 230000003628 erosive effect Effects 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 238000009760 electrical discharge machining Methods 0.000 description 6
- 239000010970 precious metal Substances 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 230000000368 destabilizing effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 241001136792 Alle Species 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910000923 precious metal alloy Inorganic materials 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
Definitions
- the invention relates to a spark plug electrode made of an alloy based electrode material.
- the requirements for the materials of the engine components are becoming increasingly demanding.
- the components that play a major role in the ignition of the fuel mixture, the spark plugs, and in particular the spark plug electrodes are exposed to high loads, in particular by the oxygen-rich atmosphere and high temperatures in the engine compartment. This makes it necessary to provide spark plugs that meet these high requirements.
- nickel alloys are used because nickel has both a high melting temperature, which is indispensable for the temperature resistance of the alloy, and has a high resistance to corrosion. While pure noble metal or precious metal based materials such as platinum or platinum alloys with iridium exhibit increased resistance to spark erosion attacks and hence very high electrode lifetimes, platinum spark plug electrode materials are cost effective in economic terms no suitable alternative to commercially available nickel alloys. Under spark-erosive attacks or erosion losses is the material removal from the electrode, which is induced by the action of the arc on the electrode surface understood.
- EP 2 012 398 A2 discloses a spark plug electrode made of an electrode material wherein the electrode material comprises a) nickel as a base material and b) at least one further element selected from the group consisting of Y, Hf, Ce, La, Zr, Ta and Yb and c) at least one element from the group consisting of: Si, Na, K, Li, Ti, Ag and Cu, wherein the total content of element b) based on the total weight of the electrode material is 0.1 to 0.3 wt.%.
- the oxide layer which forms on the surface of the spark plug electrode according to the invention has an optimized structure.
- an optimized structure is understood to mean that the oxide layer has a uniform and stable composite and, moreover, is relatively thin and even at the surface in comparison to oxide layers which form on conventional electrodes. This allows a low electrical resistance of the oxide layer on the electrode surface.
- a contact resistance between the oxide layer and the base material, that is to say the unoxidized electrode material is lowered, which results in additionally improved electrical conductivity.
- the electrical resistance on the electrode surface located oxide layer low, that is equal to or less than predetermined by the above defined equation, the electrical voltage that arises during sparkover in the combustion chamber between the electrode surfaces, quickly derived from the surface of the electrode in the interior, so that the local stress ah the surface of the electrode is significantly reduced and is also of extremely short duration.
- the ability to conduct the current rapidly and evenly from the electrode surface into the interior of the spark plug electrode is greater the smaller the electrical resistance.
- Another positive effect of the invention is that in that the current is dissipated so quickly, also a local heating of the material delivered to the spark is counteracted, so that the tendency of the electrode material for further formation of oxides is again significantly reduced and thus only only an extremely thin and homogeneous oxide layer is formed on the electrode surface.
- the wear of the electrode material by spark erosion and corrosion is thereby significantly reduced, so that the wear rate of the spark plug electrode according to the invention over those of conventional electrode materials is considerably reduced.
- the electrode material according to the invention is stable and wear-resistant, even at high temperatures under the extreme conditions prevailing in the combustion chamber.
- the spark plug electrode according to the invention is free of noble metals, but has significantly improved service life in comparison with conventional spark plugs.
- a resistance of the electrode material also fulfills the previously defined equation, so that a similar, particularly preferably equal, resistance of the oxide layer formed on the electrode material and of the electrode material is present.
- the spark plug electrode is characterized by an electrode material whose oxide layer on its surface has an electric resistance R equal to or smaller than that defined by the above-mentioned equation, so that all the above-mentioned advantages are obtained with this electrode material.
- the heat-conducting properties of the oxides and thus of the overall alloy are also excellent so that the material also has an extremely high temperature resistance and, associated therewith, significantly reduced spark erosive wear or electrode erosion.
- the oxidation and corrosion resistance of the material is also very good under continuous load.
- the element b) is characterized by excellent electrical and physical properties and supports the formation of a thin and even oxide layer on the electrode surface. Concentration of element b) above 0.3% by weight lead to precipitations of this element, so that the corrosion resistance and erosion resistance of the material decreases again. On the other hand, concentration of element b) of less than 0.1% by weight does not have a sufficiently stabilizing effect on the electrode material.
- the electrode material is preferably free of aluminum. This makes it easier to process the material with respect to known aluminum-containing materials, which can reduce the expense of producing such electrode materials.
- a low-cost electrode material for spark plug electrodes is provided, which allows change intervals, which were previously achieved only with electrode materials of precious metal and precious metal alloys.
- the oxide layer forming on the surface of the electrode has a thermal conductivity of more than 6 W / mK and preferably more than 8 W / mK and particularly preferably more than 10 W / mK, the thermal conductivity being 20 ° C is measured.
- the spark plug electrode according to the invention is characterized by an extremely thin and uniform oxide layer, so that the spark plug electrode has excellent stability even in continuous operation of the spark plug.
- the thermal conductivity of the forming oxide layer is less than 6 W / mK, locally high temperatures are produced in the spark plasma which are not dissipated sufficiently quickly to the surroundings, so that oxide layers deposit preferentially at these locations, so that the oxide layers are precisely at these locations To be formed very quickly. This increases the erosion and corrosion tendency of the material and thus its wear and it increasingly leads to heat build-up, which further promotes wear.
- the electrode material has a thermal conductivity of more than 6 W / mK, and more preferably, the thermal conductivities of the oxide layer and the electrode material are the same.
- the oxide layer formed on the surface of the electrode material has a thickness of less than 10 microns or more preferably has a thickness in a range of 5 to 8 microns. According to the invention, therefore, such materials are combined with one another to form an electrode material which is distinguished by a reduced tendency to form oxides under the prevailing extreme conditions. If the oxide layer forming is 10 ⁇ m or thicker, the oxide layer is insulating both in terms of heat and in terms of conductivity. This in turn promotes the formation of further oxides and thus also the wear rate of the electrode material. The smaller the thickness of the oxide layer, the more resistant the material is to spark erosion and, in particular, oxidative corrosion.
- the proportion of oxygen in the electrode material is at most 0.002 wt .-%.
- the formation of metallic oxides in the electrode material prior to starting the spark plug is so low that the electrode is optimally protected from oxidation and thus from destabilization by corrosion and erosion even at high temperatures.
- the total amount of oxidized elements b) in the electrode material based on the total weight of the electrode material is less than 15 mol .-% and preferably less than 10 mol .-%. If the proportion of oxidic element b) before starting the electrode is higher than 10 mol% or even 15 mol%, its proportion is already so high that the reactive element b) is no longer sufficient for stabilizing the electrode material in the event of a spark It is already present in its oxidized form and thus can not be further Bind oxygen.
- the base material, and in particular the nickel base material, to which at least one of the elements c) is alloyed is subject to stronger oxidation, and the electrode material wears out noticeably.
- second intermetallic phases has proven to be particularly disadvantageous in terms of the stability of the electrode material, ie its resistance to oxidation and corrosion and erosion.
- Intermetallic secondary phases form, as already stated, in particular when large proportions of reactive element b) are present in the alloy material, which are then present in the form of an intermetallic second phase not due to incompatibilities with the base material in dissolved form.
- These second intermetallic phases lead to destabilization of the electrode material, since they do not insert themselves homogeneously into the alloy matrix but are precipitated out of it, so that the bonds between the alloying elements are locally reduced and also over further regions. The alloy structure is disturbed by second-phase intermetallics.
- the electrical resistance of the material is increased and thus in particular the thermal conductivity and the electrical conductivity of the material is reduced, or they are inhomogeneous over the entire area, so that locally high temperature fluctuations can occur, which widen the material at these locations and a chipping of the material.
- the disorder of the alloy structure is particularly large when the proportion of intermetallic phases in the electrode material is 15 mol% or more. It has been found that intermetallic phases, with a fraction of less than 15 mol%, and preferably less than 10 mol%, based on the total composition, are still tolerable, so that their destabilizing effects do not have an essential effect and the alloy matrix is sufficient is formed stable. The lower the proportion of intermetallic phases, the more stable the alloy structure is. It is therefore particularly preferable if substantially no intermetallic phases are present in the electrode material.
- the electrode material for spark plug electrodes according to the invention can be used both for the production of the center, as well as the ground electrode as well as both electrodes simultaneously.
- the spark plugs formed therefrom are approximately in the same range in terms of their life as they are obtained with Edelmetallmaterialzündkerzen, but without containing precious metal.
- the life of the conventional non-precious spark plugs is only about 60,000 km
- the life of the spark plug electrodes of the present invention is significantly higher, that is, in the range of 90,000 km. This creates a much better market acceptance and is beneficial for both environmental and economic reasons.
- spark plugs which comprise at least one spark plug electrode according to the invention and which thus have improved oxidation and corrosion resistance as well as spark erosion resistance and thermal conductivity.
- Electrode material 1.5 to 18 wt .-% and preferably 2 to 15 wt .-% is. It should be noted that the value for the total content of element b) may also be zero.
- the electrode material of the second listed alternative according to the invention has particularly preferably, based on the total weight of the electrode material, an oxygen content of at most 0.003 wt .-%, and the electrode material according to the invention according to the first and the second alternative listed here in particular has an oxygen content of not more than 0.002 wt .-% on.
- FIGS. 1 . 3 . 4 and 5 a spark plug electrode according to an embodiment of the invention described.
- Figures 1 and 2 are micrographs with a scanning electron microscope at 500x magnification of part of an electrode.
- reference numeral 1 denotes the respective electrode base material.
- Reference numeral 2 denotes the surface of the electrode material on which an oxide layer 3 has been formed. Above it is a gas space 4 into which the electrode is inserted.
- FIG. 1 is a microscope image of a nickel alloy according to the invention, which contains 0.2 wt .-% hafnium as element b) and 1 wt .-% silicon as element c), and an oxygen content of less than 0.0015 wt .-%, each based on the total weight of the electrode material.
- the oxide layer 3 in the electrode material according to the invention is very thin and uniform and on average about 5 to 8 ⁇ m thick. This clearly shows the positive influence of the reactive elements b) on the formation of the oxide protective layer, which is according to the invention thin and stable pronounced. Oxidized areas inside the electrode material are practically nonexistent.
- FIG. 2 shows a micrograph of a conventional nickel alloy, which has 1 wt .-% Al, 1 wt .-% Si and 0.2 wt .-% Y and an oxygen content of 0.0033 wt .-%.
- the oxide layer 3 located on the surface of the electrode is formed non-uniformly and porous and shows widely large subregions 6 in which the oxide regions extend deep into the interior of the electrode material.
- the oxide layer formed on the surface of the electrode is formed significantly thicker and is on average between 12 and 20 microns.
- the reactive element b although in the optimal concentration, but not in a dissolved state, but in the form of isolated aggregates or intermetallic second phases 5 are present, which are eliminated from the nickel matrix.
- the nickel structure is faulty and the surrounding oxygen oxidizes on the one hand the nickel at the electrode surface significantly stronger and on the other penetrates the oxygen into the electrode interior and oxidized here both more nickel and the intermetallic second phases of reactive element b).
- the electrode material is therefore characterized by a high wear rate.
- FIG. 3 shows measurement results of the electrical resistance R in ⁇ of oxide layers of two electrodes logarithmically as a function of the temperature T in ° C.
- the underlying curve 11, whose measured values are marked with crosses, is that of the electrode according to the invention ( FIG. 1 ).
- the electrical resistance R in the entire temperature spectrum is significantly lower than in a conventional electrode material due to the thinner oxide protective layer according to the invention on the electrode surface.
- the electrode material according to the invention thus has excellent electrical conductivities, without precious metal being used in the electrode material.
- FIG. 4 shows different wear rates of electrode materials of different composition, as summarized in the following overview.
- the wear V in ⁇ m 3 per spark for the different electrode materials is shown.
- the diamonds represent the mean values of the measured values and the vertical lines their dispersion.
- electrode material A according to the invention B standard Reactive element b) Hf Y Amount of reactive element b) in% by weight 0.2 0.2 Element c) Si Si Amount of element c) in% by weight 1 1 Oxygen content in% by weight 0.0015 0.0033 base material Ni Ni more elements --- Al (1% by weight)
- the electrode material according to the invention causes a reduction of the wear of about 25%.
- FIG. 5 is an Arrhenius plot, the electrical resistance R to the temperature T 'is shown, wherein the temperature T' by the quotient 1000 / T in K -1 is shown.
- the electrical resistance of the oxide layer of the spark plug electrode according to the invention (curve 13) is significantly smaller than the resistance of conventional oxide layers of electrodes without precious metals (curve 12).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spark Plugs (AREA)
- Ceramic Products (AREA)
Description
- Die Erfindung betrifft eine Zündkerzenelektrode, die aus einem Elektrodenmaterial auf Legierungsbasis hergestellt wird.
- Aufgrund der steten Weiterentwicklung von Kraftfahrzeugmotoren und deren Komponenten zur Steigerung der Leistungsfähigkeit und Motorkraft, werden auch an die Materialien der Motorbauteile immer höhere Anforderungen gestellt. Insbesondere die Bauteile, die eine tragende Rolle bei der Zündung des Brennstoffgemisches spielen, die Zündkerzen, und insbesondere die Zündkerzenelektroden, sind hohen Belastungen insbesondere durch die Sauerstoffreiche Atmosphäre und hohe Temperaturen im Motorraum, ausgesetzt. Dies macht es erforderlich Zündkerzen bereitzustellen, die diesen hohen Anforderungen genügen.
- Als Basismaterial für Zündkerzenelektroden werden unter anderem Nickellegierungen verwendet, da Nickel sowohl eine hohe Schmelztemperatur aufweist, die für die Temperaturbeständigkeit der Legierung unabdingbar ist, sowie eine hohe Beständigkeit gegenüber Korrosion aufweist. Zwar zeigen Werkstoffe aus reinen Edelmetallen oder auf Edelmetallbasis, wie Platin oder Platinlegierungen mit Iridium, hinsichtlich der Verschleißbeständigkeit gegen funkenerosive Angriffe eine gesteigerte Beständigkeit und damit sehr hohe Lebenszeiten der Elektroden, jedoch stellen Zündkerzenelektrodenmaterialien aus Platin, im Hinblick auf die enormen Kosten, aus wirtschaftlichen Gründen keine geeignete Alternative zu handelsüblichen Nickellegierungen dar. Unter funkenerosiven Angriffen bzw. Erosionsverlusten wird dabei der Materialabtrag von der Elektrode, der durch die Einwirkung des Lichtbogens auf die Elektrodenoberfläche induziert wird, verstanden.
- In herkömmlichen Zündkerzenelektroden, z.B. aus Nickellegierungen, oxidiert unter
- Betriebsbedingungen im Motorraum eines Fahrzeugs ein Großteil der Nickeloberfläche sowie auch ein Teil des Nickels im Inneren des Elektrodenmaterials durch Reaktion mit dem umgebenden Sauerstoff. Dadurch wird eine dicke, sowohl wärmeisolierende wie auch die elektrische Leitfähigkeit unterbindende bzw. reduzierende Nickeloxidschicht gebildet, die schon nach einiger Zeit aufgrund fehlenden Verbundes mit dem nicht oxidierten Nickelbasismaterial zu Korrosion bzw. zu funkenerosiver Erosion neigt.
-
EP 2 012 398 A2 offenbart eine Zündkerzenelektrode, hergestellt aus einem Elektrodenmaterial wobei das Elektrodenmaterial a) Nickel als Basismaterial und b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und c) mindestens ein Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu enthält, wobei der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.% beträgt. - Es sei den weiteren Ausführungen vorangestellt, dass sich alle nachstehenden Gew.-%- Angaben, sofern nicht ausdrücklich anders gekennzeichnet, immer auf das Gesamtgewicht der Zusammensetzung des Elektrodenmaterials beziehen.
- Die erfindungsgemäße Zündkerzenelektrode mit den Merkmalen des Anspruches 1 zeichnet sich durch eine extrem hohe Temperaturbeständigkeit und einen deutlich reduzierten funkenerosiven Verschleiß bzw. Elektrodenabbrand aus und weist eine einzigartige Oxidations- und Korrosionsbeständigkeit auf. Somit wird ein kostengünstiges Elektrodenmaterial für Zündkerzenelektroden bereitgestellt, das Wechselintervalle erlaubt, die bislang nur mit Elektrodenmaterialien aus Edelmetall- und Edelmetalllegierungen erzielt wurden. Erfindungsgemäß wird dies dadurch erreicht, dass eine an der Oberfläche des Elektrodenmaterials gebildete Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner oder gleich ist, als durch nachfolgende Gleichung definiert:
und wobei T die Temperatur in Kelvin ist,
wobei das Elektrodenmaterial aus - a) Nickel als Basismaterial,
- b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
- c) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobei
- a) Nickel als Basismaterial und
- b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
- d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
- Die Oxidschicht, die sich an der Oberfläche der erfindungsgemäßen Zündkerzenelektrode bildet, weist eine optimierte Struktur auf. Unter einer optimierten Struktur wird dabei verstanden, dass die Oxidschicht einen gleichmäßigen und stabilen Verbund aufweist und zudem relativ dünn und an der Oberfläche ebenmäßig ist im Vergleich zu sich auf herkömmlichen Elektroden bildenden Oxidschichten. Dies ermöglicht einen geringen elektrischen Widerstand der Oxidschicht an der Elektrodenoberfläche. Erfindungsgemäß wird ferner ein Übergangswiderstand zwischen der Oxidschicht und dem Grundmaterial, also dem unoxidierten Elektrodenmaterial, gesenkt, was eine zusätzlich verbesserte elektrische Leitfähigkeit zur Folge hat. Ist der elektrische Widerstand an der Elektrodenoberfläche befindlichen Oxidschicht gering, also gleich oder kleiner als durch oben definierte Gleichung vorgegeben, so wird die elektrische Spannung, die beim Funkenüberschlag im Brennraum zwischen den Elektrodenoberflächen entsteht, schnell von der Oberfläche der Elektrode in deren Inneres abgeleitet, so dass die lokale Belastung ah der Oberfläche der Elektrode deutlich vermindert wird und auch nur von extrem kurzer Dauer ist. Die Fähigkeit, den Strom schnell und gleichmäßig von der Elektrodenoberfläche in das Innere der Zündkerzenelektrode zu leiten, ist umso größer, je kleiner der elektrische Widerstand ist. Ein weiterer positiver Effekt der Erfindung ist, dass dadurch, dass der Strom so schnell abgeleitet wird, außerdem einer lokalen Erwärmung des dem Funken ausgelieferten Materials entgegengewirkt wird, so dass die Neigung des Elektrodenmaterials zur weiteren Bildung von Oxiden wiederum deutlich vermindert wird und somit lediglich nur eine extrem dünne und homogene Oxidschicht an der Elektrodenoberfläche gebildet wird. Der Verschleiß des Elektrodenmaterials durch Funkenerosion und Korrosion wird dadurch deutlich verringert, so dass die Verschleißrate der erfindungsgemäßen Zündkerzenelektrode gegenüber solchen aus herkömmlichen Elektrodenmaterialien erheblich reduziert ist. Das erfindungsgemäße Elektrodenmaterial ist auch bei hohen Temperaturen unter den extremen Bedingungen, wie sie im Brennraum herrschen, stabil und verschleißresistent. Die erfindungsgemäße Zündkerzenelektrode ist edelmetallfrei, weist jedoch signifikant verbesserte Standzeiten im Vergleich mit herkömmlichen Zündkerzen auf. Besonders bevorzugt erfüllt auch ein Widerstand des Elektrodenmaterials die vorhergehend definierte Gleichung, so dass ein ähnlicher, besonders bevorzugt gleicher, Widerstand der am Elektrodenmaterial gebildeten Oxidschicht und des Elektrodenmaterials vorhanden ist.
- Gemäß der Erfindung besteht das Elektrodenmaterial, das die erfindungsgemäße Zündkerzenelektrode bildet, aus:
- 1. a) Nickel als Basismaterial und
- 2. b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
- 3. c) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu, wobei
- Zündkerzenelektrode zeichnet sich durch ein Elektrodenmaterial aus, dessen an seiner Oberfläche befindliche Oxidschicht einen elektrischen Widerstand R aufweist, der gleich oder kleiner ist als derjenige, der durch oben angeführte Gleichung definiert wird, so dass alle oben erwähnten Vorteile mit diesem Elektrodenmaterial erzielt werden. Auch die wärmeleitenden Eigenschaften der Oxide und damit der Gesamtlegierung sind ausgezeichnet so dass das Material ferner auch eine extrem hohe Temperaturbeständigkeit und einen damit einhergehend deutlich reduzierten funkenerosiven Verschleiß bzw. Elektrodenabbrand aufweist. Die Oxidations- und Korrosionsbeständigkeit des Materials ist auch unter Dauerbelastung sehr gut. Das Element b) zeichnet sich durch hervorragende elektrische und physikalische Eigenschaften aus und unterstützt die Bildung einer dünnen und ebenmäßigen Oxidschicht an der Elektrodenoberfläche. Konzentration an Element b) von über 0,3 Gew.-% führen zu Ausscheidungen dieses Elements, so dass die Korrosionsbeständigkeit und Erosionsbeständigkeit des Materials wieder sinkt. Konzentration an Element b) von weniger als 0,1 Gew.-% hingegen wirken nicht ausreichend stabilisierend auf das Elektrodenmaterial.
- Demnach bevorzugt ist das Elektrodenmaterial frei von Aluminium. Dadurch lässt sich das Material in Bezug auf bekannte, Aluminium-haltige Materialien, leichter verarbeiten, was den Aufwand für die Produktion solcher Elektrodenmaterialien senken kann. Somit wird ein kostengünstiges Elektrodenmaterial für Zündkerzenelektroden bereitgestellt, das Wechselintervalle erlaubt, die bislang nur mit Elektrodenmaterialien aus Edelmetall- und Edelmetalllegierungen erzielt wurden.
- Gemäß einer Alternative der Erfindung enthält das Elektrodenmaterial, das die erfindungsgemäße Zündkerzenelektrode bildet:
- a) Nickel als Basismaterial und
- b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
- d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti, wobei
- Gemäß einer nicht erfindungsgemäßen Alternative enthält ein Elektrodenmaterial die nachfolgenden Elemente:
- a) Eisen als Basismaterial und
- b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
- e) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus Al, Cr, Ni und Mo, wobei
- Die Unteransprüche zeigen bevorzugte Weiterbildungen und Verbesserungen der Erfindung.
- Besonders bevorzugt ist es, wenn die sich auf der Oberfläche der Elektrode bildende Oxidschicht eine Wärmeleitfähigkeit von mehr als 6 W/mK und bevorzugt von mehr als 8 W/mK und besonders bevorzugt von mehr als 10 W/mK aufweist, wobei die Wärmeleitfähigkeit bei 20 °C gemessen wird. Wird die Wärme von der oxidhaltigen Elektrodenoberfläche sehr schnell in das Innere der Elektrode abgeleitet, so wird die Bildung einer dicken, stark ausgeprägten und unregelmäßig geformten Oxidschicht an der Elektrodenoberfläche verhindert. Die erfindungsgemäße Zündkerzenelektrode zeichnet sich durch eine extrem dünne und gleichmäßige Oxidschicht aus, so dass die Zündkerzenelektrode über eine ausgezeichnete Stabilität auch im Dauerbetrieb der Zündkerze verfügt. Ist die Wärmeleitfähigkeit der sich bildenden Oxidschicht geringer als 6 W/mK, so entstehen im Funkenplasma lokal hohe Temperaturen, die nicht ausreichend schnell an die Umgebung abgegeben werden, so dass sich gerade an diesen Stellen bevorzugt Oxidschichten abscheiden, so dass die Oxidschichten gerade an diesen Stellen besonders schnell gebildet werden. Hierdurch erhöht sich die Erosions- und Korrosionsneigung des Materials und somit dessen Verschleiß und es kommt verstärkt zu Hitzestaus, was den Verschleiß weiter begünstigt. Weiter bevorzugt weist auch das Elektrodenmaterial eine Wärmeleitfähigkeit von mehr als 6 W/mK auf und besonders bevorzugt sind die Wärmeleitfähigkeiten der Oxidschicht und des Elektrodenmaterials gleich.
- In einer bevorzugten Ausführungsform hat die an der Oberfläche des Elektrodenmaterials gebildete Oxidschicht eine Dicke von weniger als 10 µm bzw. weist besonders bevorzugt eine Dicke in einem Bereich von 5 bis 8 µm auf. Erfindungsgemäß werden also solche Materialien miteinander zu einem Elektrodenmaterial kombiniert, die sich durch eine reduzierte Neigung zur Bildung von Oxiden unter den vorherrschenden Extrembedingungen auszeichnen. Ist die sich bildende Oxidschicht 10 µm oder stärker, so wirkt die Oxidschicht sowohl gegenüber Wärme als auch in Bezug auf die Leitfähigkeit isolierend. Dies fördert wiederum die Bildung weiterer Oxide und damit auch die Verschleißrate des Elektrodenmaterials. Je geringer also die Dicke der Oxidschicht ist, desto beständiger ist das Material in Bezug auf Funkenerosion und insbesondere oxidative Korrosion.
- Besonders bevorzugt ist es, wenn das Elektrodenmaterial
- a) Nickel als Basismaterial und
- b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
- d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
- Besonders bevorzugt liegt der Anteil an Sauerstoff in dem Elektrodenmaterial bei maximal 0,002 Gew.-%. Unterhalb dieser Grenze ist die Ausbildung von metallischen Oxiden in dem Elektrodenmaterial vor Inbetriebnahme des Zündkerze so gering, dass die Elektrode auch bei hohen Temperaturen optimal vor Oxidation und damit vor Destabilisierung durch Korrosion und Erosion geschützt ist.
- Als weiterhin vorteilhaft hat sich herausgestellt, wenn vor Inbetriebnahme der Zündkerze der Gesamtanteil an oxidierten Elementen b) in dem Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials geringer ist als 15 Mol.-% und bevorzugt geringer als 10 Mol.-%. Liegt der Anteil an oxidischem Element b) vor Inbetriebnahme der Elektrode höher als 10 Mol.-% oder sogar 15 Mol.-%, so ist dessen Anteil bereits so hoch, dass das reaktive Element b) nicht mehr ausreichend zur Stabilisierung des Elektrodenmaterials bei Funkenschlag beitragen kann, denn es liegt bereits in seiner oxidierten Form vor und kann somit keinen weiteren Sauerstoff binden. Damit unterliegt nun das Basismaterial und insbesondere das Nickelbasismaterial, dem mindestens eines der Elemente c) zulegiert ist, einer stärkeren Oxidation und das Elektrodenmaterial verschleißt zusehends. Je höher der Anteil an oxidiertem Element b), desto geringer ist der stabilisierende Effekt, den es auf das Elektrodenmaterial ausüben kann. Je geringer der Anteil an oxidiertem Element b), desto höher ist hingegen folglich die stabilisierende Wirkung, die das reaktive Element in dem Nickelgefüge bewirkt.
- Als besonders nachteilig in Bezug auf die Stabilität des Elektrodenmaterials, also dessen Oxidations- sowie Korrosions- und Erosionsbeständigkeit, hat sich die Bildung von intermetallischen Zweitphasen gezeigt. Intermetallische Zweitphasen bilden sich, wie bereits ausgeführt, insbesondere dann, wenn große Anteile an reaktivem Element b) in dem Legierungsmaterial vorliegen, die dann aufgrund von Unverträglichkeiten mit dem Basismaterial nicht in gelöster Form, sondern in Form einer intermetallischen Zweitphase vorliegen. Diese intermetallischen Zweitphasen führen zur Destabilisierung des Elektrodenmaterials, da sie sich nicht homogen in die Legierungsmatrix einfügen, sondern aus dieser ausgeschieden vorliegen, so dass die Bindungen zwischen den Legierungselementen lokal und auch über weitere Bereiche reduziert werden. Das Legierungsgefüge wird durch intermetallische Zweitphasen gestört. Damit ist der elektrische Widerstand des Materials erhöht und folglich insbesondere die Wärmeleitfähigkeit und die elektrische Leitfähigkeit des Materials reduziert, bzw. werden diese inhomogen über den gesamten Bereich, so dass lokal hohe Temperaturschwankungen auftreten können, die das Material an diesen Stellen aufweiten und zu einem Abplatzen des Materials führen können. Dies fördert den Verschleiß des Elektrodenmaterials. Die Störung des Legierungsgefüges ist besonders groß, wenn der Anteil an intermetallischen Phasen in dem Elektrodenmaterial 15 Mol.-% oder mehr beträgt. Es wurde gefunden, dass intermetallische Phasen, mit einem Anteil von weniger als 15 Mol.-% und bevorzugt von weniger als 10 Mol.-% bezogen auf die Gesamtzusammensetzung noch tolerierbar sind, so dass sich deren destabilisierende Wirkungen nicht essentiell auswirken und die Legierungsmatrix ausreichend stabil gebildet ist. Je geringer der Anteil an intermetallischen Phasen, desto stabiler ausgeprägt ist das Legierungsgefüge. Besonders bevorzugt ist es deshalb, wenn im Wesentlichen keine intermetallischen Phasen im Elektrodenmaterial vorliegen.
- Das erfindungsgemäße Elektrodenmaterial für Zündkerzenelektroden kann sowohl für die Herstellung der Mittel-, wie auch für die Masseelektrode wie auch beider Elektroden gleichzeitig, verwendet werden. Die daraus gebildeten Zündkerzen liegen in Bezug auf ihre Standzeiten in etwa in demselben Bereich wie sie mit Edelmetallmaterialzündkerzen erzielt werden, ohne jedoch Edelmetall zu enthalten. Während hingegen die Standzeiten der herkömmlichen edelmetallfreien Zündkerzen lediglich etwa bis 60.000 km betragen, liegen die Standzeiten der erfindungsgemäßen Zündkerzenelektroden bedeutend höher, d.h., im Bereich von 90.000 km. Dies erzeugt eine wesentlich bessere Akzeptanz auf dem Markt und ist sowohl aus umwelttechnischen wie auch aus wirtschaftlichen Gründen von Vorteil.
- Erfindungsgemäß werden Zündkerzen bereitgestellt, die mindestens eine erfindungsgemäße Zündkerzenelektrode umfassen, und die somit eine verbesserte Oxidations- und Korrosionsbeständigkeit, sowie Funkenerosionsbeständigkeit und Wärmeleitfähigkeit aufweisen.
- Die Erfindung betrifft eine Zündkerzenelektrode, gekennzeichnet durch ein Elektrodenmaterial, das aus
- a) Nickel als Basismaterial,
- b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
- c) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobei
- Weiterhin betrifft die Erfindung eine Zündkerzenelektrode, gekennzeichnet durch ein Elektrodenmaterial, enthaltend:
- a) Nickel als Basismaterial und
- b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
- d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti, wobei
- Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt. Es sei angemerkt, dass der Wert für den Gesamtgehalt an Element b) auch Null sein kann.
- Das erfindungsgemäße Elektrodenmaterial der zweiten aufgeführten Alternative weist dabei besonders bevorzugt, bezogen auf das Gesamtgewicht des Elektrodenmaterials, einen Sauerstoffgehalt von maximal 0,003 Gew.-%, und das erfindungsgemäße Elektrodenmaterial gemäß der ersten und der zweiten aufgeführten Alternative weist dabei insbesondere einen Sauerstoffgehalt von maximal 0,002 Gew.-% auf.
- Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung beschrieben.
- Figur 1
- zeigt einen Querschnitt durch eine erfindungsgemäße Zündkerzenelektrode,
- Figur 2
- zeigt einen Querschnitt durch eine Zündkerzenelektrode gemäß dem Stand der Technik,
- Figur 3
- ist eine logarithmische Darstellung, die den elektrischen Widerstand von Elektroden in Abhängigkeit von der Temperatur zeigt,
- Figur 4
- zeigt Verschleißreduktionen an Zündkerzenelektrode in Abhängigkeit der Zusammensetzung, und
- Figur 5
- ist eine Arrhenius-Auftragung, die den elektrischen Widerstand von Elektroden in Abhängigkeit von der Temperatur zeigt.
- Nachfolgend wird unter Bezugnahme auf die
Figuren 1 ,3 ,4 und5 eine Zündkerzenelektrode gemäß einen Ausführungsbeispiel der Erfindung beschrieben. - Veranschaulicht werden die Vorteile des erfindungsgemäßen Elektrodenmaterials bzw. der erfindungsgemäßen Zündkerze durch einen Vergleich der
Figuren 1 und 2. Figuren 1 und 2 sind mikroskopische Aufnahmen mit einem Rasterelektronenmikroskop in 500facher Vergrößerung eines Teils einer Elektrode. In denFiguren 1 und 2 bezeichnet das Bezugszeichen 1 das jeweilige Elektrodengrundmaterial. Bezugszeichen 2 bezeichnet die Oberfläche des Elektrodenmaterials, auf der sich eine Oxidschicht 3 gebildet hat. Darüber befindet sich ein Gasraum 4, in den die Elektrode eingebracht ist. -
Figur 1 ist eine Mikroskopaufnahme einer erfindungsgemäßen Nickellegierung, die 0,2 Gew.-% Hafnium als Element b) und 1 Gew.-% Silicium als Element c) enthält, sowie einem Sauerstoffgehalt von weniger als 0,0015 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Elektrodenmaterials. Deutlich zu erkennen ist, dass die Oxidschicht 3 in dem erfindungsgemäßen Elektrodenmaterial sehr dünn und gleichmäßig ausgebildet und im Durchschnitt etwa 5 bis 8 µm dick ist. Dies zeigt deutlich den positiven Einfluss der reaktiven Elemente b) auf die Ausbildung der oxidischen Schutzschicht, die erfindungsgemäß dünn und stabil ausgeprägt ist. Oxidierte Bereiche im Inneren des Elektrodenmaterials sind praktisch nicht vorhanden. - Dies zeigt die Stabilität und damit Korrosions- und Erosionsbeständigkeit des erfindungsgemäßen Elektrodenmaterials.
-
Figur 2 zeigt eine Mikroskopaufnahme einer herkömmlichen Nickellegierung, die 1 Gew.-% Al, 1 Gew.-% Si und 0,2 Gew.-% Y sowie einen Sauerstoffgehalt von 0,0033 Gew.-% aufweist. Hier ist die an der Oberfläche der Elektrode befindliche Oxidschicht 3 ungleichmäßig und porös ausgebildet und zeigt weitläufig große Teilbereiche 6, in denen sich die oxidischen Bereiche bis tief ins Innere des Elektrodenmaterials ziehen. Die an der Oberfläche der Elektrode gebildete Oxidschicht ist bedeutend dicker ausgebildet und liegt im Mittel zwischen 12 und 20 µm. Diese destabilisierenden Effekte sind direkt auf die Zusammensetzung des Elektrodenmaterials zurückzuführen. Hier ist das reaktive Element b) zwar in der optimalen Konzentration, jedoch nicht in gelöstem Zustand, sondern in Form isolierter Aggregate bzw. intermetallische Zweitphasen 5 vorhanden, die aus der Nickelmatrix ausgeschieden sind. So ist das Nickelgefüge fehlerhaft und der umgebende Sauerstoff oxidiert zum Einen das Nickel an der Elektrodenoberfläche bedeutend stärker und zum Anderen dringt der Sauerstoff ins Elektrodeninnere ein und oxidiert hier sowohl weiteres Nickel als auch die intermetallischen Zweitphasen aus reaktivem Element b). Das Elektrodenmaterial zeichnet sich folglich durch eine hohe Verschleißrate aus. -
Figur 3 zeigt Messergebnisse des elektrischen Widerstands R in Ω von Oxidschichten zweier Elektroden logarithmisch in Abhängigkeit der Temperatur T in °C. Der obere Kurvenverlauf 10, dessen Messpunkte durch Quadrate gezeichnet sind, wurde an der Elektrode des Standes der Technik (Figur 2 ) gemessen. Die darunter liegende Kurve 11, deren Messwerte mit Kreuzen gekennzeichnet sind, ist diejenige der erfindungsgemäßen Elektrode (Figur 1 ). Hier ist deutlich zu erkennen, dass durch die erfindungsgemäße dünnere oxidische Schutzschicht an der Elektrodenoberfläche der elektrische Widerstand R im gesamten Temperaturspektrum bedeutend geringer ist als in einem herkömmlichen Elektrodenmaterial. Das erfindungsgemäße Elektrodenmaterial weist also hervorragende elektrische Leitfähigkeiten auf, ohne dass dabei Edelmetall im Elektrodenmaterial verwendet wurde. -
Figur 4 zeigt verschiedene Verschleißraten von Elektrodenmaterialien unterschiedlicher Zusammensetzung, wie sie in der nachfolgenden Übersicht zusammengestellt sind. InFigur 4 ist dabei der Verschleiß V in µm3 pro Funke für die verschiedenen Elektrodenmaterialien dargestellt. Dabei stellen die Rauten die Mittelwerte der gemessenen Werte dar und die vertikalen Striche deren Streuung.Elektrodenmaterial A erfindungsgemäß B Standard Reaktives Element b) Hf Y Menge an reaktivem Element b) in Gew.-% 0,2 0,2 Element c) Si Si Menge an Element c) in Gew.-% 1 1 Sauerstoffgehalt in Gew.-% 0,0015 0,0033 Basismaterial Ni Ni weitere Elemente --- Al(1 Gew.-%) - Gut zu erkennen ist, dass das erfindungsgemäße Elektrodenmaterial eine Reduktion des Verschleißes von etwa 25 % bewirkt.
- In
Figur 5 ist eine Arrhenius-Auftragung, welche den elektrischen Widerstand R über der Temperatur T' dargestellt ist, wobei die Temperatur T' durch den Quotienten 1000/T in K-1 dargestellt ist. Hierdurch kann die Gleichung logR = a+b* 1000/T definiert werden, wobei a zwischen 0,6 und 0,8 liegt, b zwischen 3,1 und 3,2 liegt und T die entsprechende Elektrodentemperatur in Kelvin ist. Wie ausFigur 5 deutlich ersichtlich ist, ist der elektrische Widerstand der Oxidschicht der erfindungsgemäßen Zündkerzenelektrode (Kurve 13) deutlich kleiner als der Widerstand der herkömmlichen Oxidschichten von Elektroden ohne Edelmetalle (Kurve 12).
wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und
wobei
das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist
oder
wobei das Elektrodenmaterial
der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt.
wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und wobei
das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist.
Das vorstehend definierte Elektrodenmaterial weist, bezogen auf das Gesamtgewicht des Elektrodenmaterials, einen Sauerstoffgehalt von weniger als 0,003 Gew.-% auf. In dieser Ausführungsform ist das Elektrodenmaterial sowohl in struktureller als auch in chemisch-physikalischer Hinsicht optimal ausgebildet. Es weist einen kleinen elektrischen Widerstand auf, ist gut wärmeleitend und damit oxidationsstabil und ferner resistent gegenüber Funkenerosion und Korrosion, insbesondere auch bei erhöhten Temperaturen, wie sie z.B. im Motorraum eines Fahrzeugs an Zündkerzen vorliegen können. Das Material lässt sich hervorragend verarbeiten und ist in sich homogen. Eine sich bildende Oxidschicht an der Oberfläche der Elektrode ist aufgrund der gut abgestimmten Materialien stabil aber ausreichend dünn, um die Wärmeleitfähigkeit und elektrische Leitfähigkeit nicht wesentlich nachteilig zu beeinflussen. Das Material ist dauerhaft, also auch bei langen Standzeiten stabil, und zeichnet sich durch eine extrem niedrige Verschleißrate aus.
der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des
Claims (8)
- Zündkerzenelektrode, hergestellt aus einem Elektrodenmaterial, dadurch gekennzeichnet, dass eine an einer Oberfläche des Elektrodenmaterials vorhandene Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner oder gleich ist als durch nachfolgende Gleichung definiert:
wobei 3,1 ≤ b ≤ 3,3, insbesondere 3,2, ist und
wobei T die Temperatur in Kelvin ist,
wobei das Elektrodenmaterial ausa) Nickel als Basismaterial,b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, undc) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobeider Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.-%, bevorzugt 0,1 bis 0,2 Gew.-% und besonders bevorzugt 0,13 bis 0,17 Gew.-% beträgt,
wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und wobei
das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0.002 Gew.-% aufweist
oder
wobei das Elektrodenmateriala) Nickel als Basismaterial undb) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb undd) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobeider Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0,3 Gew.-% beträgt und wobei
der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt. - Zündkerzenelektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Oxidschicht an der Oberfläche des Elektrodenmaterials bei 20 °C eine Wärmeleitfähigkeit von größer als 6 W/mK und bevorzugt 8 W/mK und besonders bevorzugt 10 W/mK, aufweist.
- Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxidschicht eine Dicke von weniger als 10 µm und bevorzugt eine Dicke in einem Bereich von 5 bis 8 µm aufweist.
- Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Elektrodenmateriala) Nickel als Basismaterial undb) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb undd) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobeider Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0.3 Gew.-% beträgt und wobei der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt und wobei das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist.
- Zündkerzenelektrode nach Anspruch 1, dadurch gekennzeichnet, dass der Gesamtanteil an oxidiertem Element b) in dem Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials geringer als 15 Mol.-% und bevorzugt geringer als 10 Mol.-% ist.
- Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an intermetallischen Phasen in dem Elektrodenmaterial bezogen auf die Gesamtzusammensetzung des Elektrodenmaterials geringer als 15 Mol.-% und bevorzugt geringer als 10 Mol.-% ist.
- Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Elektrodenmaterial im Wesentlichen keine intermetallischen Phasen enthält.
- Zündkerze, umfassend mindestens eine Zündkerzenelektrode nach einem der vorhergehenden Ansprüche.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009046005A DE102009046005A1 (de) | 2009-10-26 | 2009-10-26 | Zündkerzenelektrode, hergestellt aus verbessertem Elektrodenmaterial |
PCT/EP2010/063021 WO2011054561A1 (de) | 2009-10-26 | 2010-09-06 | Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2514052A1 EP2514052A1 (de) | 2012-10-24 |
EP2514052B1 EP2514052B1 (de) | 2015-02-25 |
EP2514052B2 true EP2514052B2 (de) | 2018-08-22 |
Family
ID=43086482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10752780.6A Active EP2514052B2 (de) | 2009-10-26 | 2010-09-06 | Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2514052B2 (de) |
JP (1) | JP5826182B2 (de) |
CN (1) | CN102598443B (de) |
BR (1) | BR112012010819A2 (de) |
DE (1) | DE102009046005A1 (de) |
WO (1) | WO2011054561A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011007532A1 (de) * | 2011-04-15 | 2012-10-18 | Robert Bosch Gmbh | Zündkerzenelektrodenmaterial und Zündkerze, sowie Verfahren zur Herstellung des Zündkerzenelektrodenmaterials |
DE102011007496A1 (de) | 2011-04-15 | 2012-10-18 | Robert Bosch Gmbh | Zündkerzenelektrodenmaterial und Zündkerze, sowie Verfahren zur Herstellung des Zündkerzenelektrodenmaterials und einer Elektrode für die Zündkerze |
JP6065580B2 (ja) | 2012-12-25 | 2017-01-25 | 住友電気工業株式会社 | 内燃機関用材料の評価試験方法 |
JP6438249B2 (ja) * | 2014-09-16 | 2018-12-12 | 株式会社東芝 | 電極材料およびそれを用いた電極層、電池並びにエレクトロクロミック素子 |
JP6312723B2 (ja) | 2016-01-18 | 2018-04-18 | 日本特殊陶業株式会社 | スパークプラグ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4684505A (en) † | 1985-06-11 | 1987-08-04 | Howmet Turbine Components Corporation | Heat resistant alloys with low strategic alloy content |
EP0933848A1 (de) † | 1998-01-28 | 1999-08-04 | Ngk Spark Plug Co., Ltd | Zündkerze mit eingebautem Widerstand |
EP1065290A1 (de) † | 1999-06-30 | 2001-01-03 | Sumitomo Metal Industries, Ltd. | Hitzebeständige Nickelbasislegierung |
JP2007092139A (ja) † | 2005-09-29 | 2007-04-12 | Hitachi Metals Ltd | 点火プラグ用電極材料 |
US20080050264A1 (en) † | 2006-08-28 | 2008-02-28 | Federal-Mogul World Wide, Inc. | Ignition Device Electrode Composition |
JP2009245640A (ja) † | 2008-03-28 | 2009-10-22 | Ngk Spark Plug Co Ltd | スパークプラグ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5185052A (ja) * | 1975-01-08 | 1976-07-26 | Hitachi Ltd | Tenkapuragudenkyokuyonitsukerugokin |
US7323811B2 (en) * | 2001-08-23 | 2008-01-29 | Federal-Mogul Ignition (U.K.) Limited | Noble metal tip for spark plug electrode and method of making same |
DE10224891A1 (de) * | 2002-06-04 | 2003-12-18 | Bosch Gmbh Robert | Legierung auf Nickelbasis |
JP4699867B2 (ja) * | 2004-11-04 | 2011-06-15 | 日立金属株式会社 | 点火プラグ用電極材料 |
EP2045342B1 (de) * | 2006-07-25 | 2012-09-05 | Tanaka Kikinzoku Kogyo K.K. | Edelmetalllegierung für eine zündkerze sowie verfahren zu ihrer herstellung und bearbeitung |
JP4413951B2 (ja) * | 2007-07-06 | 2010-02-10 | 日本特殊陶業株式会社 | スパークプラグ |
-
2009
- 2009-10-26 DE DE102009046005A patent/DE102009046005A1/de not_active Withdrawn
-
2010
- 2010-09-06 WO PCT/EP2010/063021 patent/WO2011054561A1/de active Application Filing
- 2010-09-06 EP EP10752780.6A patent/EP2514052B2/de active Active
- 2010-09-06 CN CN201080048150.XA patent/CN102598443B/zh active Active
- 2010-09-06 BR BR112012010819A patent/BR112012010819A2/pt not_active Application Discontinuation
- 2010-09-06 JP JP2012535701A patent/JP5826182B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4684505A (en) † | 1985-06-11 | 1987-08-04 | Howmet Turbine Components Corporation | Heat resistant alloys with low strategic alloy content |
EP0933848A1 (de) † | 1998-01-28 | 1999-08-04 | Ngk Spark Plug Co., Ltd | Zündkerze mit eingebautem Widerstand |
EP1065290A1 (de) † | 1999-06-30 | 2001-01-03 | Sumitomo Metal Industries, Ltd. | Hitzebeständige Nickelbasislegierung |
JP2007092139A (ja) † | 2005-09-29 | 2007-04-12 | Hitachi Metals Ltd | 点火プラグ用電極材料 |
US20080050264A1 (en) † | 2006-08-28 | 2008-02-28 | Federal-Mogul World Wide, Inc. | Ignition Device Electrode Composition |
JP2009245640A (ja) † | 2008-03-28 | 2009-10-22 | Ngk Spark Plug Co Ltd | スパークプラグ |
Also Published As
Publication number | Publication date |
---|---|
WO2011054561A1 (de) | 2011-05-12 |
EP2514052A1 (de) | 2012-10-24 |
DE102009046005A1 (de) | 2011-04-28 |
CN102598443A (zh) | 2012-07-18 |
JP2013508557A (ja) | 2013-03-07 |
JP5826182B2 (ja) | 2015-12-02 |
EP2514052B1 (de) | 2015-02-25 |
BR112012010819A2 (pt) | 2017-12-19 |
CN102598443B (zh) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112012002699B4 (de) | Zündkerze und Verfahren zum Herstellen einer Elektrode einer Zündkerze | |
DE69800238T2 (de) | Zündkerze | |
DE602006000350T2 (de) | Zündkerze für Verbrennungsmotor | |
DE112012000600B4 (de) | Zündkerzenelektrode für eine Zündkerze, Zündkerze und Verfahren zum Herstellen einer Zündkerzenelektrode | |
EP2582854B1 (de) | Nickelbasislegierung | |
DE60306300T2 (de) | Hartstoffpartikel, verschleissbeständige Eisenbasissinterlegierung, Verfahren ihrer Herstellung und Ventilsitz | |
EP2514052B2 (de) | Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial | |
EP3143173B2 (de) | Verfahren zur herstellung eines motorbauteils, motorbauteil und verwendung einer aluminiumlegierung | |
DE112009000731T5 (de) | Cu-Ni-Si-Co-Cr-Systemlegierung für elektronische Materialien | |
DE10308559B4 (de) | Zündkerze | |
DE112012000947B4 (de) | Verfahren zum Herstellen eines Elektrodenmaterials für einen Zündkerze | |
DE102010027463A1 (de) | Zündkerze und Verfahren zu ihrer Herstellung | |
EP2013371A2 (de) | Kupfer-nickel-zinn-legierung und deren verwendung | |
DE102011089788A1 (de) | Motorventilsitz und Verfahren für dessen Herstellung | |
EP3645762B1 (de) | Stahllegierung mit verbesserter korrosionsbeständigkeit bei hochtemperaturbeanspruchung und verfahren zur herstellung von stahlband aus dieser stahllegierung | |
DE69800364T2 (de) | Zündkerze | |
EP1917370B1 (de) | Draht aus oxiddispersionsgehärtetem pt-ir- und anderen legierungen mit verbesserter oberfläche für zündkerzenelektroden | |
DE112011102753B4 (de) | Elektrodenmaterial | |
DE102006053917A1 (de) | Für Verbrennungsmotoren benutzte Zündkerze | |
EP1888798A1 (de) | Aluminium-gleitlagerlegierung | |
DE60206464T2 (de) | Ni-Legierung mit verbesserter Oxidations- Resistenz, Warmfestigkeit and Warmbearbeitbarkeit | |
WO2001000896A1 (de) | Fe-cr-al legierung | |
DE112012002495T5 (de) | Elektrodenmaterial , Zündkerzenelektrode und Zündkerze | |
DE102005038772B4 (de) | Draht aus oxiddispersionsgehärteten Pt-lr- und anderen Legierungen mit verbesserter Oberfläche für Zündkerzenelektroden | |
DE69112165T2 (de) | Aluminium enthaltender rostfreier ferritischer Stahl mit hoher Beständigkeit gegen Hochtemperatursoxydation und hoher Zähigkeit. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120913 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141020 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010008980 Country of ref document: DE Effective date: 20150409 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 712698 Country of ref document: AT Kind code of ref document: T Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150525 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150625 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150526 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502010008980 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
26 | Opposition filed |
Opponent name: REININGER, JAN Effective date: 20151112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150906 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150906 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 712698 Country of ref document: AT Kind code of ref document: T Effective date: 20150906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
R26 | Opposition filed (corrected) |
Opponent name: REININGER, JAN Effective date: 20151112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20180822 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502010008980 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180921 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180924 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231124 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502010008980 Country of ref document: DE |