EP2514052B2 - Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial - Google Patents

Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial Download PDF

Info

Publication number
EP2514052B2
EP2514052B2 EP10752780.6A EP10752780A EP2514052B2 EP 2514052 B2 EP2514052 B2 EP 2514052B2 EP 10752780 A EP10752780 A EP 10752780A EP 2514052 B2 EP2514052 B2 EP 2514052B2
Authority
EP
European Patent Office
Prior art keywords
electrode material
electrode
weight
spark plug
und
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10752780.6A
Other languages
English (en)
French (fr)
Other versions
EP2514052A1 (de
EP2514052B1 (de
Inventor
Lars Menken
Jochen Boehm
Juergen Oberle
Simone Baus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43086482&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2514052(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2514052A1 publication Critical patent/EP2514052A1/de
Application granted granted Critical
Publication of EP2514052B1 publication Critical patent/EP2514052B1/de
Publication of EP2514052B2 publication Critical patent/EP2514052B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the invention relates to a spark plug electrode made of an alloy based electrode material.
  • the requirements for the materials of the engine components are becoming increasingly demanding.
  • the components that play a major role in the ignition of the fuel mixture, the spark plugs, and in particular the spark plug electrodes are exposed to high loads, in particular by the oxygen-rich atmosphere and high temperatures in the engine compartment. This makes it necessary to provide spark plugs that meet these high requirements.
  • nickel alloys are used because nickel has both a high melting temperature, which is indispensable for the temperature resistance of the alloy, and has a high resistance to corrosion. While pure noble metal or precious metal based materials such as platinum or platinum alloys with iridium exhibit increased resistance to spark erosion attacks and hence very high electrode lifetimes, platinum spark plug electrode materials are cost effective in economic terms no suitable alternative to commercially available nickel alloys. Under spark-erosive attacks or erosion losses is the material removal from the electrode, which is induced by the action of the arc on the electrode surface understood.
  • EP 2 012 398 A2 discloses a spark plug electrode made of an electrode material wherein the electrode material comprises a) nickel as a base material and b) at least one further element selected from the group consisting of Y, Hf, Ce, La, Zr, Ta and Yb and c) at least one element from the group consisting of: Si, Na, K, Li, Ti, Ag and Cu, wherein the total content of element b) based on the total weight of the electrode material is 0.1 to 0.3 wt.%.
  • the oxide layer which forms on the surface of the spark plug electrode according to the invention has an optimized structure.
  • an optimized structure is understood to mean that the oxide layer has a uniform and stable composite and, moreover, is relatively thin and even at the surface in comparison to oxide layers which form on conventional electrodes. This allows a low electrical resistance of the oxide layer on the electrode surface.
  • a contact resistance between the oxide layer and the base material, that is to say the unoxidized electrode material is lowered, which results in additionally improved electrical conductivity.
  • the electrical resistance on the electrode surface located oxide layer low, that is equal to or less than predetermined by the above defined equation, the electrical voltage that arises during sparkover in the combustion chamber between the electrode surfaces, quickly derived from the surface of the electrode in the interior, so that the local stress ah the surface of the electrode is significantly reduced and is also of extremely short duration.
  • the ability to conduct the current rapidly and evenly from the electrode surface into the interior of the spark plug electrode is greater the smaller the electrical resistance.
  • Another positive effect of the invention is that in that the current is dissipated so quickly, also a local heating of the material delivered to the spark is counteracted, so that the tendency of the electrode material for further formation of oxides is again significantly reduced and thus only only an extremely thin and homogeneous oxide layer is formed on the electrode surface.
  • the wear of the electrode material by spark erosion and corrosion is thereby significantly reduced, so that the wear rate of the spark plug electrode according to the invention over those of conventional electrode materials is considerably reduced.
  • the electrode material according to the invention is stable and wear-resistant, even at high temperatures under the extreme conditions prevailing in the combustion chamber.
  • the spark plug electrode according to the invention is free of noble metals, but has significantly improved service life in comparison with conventional spark plugs.
  • a resistance of the electrode material also fulfills the previously defined equation, so that a similar, particularly preferably equal, resistance of the oxide layer formed on the electrode material and of the electrode material is present.
  • the spark plug electrode is characterized by an electrode material whose oxide layer on its surface has an electric resistance R equal to or smaller than that defined by the above-mentioned equation, so that all the above-mentioned advantages are obtained with this electrode material.
  • the heat-conducting properties of the oxides and thus of the overall alloy are also excellent so that the material also has an extremely high temperature resistance and, associated therewith, significantly reduced spark erosive wear or electrode erosion.
  • the oxidation and corrosion resistance of the material is also very good under continuous load.
  • the element b) is characterized by excellent electrical and physical properties and supports the formation of a thin and even oxide layer on the electrode surface. Concentration of element b) above 0.3% by weight lead to precipitations of this element, so that the corrosion resistance and erosion resistance of the material decreases again. On the other hand, concentration of element b) of less than 0.1% by weight does not have a sufficiently stabilizing effect on the electrode material.
  • the electrode material is preferably free of aluminum. This makes it easier to process the material with respect to known aluminum-containing materials, which can reduce the expense of producing such electrode materials.
  • a low-cost electrode material for spark plug electrodes is provided, which allows change intervals, which were previously achieved only with electrode materials of precious metal and precious metal alloys.
  • the oxide layer forming on the surface of the electrode has a thermal conductivity of more than 6 W / mK and preferably more than 8 W / mK and particularly preferably more than 10 W / mK, the thermal conductivity being 20 ° C is measured.
  • the spark plug electrode according to the invention is characterized by an extremely thin and uniform oxide layer, so that the spark plug electrode has excellent stability even in continuous operation of the spark plug.
  • the thermal conductivity of the forming oxide layer is less than 6 W / mK, locally high temperatures are produced in the spark plasma which are not dissipated sufficiently quickly to the surroundings, so that oxide layers deposit preferentially at these locations, so that the oxide layers are precisely at these locations To be formed very quickly. This increases the erosion and corrosion tendency of the material and thus its wear and it increasingly leads to heat build-up, which further promotes wear.
  • the electrode material has a thermal conductivity of more than 6 W / mK, and more preferably, the thermal conductivities of the oxide layer and the electrode material are the same.
  • the oxide layer formed on the surface of the electrode material has a thickness of less than 10 microns or more preferably has a thickness in a range of 5 to 8 microns. According to the invention, therefore, such materials are combined with one another to form an electrode material which is distinguished by a reduced tendency to form oxides under the prevailing extreme conditions. If the oxide layer forming is 10 ⁇ m or thicker, the oxide layer is insulating both in terms of heat and in terms of conductivity. This in turn promotes the formation of further oxides and thus also the wear rate of the electrode material. The smaller the thickness of the oxide layer, the more resistant the material is to spark erosion and, in particular, oxidative corrosion.
  • the proportion of oxygen in the electrode material is at most 0.002 wt .-%.
  • the formation of metallic oxides in the electrode material prior to starting the spark plug is so low that the electrode is optimally protected from oxidation and thus from destabilization by corrosion and erosion even at high temperatures.
  • the total amount of oxidized elements b) in the electrode material based on the total weight of the electrode material is less than 15 mol .-% and preferably less than 10 mol .-%. If the proportion of oxidic element b) before starting the electrode is higher than 10 mol% or even 15 mol%, its proportion is already so high that the reactive element b) is no longer sufficient for stabilizing the electrode material in the event of a spark It is already present in its oxidized form and thus can not be further Bind oxygen.
  • the base material, and in particular the nickel base material, to which at least one of the elements c) is alloyed is subject to stronger oxidation, and the electrode material wears out noticeably.
  • second intermetallic phases has proven to be particularly disadvantageous in terms of the stability of the electrode material, ie its resistance to oxidation and corrosion and erosion.
  • Intermetallic secondary phases form, as already stated, in particular when large proportions of reactive element b) are present in the alloy material, which are then present in the form of an intermetallic second phase not due to incompatibilities with the base material in dissolved form.
  • These second intermetallic phases lead to destabilization of the electrode material, since they do not insert themselves homogeneously into the alloy matrix but are precipitated out of it, so that the bonds between the alloying elements are locally reduced and also over further regions. The alloy structure is disturbed by second-phase intermetallics.
  • the electrical resistance of the material is increased and thus in particular the thermal conductivity and the electrical conductivity of the material is reduced, or they are inhomogeneous over the entire area, so that locally high temperature fluctuations can occur, which widen the material at these locations and a chipping of the material.
  • the disorder of the alloy structure is particularly large when the proportion of intermetallic phases in the electrode material is 15 mol% or more. It has been found that intermetallic phases, with a fraction of less than 15 mol%, and preferably less than 10 mol%, based on the total composition, are still tolerable, so that their destabilizing effects do not have an essential effect and the alloy matrix is sufficient is formed stable. The lower the proportion of intermetallic phases, the more stable the alloy structure is. It is therefore particularly preferable if substantially no intermetallic phases are present in the electrode material.
  • the electrode material for spark plug electrodes according to the invention can be used both for the production of the center, as well as the ground electrode as well as both electrodes simultaneously.
  • the spark plugs formed therefrom are approximately in the same range in terms of their life as they are obtained with Edelmetallmaterialzündkerzen, but without containing precious metal.
  • the life of the conventional non-precious spark plugs is only about 60,000 km
  • the life of the spark plug electrodes of the present invention is significantly higher, that is, in the range of 90,000 km. This creates a much better market acceptance and is beneficial for both environmental and economic reasons.
  • spark plugs which comprise at least one spark plug electrode according to the invention and which thus have improved oxidation and corrosion resistance as well as spark erosion resistance and thermal conductivity.
  • Electrode material 1.5 to 18 wt .-% and preferably 2 to 15 wt .-% is. It should be noted that the value for the total content of element b) may also be zero.
  • the electrode material of the second listed alternative according to the invention has particularly preferably, based on the total weight of the electrode material, an oxygen content of at most 0.003 wt .-%, and the electrode material according to the invention according to the first and the second alternative listed here in particular has an oxygen content of not more than 0.002 wt .-% on.
  • FIGS. 1 . 3 . 4 and 5 a spark plug electrode according to an embodiment of the invention described.
  • Figures 1 and 2 are micrographs with a scanning electron microscope at 500x magnification of part of an electrode.
  • reference numeral 1 denotes the respective electrode base material.
  • Reference numeral 2 denotes the surface of the electrode material on which an oxide layer 3 has been formed. Above it is a gas space 4 into which the electrode is inserted.
  • FIG. 1 is a microscope image of a nickel alloy according to the invention, which contains 0.2 wt .-% hafnium as element b) and 1 wt .-% silicon as element c), and an oxygen content of less than 0.0015 wt .-%, each based on the total weight of the electrode material.
  • the oxide layer 3 in the electrode material according to the invention is very thin and uniform and on average about 5 to 8 ⁇ m thick. This clearly shows the positive influence of the reactive elements b) on the formation of the oxide protective layer, which is according to the invention thin and stable pronounced. Oxidized areas inside the electrode material are practically nonexistent.
  • FIG. 2 shows a micrograph of a conventional nickel alloy, which has 1 wt .-% Al, 1 wt .-% Si and 0.2 wt .-% Y and an oxygen content of 0.0033 wt .-%.
  • the oxide layer 3 located on the surface of the electrode is formed non-uniformly and porous and shows widely large subregions 6 in which the oxide regions extend deep into the interior of the electrode material.
  • the oxide layer formed on the surface of the electrode is formed significantly thicker and is on average between 12 and 20 microns.
  • the reactive element b although in the optimal concentration, but not in a dissolved state, but in the form of isolated aggregates or intermetallic second phases 5 are present, which are eliminated from the nickel matrix.
  • the nickel structure is faulty and the surrounding oxygen oxidizes on the one hand the nickel at the electrode surface significantly stronger and on the other penetrates the oxygen into the electrode interior and oxidized here both more nickel and the intermetallic second phases of reactive element b).
  • the electrode material is therefore characterized by a high wear rate.
  • FIG. 3 shows measurement results of the electrical resistance R in ⁇ of oxide layers of two electrodes logarithmically as a function of the temperature T in ° C.
  • the underlying curve 11, whose measured values are marked with crosses, is that of the electrode according to the invention ( FIG. 1 ).
  • the electrical resistance R in the entire temperature spectrum is significantly lower than in a conventional electrode material due to the thinner oxide protective layer according to the invention on the electrode surface.
  • the electrode material according to the invention thus has excellent electrical conductivities, without precious metal being used in the electrode material.
  • FIG. 4 shows different wear rates of electrode materials of different composition, as summarized in the following overview.
  • the wear V in ⁇ m 3 per spark for the different electrode materials is shown.
  • the diamonds represent the mean values of the measured values and the vertical lines their dispersion.
  • electrode material A according to the invention B standard Reactive element b) Hf Y Amount of reactive element b) in% by weight 0.2 0.2 Element c) Si Si Amount of element c) in% by weight 1 1 Oxygen content in% by weight 0.0015 0.0033 base material Ni Ni more elements --- Al (1% by weight)
  • the electrode material according to the invention causes a reduction of the wear of about 25%.
  • FIG. 5 is an Arrhenius plot, the electrical resistance R to the temperature T 'is shown, wherein the temperature T' by the quotient 1000 / T in K -1 is shown.
  • the electrical resistance of the oxide layer of the spark plug electrode according to the invention (curve 13) is significantly smaller than the resistance of conventional oxide layers of electrodes without precious metals (curve 12).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spark Plugs (AREA)
  • Ceramic Products (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Zündkerzenelektrode, die aus einem Elektrodenmaterial auf Legierungsbasis hergestellt wird.
  • Aufgrund der steten Weiterentwicklung von Kraftfahrzeugmotoren und deren Komponenten zur Steigerung der Leistungsfähigkeit und Motorkraft, werden auch an die Materialien der Motorbauteile immer höhere Anforderungen gestellt. Insbesondere die Bauteile, die eine tragende Rolle bei der Zündung des Brennstoffgemisches spielen, die Zündkerzen, und insbesondere die Zündkerzenelektroden, sind hohen Belastungen insbesondere durch die Sauerstoffreiche Atmosphäre und hohe Temperaturen im Motorraum, ausgesetzt. Dies macht es erforderlich Zündkerzen bereitzustellen, die diesen hohen Anforderungen genügen.
  • Als Basismaterial für Zündkerzenelektroden werden unter anderem Nickellegierungen verwendet, da Nickel sowohl eine hohe Schmelztemperatur aufweist, die für die Temperaturbeständigkeit der Legierung unabdingbar ist, sowie eine hohe Beständigkeit gegenüber Korrosion aufweist. Zwar zeigen Werkstoffe aus reinen Edelmetallen oder auf Edelmetallbasis, wie Platin oder Platinlegierungen mit Iridium, hinsichtlich der Verschleißbeständigkeit gegen funkenerosive Angriffe eine gesteigerte Beständigkeit und damit sehr hohe Lebenszeiten der Elektroden, jedoch stellen Zündkerzenelektrodenmaterialien aus Platin, im Hinblick auf die enormen Kosten, aus wirtschaftlichen Gründen keine geeignete Alternative zu handelsüblichen Nickellegierungen dar. Unter funkenerosiven Angriffen bzw. Erosionsverlusten wird dabei der Materialabtrag von der Elektrode, der durch die Einwirkung des Lichtbogens auf die Elektrodenoberfläche induziert wird, verstanden.
  • In herkömmlichen Zündkerzenelektroden, z.B. aus Nickellegierungen, oxidiert unter
  • Betriebsbedingungen im Motorraum eines Fahrzeugs ein Großteil der Nickeloberfläche sowie auch ein Teil des Nickels im Inneren des Elektrodenmaterials durch Reaktion mit dem umgebenden Sauerstoff. Dadurch wird eine dicke, sowohl wärmeisolierende wie auch die elektrische Leitfähigkeit unterbindende bzw. reduzierende Nickeloxidschicht gebildet, die schon nach einiger Zeit aufgrund fehlenden Verbundes mit dem nicht oxidierten Nickelbasismaterial zu Korrosion bzw. zu funkenerosiver Erosion neigt.
  • EP 2 012 398 A2 offenbart eine Zündkerzenelektrode, hergestellt aus einem Elektrodenmaterial wobei das Elektrodenmaterial a) Nickel als Basismaterial und b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und c) mindestens ein Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu enthält, wobei der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.% beträgt.
  • Offenbarung der Erfindung
  • Es sei den weiteren Ausführungen vorangestellt, dass sich alle nachstehenden Gew.-%- Angaben, sofern nicht ausdrücklich anders gekennzeichnet, immer auf das Gesamtgewicht der Zusammensetzung des Elektrodenmaterials beziehen.
  • Die erfindungsgemäße Zündkerzenelektrode mit den Merkmalen des Anspruches 1 zeichnet sich durch eine extrem hohe Temperaturbeständigkeit und einen deutlich reduzierten funkenerosiven Verschleiß bzw. Elektrodenabbrand aus und weist eine einzigartige Oxidations- und Korrosionsbeständigkeit auf. Somit wird ein kostengünstiges Elektrodenmaterial für Zündkerzenelektroden bereitgestellt, das Wechselintervalle erlaubt, die bislang nur mit Elektrodenmaterialien aus Edelmetall- und Edelmetalllegierungen erzielt wurden. Erfindungsgemäß wird dies dadurch erreicht, dass eine an der Oberfläche des Elektrodenmaterials gebildete Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner oder gleich ist, als durch nachfolgende Gleichung definiert: logR = a + b * 1000 T ,
    Figure imgb0001
    wobei 0,6 ≤ a ≤ 0,8, insbesondere 0,7, ist, wobei 3,1 ≤ b ≤ 3,3, insbesondere 3,2, ist
    und wobei T die Temperatur in Kelvin ist,
    wobei das Elektrodenmaterial aus
    1. a) Nickel als Basismaterial,
    2. b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    3. c) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobei
    der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.-%, bevorzugt 0,1 bis 0,2 Gew.-% und besonders bevorzugt 0,13 bis 0,17 Gew.-% beträgt,
    wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und
    wobei
    das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist
    oder
    wobei das Elektrodenmaterial
    • a) Nickel als Basismaterial und
    • b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
    • d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0,3 Gew.-% beträgt und wobei
    der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt.
  • Die Oxidschicht, die sich an der Oberfläche der erfindungsgemäßen Zündkerzenelektrode bildet, weist eine optimierte Struktur auf. Unter einer optimierten Struktur wird dabei verstanden, dass die Oxidschicht einen gleichmäßigen und stabilen Verbund aufweist und zudem relativ dünn und an der Oberfläche ebenmäßig ist im Vergleich zu sich auf herkömmlichen Elektroden bildenden Oxidschichten. Dies ermöglicht einen geringen elektrischen Widerstand der Oxidschicht an der Elektrodenoberfläche. Erfindungsgemäß wird ferner ein Übergangswiderstand zwischen der Oxidschicht und dem Grundmaterial, also dem unoxidierten Elektrodenmaterial, gesenkt, was eine zusätzlich verbesserte elektrische Leitfähigkeit zur Folge hat. Ist der elektrische Widerstand an der Elektrodenoberfläche befindlichen Oxidschicht gering, also gleich oder kleiner als durch oben definierte Gleichung vorgegeben, so wird die elektrische Spannung, die beim Funkenüberschlag im Brennraum zwischen den Elektrodenoberflächen entsteht, schnell von der Oberfläche der Elektrode in deren Inneres abgeleitet, so dass die lokale Belastung ah der Oberfläche der Elektrode deutlich vermindert wird und auch nur von extrem kurzer Dauer ist. Die Fähigkeit, den Strom schnell und gleichmäßig von der Elektrodenoberfläche in das Innere der Zündkerzenelektrode zu leiten, ist umso größer, je kleiner der elektrische Widerstand ist. Ein weiterer positiver Effekt der Erfindung ist, dass dadurch, dass der Strom so schnell abgeleitet wird, außerdem einer lokalen Erwärmung des dem Funken ausgelieferten Materials entgegengewirkt wird, so dass die Neigung des Elektrodenmaterials zur weiteren Bildung von Oxiden wiederum deutlich vermindert wird und somit lediglich nur eine extrem dünne und homogene Oxidschicht an der Elektrodenoberfläche gebildet wird. Der Verschleiß des Elektrodenmaterials durch Funkenerosion und Korrosion wird dadurch deutlich verringert, so dass die Verschleißrate der erfindungsgemäßen Zündkerzenelektrode gegenüber solchen aus herkömmlichen Elektrodenmaterialien erheblich reduziert ist. Das erfindungsgemäße Elektrodenmaterial ist auch bei hohen Temperaturen unter den extremen Bedingungen, wie sie im Brennraum herrschen, stabil und verschleißresistent. Die erfindungsgemäße Zündkerzenelektrode ist edelmetallfrei, weist jedoch signifikant verbesserte Standzeiten im Vergleich mit herkömmlichen Zündkerzen auf. Besonders bevorzugt erfüllt auch ein Widerstand des Elektrodenmaterials die vorhergehend definierte Gleichung, so dass ein ähnlicher, besonders bevorzugt gleicher, Widerstand der am Elektrodenmaterial gebildeten Oxidschicht und des Elektrodenmaterials vorhanden ist.
  • Gemäß der Erfindung besteht das Elektrodenmaterial, das die erfindungsgemäße Zündkerzenelektrode bildet, aus:
    1. 1. a) Nickel als Basismaterial und
    2. 2. b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    3. 3. c) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu, wobei
    der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.-%, bevorzugt 0,1 bis 0,2 Gew.-% und besonders bevorzugt 0,13 bis 0,17 Gew.-% beträgt, wobei das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist. Diese erfindungsgemäße
  • Zündkerzenelektrode zeichnet sich durch ein Elektrodenmaterial aus, dessen an seiner Oberfläche befindliche Oxidschicht einen elektrischen Widerstand R aufweist, der gleich oder kleiner ist als derjenige, der durch oben angeführte Gleichung definiert wird, so dass alle oben erwähnten Vorteile mit diesem Elektrodenmaterial erzielt werden. Auch die wärmeleitenden Eigenschaften der Oxide und damit der Gesamtlegierung sind ausgezeichnet so dass das Material ferner auch eine extrem hohe Temperaturbeständigkeit und einen damit einhergehend deutlich reduzierten funkenerosiven Verschleiß bzw. Elektrodenabbrand aufweist. Die Oxidations- und Korrosionsbeständigkeit des Materials ist auch unter Dauerbelastung sehr gut. Das Element b) zeichnet sich durch hervorragende elektrische und physikalische Eigenschaften aus und unterstützt die Bildung einer dünnen und ebenmäßigen Oxidschicht an der Elektrodenoberfläche. Konzentration an Element b) von über 0,3 Gew.-% führen zu Ausscheidungen dieses Elements, so dass die Korrosionsbeständigkeit und Erosionsbeständigkeit des Materials wieder sinkt. Konzentration an Element b) von weniger als 0,1 Gew.-% hingegen wirken nicht ausreichend stabilisierend auf das Elektrodenmaterial.
  • Demnach bevorzugt ist das Elektrodenmaterial frei von Aluminium. Dadurch lässt sich das Material in Bezug auf bekannte, Aluminium-haltige Materialien, leichter verarbeiten, was den Aufwand für die Produktion solcher Elektrodenmaterialien senken kann. Somit wird ein kostengünstiges Elektrodenmaterial für Zündkerzenelektroden bereitgestellt, das Wechselintervalle erlaubt, die bislang nur mit Elektrodenmaterialien aus Edelmetall- und Edelmetalllegierungen erzielt wurden.
  • Gemäß einer Alternative der Erfindung enthält das Elektrodenmaterial, das die erfindungsgemäße Zündkerzenelektrode bildet:
    • a) Nickel als Basismaterial und
    • b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    • d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤0,5 Gew.-% und bevorzugt ≤0,3 Gew.-% beträgt und wobei der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt. Auch diese erfindungsgemäße Zündkerzenelektrode zeichnet sich durch ein Elektrodenmaterial aus, dessen an seiner Oberfläche befindliche Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner ist als derjenige, der durch oben angeführte Gleichung definiert wird, so dass alle oben erwähnten Vorteile auch mit diesem Elektrodenmaterial erzielt werden. Die Elemente d), also V, Zn und Ti, fügen sich besonders homogen in eine Nickelmatrix ein. Das Elektrodenmaterial zeichnet sich durch einen geringen Übergangswiderstand zwischen Oxidschicht und dem Elektrodengrundmaterial aus, so dass dessen elektrische Leitfähigkeit stark erhöht ist. Auch die wärmeleitenden Eigenschaften sind ausgezeichnet, so dass verschleißresistentes Material gebildet wird. Die elektrischen Eigenschaften und auch die Wärmeleitfähigkeit der Oxide der Elemente V, Zn und Ti sind dabei so ausgezeichnet, dass vorzugsweise sogar auf das reaktive Element b) verzichtet werden kann. Besonders bevorzugt ist aber, wenn mindestens ein weiteres Element aus der Gruppe bestehend aus Y, Hf, Ce, La, Zr, Ta und Yb zulegiert bzw. zudotiert wird. Auch in diesem Legierungsmaterial zeichnen sich die Elemente b) durch hervorragende elektrische und physikalische Eigenschaften aus und bilden dieselben positiven Strukturen aus, wie bereits oben im Detail ausgeführt. Ist der Anteil an Element d) geringer als 1,5 Gew.-% bezogen auf das Gesamtgewicht des Elektrodenmaterials, so ist die elektrische Leitfähigkeit im Elektrodengrundmaterial geringer, da zu wenig Metalloxid des Elements d) gebildet ist, das den Übergangswiderstand in dem Elektrodenmaterial senkt. Ein Anteil an Element d) von mehr als 15 Gew.-% oder sogar 18 Gew.-% hat keinen wesentlichen Einfluss mehr auf die Verbesserung der elektrischen Eigenschaften und die Struktur des Elektrodenmaterials.
  • Gemäß einer nicht erfindungsgemäßen Alternative enthält ein Elektrodenmaterial die nachfolgenden Elemente:
    • a) Eisen als Basismaterial und
    • b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
    • e) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus Al, Cr, Ni und Mo, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤0,5 Gew.-% und bevorzugt ≤0,3 Gew.-% beträgt und wobei der Gesamtgehalt an Element e) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 29 Gew.-% und bevorzugt 2 bis 25 Gew.-% beträgt. Auch diese Zündkerzenelektrode zeichnet sich durch ein Elektrodenmaterial aus, dessen an seiner Oberfläche befindliche Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner ist als derjenige, der durch oben angeführte Gleichung definiert wird, so dass alle oben erwähnten Vorteile auch mit diesem Elektrodenmaterial erzielt werden. Während hingegen eine Kombination Nickel mit Aluminium oder auch Chrom nicht zu einem ausreichend niedrigen elektrischen Widerstand führt, weist dieses Elektrodenmaterial das Element Eisen in Kombination mit den Elementen e), also Al, Cr, Ni und Mo auf, wodurch eine sehr stabile und homogene Struktur gebildet wird. Auch die wärmeleitenden Eigenschaften der Oxide und damit der Gesamtlegierung sind ausgezeichnet. Die elektrischen Eigenschaften der Oxide der Elemente Al, Cr, Ni und Mo sind dabei so ausgesprochen gut, dass gegebenenfalls bevorzugt sogar auf das reaktive Element b) verzichtet werden kann. Besonders bevorzugt ist aber, wenn mindestens ein weiteres Element aus der Gruppe bestehend aus Y, Hf, Ce, La, Zr, Ta und Yb zulegiert bzw. zudotiert wird. Auch in diesem Legierungsmaterial zeichnen sich die Elemente b) durch hervorragende elektrische und physikalische Eigenschaften aus und bilden dieselben positiven Strukturen aus, wie bereits oben im Detail ausgeführt. Ist der Anteil an Element e) geringer als 1,5 Gew.-% bezogen auf das Gesamtgewicht des Elektrodenmaterials, so ist die elektrische Leitfähigkeit im Elektrodengrundmaterial geringer, da zu wenig Metalloxid des Elements e) gebildet ist, das den Übergangswiderstand in dem Elektrodenmaterial senkt. Ein Anteil an Element e) von mehr als 25 Gew.-% oder sogar 29 Gew.-% hat keinen wesentlichen Einfluss mehr auf die Verbesserung der elektrischen Eigenschaften und die Struktur des Elektrodenmaterials.
  • Die Unteransprüche zeigen bevorzugte Weiterbildungen und Verbesserungen der Erfindung.
  • Besonders bevorzugt ist es, wenn die sich auf der Oberfläche der Elektrode bildende Oxidschicht eine Wärmeleitfähigkeit von mehr als 6 W/mK und bevorzugt von mehr als 8 W/mK und besonders bevorzugt von mehr als 10 W/mK aufweist, wobei die Wärmeleitfähigkeit bei 20 °C gemessen wird. Wird die Wärme von der oxidhaltigen Elektrodenoberfläche sehr schnell in das Innere der Elektrode abgeleitet, so wird die Bildung einer dicken, stark ausgeprägten und unregelmäßig geformten Oxidschicht an der Elektrodenoberfläche verhindert. Die erfindungsgemäße Zündkerzenelektrode zeichnet sich durch eine extrem dünne und gleichmäßige Oxidschicht aus, so dass die Zündkerzenelektrode über eine ausgezeichnete Stabilität auch im Dauerbetrieb der Zündkerze verfügt. Ist die Wärmeleitfähigkeit der sich bildenden Oxidschicht geringer als 6 W/mK, so entstehen im Funkenplasma lokal hohe Temperaturen, die nicht ausreichend schnell an die Umgebung abgegeben werden, so dass sich gerade an diesen Stellen bevorzugt Oxidschichten abscheiden, so dass die Oxidschichten gerade an diesen Stellen besonders schnell gebildet werden. Hierdurch erhöht sich die Erosions- und Korrosionsneigung des Materials und somit dessen Verschleiß und es kommt verstärkt zu Hitzestaus, was den Verschleiß weiter begünstigt. Weiter bevorzugt weist auch das Elektrodenmaterial eine Wärmeleitfähigkeit von mehr als 6 W/mK auf und besonders bevorzugt sind die Wärmeleitfähigkeiten der Oxidschicht und des Elektrodenmaterials gleich.
  • In einer bevorzugten Ausführungsform hat die an der Oberfläche des Elektrodenmaterials gebildete Oxidschicht eine Dicke von weniger als 10 µm bzw. weist besonders bevorzugt eine Dicke in einem Bereich von 5 bis 8 µm auf. Erfindungsgemäß werden also solche Materialien miteinander zu einem Elektrodenmaterial kombiniert, die sich durch eine reduzierte Neigung zur Bildung von Oxiden unter den vorherrschenden Extrembedingungen auszeichnen. Ist die sich bildende Oxidschicht 10 µm oder stärker, so wirkt die Oxidschicht sowohl gegenüber Wärme als auch in Bezug auf die Leitfähigkeit isolierend. Dies fördert wiederum die Bildung weiterer Oxide und damit auch die Verschleißrate des Elektrodenmaterials. Je geringer also die Dicke der Oxidschicht ist, desto beständiger ist das Material in Bezug auf Funkenerosion und insbesondere oxidative Korrosion.
  • Besonders bevorzugt ist es, wenn das Elektrodenmaterial
    • a) Nickel als Basismaterial und
    • b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
    • d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0,3 Gew.-% beträgt und wobei der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt und wobei der Anteil an Sauerstoff in dem Elektrodenmaterial weniger als 0,003 Gew.-% bezogen auf das Gesamtgewicht des Elektrodenmaterials beträgt. Unter Sauerstoff im Elektrodenmaterial wird in Bezug auf die vorliegende Erfindung nicht nur jeglicher gasförmig oder gelöst vorliegende molekulare Sauerstoff verstanden, sondern auch jeglicher in Form von Oxiden gebundene Sauerstoff. Das bedeutet mit anderen Worten, dass das erfindungsgemäße Elektrodenmaterial und damit auch eine daraus hergestellte Zündkerzenelektrode vor Inbetriebnahme der Zündkerzenelektrode, d.h., ohne Oxidschicht, einen Sauerstoffanteil von weniger als 0,003 Gew.-% aufweist. Es wurde gefunden, dass wenn der Sauerstoffanteil vor Inbetriebnahme der Zündkerzenelektrode über der Grenze von 0,003 Gew.-% liegt, insbesondere die sogenannten reaktiven metallischen Elemente Y, Hf, Ce, La, Zr, Ta und Yb, also die Elemente b), bereits zu einem großen Anteil in Form ihrer Oxide vorliegen. Diese Oxide der reaktiven Elemente liegen somit überwiegend als Oxidpartikel oder oxidische intermetallische Phasen vor und sind damit aus der Legierungsmatrix ausgeschieden. Sie können also bei Inbetriebnahme der Zündkerze keinen Sauerstoff mehr binden und tragen damit nicht mehr zur Erhöhung der Oxidationsbeständigkeit des Legierungsmaterials bei. Ferner leidet hierunter auch die Erosionsbeständigkeit und Stabilität des Materials, so dass die Verschleißrate eines solchen Elektrodenmaterials gegenüber einem solchen, gemäß der vorliegenden Erfindung, deutlich erhöht ist. Je geringer der initiale Sauerstoffgehalt vor Inbetriebnahme der Zündkerzenelektrode ist, desto geringer ist auch der Anteil an destabilisierenden Oxidpartikeln, Oxidaggregaten oder sogar oxidischen Phasen, desto besser ist das Material gegenüber Korrosion und Funkenerosion bei Inbetriebnahme der Zündkerze geschützt. Der Grenzwert von 0,003 Gew.-% für den Sauerstoffanteil scheint hierbei ein Schwellenwert zu sein, so dass Sauerstoffgehalte unter diesem Wert zu einem guten und dauerhaft beständigem Elektrodenmaterial führen. Es wurde gefunden, dass dieser geringe Sauerstoffgehalt besonders wichtig ist für die mindestens ein Element c) enthaltende Nickelbasislegierung. Bei Nickelbasislegierungen, die mindestens eines der Elemente d) enthalten oder aber bei besagter Eisenbasislegierung scheint die Anfälligkeit des Materials gegenüber Oxidation geringer ausgebildet zu sein, so dass auch höhere Sauerstoffgehalte im Legierungsmaterial tolerierbar sind. Der Sauerstoffgehalt in dem Elektrodenmaterial kann dabei durch Heißextraktion einer Probe des Legierungsmaterials nach herkömmlichen Methoden bestimmt werden.
  • Besonders bevorzugt liegt der Anteil an Sauerstoff in dem Elektrodenmaterial bei maximal 0,002 Gew.-%. Unterhalb dieser Grenze ist die Ausbildung von metallischen Oxiden in dem Elektrodenmaterial vor Inbetriebnahme des Zündkerze so gering, dass die Elektrode auch bei hohen Temperaturen optimal vor Oxidation und damit vor Destabilisierung durch Korrosion und Erosion geschützt ist.
  • Als weiterhin vorteilhaft hat sich herausgestellt, wenn vor Inbetriebnahme der Zündkerze der Gesamtanteil an oxidierten Elementen b) in dem Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials geringer ist als 15 Mol.-% und bevorzugt geringer als 10 Mol.-%. Liegt der Anteil an oxidischem Element b) vor Inbetriebnahme der Elektrode höher als 10 Mol.-% oder sogar 15 Mol.-%, so ist dessen Anteil bereits so hoch, dass das reaktive Element b) nicht mehr ausreichend zur Stabilisierung des Elektrodenmaterials bei Funkenschlag beitragen kann, denn es liegt bereits in seiner oxidierten Form vor und kann somit keinen weiteren Sauerstoff binden. Damit unterliegt nun das Basismaterial und insbesondere das Nickelbasismaterial, dem mindestens eines der Elemente c) zulegiert ist, einer stärkeren Oxidation und das Elektrodenmaterial verschleißt zusehends. Je höher der Anteil an oxidiertem Element b), desto geringer ist der stabilisierende Effekt, den es auf das Elektrodenmaterial ausüben kann. Je geringer der Anteil an oxidiertem Element b), desto höher ist hingegen folglich die stabilisierende Wirkung, die das reaktive Element in dem Nickelgefüge bewirkt.
  • Als besonders nachteilig in Bezug auf die Stabilität des Elektrodenmaterials, also dessen Oxidations- sowie Korrosions- und Erosionsbeständigkeit, hat sich die Bildung von intermetallischen Zweitphasen gezeigt. Intermetallische Zweitphasen bilden sich, wie bereits ausgeführt, insbesondere dann, wenn große Anteile an reaktivem Element b) in dem Legierungsmaterial vorliegen, die dann aufgrund von Unverträglichkeiten mit dem Basismaterial nicht in gelöster Form, sondern in Form einer intermetallischen Zweitphase vorliegen. Diese intermetallischen Zweitphasen führen zur Destabilisierung des Elektrodenmaterials, da sie sich nicht homogen in die Legierungsmatrix einfügen, sondern aus dieser ausgeschieden vorliegen, so dass die Bindungen zwischen den Legierungselementen lokal und auch über weitere Bereiche reduziert werden. Das Legierungsgefüge wird durch intermetallische Zweitphasen gestört. Damit ist der elektrische Widerstand des Materials erhöht und folglich insbesondere die Wärmeleitfähigkeit und die elektrische Leitfähigkeit des Materials reduziert, bzw. werden diese inhomogen über den gesamten Bereich, so dass lokal hohe Temperaturschwankungen auftreten können, die das Material an diesen Stellen aufweiten und zu einem Abplatzen des Materials führen können. Dies fördert den Verschleiß des Elektrodenmaterials. Die Störung des Legierungsgefüges ist besonders groß, wenn der Anteil an intermetallischen Phasen in dem Elektrodenmaterial 15 Mol.-% oder mehr beträgt. Es wurde gefunden, dass intermetallische Phasen, mit einem Anteil von weniger als 15 Mol.-% und bevorzugt von weniger als 10 Mol.-% bezogen auf die Gesamtzusammensetzung noch tolerierbar sind, so dass sich deren destabilisierende Wirkungen nicht essentiell auswirken und die Legierungsmatrix ausreichend stabil gebildet ist. Je geringer der Anteil an intermetallischen Phasen, desto stabiler ausgeprägt ist das Legierungsgefüge. Besonders bevorzugt ist es deshalb, wenn im Wesentlichen keine intermetallischen Phasen im Elektrodenmaterial vorliegen.
  • Das erfindungsgemäße Elektrodenmaterial für Zündkerzenelektroden kann sowohl für die Herstellung der Mittel-, wie auch für die Masseelektrode wie auch beider Elektroden gleichzeitig, verwendet werden. Die daraus gebildeten Zündkerzen liegen in Bezug auf ihre Standzeiten in etwa in demselben Bereich wie sie mit Edelmetallmaterialzündkerzen erzielt werden, ohne jedoch Edelmetall zu enthalten. Während hingegen die Standzeiten der herkömmlichen edelmetallfreien Zündkerzen lediglich etwa bis 60.000 km betragen, liegen die Standzeiten der erfindungsgemäßen Zündkerzenelektroden bedeutend höher, d.h., im Bereich von 90.000 km. Dies erzeugt eine wesentlich bessere Akzeptanz auf dem Markt und ist sowohl aus umwelttechnischen wie auch aus wirtschaftlichen Gründen von Vorteil.
  • Erfindungsgemäß werden Zündkerzen bereitgestellt, die mindestens eine erfindungsgemäße Zündkerzenelektrode umfassen, und die somit eine verbesserte Oxidations- und Korrosionsbeständigkeit, sowie Funkenerosionsbeständigkeit und Wärmeleitfähigkeit aufweisen.
  • Die Erfindung betrifft eine Zündkerzenelektrode, gekennzeichnet durch ein Elektrodenmaterial, das aus
    1. a) Nickel als Basismaterial,
    2. b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    3. c) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobei
    der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.-%, bevorzugt 0,1 bis 0,2 Gew.-% und besonders bevorzugt 0,13 bis 0,17 Gew.-% beträgt,
    wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und wobei
    das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist.
    Das vorstehend definierte Elektrodenmaterial weist, bezogen auf das Gesamtgewicht des Elektrodenmaterials, einen Sauerstoffgehalt von weniger als 0,003 Gew.-% auf. In dieser Ausführungsform ist das Elektrodenmaterial sowohl in struktureller als auch in chemisch-physikalischer Hinsicht optimal ausgebildet. Es weist einen kleinen elektrischen Widerstand auf, ist gut wärmeleitend und damit oxidationsstabil und ferner resistent gegenüber Funkenerosion und Korrosion, insbesondere auch bei erhöhten Temperaturen, wie sie z.B. im Motorraum eines Fahrzeugs an Zündkerzen vorliegen können. Das Material lässt sich hervorragend verarbeiten und ist in sich homogen. Eine sich bildende Oxidschicht an der Oberfläche der Elektrode ist aufgrund der gut abgestimmten Materialien stabil aber ausreichend dünn, um die Wärmeleitfähigkeit und elektrische Leitfähigkeit nicht wesentlich nachteilig zu beeinflussen. Das Material ist dauerhaft, also auch bei langen Standzeiten stabil, und zeichnet sich durch eine extrem niedrige Verschleißrate aus.
  • Weiterhin betrifft die Erfindung eine Zündkerzenelektrode, gekennzeichnet durch ein Elektrodenmaterial, enthaltend:
    • a) Nickel als Basismaterial und
    • b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    • d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤0,5 Gew.-% und bevorzugt ≤0,3 Gew.-% beträgt und wobei
    der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des
  • Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt. Es sei angemerkt, dass der Wert für den Gesamtgehalt an Element b) auch Null sein kann.
  • Das erfindungsgemäße Elektrodenmaterial der zweiten aufgeführten Alternative weist dabei besonders bevorzugt, bezogen auf das Gesamtgewicht des Elektrodenmaterials, einen Sauerstoffgehalt von maximal 0,003 Gew.-%, und das erfindungsgemäße Elektrodenmaterial gemäß der ersten und der zweiten aufgeführten Alternative weist dabei insbesondere einen Sauerstoffgehalt von maximal 0,002 Gew.-% auf.
  • Zeichnung
  • Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung beschrieben.
  • Figur 1
    zeigt einen Querschnitt durch eine erfindungsgemäße Zündkerzenelektrode,
    Figur 2
    zeigt einen Querschnitt durch eine Zündkerzenelektrode gemäß dem Stand der Technik,
    Figur 3
    ist eine logarithmische Darstellung, die den elektrischen Widerstand von Elektroden in Abhängigkeit von der Temperatur zeigt,
    Figur 4
    zeigt Verschleißreduktionen an Zündkerzenelektrode in Abhängigkeit der Zusammensetzung, und
    Figur 5
    ist eine Arrhenius-Auftragung, die den elektrischen Widerstand von Elektroden in Abhängigkeit von der Temperatur zeigt.
    Beschreibung der Ausführungsform
  • Nachfolgend wird unter Bezugnahme auf die Figuren 1, 3, 4 und 5 eine Zündkerzenelektrode gemäß einen Ausführungsbeispiel der Erfindung beschrieben.
  • Veranschaulicht werden die Vorteile des erfindungsgemäßen Elektrodenmaterials bzw. der erfindungsgemäßen Zündkerze durch einen Vergleich der Figuren 1 und 2. Figuren 1 und 2 sind mikroskopische Aufnahmen mit einem Rasterelektronenmikroskop in 500facher Vergrößerung eines Teils einer Elektrode. In den Figuren 1 und 2 bezeichnet das Bezugszeichen 1 das jeweilige Elektrodengrundmaterial. Bezugszeichen 2 bezeichnet die Oberfläche des Elektrodenmaterials, auf der sich eine Oxidschicht 3 gebildet hat. Darüber befindet sich ein Gasraum 4, in den die Elektrode eingebracht ist.
  • Figur 1 ist eine Mikroskopaufnahme einer erfindungsgemäßen Nickellegierung, die 0,2 Gew.-% Hafnium als Element b) und 1 Gew.-% Silicium als Element c) enthält, sowie einem Sauerstoffgehalt von weniger als 0,0015 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Elektrodenmaterials. Deutlich zu erkennen ist, dass die Oxidschicht 3 in dem erfindungsgemäßen Elektrodenmaterial sehr dünn und gleichmäßig ausgebildet und im Durchschnitt etwa 5 bis 8 µm dick ist. Dies zeigt deutlich den positiven Einfluss der reaktiven Elemente b) auf die Ausbildung der oxidischen Schutzschicht, die erfindungsgemäß dünn und stabil ausgeprägt ist. Oxidierte Bereiche im Inneren des Elektrodenmaterials sind praktisch nicht vorhanden.
  • Dies zeigt die Stabilität und damit Korrosions- und Erosionsbeständigkeit des erfindungsgemäßen Elektrodenmaterials.
  • Figur 2 zeigt eine Mikroskopaufnahme einer herkömmlichen Nickellegierung, die 1 Gew.-% Al, 1 Gew.-% Si und 0,2 Gew.-% Y sowie einen Sauerstoffgehalt von 0,0033 Gew.-% aufweist. Hier ist die an der Oberfläche der Elektrode befindliche Oxidschicht 3 ungleichmäßig und porös ausgebildet und zeigt weitläufig große Teilbereiche 6, in denen sich die oxidischen Bereiche bis tief ins Innere des Elektrodenmaterials ziehen. Die an der Oberfläche der Elektrode gebildete Oxidschicht ist bedeutend dicker ausgebildet und liegt im Mittel zwischen 12 und 20 µm. Diese destabilisierenden Effekte sind direkt auf die Zusammensetzung des Elektrodenmaterials zurückzuführen. Hier ist das reaktive Element b) zwar in der optimalen Konzentration, jedoch nicht in gelöstem Zustand, sondern in Form isolierter Aggregate bzw. intermetallische Zweitphasen 5 vorhanden, die aus der Nickelmatrix ausgeschieden sind. So ist das Nickelgefüge fehlerhaft und der umgebende Sauerstoff oxidiert zum Einen das Nickel an der Elektrodenoberfläche bedeutend stärker und zum Anderen dringt der Sauerstoff ins Elektrodeninnere ein und oxidiert hier sowohl weiteres Nickel als auch die intermetallischen Zweitphasen aus reaktivem Element b). Das Elektrodenmaterial zeichnet sich folglich durch eine hohe Verschleißrate aus.
  • Figur 3 zeigt Messergebnisse des elektrischen Widerstands R in Ω von Oxidschichten zweier Elektroden logarithmisch in Abhängigkeit der Temperatur T in °C. Der obere Kurvenverlauf 10, dessen Messpunkte durch Quadrate gezeichnet sind, wurde an der Elektrode des Standes der Technik (Figur 2) gemessen. Die darunter liegende Kurve 11, deren Messwerte mit Kreuzen gekennzeichnet sind, ist diejenige der erfindungsgemäßen Elektrode (Figur 1). Hier ist deutlich zu erkennen, dass durch die erfindungsgemäße dünnere oxidische Schutzschicht an der Elektrodenoberfläche der elektrische Widerstand R im gesamten Temperaturspektrum bedeutend geringer ist als in einem herkömmlichen Elektrodenmaterial. Das erfindungsgemäße Elektrodenmaterial weist also hervorragende elektrische Leitfähigkeiten auf, ohne dass dabei Edelmetall im Elektrodenmaterial verwendet wurde.
  • Figur 4 zeigt verschiedene Verschleißraten von Elektrodenmaterialien unterschiedlicher Zusammensetzung, wie sie in der nachfolgenden Übersicht zusammengestellt sind. In Figur 4 ist dabei der Verschleiß V in µm3 pro Funke für die verschiedenen Elektrodenmaterialien dargestellt. Dabei stellen die Rauten die Mittelwerte der gemessenen Werte dar und die vertikalen Striche deren Streuung.
    Elektrodenmaterial A erfindungsgemäß B Standard
    Reaktives Element b) Hf Y
    Menge an reaktivem Element b) in Gew.-% 0,2 0,2
    Element c) Si Si
    Menge an Element c) in Gew.-% 1 1
    Sauerstoffgehalt in Gew.-% 0,0015 0,0033
    Basismaterial Ni Ni
    weitere Elemente --- Al(1 Gew.-%)
  • Gut zu erkennen ist, dass das erfindungsgemäße Elektrodenmaterial eine Reduktion des Verschleißes von etwa 25 % bewirkt.
  • In Figur 5 ist eine Arrhenius-Auftragung, welche den elektrischen Widerstand R über der Temperatur T' dargestellt ist, wobei die Temperatur T' durch den Quotienten 1000/T in K-1 dargestellt ist. Hierdurch kann die Gleichung logR = a+b* 1000/T definiert werden, wobei a zwischen 0,6 und 0,8 liegt, b zwischen 3,1 und 3,2 liegt und T die entsprechende Elektrodentemperatur in Kelvin ist. Wie aus Figur 5 deutlich ersichtlich ist, ist der elektrische Widerstand der Oxidschicht der erfindungsgemäßen Zündkerzenelektrode (Kurve 13) deutlich kleiner als der Widerstand der herkömmlichen Oxidschichten von Elektroden ohne Edelmetalle (Kurve 12).

Claims (8)

  1. Zündkerzenelektrode, hergestellt aus einem Elektrodenmaterial, dadurch gekennzeichnet, dass eine an einer Oberfläche des Elektrodenmaterials vorhandene Oxidschicht einen elektrischen Widerstand R aufweist, der kleiner oder gleich ist als durch nachfolgende Gleichung definiert: logR = a + b * 1000 T ,
    Figure imgb0002
    wobei 0,6 ≤ a ≤ 0,8, insbesondere 0,7, ist,
    wobei 3,1 ≤ b ≤ 3,3, insbesondere 3,2, ist und
    wobei T die Temperatur in Kelvin ist,
    wobei das Elektrodenmaterial aus
    a) Nickel als Basismaterial,
    b) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb, und
    c) mindestens einem weiteren Element ausgewählt aus der Gruppe bestehend aus: Si, Na, K, Li, Ti, Ag und Cu besteht, wobei
    der Gesamtanteil an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,1 bis 0,3 Gew.-%, bevorzugt 0,1 bis 0,2 Gew.-% und besonders bevorzugt 0,13 bis 0,17 Gew.-% beträgt,
    wobei der Gesamtanteil an Element c) bezogen auf das Gesamtgewicht des Elektrodenmaterials 0,5 bis 3 Gew.-% und bevorzugt 1,0 bis 2,5 Gew.-% beträgt, und wobei
    das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0.002 Gew.-% aufweist
    oder
    wobei das Elektrodenmaterial
    a) Nickel als Basismaterial und
    b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
    d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0,3 Gew.-% beträgt und wobei
    der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt.
  2. Zündkerzenelektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Oxidschicht an der Oberfläche des Elektrodenmaterials bei 20 °C eine Wärmeleitfähigkeit von größer als 6 W/mK und bevorzugt 8 W/mK und besonders bevorzugt 10 W/mK, aufweist.
  3. Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxidschicht eine Dicke von weniger als 10 µm und bevorzugt eine Dicke in einem Bereich von 5 bis 8 µm aufweist.
  4. Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Elektrodenmaterial
    a) Nickel als Basismaterial und
    b) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus: Y, Hf, Ce, La, Zr, Ta und Yb und
    d) mindestens ein weiteres Element ausgewählt aus der Gruppe bestehend aus V, Zn und Ti enthält, wobei
    der Gesamtgehalt an Element b) bezogen auf das Gesamtgewicht des Elektrodenmaterials ≤ 0.3 Gew.-% beträgt und wobei der Gesamtgehalt an Element d) bezogen auf das Gesamtgewicht des Elektrodenmaterials 1,5 bis 18 Gew.-% und bevorzugt 2 bis 15 Gew.-% beträgt und wobei das Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials einen Sauerstoffgehalt von maximal 0,003 Gew.-% und insbesondere 0,002 Gew.-% aufweist.
  5. Zündkerzenelektrode nach Anspruch 1, dadurch gekennzeichnet, dass der Gesamtanteil an oxidiertem Element b) in dem Elektrodenmaterial bezogen auf das Gesamtgewicht des Elektrodenmaterials geringer als 15 Mol.-% und bevorzugt geringer als 10 Mol.-% ist.
  6. Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an intermetallischen Phasen in dem Elektrodenmaterial bezogen auf die Gesamtzusammensetzung des Elektrodenmaterials geringer als 15 Mol.-% und bevorzugt geringer als 10 Mol.-% ist.
  7. Zündkerzenelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Elektrodenmaterial im Wesentlichen keine intermetallischen Phasen enthält.
  8. Zündkerze, umfassend mindestens eine Zündkerzenelektrode nach einem der vorhergehenden Ansprüche.
EP10752780.6A 2009-10-26 2010-09-06 Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial Active EP2514052B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009046005A DE102009046005A1 (de) 2009-10-26 2009-10-26 Zündkerzenelektrode, hergestellt aus verbessertem Elektrodenmaterial
PCT/EP2010/063021 WO2011054561A1 (de) 2009-10-26 2010-09-06 Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial

Publications (3)

Publication Number Publication Date
EP2514052A1 EP2514052A1 (de) 2012-10-24
EP2514052B1 EP2514052B1 (de) 2015-02-25
EP2514052B2 true EP2514052B2 (de) 2018-08-22

Family

ID=43086482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752780.6A Active EP2514052B2 (de) 2009-10-26 2010-09-06 Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial

Country Status (6)

Country Link
EP (1) EP2514052B2 (de)
JP (1) JP5826182B2 (de)
CN (1) CN102598443B (de)
BR (1) BR112012010819A2 (de)
DE (1) DE102009046005A1 (de)
WO (1) WO2011054561A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007532A1 (de) * 2011-04-15 2012-10-18 Robert Bosch Gmbh Zündkerzenelektrodenmaterial und Zündkerze, sowie Verfahren zur Herstellung des Zündkerzenelektrodenmaterials
DE102011007496A1 (de) 2011-04-15 2012-10-18 Robert Bosch Gmbh Zündkerzenelektrodenmaterial und Zündkerze, sowie Verfahren zur Herstellung des Zündkerzenelektrodenmaterials und einer Elektrode für die Zündkerze
JP6065580B2 (ja) 2012-12-25 2017-01-25 住友電気工業株式会社 内燃機関用材料の評価試験方法
JP6438249B2 (ja) * 2014-09-16 2018-12-12 株式会社東芝 電極材料およびそれを用いた電極層、電池並びにエレクトロクロミック素子
JP6312723B2 (ja) 2016-01-18 2018-04-18 日本特殊陶業株式会社 スパークプラグ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684505A (en) 1985-06-11 1987-08-04 Howmet Turbine Components Corporation Heat resistant alloys with low strategic alloy content
EP0933848A1 (de) 1998-01-28 1999-08-04 Ngk Spark Plug Co., Ltd Zündkerze mit eingebautem Widerstand
EP1065290A1 (de) 1999-06-30 2001-01-03 Sumitomo Metal Industries, Ltd. Hitzebeständige Nickelbasislegierung
JP2007092139A (ja) 2005-09-29 2007-04-12 Hitachi Metals Ltd 点火プラグ用電極材料
US20080050264A1 (en) 2006-08-28 2008-02-28 Federal-Mogul World Wide, Inc. Ignition Device Electrode Composition
JP2009245640A (ja) 2008-03-28 2009-10-22 Ngk Spark Plug Co Ltd スパークプラグ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185052A (ja) * 1975-01-08 1976-07-26 Hitachi Ltd Tenkapuragudenkyokuyonitsukerugokin
US7323811B2 (en) * 2001-08-23 2008-01-29 Federal-Mogul Ignition (U.K.) Limited Noble metal tip for spark plug electrode and method of making same
DE10224891A1 (de) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Legierung auf Nickelbasis
JP4699867B2 (ja) * 2004-11-04 2011-06-15 日立金属株式会社 点火プラグ用電極材料
EP2045342B1 (de) * 2006-07-25 2012-09-05 Tanaka Kikinzoku Kogyo K.K. Edelmetalllegierung für eine zündkerze sowie verfahren zu ihrer herstellung und bearbeitung
JP4413951B2 (ja) * 2007-07-06 2010-02-10 日本特殊陶業株式会社 スパークプラグ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684505A (en) 1985-06-11 1987-08-04 Howmet Turbine Components Corporation Heat resistant alloys with low strategic alloy content
EP0933848A1 (de) 1998-01-28 1999-08-04 Ngk Spark Plug Co., Ltd Zündkerze mit eingebautem Widerstand
EP1065290A1 (de) 1999-06-30 2001-01-03 Sumitomo Metal Industries, Ltd. Hitzebeständige Nickelbasislegierung
JP2007092139A (ja) 2005-09-29 2007-04-12 Hitachi Metals Ltd 点火プラグ用電極材料
US20080050264A1 (en) 2006-08-28 2008-02-28 Federal-Mogul World Wide, Inc. Ignition Device Electrode Composition
JP2009245640A (ja) 2008-03-28 2009-10-22 Ngk Spark Plug Co Ltd スパークプラグ

Also Published As

Publication number Publication date
WO2011054561A1 (de) 2011-05-12
EP2514052A1 (de) 2012-10-24
DE102009046005A1 (de) 2011-04-28
CN102598443A (zh) 2012-07-18
JP2013508557A (ja) 2013-03-07
JP5826182B2 (ja) 2015-12-02
EP2514052B1 (de) 2015-02-25
BR112012010819A2 (pt) 2017-12-19
CN102598443B (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
DE112012002699B4 (de) Zündkerze und Verfahren zum Herstellen einer Elektrode einer Zündkerze
DE69800238T2 (de) Zündkerze
DE602006000350T2 (de) Zündkerze für Verbrennungsmotor
DE112012000600B4 (de) Zündkerzenelektrode für eine Zündkerze, Zündkerze und Verfahren zum Herstellen einer Zündkerzenelektrode
EP2582854B1 (de) Nickelbasislegierung
DE60306300T2 (de) Hartstoffpartikel, verschleissbeständige Eisenbasissinterlegierung, Verfahren ihrer Herstellung und Ventilsitz
EP2514052B2 (de) Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial
EP3143173B2 (de) Verfahren zur herstellung eines motorbauteils, motorbauteil und verwendung einer aluminiumlegierung
DE112009000731T5 (de) Cu-Ni-Si-Co-Cr-Systemlegierung für elektronische Materialien
DE10308559B4 (de) Zündkerze
DE112012000947B4 (de) Verfahren zum Herstellen eines Elektrodenmaterials für einen Zündkerze
DE102010027463A1 (de) Zündkerze und Verfahren zu ihrer Herstellung
EP2013371A2 (de) Kupfer-nickel-zinn-legierung und deren verwendung
DE102011089788A1 (de) Motorventilsitz und Verfahren für dessen Herstellung
EP3645762B1 (de) Stahllegierung mit verbesserter korrosionsbeständigkeit bei hochtemperaturbeanspruchung und verfahren zur herstellung von stahlband aus dieser stahllegierung
DE69800364T2 (de) Zündkerze
EP1917370B1 (de) Draht aus oxiddispersionsgehärtetem pt-ir- und anderen legierungen mit verbesserter oberfläche für zündkerzenelektroden
DE112011102753B4 (de) Elektrodenmaterial
DE102006053917A1 (de) Für Verbrennungsmotoren benutzte Zündkerze
EP1888798A1 (de) Aluminium-gleitlagerlegierung
DE60206464T2 (de) Ni-Legierung mit verbesserter Oxidations- Resistenz, Warmfestigkeit and Warmbearbeitbarkeit
WO2001000896A1 (de) Fe-cr-al legierung
DE112012002495T5 (de) Elektrodenmaterial , Zündkerzenelektrode und Zündkerze
DE102005038772B4 (de) Draht aus oxiddispersionsgehärteten Pt-lr- und anderen Legierungen mit verbesserter Oberfläche für Zündkerzenelektroden
DE69112165T2 (de) Aluminium enthaltender rostfreier ferritischer Stahl mit hoher Beständigkeit gegen Hochtemperatursoxydation und hoher Zähigkeit.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008980

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 712698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150526

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010008980

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

26 Opposition filed

Opponent name: REININGER, JAN

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 712698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

R26 Opposition filed (corrected)

Opponent name: REININGER, JAN

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20180822

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502010008980

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180924

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010008980

Country of ref document: DE